
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GAIA2: BENCHMARKING LLM AGENTS ON DYNAMIC
AND ASYNCHRONOUS ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Gaia2, a benchmark for evaluating large language model agents in
realistic, asynchronous environments. Unlike prior static or synchronous evalu-
ations, Gaia2 introduces scenarios where environments evolve independently of
agent actions, requiring agents to operate under temporal constraints, adapt to
noisy and dynamic events, resolve ambiguity, and collaborate with other agents.
Each scenario is paired with a write-action verifier, enabling fine-grained, action-
level evaluation and making Gaia2 directly usable for reinforcement learning from
verifiable rewards. Our evaluation of state-of-the-art proprietary and open-source
models shows that no model dominates across capabilities: GPT-5 (high) reaches
the strongest overall score of 42% pass@1 but fails on time-sensitive tasks,
Claude-4 Sonnet trades accuracy and speed for cost, Kimi-K2 leads among open-
source models with 21% pass@1. These results highlight fundamental trade-offs
between reasoning, efficiency, robustness, and expose challenges in closing the
“sim2real” gap. Gaia2 is built on a consumer environment with the open-source
Agents Research Environments platform and designed to be easy to extend. By
releasing Gaia2 alongside the foundational ARE framework, we aim to provide
the community with a flexible infrastructure for developing, benchmarking, and
training the next generation of practical agent systems.

1 INTRODUCTION

Reinforcement learning from verifiable rewards (RLVR) has emerged as a promising path for im-
proving large language model (LLM) agents at scale in domains such as reasoning, coding, and tool-
use, offering a more reliable alternative to preference-based methods (OpenAI, 2024b; DeepSeek-AI
et al., 2025; Mistral-AI et al., 2025; MoonshotAI et al., 2025). At the same time, the use-cases of
modern agents increasingly involve sustained long-horizon interaction with dynamic environments,

$0.01 $0.1 $1 $10
Max Budget per Scenario ($)

0.0

0.1

0.2

0.3

0.4

G
ai

a2
 p

as
s@

1

GPT-5 (minimal)

GPT-5 (low)

GPT-5 (high)

Claude-4-Sonnet
Thinking

Gemini 2.5-Pro

GPT-OSS 120B

Grok-4

Kimi-K2

Llama-4-Maverick

Qwen3 235B Thinking

Gaia2 Budget Scaling Curves

Figure 1: Gaia2 budget scaling curve: for each max budget, we plot
∑

1{scenario result =
True ∧ scenario cost < max budget}. Equipped with a simple ReAct-like scaffold (see Section 3),
no model evaluated here dominates across the intelligence spectrum—each trades off capability,
efficiency, and budget. At equal cost, some models fare better, yet all curves plateau, suggesting
that standard scaffolds and/or models miss ingredients for sustained progress. Cost estimates from
Artificial Analysis model pricing data (accessed September 10, 2025).

1

https://artificialanalysis.ai/models

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

where time, uncertainty, and collaboration play a central role. This has motivated the creation of
LLM agent benchmarks (Mialon et al., 2023; Jimenez et al., 2024; Yao et al., 2024; Backlund &
Petersson, 2025), yet most such benchmarks are static or synchronous: environments only change
when the agents act, and evaluation typically ignores intermediate steps or actions. As a result, many
of the challenges agents face in real deployments—such as handling asynchronous events, operating
under temporal constraints, or adapting to noise and uncertainty—remain untested.

We introduce Gaia2, a benchmark designed to address these limitations by evaluating agents in
asynchronous environments with verifiable tasks that, like GAIA (Mialon et al., 2023), are simple for
humans but challenging for today’s AI models. Gaia2 scenarios are motivated by real deployed use
cases: it generalizes information seeking to environments instead of web-only, Gaia2-Time reflects
the requirements of scheduled task products (e.g., calendar and reminders), and Gaia2-Agent2Agent
mirrors the recently proposed Agent2Agent protocol for interoperable multi-agent systems (Google
Developers, 2025). Gaia2 consists of 1,120 human-annotated scenarios set in a smartphone-like
environment with realistic apps (email, messaging, calendar, contacts, etc.), similar to AppWorld
and ToolSandbox (Trivedi et al., 2024; Lu et al., 2024). Each scenario requires capabilities be-
yond search and execution, including adaptability to new events, robustness to noise, resolution of
ambiguity, temporal awareness, and collaboration with other agents. To enable reproducible and
fine-grained evaluation, Gaia2 introduces a write action verifier that checks every state-changing
action against oracle annotations, making the benchmark directly applicable to RLVR. Built on the
Agents Research Environments (ARE) platform, Gaia2 provides abstractions for creating asyn-
chronous environments and supports continuous extension of benchmarks. The core concepts of
ARE, illustrated in Figure 2, allow generalization beyond Gaia2 to the definition of other bench-
marks. In practice, this design reveals new failure modes: while frontier models achieve overall
success rates around 42%, no system dominates across all capabilities, with strong reasoning often
traded off against speed, robustness, or cost.

Contributions This paper makes three main contributions to advance the evaluation of LLM
agents and to chart open directions for the next generation of practical systems:

• ARE framework: We release Agents Research Environments, a general-purpose platform for
building asynchronous, event-driven benchmarks that support scalable evaluation and data gen-
eration for RL.

• Gaia2 benchmark: We introduce Gaia2, the first benchmark unifying asynchronous execution,
temporal reasoning, noise robustness, ambiguity resolution, and multi-agent collaboration under
a verifiable evaluation framework directly usable for RLVR.

• Empirical study: We evaluate leading proprietary and open-source models on Gaia2, exposing
fundamental trade-offs between reasoning strength, efficiency, robustness, and cost.

2 RELATED WORK

Benchmarking LLM agents A wide range of benchmarks have been proposed to measure agent
capabilities. Embodied and web-based environments such as ALFWorld (Shridhar et al., 2021),
WebShop (Yao et al., 2023a), WebArena (Zhou et al., 2024), and WorkArena (Drouin et al., 2024)
emphasize grounded execution. Synthetic environments such as AppWorld (Trivedi et al., 2024)
and ToolSandbox (Lu et al., 2025) introduce app-like tasks with state verification or milestone-
based evaluation, while BFCL (Patil et al., 2025) targets large-scale function calling. Other efforts
incorporate temporal dynamics and multi-agent interaction, including VendingBench (Backlund &
Petersson, 2025), τ -Bench and τ2-Bench (Yao et al., 2024; Barres et al., 2025), MultiAgentBench
(Zhu et al., 2025), and MCP-based benchmarks (Wang et al., 2025; Team, 2025; Gao et al., 2025;
Anthropic, 2024). Finally, static setups such as GAIA (Mialon et al., 2023), SWE-bench (Jimenez
et al., 2024), and BrowseComp (Wei et al., 2025) evaluate only final outcomes. While these bench-
marks each capture valuable aspects of agent reasoning, tool use, or collaboration, they remain
synchronous and agent-driven: environments only change when the agent acts, and evaluation typi-
cally ignores intermediate steps or actions. Gaia2 differs by introducing asynchronous, event-driven
environments that stress temporal constraints, robustness, ambiguity resolution, and multi-agent co-
ordination under a unified, verifiable evaluation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: ARE environments are event-based, time-driven simulations, that run asynchronously
from the agent and the user. ARE environments allow to play scenarios, which typically contain
tasks for the agent and verification logic. Whether initiated by agent or user, interactions happen
through the same interfaces and can be either tool calls, or tool output/notification observations.
Extensive simulation control and logging allow precise study of agents behavior.

Verification in agentic benchmarks Verification strategies vary across benchmarks. GAIA (Mi-
alon et al., 2023) evaluates correctness at the final output level via exact match. This suits search-
style tasks but lacks flexibility in format and content, especially in web-based, evolving domains.
ToolSandbox (Lu et al., 2025) introduces milestones and minefields that constrain the agent’s trajec-
tory, enabling early checks of both outcomes and intermediate behavior. Beyond strictly verifiable
domains, the Rubrics as Rewards framework (Gunjal et al., 2025; Starace et al., 2025; Lin et al.,
2025) shows how checklist-style rubrics can serve as interpretable reward signals for subjective
tasks, highlighting the broader potential of rubric-based evaluation. Gaia2 extends this with the ARE
Verifier, which evaluates every state-changing write action against oracle annotations. It combines
exact argument checks, rubric-guided judgments for flexible cases, and causal and temporal con-
straints. Importantly, the verifier is a standalone contribution: a general mechanism for fine-grained,
reproducible credit assignment reusable beyond Gaia2. While today’s models underperform, we
expect future RLVR-trained systems to close the gap and eventually solve Gaia2.

3 ARE: SCALING UP AGENT ENVIRONMENTS AND EVALUATIONS

Messages

15.8%

Chats
8.4%

Files 3.0%

RentAFlat 5.2%

Cabs
2.1%

Contacts

19.0%

Calendar

10.5%

Shopping
8.0%

City4.6%

Emails
11.8%

SystemApp

6.9%

AgentUserInterface

4.8%

App Usage Distribution in Gaia2

Figure 3: App usage distribu-
tion across the 12 Mobile apps
in Gaia2 for Llama 4 Maverick.

ARE is a research platform for creating simulated environments,
running agents in them, and analyzing their behavior. ARE envi-
ronments evolve continuously and are decoupled from the agent.
Time advances in the simulation as the environment introduces
events. Agents run asynchronously and interact with the user and
environment through dedicated interfaces.

Core concepts At its foundation, ARE introduces a set of ab-
stractions, illustrated in Figure 2, that make it possible to design
rich, dynamic environments. More precisely: (i) apps are stateful
APIs with associated content, analogous to applications such as
messaging or email, each exposing tools that can be typed as read-
only or write, enabling fine-grained control and verification; (ii)
a collection of apps together with a time manager and governing
rules forms an environment, which can host one or several agents;
(iii) within these environments, events represent everything that
happens, from tool calls and state changes to scheduled updates,
and are fully logged, scheduled either at absolute timestamps or
relative to others, and organized into dependency graphs; (iv) to surface relevant dynamics, notifi-
cations provide a configurable observability layer: a policy selects which events are pushed to the
agent’s context, enabling the study of proactive and reactive behavior under varying observability;
and (v) scenarios extend static tasks into dynamic trajectories by specifying an initial state and a
DAG of events, including the user’s request, intermediate events, and a verification method. Verifi-
cation can run offline at the end of the run or online via scheduled validation events, and focuses on
write operations to avoid over-constraining exploration strategies. To demonstrate the generality of
these abstractions, we validated that ARE can faithfully reimplement existing agentic benchmarks

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

such as τ -bench, τ2-bench GAIA, and BFCL-v3, VendingBench(Yao et al., 2024; Barres et al., 2025;
Mialon et al., 2023; Patil et al., 2025; Backlund & Petersson, 2025), confirming that the platform
both subsumes current benchmarks and provides a foundation for the next generation of agentic
evaluations. More details about ARE concepts are provided in Appendix A.1.

Asynchronicity and time Because environments run asynchronously, model generations directly
consume simulated time: if an agent takes longer to respond, the environment clock still advances,
and external events may happen during its reasoning process. This design unlocks evaluations of
temporal awareness and responsiveness, which are impossible to capture in synchronous settings.

Mobile environment To demonstrate the versatility of the ARE abstractions, we release Mobile
as a an instantiation of a consumer mobile environment. It features twelve apps (Messages, Chats,
Emails, Calendar, Contacts, Shopping, Cabs, Files, etc.) and 101 associated tools, similar in spirit
to AppWorld (Trivedi et al., 2024) and ToolSandbox (Lu et al., 2024). Each “universe” represents
a complete instance of this environment—the full state of all apps centered around a specific user.
Applications are populated with synthetic but coherent data, seeded with personas sampled from Per-
sonaHub (Ge et al., 2024) and propagated across apps via a dependency graph to ensure cross-app
consistency (e.g., contacts align across messaging and email, events match calendar availability).
Universes contain between 400K and 800K tokens of structured and unstructured content (exclud-
ing filesystem contents), making them suited for long-context and long-horizon tasks. Mobile is
governed by clear rules: each turn starts with a user message or a notified event and ends when
the agent replies to the user. During the turn, simulated time advances continuously, and scenar-
ios terminate either on task completion, when constraints on time or steps are exceeded, or when
verification fails. While Mobile focuses on the consumer domain to leverage a unified app con-
cept, the underlying ARE platform is environment-agnostic. The API definitions remain invariant
across domains—for example, the interface for a Chats tool is identical whether in a mobile or desk-
top setting. Consequently, the architecture presented here extends naturally to other domains such
as desktop automation, customer support, and web browsing, where creating a new environment
requires only defining the relevant tool interfaces.

Agent orchestration Running agents in ARE requires an orchestration compatible with its ab-
stractions. For a fair evaluation, we use a model-agnostic scaffold based on a ReAct loop (Yao et al.,
2023b), where the agent outputs one tool call per step in structured JSON. The orchestration is aug-
mented with pre-step and post-step hooks: before each LLM call, notifications queued in the
environment are injected into the agent’s context; after the tool call, the agent termination condition
is checked. This minimal extension preserves the simplicity of ReAct while making it compatible
with asynchronous and multi-turn environments. Alternative orchestrations can be easily plugged in.
To ensure that this sequential scaffolding does not artificially bottleneck performance, we compared
it against a Parallel Tool Calling (PTC) orchestration in Appendix B.3.2. Results show that PTC can
improve efficiency (wall clock time and token usage) but not performance (see Table 6), confirming
that the observed limitations are intrinsic to model capabilities rather than the scaffold.

4 GAIA2: EXPANDING GENERAL AGENT EVALUATION

Building on the abstractions of ARE, we introduce Gaia2, consisting of 800 unique verifiable sce-
narios, carefully annotated by humans across 10 distinct universes in the Mobile environment,
with 101 tools each. The scenarios are organized into splits, each targeting one agent capability
defined below. To support rapid and cost-effective evaluations, we also curate a 160-scenario subset,
Gaia2-mini. The benchmark includes two augmentation setups derived from Gaia2-mini, adding
320 scenarios to the original 800 for a total of 1,120 scenarios.

4.1 CAPABILITIES EVALUATED

Gaia2 evaluates agents across 1,120 scenarios. To provide a clear taxonomy, we distinguish be-
tween Core Capabilities (Execution, Search, Ambiguity, Adaptability, Time) and Augmentations
(Noise, A2A). The five core splits comprise 800 unique, human-authored scenarios, each instantiated
with a unique event DAG and initial environment state. We treat these core categories as dominant
“flavors” rather than strictly orthogonal dimensions. In practice, any natural task is inherently com-
positional (e.g., a Time task often requires Search and Execution). Consequently, we explicitly chose
not to introduce a separate “compositional” split; our early experiments with scenarios artificially

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Capability Example Task Explanation

Execution

Search

Ambiguity

Adaptability

Time

Agent2Agent

Noise

Update all my contacts aged 24 or younger to
be one year older than they are currently

Which city do most of my friends live in? In
case of a tie, return the first city alphabetically

Schedule a 1h Yoga event each day at 6:00 PM
from October 16, 2024 to October 21, 2024

 I have to meet my friend Kaida to view a
property [...] If she replies to suggest another
property or time, update the calendar event

Send messages to each of the colleagues I am
supposed to meet today, asking who is
supposed to order the cab. If after 3 minutes
there is no response, order a cab from [...]

*Same Search task as above but the Contacts
and Chats apps are replaced by app sub-agents*

*Same Adaptability task as above but with
random tool execution errors and random
environment events occurring during execution*

Evaluates the ability to chain long seq. of
write actions in the right order

Evaluates the ability to chain long seq. of
read actions in the right order

Tests whether agents ask for clarification on
impossible, contradictory, or ambiguous tasks

Requires agents to adapt dynamically to
environmental changes

Evaluates whether agents can complete tasks
in due time & maintain temporal awareness

Tests whether agents can collaborate with
other agents to use tools & complete tasks

Evaluates whether agents are robust to
environment noise & distractors

Figure 4: The seven core agent capabilities evaluated by the splits of Gaia2.

combining three or more distinct capability resulted in unnatural tasks that lacked a clear evaluation
signal. Instead, we rely on the organic compositionality present in the core splits to ensure tasks
remain realistic while still allowing for clear failure-mode attribution.

Environment augmentations The Noise and Agent-to-Agent (A2A) splits are environment-level
modifiers applied to base scenarios to stress-test robustness and collaboration. Because our veri-
fier checks state changes rather than specific tool traces, these augmentations do not require new
annotations. In the Noise split, we inject controlled perturbations, including tool anomalies (e.g.,
random execution failures, signature changes) and irrelevant environment events (e.g., incoming
spam emails). In the A2A split, apps are replaced by “app-agents”. The main agent loses direct
access to these apps’ tools and must instead coordinate with the app-agents via messaging to solve
the task. App-agents are not fully autonomous: they are invoked on-demand to execute specific
subtasks and return a report. This setting explicitly evaluates the main agent’s ability to decompose
goals and coordinate under partial observability. In our eveluation setting, main- and app-agents use
the same underlying model.

4.2 SCENARIO DESIGN AND ANNOTATION PROTOCOL

We construct Gaia2 scenarios using the ARE annotation interface (see Appendix A.4 for details),
which lets annotators explore a generated Mobile universe. Their task is to create DAGs of write
actions and environment events as ground truth. Starting from the generated environment, annota-
tors design scenarios that isolate and stress a single capability at a time (e.g., Adaptability, Time),
ensuring a clear signal of model strengths and weaknesses.

Each scenario undergoes multiple rounds of validation by independent annotators, followed by a
consistency check. We complement this process with automated guardrails (e.g., structural con-
straints on event graphs) and post-hoc difficulty calibration using a baseline agents. This combina-
tion yields a diverse, challenging, and verifiable set of scenarios while reducing annotation errors.
We provide more details on our annotation process and guidelines in Appendix B.1.

4.3 VERIFIER

A central contribution of Gaia2 is the ARE Verifier, a general mechanism for evaluating agent tra-
jectories. Unlike prior work that checks only final states or relies on final answer LLM judges,
our verifier evaluates write actions directly against a minimal oracle sequence. Crucially, this
design is goal-oriented rather than path-optimal. We explicitly separate read and write actions:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: ARE Verifier and In-context Verifier on 450 hand-labeled validation trajectories.
Verifier Agreement Precision Recall

In-context Verifier (LLM judge only) 0.72 0.53 0.83
ARE Verifier 0.98 0.99 0.95

only write actions modify the environment and count toward goal completion. Agents may execute
any sequence of read actions (e.g., searching emails, browsing files) to gather information without
penalty, allowing for diverse exploration strategies. Unless specified, the verifier is order-agnostic
regarding independent goals; for example, an agent tasked with messaging two different friends can
execute these writes in any order.

The verifier evaluates four dimensions: (i) Consistency—tool names and counts must match the
oracle; arguments are checked via exact matches for rigid fields (IDs, recipients, amounts) and
rubric-guided LLM judgments for flexible fields (messages, text), with a global sanity check against
prompt-hacking; (ii) Causality—oracle actions form a dependency DAG, requiring parents to be
matched before children; (iii) Timing—temporal relations are enforced with tolerance windows
around the oracle schedule; and (iv) Turn-level evaluation—verification runs at each turn, and a
trajectory succeeds if all oracle write actions are matched.

On 450 hand-labeled trajectories (Table 1), the verifier achieves 0.98 agreement, 0.99 precision, and
0.95 recall, outperforming an LLM-only baseline. Beyond Gaia2, it is a reusable component for
any ARE-based environment, enabling RLVR training. In this sense, the verifier is a standalone
contribution: it makes current benchmarking faithful and paves the way for future RLVR-trained
systems to “solve” Gaia2. Further details on the verification mechanism, including verification of the
verifier itself, turn-level evaluation, and judge-hacking mitigations, are provided in Appendix B.2.

5 EXPERIMENTS

In our core experiments, we evaluate state-of-the-art models on each Gaia2 capability split (Moon-
shotAI et al., 2025; Gemini Team, 2025; Yang et al., 2025; Llama Team, 2024; OpenAI, 2024a). We
also test the sensitivity of models to various evaluation configurations for Time and Agent2Agent.

Experimental setup We use the same ReAct-style baseline scaffold (Section 3) for all evaluations
in order to ensure consistent comparisons across models and providers. All LLMs are evaluated at
full context length (≥128K tokens), temperature 0.5, and 16K token generation limits per turn. Sce-
narios are run three times to account for potential variance, and are terminated when one of the
following conditions is met: (i) 200 steps, (ii) context overflow, i.e., the agent exceeds the available
context window (failure), (iii) verification completion, i.e., the verifier determines the trajectory out-
come—either by failing at some turn or by successfully passing verification at every turn, or (iv)
timeout. The environment provides tools and notifications via system prompts, with notification
verbosity set to medium by default: agents receive systematic alerts for high-priority events while
filtering out lower-priority background notifications. We handle deployment issues like outages and
rate limits using a simulated generation time—pausing during responses and resuming with a
matching time offset—to preserve realistic timing while enabling robust evaluation. The ARE Ver-
ifier uses Llama-3.3-70B-Instruct at temperature 0. For more details on our experimental
procedure, please see Appendix B.4.

5.1 CORE RESULTS

Our core experimental results are presented in Table 2, Figure 5, and Figure 6. Among Gaia2 splits,
Execution and Search emerge as the easiest, consistent with prior benchmark saturation (Trivedi
et al., 2024; Lu et al., 2024). Ambiguity and Adaptability remain challenging, with only Claude-4-
Sonnet and GPT-5 (high) achieving robust performance. The Time split further differentiates frontier
models: only Gemini 2.5 Pro and Sonnet achieve meaningful scores, reflecting their efficiency-
latency advantages (Figure 6). Noise robustness also lags, with most models scoring below 20 de-
spite GPT-5 (high) reaching 35.4%. Agent2Agent collaboration benefits weaker models more than
frontier systems (see Figure 10). Overall, GPT-5 (high) leads with 42.1% pass@1, maintaining an
8-point margin over Sonnet across all categories. Kimi-K2 distinguishes itself among open mod-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Pass@1 scores on Gaia2 scenarios per model and capability split. All models are evaluated
with the same baseline ReAct scaffolding described in Section 3 and with three runs to account for
potential variance. The overall score is the average across splits.

Execution Search Ambiguity Adaptability Time Noise Agent2Agent Overall
Llama 3.3 70B Instruct 7.1 ±1.2 11.5 ±1.5 1.7 ±0.6 1.9 ±0.6 0.4 ±0.3 3.8 ±0.9 4.6 ±1.0 4.4
Llama 4 Maverick 13.8 ±1.6 14.4 ±1.6 2.1 ±0.7 5.0 ±1.0 1.2 ±0.5 6.2 ±1.1 9.2 ±1.3 7.4
GPT-4o 8.3 ±1.3 17.5 ±1.7 4.4 ±0.9 6.2 ±1.1 5.8 ±1.1 4.6 ±1.0 5.2 ±1.0 7.4
GPT-OSS 120B (high) 17.9 ±1.8 33.1 ±2.1 8.3 ±1.3 10.6 ±1.4 0.6 ±0.4 14.6 ±1.6 10.6 ±1.4 13.7
Qwen3-235B 22.7 ±1.9 22.3 ±1.9 6.5 ±1.1 8.1 ±1.2 1.2 ±0.5 10.8 ±1.4 9.4 ±1.3 11.6
Qwen3-235B Thinking 28.1 ±2.1 36.2 ±3.8 10.0 ±2.4 16.2 ±2.9 0.0 ±0.0 6.9 ±2.0 12.5 ±2.6 15.7
Grok-4 8.8 ±2.2 57.5 ±3.9 9.4 ±2.3 4.4 ±1.6 0.0 ±0.0 15.6 ±2.9 14.4 ±2.8 15.7
Kimi-K2 34.2 ±2.2 36.0 ±2.2 8.3 ±1.3 24.0 ±1.9 0.8 ±0.4 18.8 ±1.8 18.3 ±1.8 20.1
Gemini-2.5-Pro 39.2 ±2.2 57.7 ±2.3 18.1 ±1.8 17.5 ±1.7 7.3 ±1.2 20.4 ±1.8 20.4 ±1.8 25.8
Claude-4-Sonnet 57.9 ±2.3 59.8 ±2.2 24.2 ±2.0 38.1 ±2.2 8.1 ±1.2 27.7 ±2.0 27.9 ±2.0 34.8
Claude-4-Sonnet Thinking 62.1 ±2.2 60.6 ±2.2 27.3 ±2.0 42.1 ±2.3 8.5 ±1.3 31.2 ±2.1 32.5 ±2.1 37.8
GPT-5 (minimal) 31.9 ±2.1 26.2 ±2.0 20.6 ±1.8 19.2 ±1.8 5.2 ±1.0 13.1 ±1.5 11.5 ±1.5 18.2
GPT-5 (low) 52.7 ±2.3 64.2 ±2.2 39.6 ±2.2 30.2 ±2.1 2.3 ±0.7 28.3 ±2.1 24.6 ±2.0 34.6
GPT-5 (high) 69.2 ±2.1 79.6 ±1.8 51.9 ±2.3 40.4 ±2.2 0.0 ±0.0 35.4 ±2.2 17.9 ±1.8 42.1

GPT-5
 *

Claude-4
-S

onnet *

Gem
ini-2

.5
-P

ro
*

Kim
i-K

2

Qwen3-2
35B *

GPT-O
SS 12

0B *

Llam
a-4

-M
averic

k

Gro
k-4

*

GPT-4
o

Llam
a-3

.3-7
0B

0

20

40

60

80

100

pa
ss

@
1

Execution

GPT-5
 *

Claude-4
-S

onnet *

Gro
k-4

*

Gem
ini-2

.5
-P

ro
*

Kim
i-K

2

Qwen3-2
35B *

GPT-O
SS 12

0B *

GPT-4
o

Llam
a-4

-M
averic

k

Llam
a-3

.3-7
0B

0

20

40

60

80

100

pa
ss

@
1

Search

GPT-5
 *

Claude-4
-S

onnet *

Gem
ini-2

.5
-P

ro
*

Qwen3-2
35B *

Gro
k-4

*

Kim
i-K

2

GPT-O
SS 12

0B *

GPT-4
o

Llam
a-4

-M
averic

k

Llam
a-3

.3-7
0B

0

20

40

60

80

100

pa
ss

@
1

Ambiguity

Claude-4
-S

onnet *

GPT-5
 *

Kim
i-K

2

Gem
ini-2

.5
-P

ro
*

Qwen3-2
35B *

GPT-O
SS 12

0B *

GPT-4
o

Llam
a-4

-M
averic

k

Gro
k-4

*

Llam
a-3

.3-7
0B

0

20

40

60

80

100

pa
ss

@
1

Adaptability

Claude-4
-S

onnet *

Gem
ini-2

.5
-P

ro
*

GPT-4
o

Llam
a-4

-M
averic

k

GPT-O
SS 12

0B *

Kim
i-K

2

Llam
a-3

.3-7
0B

Qwen3-2
35B *

Gro
k-4

*

GPT-5
 *

0

20

40

60

80

100

pa
ss

@
1

Time

GPT-5
 *

Claude-4
-S

onnet *

Gem
ini-2

.5
-P

ro
*

Kim
i-K

2

Gro
k-4

*

GPT-O
SS 12

0B *

Qwen3-2
35B *

Llam
a-4

-M
averic

k

GPT-4
o

Llam
a-3

.3-7
0B

0

20

40

60

80

100

pa
ss

@
1

Noise

Claude-4
-S

onnet *

Gem
ini-2

.5
-P

ro
*

Kim
i-K

2

GPT-5
 *

Gro
k-4

*

Qwen3-2
35B *

GPT-O
SS 12

0B *

Llam
a-4

-M
averic

k

GPT-4
o

Llam
a-3

.3-7
0B

0

20

40

60

80

100

pa
ss

@
1

Agent2Agent

* indicates a reasoning model
 highest reasoning setting used

Meta
OpenAI
xAI
Anthropic

Google
Alibaba
Moonshot AI

Figure 5: Gaia2 scores per capability split. Models are reranked independently for each capability,
highlighting where they excel or struggle.

els, particularly on Adaptability. While instruction-following and search tasks are largely solved,
robustness, ambiguity resolution, and collaboration remain open challenges.

In Figures 6 and 7, we extend our analysis beyond raw scores to identify the finer-grained factors
that drive performance differences between models on Gaia2. In addition, since agents are ultimately
intended for deployment in production settings, we evaluate their performance in relation to their
computational cost1 and execution time.

Cost-performance trade-offs Figure 6 reveals clear cost-performance-time trade-offs. GPT-5’s
reasoning models demonstrate direct scaling: higher test-time compute yields better performance
but longer solution times. Claude 4 Sonnet costs roughly 3× more than GPT-5 (low) for compa-
rable accuracy but operates much faster. Outliers include the inefficient Grok-4 and cost-effective
KimiK2. While an average human annotator can solve every task, they are slower than all models,
partly due to using ARE’s GUI rather than a native OS. These findings highlight the need for cost-
normalized evaluation metrics. Comparing model parameters or FLOPs alone inadequately reflects
real-world deployment conditions. Success rate per dollar better captures how agents will be judged
in practice—by reliable, efficient task completion under resource constraints.

Performance drivers We examine behavioral factors correlating with Gaia2 performance. Two
hypotheses guide our analysis: (1) exploration drives success through increased tool use and sys-
tematic information gathering before write operations, and (2) comprehensive reasoning via token
generation improves performance. Figure 7 confirms both relationships: performance correlates

1Cost estimates from Artificial Analysis model pricing data (accessed September 10, 2025)

7

https://artificialanalysis.ai/models

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

$0.0 $0.2 $0.4 $0.6 $0.8 $1.0 $1.2 $1.4 $1.6

scenario cost (USD)

0

10

20

30

40

50

pa
ss

@
1

Llama-3.3-70B
Llama-4-Maverick

GPT-4o

GPT-5 (low)

GPT-5 (high)

Grok-4

Claude-4-Sonnet
Claude-4-Sonnet Thinking

Gemini-2.5-Pro

Qwen3-235B
Qwen3-235B Thinking

Kimi-K2
GPT-OSS
(high)

Overall Gaia2 Score vs Average Cost per Scenario (USD)

0 20 40 60
time per solved scenario (mins)

Human
GPT-5 (high)

Kimi-K2
Qwen3-235B

Qwen3-235B Thinking
Grok-4

GPT-OSS 120B (high)
GPT-5 (low)

Llama-4-Maverick
Claude-4-Sonnet Thinking

Claude-4-Sonnet
Gemini-2.5-Pro
Llama-3.3-70B

GPT-4o

Time per Solved Gaia2 Scenario

Meta
OpenAI
xAI
Anthropic
Google
Alibaba
Moonshot AI
DeepSeek

Figure 6: Left: Gaia2 score vs average scenario cost in USD. Right: Time taken per model to
successfuly solve Gaia2 scenarios compared to Humans.

positively with tool calls (left) and output tokens (right). However, Claude-4 Sonnet and Kimi-K2
stand out as notable outliers, achieving high performance (35% and 21% respectively) while pro-
ducing relatively few tokens—suggesting exceptional efficiency, perhaps due to larger parameter
counts or specialized architectures. Within families, we observe a striking contrast between the base
and “Thinking” variants of Claude and Qwen: the latter generate more tokens per step but take
fewer steps overall, leading to higher pass@1 and lower cost per solved scenario, effectively trad-
ing verbosity for efficiency (e.g., Qwen-235B Thinking vs. Qwen-235B). App usage patterns were
nearly identical across models (Figure 3), indicating that performance differences stem primarily
from general reasoning capabilities rather than app-specific preferences.

5.2 TIME REVEALS THE IMPACT OF INFERENCE SPEED—AND SYSTEM RELIABILITY

We evaluate Gaia2-Time in two modes. As shown in Figure 8 (left), removing generation latency
(“instant” mode) improves all models, with the largest gains for reasoning models: Sonnet rises
from 8.1% to 26.7%, and GPT-5 (high) from 0.0% to 34.4%. Weaker models improve modestly
due to the difficulty of the tasks, while Gemini 2.5 Pro combines strong performance with low
latency and therefore best supports timing requirements. In the default mode, we observe inverse
scaling in the Time capability: models trade Time performance for Execution performance due to
longer thinking, see Figure 8 right. This underscores the need for adaptive compute—using shallow
models and performing deeper reasoning only when necessary. Besides inference speed, the Time
split also underlines the need for reliable infrastructure to serve responsive models without rate limits
and server downtime in order to handle time-sensitive tasks. Finally, some Time scenarios require
concurrent actions within narrow windows, which our single-threaded scaffold cannot fully express.
Parallel orchestration is a promising direction to solve this type of scenarios.

5.3 A CLOSER LOOK AT MULTI-AGENT COLLABORATION ON GAIA2 WITH AGENT2AGENT

Inspired by recent work pushing beyond single-LLM agent tool-use and towards agent teams that
message, coordinate, and divide labor (Google Developers, 2025), we study multi-agent collabora-

12 14 16 18 20 22 24
LLM calls per scenario

0

10

20

30

40

50

pa
ss

@
1

Llama-3.3-70B
Llama-4-Maverick

GPT-4o

GPT-5 (minimal)

GPT-5 (low)

GPT-5 (high)

Grok-4

Claude-4-Sonnet
Claude-4-Sonnet Thinking

Gemini-2.5-Pro

Qwen3-235B

Qwen3-235B Thinking

Kimi-K2

GPT-OSS 120B (high)

Overall Gaia2 Score vs Average LLM Calls per Scenario

1K 10K 100K

output tokens per scenario

0

10

20

30

40

50

pa
ss

@
1

Llama-3.3-70B
Llama-4-Maverick

GPT-4o

GPT-5 (minimal)

GPT-5 (low)

GPT-5 (high)

Grok-4

Claude-4-Sonnet

Claude-4-Sonnet Thinking

Gemini-2.5-Pro

Qwen3-235B

Qwen3-235B Thinking

Kimi-K2

GPT-OSS 120B (high)

Overall Gaia2 Score vs Average Output Tokens per Scenario

Figure 7: Left: Gaia2 pass@1 versus average model calls per scenario. The performance of models
is highly correlated to the number of tool calls, emphasizing the importance of exploration. Right:
Gaia2 pass@1 score versus average output tokens per scenario (log scale). Claude 4 Sonnet, while
costing a lot is existing beyond the Pareto frontier.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35
Time pass@1

GPT-5
(high)

Claude-4
Sonnet

GPT-5
(low)

Gemini
2.5-Pro

GPT-5
(minimal)

Qwen3
235B

Llama-4
Maverick

Grok-4

34.40.0

26.78.1

21.92.3

14.87.3

12.95.2

5.81.2

5.01.2

3.10.0

Gaia2-Time pass@1: Instant vs Default Time Mode

Instant mode (full bar)
Default mode (filled portion)
Instant mode (full bar)
Default mode (filled portion)

10 20 30 40 50 60 70
Execution pass@1 (Instruction following & Tool-use)

0

1

2

3

4

5

6

Ti
m

e
pa

ss
@

1
in

 d
ef

au
lt

 m
od

e
(t

em
po

ra
l r

es
po

ns
iv

en
es

s)

GPT-4o

GPT-5 (minimal)

GPT-5 (low)

GPT-5 (high)

Gaia2 - Time vs Execution pass@1 (GPT models)

Figure 8: Left: Pass@1 on Gaia2-Time in default vs. instant. Right: Inverse scaling on
Time—reasoning-heavy models are slower and miss deadlines.

tion on Gaia2 scenarios. We focus on two models at different points in the cost-quality curve: Llama
4 Maverick, a lighter-weight model, and Claude 4 Sonnet, the strongest overall LLM on standard
Agent2Agent (Table 2).

For the weaker Llama 4 Maverick, centralized collaboration on Gaia tasks improves both perfor-
mance with pass@k and operational stability. As the agent-to-agent ratio r increases, we observe
more favorable scaling with repeated sampling and a lower incidence of tool-call errors per step
(Figure 9 right; Figure 10). However, the trends observed for Llama 4 are not universal. For Claude
4 Sonnet, increasing the collaborator ratio r – and thus the degree of task decomposition – does
not improve cost-normalized performance under best-of-k sampling: score per token plateaus with
or without multi-agent collaboration. Similarly, collaboration ratio with Agent2Agent has a weak
negative effect on tool call error frequency.

One explanation for these findings may lie in the fact that Agent2Agent induces hierarchical decom-
position into decision-making. As shown in Figure 9 left, sub-goals issued by a main-agent to an
app-agent instantiate temporally extended actions akin to options (Sutton et al., 1999). Under this
lens, gains in performance may materialize only when the benefits of decomposition outweigh the
costs. For example, Agent2Agent may increase task score only when sub-goals set by main-agents
are well-scoped and both app- and main-agents are capable of reliably exchanging state & intent
during message-passing. Likewise, the addition of hierarchy can result in cascading errors and/or
saturating gains if post-training has fit models to long-form, single-agent planning and tool-use; in
this regime, coordination may introduce overhead that offsets accuracy and efficiency gains.

Heterogeneous teams open a new compute scaling axis for task automation, for example, by keeping
a strong main agent to plan/decompose tasks while swapping in cheaper app-agents to execute sub-
goals2. Empirically, replacing Llama 4 Maverick app-agents with Claude app-agents boosts pass@1
for both main-agent settings (16.2 with Llama-main, 29.3 with Claude-main), while the fully light

2ARE natively supports controlled evaluation of heterogeneous teams, making team composition a primary
experimental factor alongside standard inference hyperparameters.

Figure 9: Agent2Agent tests whether LLM agents can collaborate through message passing in or-
der to solve Gaia2 tasks via sub-task decomposition. For lighter-weight LLMs, collaboration in
Agent2Agent results in a lower incidence of tool call errors. Left: Sample exchange between Llama
4 Maverick main vs app agent in an Agent2Agent scenario. Right: Frequency of errors per tool call
(lower is better) on Gaia-2 mini for Llama 4 Maverick and Claude 4 Sonnet.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

100K 1M 10M

total tokens per scenario (log-scale)

0.05

0.10

0.15

0.20

0.25

pa
ss

@
k

Llama-4-Maverick

100K 1M 10M

total tokens per scenario (log-scale)

0.3

0.4

0.5

0.6

pa
ss

@
k

Claude-4-Sonnet

Pass@k Scaling Laws on Gaia2-Mini with Multi-Agent Collaboration via Agent2Agent

r = 1.0 (full agent2agent) r = 0.5 (partial agent2agent) r = 0.0 (single agent)

Figure 10: Increasing the number of multi-agent collaborators in Gaia2 scenarios by increasing the
Agent2Agent ratio “r” improves pass@k scaling laws for Llama 4 Maverick, but does not improve
token cost vs score tradeoffs with repeated sampling for Claude 4 Sonnet.

Main-Agent LLM
Llama 4 Maverick Claude 4 Sonnet

App-Agent LLM Llama 4 Maverick 8.5 ±1.7 16.2 ±0.7

Claude 4 Sonnet 18.3 ±0.7 29.3 ±2.9

Table 3: Probing cross-model collaboration in Gaia2-mini Agent2Agent scenarios: we evaluate
pass@1 across main- vs app-agent pairings with Llama 4 Maverick and Claude 4 Sonnet in the fully
collaborative Agent2Agent setting (r = 1). The results are averaged over three runs and presented
with the standard error.

configuration is weakest (8.5). This suggests that for existing LLMs, Gaia2 task completion re-
mains sensitive to execution fidelity at the app-agent level: stronger executors improve outcomes
even when the main agent is light. Similarly, pairing a strong main agent with light executors still
outperforms the all-light team (18.3 with Claude-main + Llama-app), indicating that higher-quality
sub-goal specification and critique from the main-agent contribute independent gains. These find-
ings are consistent with prior work suggesting heterogeneous multi-agent systems can trade planning
capacity against execution fidelity to manage compute-quality trade-offs.

6 CONCLUSION & DISCUSSION

ARE introduces an asynchronous, event-driven evaluation framework with action-level verification,
enabling reproducible benchmarking directly applicable to RLVR. Its abstractions—apps, events,
notifications, and scenarios—along with the MOBILE environment provide an extensible foundation
for community-driven evaluations and RL data generation. Gaia2 demonstrates that no model domi-
nates across all capabilities: GPT-5 (high) achieves the best overall accuracy (42% pass@1), Claude-
4 Sonnet offers competitive performance with lower latency, and Kimi-K2 leads among open-source
systems (20%). Scaling curves reveal fundamental cost–time–accuracy trade-offs, highlighting the
need for cost-normalized reporting.

Verification at the action level scales more effectively than end-state comparisons and supports fine-
grained credit assignment. The ARE Verifier matches human annotations with high fidelity (0.99
precision, 0.95 recall), while uncovering issues such as “judge-hacking.” Robust verifier design is
thus critical for both evaluation and RL training; hybrid approaches combining scalar rewards with
preference signals remain an open direction.

Finally, Gaia2’s Time split and A2A experiments underscore the critical role of orchestration. The
inverse scaling observed in Time-sensitive tasks suggests that future agents require adaptive com-
pute strategies: deploying fast, lightweight reasoning for routine tasks while reserving deeper delib-
eration for complex ones. Simultaneously, the A2A results demonstrate that orchestration extends
to collaboration, where heterogeneous teams can outperform monolithic models through effective
delegation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing the model context protocol. https://www.anthropic.com/news/
model-context-protocol, 2024. Accessed: November 25, 2025.

Axel Backlund and Lukas Petersson. Vending-bench: A benchmark for long-term coherence of
autonomous agents, 2025. URL https://arxiv.org/abs/2502.15840.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ2-bench: Evaluating
conversational agents in a dual-control environment, 2025. URL https://arxiv.org/abs/
2506.07982.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge work
tasks?, 2024. URL https://arxiv.org/abs/2403.07718.

Will Epperson, Gagan Bansal, Victor C Dibia, Adam Fourney, Jack Gerrits, Erkang (Eric) Zhu, and
Saleema Amershi. Interactive debugging and steering of multi-agent ai systems. In Proceed-
ings of the 2025 CHI Conference on Human Factors in Computing Systems, CHI ’25, pp. 1–15.
ACM, April 2025. doi: 10.1145/3706598.3713581. URL http://dx.doi.org/10.1145/
3706598.3713581.

Xuanqi Gao, Siyi Xie, Juan Zhai, Shqing Ma, and Chao Shen. Mcp-radar: A multi-dimensional
benchmark for evaluating tool use capabilities in large language models, 2025. URL https:
//arxiv.org/abs/2505.16700.

Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data
creation with 1,000,000,000 personas. arXiv preprint arXiv:2406.20094, 2024.

Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities, 2025. URL https://arxiv.org/abs/
2507.06261.

11

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://arxiv.org/abs/2502.15840
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2403.07718
http://dx.doi.org/10.1145/3706598.3713581
http://dx.doi.org/10.1145/3706598.3713581
https://arxiv.org/abs/2505.16700
https://arxiv.org/abs/2505.16700
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Google Developers. Announcing the agent2agent protocol (a2a). Google Devel-
opers Blog, April 2025. URL https://developers.googleblog.com/en/
a2a-a-new-era-of-agent-interoperability/.

Anisha Gunjal, Anthony Wang, Elaine Lau, Vaskar Nath, Bing Liu, and Sean Hendryx. Rubrics as
rewards: Reinforcement learning beyond verifiable domains, 2025. URL https://arxiv.
org/abs/2507.17746.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze Brahman, Abhilasha Ravichander, Valentina
Pyatkin, Nouha Dziri, Ronan Le Bras, and Yejin Choi. Wildbench: Benchmarking llms with
challenging tasks from real users in the wild. In Proceedings of the International Conference on
Learning Representations (ICLR), Online, May 2025. URL https://openreview.net/
forum?id=MKEHCx25xp.

Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma,
Shen Ma, Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming Pang. Toolsandbox: A state-
ful, conversational, interactive evaluation benchmark for llm tool use capabilities, 2024. URL
https://arxiv.org/abs/2408.04682.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma,
Shen Ma, Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming Pang. Toolsandbox: A state-
ful, conversational, interactive evaluation benchmark for llm tool use capabilities, 2025. URL
https://arxiv.org/abs/2408.04682.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Mistral-AI, :, Abhinav Rastogi, Albert Q. Jiang, Andy Lo, Gabrielle Berrada, Guillaume Lam-
ple, Jason Rute, Joep Barmentlo, Karmesh Yadav, Kartik Khandelwal, Khyathi Raghavi Chandu,
Léonard Blier, Lucile Saulnier, Matthieu Dinot, Maxime Darrin, Neha Gupta, Roman Soletskyi,
Sagar Vaze, Teven Le Scao, Yihan Wang, Adam Yang, Alexander H. Liu, Alexandre Sablay-
rolles, Amélie Héliou, Amélie Martin, Andy Ehrenberg, Anmol Agarwal, Antoine Roux, Arthur
Darcet, Arthur Mensch, Baptiste Bout, Baptiste Rozière, Baudouin De Monicault, Chris Bam-
ford, Christian Wallenwein, Christophe Renaudin, Clémence Lanfranchi, Darius Dabert, Devon
Mizelle, Diego de las Casas, Elliot Chane-Sane, Emilien Fugier, Emma Bou Hanna, Gauthier
Delerce, Gauthier Guinet, Georgii Novikov, Guillaume Martin, Himanshu Jaju, Jan Ludziejewski,
Jean-Hadrien Chabran, Jean-Malo Delignon, Joachim Studnia, Jonas Amar, Josselin Somerville
Roberts, Julien Denize, Karan Saxena, Kush Jain, Lingxiao Zhao, Louis Martin, Luyu Gao,
Lélio Renard Lavaud, Marie Pellat, Mathilde Guillaumin, Mathis Felardos, Maximilian Au-
gustin, Mickaël Seznec, Nikhil Raghuraman, Olivier Duchenne, Patricia Wang, Patrick von
Platen, Patryk Saffer, Paul Jacob, Paul Wambergue, Paula Kurylowicz, Pavankumar Reddy Mud-
direddy, Philomène Chagniot, Pierre Stock, Pravesh Agrawal, Romain Sauvestre, Rémi Dela-
court, Sanchit Gandhi, Sandeep Subramanian, Shashwat Dalal, Siddharth Gandhi, Soham Ghosh,
Srijan Mishra, Sumukh Aithal, Szymon Antoniak, Thibault Schueller, Thibaut Lavril, Thomas
Robert, Thomas Wang, Timothée Lacroix, Valeriia Nemychnikova, Victor Paltz, Virgile Richard,
Wen-Ding Li, William Marshall, Xuanyu Zhang, and Yunhao Tang. Magistral, 2025. URL
https://arxiv.org/abs/2506.10910.

MoonshotAI, Yifan : Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

OpenAI. Gpt-4o system card, 2024a. URL https://arxiv.org/abs/2410.21276.

12

https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://arxiv.org/abs/2507.17746
https://arxiv.org/abs/2507.17746
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=MKEHCx25xp
https://openreview.net/forum?id=MKEHCx25xp
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2408.04682
https://arxiv.org/abs/2408.04682
https://arxiv.org/abs/2506.10910
https://arxiv.org/abs/2410.21276

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

OpenAI. Openai o1 system card, 2024b. URL https://arxiv.org/abs/2412.16720.

Rock Yuren Pang, K. J. Kevin Feng, Shangbin Feng, Chu Li, Weijia Shi, Yulia Tsvetkov, Jef-
frey Heer, and Katharina Reinecke. Interactive reasoning: Visualizing and controlling chain-of-
thought reasoning in large language models, 2025. URL https://arxiv.org/abs/2506.
23678.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

Joel Rorseth, Parke Godfrey, Lukasz Golab, Divesh Srivastava, and Jarek Szlichta. Ladybug: an llm
agent debugger for data-driven applications. In Proceedings of the 28th International Conference
on Extending Database Technology (EDBT), pp. 1082–1085, 2025. ISBN 978-3-89318-099-8.
Demo paper.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning, 2021.
URL https://arxiv.org/abs/2010.03768.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

The MCPMark Team. Mcpmark: Stress-testing comprehensive mcp use. https://github.
com/eval-sys/mcpmark, 2025.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. AppWorld: A controllable world of
apps and people for benchmarking interactive coding agents. In ACL, 2024.

Zhenting Wang, Qi Chang, Hemani Patel, Shashank Biju, Cheng-En Wu, Quan Liu, Aolin Ding,
Alireza Rezazadeh, Ankit Shah, Yujia Bao, and Eugene Siow. Mcp-bench: Benchmarking tool-
using llm agents with complex real-world tasks via mcp servers, 2025. URL https://arxiv.
org/abs/2508.20453.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents, 2025. URL https://arxiv.org/abs/2504.
12516.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-
world web interaction with grounded language agents, 2023a. URL https://arxiv.org/
abs/2207.01206.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

13

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2506.23678
https://arxiv.org/abs/2506.23678
https://arxiv.org/abs/2010.03768
https://github.com/eval-sys/mcpmark
https://github.com/eval-sys/mcpmark
https://arxiv.org/abs/2508.20453
https://arxiv.org/abs/2508.20453
https://arxiv.org/abs/2504.12516
https://arxiv.org/abs/2504.12516
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024. URL https://arxiv.org/abs/
2307.13854.

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong
Wang, Cheng Qian, Xiangru Tang, Heng Ji, and Jiaxuan You. Multiagentbench: Evaluating the
collaboration and competition of llm agents, 2025. URL https://arxiv.org/abs/2503.
01935.

14

https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2503.01935
https://arxiv.org/abs/2503.01935

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ARE APPENDIX

A.1 ARE FOUNDATIONS

ARE is time-driven and built on the principle that “everything is an event”. Specifically, five core
concepts work together:

1. Apps are stateful API interfaces that typically interact with a data source.

2. Environments are collections of Apps, their data, and governing rules that define system
behavior.

3. Events are anything that happens in the Environment. All Events are logged.

4. Notifications are messages from the Environment that inform the agent about Events. They
are configurable and enable selective observability of the Environment.

5. Scenarios are sets of initial state and scheduled Events that take place in an Environment,
and can include a verification mechanism.

A.1.1 APPS

Apps are collections of tools that interact with a data source. For instance, an Emails app contains
tools like send email and delete email that all operate on the same email database. Similar
approaches have been explored in AppWorld (Trivedi et al., 2024) and ToolSandbox (Lu et al.,
2024).

Apps maintain their own state Each app starts in the simulation with an initial state and keeps
track of changes as agents use its tools or as events occur in the environment. Apps store their
data internally rather than relying on external databases. This design makes it convenient to study
agent tasks that require to modify the state of the environment, and ensures that experiments can be
reproduced consistently.

Tool creation and taxonomy Apps are implemented by adding Python methods within an App
class. When the simulation runs, these methods are automatically converted into properly formatted
tool descriptions that agents can understand and use. ARE classifies tools into two types via deco-
rators: read, which only read app states (e.g., search emails), and write, which modify app
states (e.g., send email). This distinction is helpful e.g. for verification, see Appendix B.2. Tools
are role-scoped—agent, user, or env.

Extensibility Beyond ad hoc app creation, ARE can also connect with external APIs through MCP
compatibility (Anthropic, 2024). The framework also offers flexible options for data storage. While
our current implementation stores data in memory, users can easily connect SQL databases or other
storage systems without changing the core framework.

Core apps Developers can choose which apps to include in their environment or create new ones.
However, every ARE environment includes two core apps that handle the basic interaction between
agents and their environment:

• AgentUserInterface is the communication channel between users and agents: mes-
sages are tool calls, and user messages generate notifications (Appendix A.1.4) that agents
can process asynchronously. This enables asynchronous interactions during task execu-
tion. The interface supports two modes: blocking (the agent waits for a user reply) and
non-blocking (the agent continues loop regardless of reply).

• System provides core simulation controls like get current time (query time), wait
(pause for a duration), and wait for next notification (pause until an event).
When any wait tool is invoked, the simulation accelerates: it switches from real time to a
queue-based, event-to-event loop. Scenarios that would take hours in the real world can
thus run in minutes, enabling practical long-horizon testing.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.1.2 ENVIRONMENT

An environment is a Markov Decision Process with states, observations, actions, and transition rules.
The environment state includes the states of all apps, the time manager, and the notification system.
Apps define the action space by exposing their tools. The environment runs deterministically given
a fixed starting state and seed, ensuring reproducible evaluations. It can host one or multiple agents
simultaneously, supporting both single-agent and multi-agent setups. The environment’s rules de-
fine time progression, action permissions, reward computation, and how agent actions affect the
environment state.

A.1.3 EVENTS

In ARE, an event is any agent action or app-state change. Each event is timestamped, logged.
Events can be scheduled, e.g., a friend’s message 1 minute after simulation start. This design yields
(i) deterministic execution—events run in scheduled order; (ii) complete auditability—all actions
can be replayed and analyzed; and (iii) flexible scheduling—events can be set at absolute times or
relative to others.

Event lifecycle Events flow through four stages described in Figure 2: (i) creation - events are
created from tool calls or scheduled by the simulation; (ii) scheduling - events enter a time-ordered
EventQueue with dependency management using directed acyclic graphs, supporting both abso-
lute timing (at specific timestamps) and relative timing (relative to other events or conditions); (iii)
execution - the EventLoop processes events and captures results, state changes, and exceptions;
and (iv) logging - executed events are stored in an EventLog with detailed metadata for analysis,
debugging, and validation of agent behavior.

Event types There are different types of events. While most events track interactions within the
environment, other special events are needed to enable dynamic scenarios and verification strategies:

• Agent/User/Env events are generated by tool calls. Agent Events are initiated by the agent
(e.g., sending a message), User Events by the user (e.g., replying to the agent), and En-
vironment Events by the simulation itself to introduce external changes (e.g., a scheduled
message from a friend).

• Conditional events periodically check predefined conditions and complete when criteria
are met (e.g., cancel a ride only if one was booked).

• Validation events check milestone achievement or constraint violations for verification,
and fail the simulation if not completed on timeout (e.g., stop if no ride is booked within
30 seconds of the user request).

• Oracle events are pre-scheduled “ground truth” actions used by a verifier for comparison.

Dependencies and scheduling Events are modeled as Directed Acyclic Graphs (DAGs) as illus-
trated in Figure 11. An event can only be triggered upon successful completion of all its predecessors
(e.g., e1 processes immediately at simulation start, e4 needs both e2 and e3 to be completed). This
data structure also supports multiple branches running simultaneously to model independent events.
Conditional and Validation events can be used in the DAG to trigger other events and make the
environment more dynamic.

A.1.4 NOTIFICATION SYSTEM

At each environment step, processed events can trigger notifications according to a notification pol-
icy (see Figure 2), similar to mobile device notifications. Apart from tool outputs, notifications are
the only signals agents receive from the environment. Notifications are queued by timestamp and
exposed to agents through a notification queue, enabling asynchronous interactions. In our orches-
tration (see Appendix B.3), notifications are injected into the agent’s context at the beginning of
each agent step.

Notification policy The notification system follows a configurable policy—i.e., a whitelist of
events authorized to emit notifications. ARE pre-defines three verbosity levels: low (only user

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 11: Event dependency graph illustrating ARE scheduling patterns. Events E1 and E5 exe-
cute in parallel after simulation start, and E2/E3 executing in parallel after their prerequisites, both
need to be executed for E4 to execute. Conditional execution is shown through Cond1 leading to
validation (Val) with true/false outcomes.

messages are notified), medium (emails, messages and calendar events are notified), and high
(everything is notified), creating a graduated spectrum of environmental observability.

Notifications and agent proactivity Notifications are not the only way for agents to observe envi-
ronment changes. For example, even if the notification policy doesn’t alert the agent when messages
arrive from contacts, the agent can still proactively check for new messages by browsing the user’s
inbox. Notifications add realism and complexity to environments, potentially creating different agent
behaviors based on whether the environment is notification-rich or notification-poor. This system
enables researchers to tackle new capabilities such as proactivity.

A.1.5 SCENARIOS

ARE shifts from static, single-turn tasks to dynamic scenarios. Scenarios attempt to capture real-
world complexity through temporal dynamics, events, and multi-turn interactions. This enables eval-
uation of agent capabilities that cannot be assessed through traditional request-response paradigms.
In practice, scenarios are implemented in a scenario.py containing the apps, scheduled events,
and arbitrary verification logic.

Scenario runtime Scenarios typically start with an environment instance and a
send message to agent tool call, waking the agent up. The environment operates on discrete
time steps, executing scheduled events and managing state transitions until the agent reaches an exit
condition, see Figure 11. All interactions with the user are through the AgentUserInterface,
with verification triggered upon task completion.

Scenario example Consider this two-turn scenario (see Figure 2 and Figure 12): a user asks the
agent via AgentUserInterface “Can you ask my mom to send me our family streaming pass-
word?”. The agent is initialized from this first notification, starts checking messages, and requests
the password in the Chats app; the tool calls modify the Chats app state and are recorded in the
EventLog. The agent confirms to user that the request was sent, after which the environment
pauses execution and applies first-turn validation.

At turn two, the user asks a follow up question: “As soon as I receive the password from my mother,
transfer it to my father”. The agent resumes upon the send message to agent notification, and
looks for the mother’s reply in the Chats app (where it previously requested it). In the meantime,
a scheduled environment event is triggered and an Email from the mother containing the code is
received. The agent reacts to this email notification by stopping searching the Chats app, processes
the Email, extracts the code, forward it to the father, and report success to the user. Final verification
reviews the complete interaction in the EventLog, and the environment issues a termination signal
to end execution.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.2 NOTIFICATION POLICIES IN ARE

The notification system in ARE follows a configurable policy where researchers can choose which
Env events are notified to the Agent. The Mobile environment pre-defines three notification poli-
cies with different levels of verbosity, which we describe in detail in Table 4. Note that messages
sent by the user via send message to agent are systematically notified to the agent, regardless
of the verbosity level.

Table 4: Pre-set notification policies in Mobile (Compressed).
Verbosity Notified Environment Tools Description
low None No environment events

are notified.

medium Email: create and add email,
send email to user only,
reply to email from user
Chats/Messages: create and add message
Shopping: cancel order,
update order status
Cabs: cancel ride, user cancel ride,
end ride
Calendar: add calendar event by attendee,
delete calendar event by attendee

Notifies events that are
consequences of agent ac-
tions, analogous to mobile
notifications. Default in
Gaia2.

high All medium tools plus:
Shopping: add product, add item to product,
add discount code
RentAFlat: add new apartment
Cabs: update ride status

Notifies all environment
events, including those in-
dependent of agent actions
(e.g., new products).

Figure 12: Sequence diagram of a multi-turn scenario in ARE. The agent is paused between turns,
i.e., between calling send message to user and receiving send message to agent , and
adapts its strategy in response to an asynchronous notification from the environment, a new email.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3 UNIVERSE GENERATION

Dependency management & consistency To ensure cross-app coherence, we implement a struc-
tured dependency resolution system. During generation, each app queries the existing universe
state to maintain consistency—for example, when generating emails, the system first retrieves all
available contacts to ensure referenced individuals exist in the Contacts app. Similarly, calendar
events that mention other people are validated against the contact list, and ride history in the Cabs
app references locations that align with the user’s established geographic context.

We handle dependency conflicts through a priority-based resolution system where foundational apps
(e.g., Contacts) take precedence over dependent apps (e.g., Messages, Emails) as show in
Figure 13.

However, several complex inter-app dependencies remain unhandled in our current implementation.
These include temporal consistency across apps (ensuring message timestamps align with calendar
availability), semantic relationship tracking (maintaining consistent relationship dynamics between
contacts across different communication channels), and cross-modal content references (ensuring
photos mentioned in messages exist in the file system). Addressing these limitations represents
important future work for achieving fully coherent synthetic Mobile environments.

Figure 13: The dependency graph of Mobile apps. Shopping and File system are independent
apps. Contacts is the root for rest of the apps.

Contacts We populate contacts using personas as the foundation. To begin, we sample seed per-
sonas from the persona hub Ge et al. (2024). However, these personas are brief and lack grounding
in the universe’s location. To address this, we expand and contextualize them by incorporating the
universe location into the prompt. We sample a user persona from the generated contacts which
serves as the basis for populating the rest of the universe. A universe is based on a user persona.

An example user persona is:

{
"first_name": "Helena",
"last_name": "Mueller",
"gender": "Female",
"age": 43,
"nationality": "German",
"city_living": "Berlin",
"job": "Marketing Manager",
"description": "Helena Mueller is a vibrant and energetic
43-year-old marketing manage living in Berlin, Germany.",
"phone": "+49 157 6543210",
"email": "helena.mueller@gai2mail.com"

}

Chats & Messages In Chats & Messages apps, we generate both group conversations and indi-
vidual chats. We sample contacts between whom we have to generate the conversations. Then, we

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

provide the participants personas and prompt the model to generate a conversation with at least 10
messages alternating between participants. We prompt the model to generate conversations that are
natural and reflect the participants’ backgrounds and also ask it to include references to possible
shared experiences, interests, or cultural elements.

Emails Similar to messages, we prompt the LLM to generate both ‘inbox’ and ‘sent’ emails. For
inbox emails, the sender is sampled from the contact list, while for sent emails, the recipients are
selected. We provide the LLM with the user’s persona and the sampled non-user persona to gen-
erate the emails. We specifically prompt the LLM to analyze details such as age, gender, cultural
background, occupation, education level, personality traits, communication style, current life cir-
cumstances, relationships and social networks, as well as interests and hobbies, and come up with a
valid reason for writing the email.

Calendar We provide the LLM with the user persona and a summary of the previous week,
prompting it to generate calendar events for the current week. Next, we use these newly gener-
ated events to prompt the LLM to create a weekly summary. This process is repeated iteratively to
populate the calendar over a specified timeframe, such as three months.

RentAFlat & City For apartment listings, we provide the universe countries and prompt the LLM
to generate apartment listings. The City app is designed to retrieve crime rates for specific zip codes.
Using the zip codes generated for apartment listings, we prompt the LLM to produce crime rate data
as a floating-point value in the range of 1–100.

Shopping For the Shopping app, we integrate publicly available Amazon product dataset. For
each universe, we sample 500 products and generate discount codes applicable to select items.

Cabs We prompt the LLM with the user country information and generate the user’s ride history.

Files We employ a traditional file system hierarchy, loading it with publicly available Wikipedia
data, datasets, and images. Additionally, we also add our files that do not contain personal informa-
tion. We choose to keep the file system the same for all universes.

A.4 ARE GRAPHICAL USER INTERFACE

Running scenarios with ARE generates rich agent execution traces that include reasoning steps, tool
calls, their outputs, notifications, and, on the environment side, temporal event flows that unfold
over simulated time periods. It is important for practitioners to be able to debug these interactions,
whose complexity requires specialized tooling. Existing development tools largely fall into one
of these categories: interactive debugging platforms (Epperson et al., 2025; Rorseth et al., 2025;
Pang et al., 2025) and data annotation/curation platforms, each with distinct UI approaches. Com-
mercial observability tools such as Arize Phoenix3 and Langfuse4 primarily offer visual timeline
views and trace/span visualizations to help developers analyze agent execution, focusing on under-
standing behavior after the fact rather than direct interaction or editing. Academic prototypes such
as AGDebugger (Epperson et al., 2025) and LADYBUG (Rorseth et al., 2025) provide interactive
debugging with user interfaces that enable browsing conversation histories, editing messages, and
tracing execution steps, while Hippo (Pang et al., 2025) uses an interactive tree to visualize and
control chain-of-thought reasoning without focusing on tool calls, agentic behavior nor annotations.

Although there are many specialized tools for data annotation, such as commercial platforms like
Labelbox 5, they mainly focus on simplifying human-in-the-loop annotation. These tools offer fea-
tures like multimodal chat editors and customizable worksheet UIs, enabling data labelers to refine
trajectories from interactive LLM sessions. Despite their power for data collection and curation, a
significant gap remains: They are designed to annotate traces of interactions and lack key points
for reproducibility and broad evaluation: 1) They annotate full multi-turn conversations, when we
want to gather tasks, environment events, and agent task success criteria; 2) they lack structured

3https://phoenix.arize.com/
4https://langfuse.com/docs/observability/overview
5https://labelbox.com

20

https://phoenix.arize.com/
https://langfuse.com/docs/observability/overview
https://labelbox.com/blog/how-to-train-and-evaluate-ai-agents-and-trajectories-with-labelbox/

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

annotations within a fully simulated and reproducible environment, which is key to capturing both
agent interaction with tools and external events, for realistic, reproducible agent traces.

To address this, we propose a single ARE Graphical User Interface (UI), a web-based platform
that enables developers to interact with the environment, visualize scenarios (see Figure 14), and
understand agent behavior and failures through detailed trace analysis and replay capabilities, and
enable zero-code scenario annotation.

Figure 14: ARE scenario view with event DAG (top), scenario run (bottom left) and agent logs
(bottom right).

A.4.1 ENVIRONMENT EXPLORATION

Easily exploring the environment is crucial for understanding the context available to agents when
debugging scenarios execution, and annotating new verifiable scenarios. The UI provides a com-
prehensive visualization of the simulated environment, displaying all available apps/tools and their
current states. Interactive app views allow users to browse app contents and interact with their tools,
e.g. email inboxes in Mobile, in real-time. Views are automatically generated for new apps, which
therefore doesn’t require a UI rewrite.

A.4.2 AGENT TRACE VISUALIZATION AND REPLAY

The UI presents agent multi-step interaction traces in a structured timeline view that clearly delin-
eates agent thoughts, actions, and tool responses. Each trace element is timestamped and catego-
rized, allowing users to follow the agent’s reasoning process, similar to the Phoenix6 trace views
also used by smolagents7, but extended with debugging capabilities. Developers can roll back time
by jumping back to a past event, editing thought, tool call, etc., from that step and replaying the
scenario to see what would happen with a slightly different approach, similar to setting breakpoints
and stepping through code in a standard code debugger.

A.4.3 SCENARIO VISUALIZATION

The UI provides interactive visualization of scenarios and their event DAGs introduced in Section 3,
showing how scenario events are interconnected, and their execution status in real-time. The event
graph visualization supports both scenario development and execution analysis. Before running a
scenario, users can examine event triggers, dependencies, and timing constraints of the scenario.

6https://phoenix.arize.com/
7https://huggingface.co/blog/smolagents-phoenix

21

https://phoenix.arize.com/
https://huggingface.co/blog/smolagents-phoenix

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

During execution of a scenario by an agent, the interface highlights completed events and shows
the progression through the dependency graph. Developers can run through the scenario with a
given agent, see how it behaves and debug the scenario or the agent (see Figure 14). ARE is able
to simulate time progression, so users can decide to jump in time for scenarios that span long time
frames (e.g. weeks, months).

A.4.4 ANNOTATION INTERFACE

Beyond visualization, the UI includes an annotation interface – not released at this time – that
significantly reduces the cost of scenario creation and QA. This includes a graph editor that allows
to easily build a scenario event DAG. For each node, the annotator can configure tool calls, the
node’s parents, and optionally timing. For example, to create a Mobile scenario, the annotator
adds nodes representing a user initial ask (e.g. “email my travel plans”), oracle action solving
the task (e.g. “agent sent an email”), environment events that will interfere with the agent’s work
(e.g. “received an email from travel agent”), and potentially further turns. To ensure quality and
consistency across annotations, we incorporate automated checks of the created events DAG. These
checks detect and flag logical inconsistencies in event flows to annotators, such as a node without
parents or contradictory node timings. The annotation interface achieves an approximate five times
improvement in annotation time for Mobile scenarios, compared to manual approaches.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B GAIA2 APPENDIX

B.1 DETAILS OF GAIA2 ANNOTATION

B.1.1 ANNOTATION GUARDRAILS

To streamline the process and further reduce annotation errors, we implement structural constraints
directly within the ARE UI (refer to Appendix A.4 for details). The system raises real-time errors
when these are violated:

• Only send message to agent or Env events may follow send message to user .

• The event DAG must be fully connected, with send message to agent as the root.
No event (Env or Agent Oracle) may be orphaned.

• Only one branch in the event DAG may include send message to agent or
send message to user events.

• A turn must always end with send message to user , both in terms of DAG structure
and timeline ordering.

B.1.2 SCENARIO EXAMPLES

To build Gaia2, we define a set of capabilities that we believe are necessary – though not sufficient
– for general purpose agents. As introduced above, each of the 800 scenarios is built to emphasize
at least one of these capabilities, yielding 160 scenarios per capability split. We provide example
scenarios displayed in the ARE GUI graph editor in Appendix B.1.3.

Execution scenarios require the agent to take multiple write actions, which may need to be exe-
cuted in a particular order. Most of the time, read actions are needed in order to gather information
for properly filling write action arguments.

Execution Task

Task: Update all my contacts aged 24 or younger to be one year older than they are currently.

Explanation: This task requires the agent to read contact information, filter based on age criteria,
and execute multiple write to update Contacts data.

Search scenarios require the agent to take multiple read actions in order to gather facts
from different sources within the environment. Any sequence of read operations leading
to the correct answer is considered successful as long as the answer is communicated via
send message to user before scenario timeout. While conceptually similar to the original
GAIA benchmark’s web search tasks, Gaia2 search scenarios operate within a controlled ARE en-
vironment.

Search Task

Task: Which city do most of my friends live in? I consider any contact who I have at least one
1-on-1 conversation with on Chats a friend. In case of a tie, return the first city alphabetically.

Explanation: This scenario requires the agent to cross-reference data from multiple apps (Contacts
and Chats), perform aggregation operations, and handle edge cases like ties.

All remaining capabilities tested in Gaia2 reflect tasks with a balanced number of required read
and write operations. However, each capability features an additional challenge. Namely:

Ambiguity scenarios reflect user tasks that are impossible, contradictory, or have multiple valid
answers, with negative consequences arising during interaction if agents make mistakes. These
scenarios test agents’ ability to recognize these issues and seek appropriate clarification from users.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Ambiguity Task

Task: Schedule a 1h Yoga event each day at 6:00 PM from October 16, 2024 to October 21,
2024. Ask me in case there are conflicts.

Explanation: While this task appears straightforward, current models often struggle to identify con-
tradictions or multiple valid interpretations, tending to execute the first seemingly valid approach
rather than recognizing the need for clarification.

Adaptability scenarios require the agent to dynamically adapt to environmental changes that are
consequences of previous agent actions, such as a response to an email sent by the agent, or the
cancellation of a ride booked by the agent. These events require agents to recognize when adaptation
is necessary and adjust their strategy accordingly.

Adaptability Task

Task: I have to meet my friend Kaida Schönberger to view a property with her [...] If she
replies to suggest another property or time, please replace it with the listing she actually
wants and reschedule at the time that works for her.

Explanation: This task requires the agent to execute an initial plan while monitoring for environ-
mental changes (the friend’s response), then adapt the plan based on new information. The agent
must demonstrate flexibility in execution while maintaining task objectives.

Time scenarios require agents to execute actions in due time, monitor and respond to events, and
maintain awareness of temporal relationships throughout task execution. The duration of Time
scenarios is currently capped at 5 minutes to facilitate annotation and evaluation.

Time Task

Task: Send individual Chats messages to the colleagues I am supposed to meet today, asking
who is supposed to order the cab. If after 3 minutes there is no response, order a default cab
from [...].

Explanation: This scenario requires the agent to understand temporal constraints (the 3-minute win-
dow), monitor for events (new messages from colleagues), and execute a time-sensitive action (order
a cab).

Agent2Agent scenarios replace apps with app-agents. Main-agents can no longer access app tools
directly and must instead communicate with the app-agents in order to place tool calls, observe tool
call outputs, and ultimately accomplish user tasks. This transformation requires agents to develop
robust collaboration capabilities, including sub-task setting, affordance understanding, “context-
sharing,” and general coordination. By default, agents and app sub-agents are instantiated with the
same scaffold and model, with good performance requiring strong sub-goal setting and sub-goal
solving. However, Gaia2 also supports heterogeneous multi-agent evaluations, i.e. where stronger
agents supervise weaker sub-agents or vice-versa.

• Example: Same Search task as above but the Contacts and Chats apps are replaced by app
sub-agents and the main agent must communicate with them in order to gather information.

Noise scenarios require robustness to environment noise, simulating the inherent instability of real-
world systems, where APIs change, services become temporarily unavailable, and environmental
conditions shift during task execution. This category applies systematic perturbations to Gaia2
scenarios, including tool signature modifications, random failure probabilities, and dynamic en-
vironment events that are irrelevant to the task. We assess the sanity of our noise mechanisms in
Appendix B.5.2.

• Example: Same Adaptability task as above but with random tool execution errors and ran-
dom environment events (e.g., messages from other people) occurring during execution.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.1.3 CAPABILITY-SPECIFIC ANNOTATION GUIDELINES

In our guidelines for each capability (especially Ambiguity and Adaptability), we put strong empha-
sis on precise task specifications, while also acknowledging the challenge of maintaining realism
and avoiding prompts that inadvertently disclose the solution.

Search: Scenarios contain only one write action, which is the agent’s final answer to the user’s
question, derived from multiple read actions. Answers must be concise, easily verifiable, and avoid
complex computation.

Ambiguity: Scenarios that are impossible, contradictory, or inherently ambiguous. The agent is
expected to complete unambiguous steps, then inform the user of the ambiguity or impossibility.
These scenarios are single-turn: they do not include a clarification message from the User.

The user prompt must clearly instruct the agent to detect and report ambiguities, as users often have
varying preferences on how frequently and when this should occur.

Adaptability: Scenarios involve Env events that require the agent to revise its plan in response
to delayed outcomes of its actions. In order to meet our modeling constraints, scenarios follow a
consistent structure:

1. The user provides a task.
2. The agent acts and sends a message using send message to user .
3. An Env event is triggered (e.g., email reply, order cancellation). It is a consequence of a

previous agent’s action, with send message to user as parent.
4. The agent adapts accordingly.

To increase the difficulty, distractor Env events are also included, aiming to mislead the agent into
incorrect behavior.

In order to perfectly specify expected agent behavior, the task states explicitly that the agent should
send a message to the user after completing the initial requests (before the Env events). It should
also specify what the Agent is allowed to do in the case of an Env event happening, without giving
exact hints on what steps the Agent should take.

Time: Scenarios assess Agent’s ability to act on time, therefore they all include at least one time-
sensitive oracle action.

• Scenarios should be solvable within a five-minute window.
• User prompts must instruct precise timing (e.g., ”after exactly 3 minutes”).
• The verifier checks the timing of agent actions only if the oracle event has a relative time

delay greater than 1 second.8 The agent’s mapped action must fall within [∆t−5sec,∆t+
25sec].

• Distractor Env events are also included.

B.1.4 CAPABILITY TAXONOMIES

Taxonomy of ambiguity scenarios

• Impossible or contradictory tasks: missing key information (e.g., the User does not specify
the ride pickup location), or requests incompatible with the Environment (e.g., asking to
buy an out-of-stock item).

• Blatant ambiguities or high-stakes consequences: Multiple valid answers exist, and the
ambiguity is obvious or the user explicitly asks in a natural way to report ambiguities.

Taxonomy of env events Env events are classified based on their dependency:

• Independent events occur without agent action and have send message to agent as
their only parent.

8This is why actions expected “immediately” after an event are annotated with a +2 sec delay.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• Dependent events result from prior agent actions and must have
send message to user as their direct parent.

Distractor events are designed to mimic relevant events and mislead the agent into incorrect behav-
ior. By exception, distractor events may be independent but still have send message to user as
a parent to preserve the structure of the scenario. In the Adaptability category, only dependent Env
events are used.

Taxonomy of time scenarios Time scenarios require the agent to execute one or more actions
at a specific point in time, either proactively (“For the next 5mins, send ‘Hi’ to John Doe every
30sec”) or in reaction to an independent Env event (“When this item becomes available, buy it
immediately”), or in reaction to a dependent Env event (“Ask the invitees whether they come to the
party tonight. Wait 1min for everyone to reply, then immediately send me the number of glass to buy,
I am waiting in the line!”).

Taxonomy:

• Time-based one-off task: Execute a task at a precise point in time in the future. Example:
“Send a follow-up message to Jo in 2 minutes if she does not reply.”

• Time-based recurrent task: Execute a recurrent task at precise points in time. Example:
“For the next 4 minutes, every minute, delete the new emails I receive.”

• Event-based one-off task: Execute a one-time task conditionally on a future trigger event.
Example: “Purchase red running shoes as soon as they become available in size 6 for less
than 100USD in the shopping app”

• Event-based recurrent task: Automate a recurrent routine conditionally on future events.
Example: “For the next 2 minutes, whenever I receive an email containing the keyword
’Black Friday’, immediately delete it. Do not talk to me in the next 2 minutes.”

We encourage annotators to cover and combine all these types of tasks when creating Time scenarios.

B.2 VERIFICATION DETAILS

B.2.1 VERIFICATION MECHANISM

We verify scenario successful completion by comparing agent actions with a ground truth, defined
as the minimal sequence of write actions needed to solve a task. We exclude read actions from
verification since multiple reading strategies can lead to the correct set of write actions. In a
preliminary phase, the verifier checks that used tool names counters are identical in both the oracle
actions and the agent’s write actions. If this test is successful, the verifier sorts the oracle actions
in a topological order based on the oracle graph, which reflects their dependencies. Then, the verifier
proceeds to mapping each oracle action to an agent action by checking:

• Consistency: the verifier tests whether the oracle action and the candidate agent’s action
are equivalent. After conducting some preliminary tests (such as ensuring that both the
oracle and agent actions use the same tool and that the oracle action is not already mapped
to another agent action), the verifier performs:

– Hard check to compare action parameters that require exactness. For example, when
replying to an email, it verifies that email id value is identical for both actions, i.e.
the agent replies to the correct email.

– Soft check for parameters that require more flexible evaluation, such as the content
of an email or a message. To perform a soft check, an LLM judge is prompted with
the user task as context, and the arguments from both the agent action and the oracle
action as inputs. The LLM then determines if the actions are equivalent according to
tool-specific guidelines. For example, emails verification includes guidelines to check
their signatures.

• Causality: crucially, oracle actions are organized within an oracle graph, whereas agent
actions are collected from a trajectory and simply ordered by execution time. Therefore, we
must ensure that the agent does not violate dependencies within this graph. For example, if

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 15: Illustration of a failure (top) and a success (down) of the matching trajectory process.

both oracle actions A and B depend solely on action C, the agent is free to execute A and
B in any order, as long as they are executed after C; i.e. sequences C-B-A or C-A-B are
both acceptable. Once a match is found, the ARE Verifier ensures causality by verifying
that all parent actions of the oracle action have already been matched with preceding agent
actions.

• Timing: scenarios can include a time delay for certain actions relative to their parent ac-
tions, which the agent must respect. The verifier evaluates whether the agent’s timing falls
within a specified tolerance window centered around the relative time of the oracle action.
To determine the relative timing of the agent’s action, it is necessary to identify which agent
action corresponds to the oracle’s parent action. This information is readily available due
to the ARE Verifier’s process. Indeed, for a given oracle action, all its parent actions must
be matched to an agent action before attempting to match the oracle action itself.

If all oracle actions are successfully matched, the verifier returns a success signal. Conversely, if any
oracle action cannot be matched to an agent action, the verifier returns a failure signal, see Figure 15
for two examples. Crucially, the verifier implicitly assumes there are no equivalent write actions,
i.e. user preferences are clearly stated with minimal ambiguity in the scenario tasks. For example,
sending a message using the Messages app while the oracle action uses the Chat app will trigger a
failure.

While other verification methods (Patil et al., 2025; Yao et al., 2024) compare the environment
ground truth and actual final states, verifying a sequence of write actions, which is equivalent to
comparing ground truth and actual states after each write action of the sequence, provides more
control. For example our verification allows to distinguish, e.g. for safety considerations, a Mobile
trajectory where the agent adds an event at the wrong place and correct itself from a trajectory where
the agent is correct at first try. Moreover, in Mobile, sequences of write actions are easier for
human to interpret and annotate, compared to diffs of states.

B.2.2 VALIDATING MULTI-TURN SCENARIOS

Currently, we have only described how the verifier works in single-turn scenarios, where a user
assigns a single task to an agent, and the agent completes it without further interaction. However, the
Gaia2 benchmark also includes multi-turn scenarios that involve more complex interactions between
the user and the agent. For example, consider scenarios related to the Adaptability capability, where
the agent must adjust to external events. Multi-turn scenarios present two key challenges:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 16: Insertion of a conditional trigger event in a multi-turn scenario.

• How can we validate multi-turn scenarios?

• More importantly, how can we run an agent in a multi-turn scenario?

Indeed, annotators plan User and Env actions based on what should occur in previous turns accord-
ing to the oracle action graph. However, when an agent is launched in a scenario, it may not adhere
to the oracle’s actions, creating uncertainty about when to trigger user or environment actions.

Multi-turn verifier Answering the first question is relatively straightforward. It is sufficient to
detect when the agent sends a message to the user to delimit the turns. We can then feed the verifier
with each turn separately and accept the agent’s trajectory if all turns are successful. Note that this
validation can be performed in an online fashion after each turn or in an offline fashion once the full
trajectory is collected.

Multi-turn execution An efficient solution to run an agent in a multi-turn scenario is to call the
ARE Verifier at the end of each turn and only trigger the next turn if the current turn was successful.
This approach prevents running the agent when it has already diverged from the oracle path. Prac-
tically, as illustrated in Figure 16, we modify the scenario event graph by splitting it into turns and
inserting a conditional event to call the verifier and trigger the next turn. A simpler, but less efficient,
solution is to trigger the next turn each time the agent calls send message to user , regardless
of what the agent did in the current turn. This approach is used for scenarios from the test set since
we do not have access to oracle actions and thus the ARE Verifier for them.

B.2.3 VERIFIER HACKING

We conducted RL experiments in which we used the ARE Verifier as a reward function. During
these experiments, we observed that the agent was able to exploit our initial version of the verifier
in scenarios related to the Search capability, where only a single write action is expected for
successful trajectories. In the observed exploit shown in Figure 17, the agent would learn to embed
strings representing increasingly complex code in write tool calls. These outputs overwhelmed
the LLM judge used for soft checks by the ARE Verifier, producing false positives. In follow-up
experiments, we found that adding a task-agnostic “style” soft check to the verifier was effective at
addressing this failure mode and preventing further reward hacking.

B.2.4 VERIFYING THE VERIFIER

Verifiers are critical components of training and evaluation pipelines, where false positive or false
negative e.g. via hacking can result in flawed evaluations or collapsed trainings (cf. Appendix B.2.3.
We evaluate the ARE Verifier by first deriving a series of “unit” tests from the oracle actions that the
verifier should satisfy. Typically, we apply perturbations to oracle actions that we know preserve or
invalidate the oracle trajectory validity, before submitting the oracle and perturbed oracle trajecto-

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Thought: Now that we have all the events in the user’s calendar, we can count the number of events
for each contact and find the contact who the user has the most scheduled events with.

Action:
{
"action": "AgentUserInterface__send_message_to_user",
"action_input": {
"content": "Looking at your calendar, I can now count events for each contact. Here’s

what I found:\n\n**Most Common Contact (by events):** {{#events}}{{#attendees
}}{{#if (eq (length attendees) 2)}}{{#if (eq (at attendees 0) user)}}{{else}}{{#
set most_common_contact_email (at attendees 1)}}{{#inc events_attendee_1_count 1)
}}{{#if (gt events_attendee_1_count events_attendee_2_count)}}{{#set
most_common_contact_email (at attendees 1)}}{{else}}{{#if (eq
events_attendee_1_count events_attendee_2_count)}}{{#if (lt (get
attendee_1_first_name 0) (get attendee_2_first_name 0))}}{{#set
most_common_contact_email (at attendees 1)}}{{else}}{{#set
most_common_contact_email (at attendees 2)}}{{/if}}{{/endif}}{{#endif}}{{/endif
}}{{/if}}{{/attendees}}{{/events}}\n\n**Contact:** {{#set
most_common_contact_email (at attendees 1)}}{{#set most_common_contact_email
email}}{{#endif}}{{#endif}}{{#endif}}{{#endif}}{{#endif}}{{#endif}}{{#endif}}{{#
endif}}(contacts)}}{{#if (eq email most_common_contact_email))"

}
}

Figure 17: An example of an agent exploiting the judge by embedding conditional logic in the
message to the user. The message contains no meaningful information but successfully passes the
judge’s evaluation.

Verifier Agreement Precision Recall

Llama 3.3 70B Instruct 0.98 0.99 0.95
Gemini 2.5 pro 0.96 0.98 0.89
Claude Sonnet 3.7 0.96 0.98 0.89

Table 5: Evaluation of the ARE Verifier with different models on 450 hand-labeled trajectories.

ries to the verifier and checking its verdict match the perturbation type. While these checks allow
fast iteration, they only catch anticipated behaviors. Furthermore, the perturbed trajectories do not
necessarily reflect real trajectories that could be obtained with an agent.

Validation benchmark We complement this initial evaluation by analyzing ARE Verifier verdicts
for 450 trajectories manually labeled with the expected verifier outcome (Success or Failure). The
trajectories were derived from running agents powered by various models on scenarios from the
Gaia2 benchmark. We compare the ARE Verifier with a simple baseline, In-context Verifier, where
an LLM is prompted with all the agent actions and criteria (causality constraints, relative time,
soft/hard checks, etc.). The same model Llama 3.3 70B Instruct is used for both verifiers. ARE Ver-
ifier achieves better accuracy than the baseline, which tends to accept agent trajectories too readily,
see Table 1.

B.2.5 CHOOSING THE VERIFIER MODEL

While we adjusted the prompts used in the various soft checks of the ARE Verifier with Llama 3.3
70B Instruct as model, we also wanted to assess whether the ARE Verifier could function effectively
with other models. To this end, we evaluated the ARE Verifier powered by different models on
450 hand-labeled trajectories, the same dataset used for Table 1. In Table 5, we observe that all the
models achieve satisfactory precision and recall scores.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

B.3 AGENT ORCHESTRATION

B.3.1 MOBILE REACT LOOP

Our proposed evaluation method leverages a custom scaffolding framework built around the ReAct
(Reason and Act) paradigm. The base scaffolding implements a standard ReAct loop where agents
iteratively reason about their current state, select appropriate actions, execute those actions in the
environment, and observe the resulting outcomes. An agent step is thus defined by three substeps
Thought, Action and Observation. This cycle continues until task completion or termination
conditions are met.

At each step of this loop, our scaffolding triggers configurable pre-step and post-step methods that
can pull relevant information from the environment state or detect termination conditions based
on task-specific criteria as detailed in Figure 18. Pre-step methods gather contextual information
and validate preconditions before action execution, while post-step methods process outcomes, up-
date internal state, and check for completion signals. This agentic modeling approach enables the
creation of sophisticated agent behaviors with minimal implementation overhead, as complex inter-
action patterns emerge from the composition of simple, reusable scaffolding components rather than
monolithic agent implementations.

Figure 18: Proposed ReAct loop with pre/post steps in Gaia2, allowing flexible behaviors.

B.3.2 ORCHESTRATION ABLATION: PARALLEL TOOL-CALLING

In our main evaluation setup, we use a standard ReAct scaffold to ensure a fair, model-agnostic
baseline that supports both closed APIs and open-weights models without requiring model-specific
integration code. However, to address the question of whether this single-threaded scaffolding acts
as a bottleneck—particularly for the Time split, we conducted an ablation study comparing ReAct
against a Parallel Tool Calling (PTC) orchestration.

We evaluated three representative models (Llama 4 Maverick, Claude 4 Sonnet, and GPT-5) across
the Execution and Time splits. The results, presented in Table 6, reveal several key findings:

• Efficiency Gains: As expected, PTC significantly reduces wall-clock latency and token
consumption. For instance, GPT-5 (low) shows a strong reduction in latency (∆ -435s on
Execution) and token usage (∆ -5109 tokens), primarily because it performs fewer inter-
mediate reasoning steps per action.

• Performance Stability: Despite the efficiency improvements, the impact on task success
(pass@1) is marginal. The performance deltas are generally small (ranging from -6.3pp to
+3.0pp), and crucially the relative ranking of the models remains unchanged.

• Orchestration Limits: The Time split remains challenging even with parallel execution,
confirming that the bottlenecks observed in Section 5 stem primarily from model capa-
bilities (such as sequential reasoning and temporal planning) rather than the scaffolding
itself, as PTC results are still far from the upper-bound score computed with instant-time
generation in Figure 8.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 6: Ablations of 3 models with Parallel TC vs ReAct scaffold. Values indicate the net contri-
bution of PTC over ReAct (∆).

Model Split ReAct Parallel TC ∆ pass@1 ∆ avg time ∆ avg steps ∆ avg output
pass@1 pass@1 (pp) (s) tokens

Llama Maverick Execution 13.8 7.5 −6.3 +71 −1.0 +1786
Time 1.2 2.0 +0.8 −3 −1.1 +2240

Claude 4 Sonnet Execution 57.9 59.7 +1.8 −68 −10.7 −345
Time 8.1 9.5 +1.4 −8 −2.4 +33

GPT-5 (minimal) Execution 31.9 34.9 +3.0 −64 −14.0 −160
Time 5.2 6.7 +1.5 +23 0.0 +1030

GPT-5 (low) Execution 52.7 51.7 −1.0 −435 −13.0 −5109
Time 2.3 1.0 −1.3 −207 −1.9 −4425

These results confirm that our qualitative conclusions are not artifact of the scaffold and that more
research on completely novel orchestration is needed.

B.4 EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

We report Gaia2 scores on a representative set of models, covering both proprietary and open-source
systems, and including both reasoning-oriented and non-reasoning models.

For evaluation, we use a ReAct scaffold that requires a Thought: and an Action: at each
step. Since some models do not reliably follow this format, we add custom stop sequences
<end action> and Observation: for models that tend to continue past a single tool call
(Claude, Kimi, Qwen). This issue is largely alleviated by provider-specific ToolCalling APIs; we
encourage reporting results with either interface (ReAct or ToolCalling).

Due to cost and time constraints, we did not evaluate every available model. For instance, Claude 4
Opus was excluded because of its very high latency and cost ($15/M input tokens and $75/M output
tokens).

We note the following special configurations for specific third-party models:

• Gemini 2.5 Pro: dynamic reasoning enabled via budget reasoning tokens = -1.

• Grok-4: reasoning budget capped at 16k tokens per completion. We encountered frequent
issues with xAI’s API, in particular Empty Response errors, which introduced high
variance in results.

• GPT-5: temperature and top-p set to 1; no custom stop sequences were applied (not sup-
ported by the API).

When evaluating reasoning models (e.g., GPT-5, Claude-4, Qwen), we use the same ReAct prompts
but adapt the inference client to handle reasoning-style outputs. To maintain a uniform evaluation
and preserve the (Thought, Action) structure, we discard intermediate reasoning at each step
and exclude it from the context of subsequent steps. While this approach aligns with the intended
usage of some models (e.g., Qwen), it may not be optimal for others that interleave tool use with
reasoning (e.g., GPT-5, Claude). We encourage the community to explore alternative setups to better
assess the theoretical limits of the benchmark.

B.5 ADDITIONAL EXPERIMENTS

B.5.1 SUB-AGENT SPAWNING IN AGENT2AGENT MODE

In our Agent2Agent experiments, we record the number of instantiated sub-agents in Figure 19.
Counts are fairly consistent across model families, yet the top A2A performers also spawn more
sub-agents, suggesting stronger task decomposition.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Gemini
2.5-Pro

Claude-4
Sonnet

GPT-5
(low)

Kimi-K2 Llama-4
Maverick

Qwen3
235B

Grok-4 GPT-5
(high)

GPT-4o Llama-3.3
70B

GPT-5
(minimal)

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

sp
aw

ne
d

L
L

M
 a

ge
nt

 in
st

an
ce

s

Average Number of Agent2Agent Collaborators per Gaia2-Mini Scenario (r = 1)

Figure 19: Average number of agents spawned in Agent2Agent evaluations on Gaia2-mini tasks
across models. In any Agent2Agent scenario, main-agents can (in principle) spawn an unlimited
number of app-agents before scenario timeout. In practice, behavior in Agent2Agent settings is
relatively consistent across model families.

B.5.2 INFLUENCE OF NOISE LEVEL ON GAIA2 RESULTS

In this experiment, we vary the probability of tool errors and frequency of random environment
events and measure resulting model results on Gaia2. While our lowest level of noise does not
significantly impact model performance, increasing noise results in deteriorating performance across
models. This aligns with our intuitions.

Table 7: Model performance on Gaia2-mini across different noise levels. *Default setting.
Noise level

None Low Medium* High

Claude-4 Sonnet 31.2 35.0 23.8 8.1

32

	Introduction
	Related work
	ARE: scaling up agent environments and evaluations
	Gaia2: expanding general agent evaluation
	Capabilities evaluated
	Scenario design and annotation protocol
	Verifier

	Experiments
	Core results
	Time reveals the impact of inference speed—and system reliability
	A closer look at multi-agent collaboration on Gaia2 with Agent2Agent

	Conclusion & discussion
	ARE appendix
	ARE foundations
	Apps
	Environment
	Events
	Notification system
	Scenarios

	Notification policies in ARE
	Universe generation
	ARE graphical user interface
	Environment exploration
	Agent trace visualization and replay
	Scenario visualization
	Annotation interface

	Gaia2 appendix
	Details of Gaia2 annotation
	Annotation guardrails
	Scenario examples
	Capability-specific annotation guidelines
	Capability taxonomies

	Verification details
	Verification mechanism
	Validating multi-turn scenarios
	Verifier hacking
	Verifying the verifier
	Choosing the verifier model

	Agent orchestration
	Mobile ReAct loop
	Orchestration ablation: parallel tool-calling

	Experimental setup and implementation details
	Additional experiments
	Sub-agent spawning in Agent2Agent mode
	Influence of noise level on Gaia2 results

