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Abstract
Symbolic regression (SR) is a powerful technique
for discovering symbolic expressions that char-
acterize nonlinear relationships in data, gaining
increasing attention for its interpretability, com-
pactness, and robustness. However, existing SR
methods do not scale to datasets with a large num-
ber of input variables (referred to as extreme-scale
SR), which is common in modern scientific ap-
plications. This “large p” setting, often accom-
panied by measurement error, leads to slow per-
formance of SR methods and overly complex ex-
pressions that are difficult to interpret. To address
this scalability challenge, we propose a method
called PAN+SR, which combines a key idea of
ab initio nonparametric variable selection with
SR to efficiently pre-screen large input spaces
and reduce search complexity while maintain-
ing accuracy. The use of nonparametric methods
eliminates model misspecification, supporting a
strategy called parametric-assisted nonparametric
(PAN). We also extend SRBench, an open-source
benchmarking platform, by incorporating high-
dimensional regression problems with various
signal-to-noise ratios. Our results demonstrate
that PAN+SR consistently enhances the perfor-
mance of 19 contemporary SR methods, enabling
several to achieve state-of-the-art performance on
these challenging datasets.

1. Introduction
Symbolic regression (SR) is a mathematical technique for
finding a symbolic expression that matches data from an
unknown function. An early example of SR dates back to
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the 1600s when Johannes Kepler used astronomical data
to discover that Mars’ orbit was elliptical. This discovery,
along with Kepler’s other parsimonious and analytically
tractable laws of planetary motion, helped launch a scientific
revolution.

With the recent progress in theoretical modeling and ex-
perimental instrumentation, researchers have entered a new
era of big data. The development of SR models is partic-
ularly important, as they have emerged as a powerful tool
for developing machine learning models that are intelligible,
interpretable, and compact. Unlike large numerical models,
the mathematical expressions used in SR models enable an
easy understanding of their behavior, making them valuable
in fields such as physics, where they can connect newly dis-
covered physical laws with theory to facilitate subsequent
theoretical developments (Wu & Tegmark, 2019). Moreover,
SR models offer a safe and responsible option for machine
learning applications with high societal stakes, such as those
related to human lives, as they are well-suited for human
interpretability and in-depth analysis. As such, SR models
have found successful applications across a range of fields,
including astrophysics (Lemos et al., 2023), chemistry and
materials science (Hernandez et al., 2019; Liu et al., 2020;
2022), control (Derner et al., 2020), economics (Verstyuk &
Douglas, 2022), mechanical engineering (Kronberger et al.,
2018), medicine (Virgolin et al., 2020), and space explo-
ration (Märtens & Izzo, 2022), among others (Matsubara
et al., 2024).

SR literature has traditionally focused on datasets with low-
dimensional inputs, often with p ≤ 10, and primarily con-
sidered only relevant variables—those used in the ground
truth (La Cava et al., 2021; Kamienny et al., 2022; Sho-
jaee et al., 2023; Tenachi et al., 2023; Li et al., 2024). In
these settings, variable selection has not been critical, as SR
has largely been viewed as an optimization problem under
low-noise conditions. However, modern scientific applica-
tions increasingly involve datasets with far larger numbers
of variables (p = 102 to 459 in this work), often including
irrelevant variables, rendering variable selection a critical
yet underexplored concept in SR pipelines.

While variable selection is a well-established topic in statis-
tics, its adoption in SR has been limited and its effective-
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ness in SR remains unclear. Existing approaches, such
as random forest (RF)-based pre-selection in PySR (Cran-
mer, 2023), have demonstrated limited utility. Indeed,
the PySR documentation explicitly notes that options like
select k features are rarely used, suggesting that cur-
rent methods are not well-suited to SR tasks. This observa-
tion is further supported by our analysis in Appendix D.2,
where RF is shown to perform unsatisfactorily. The limited
performance of off-the-shelf methods like RF highlights the
unique challenges of variable selection in the context of SR.
Unlike typical variable selection tasks, SR variable selection
demands a near-zero false negative rate (FNR), as excluding
even a single relevant variable from the search space pre-
vents the recovery of the true underlying function. While
false positives (FPs) primarily increase computational bur-
den, they do not fundamentally impede the discovery of the
underlying model. This asymmetry in performance require-
ments explains why standard methods often fall short and
underscores the importance of designing variable selection
methods specifically tailored to SR.

In this paper, we introduce a versatile framework, PAN+SR,
for improving SR methods at extreme scales. PAN+SR
leverages the Parametric Assisted by Nonparametrics (PAN)
strategy (Ye et al., 2024) for an ab initio screening of large
influx of input variables before expression synthesis, en-
abling SR tasks at extreme scales. In light of the unique
challenge of SR pre-screening, we propose a novel non-
parametric variable selection method designed to minimize
FN; we refer to this method as PAN throughout this pa-
per. Furthermore, to evaluate PAN+SR at extreme scales,
we extend the open-source SR benchmarking database,
SRBench (La Cava et al., 2021), with high-dimensional
problems containing white noise at various signal-to-noise
ratios. In Section 6, we showcase the performance up-
lift of 19 contemporary SR methods under PAN+SR. The
PAN+SR framework is available as an open-source project
at https://github.com/mattsheng/PAN SR.

2. Background and Motivation
Given a dataset (y,X) with target y ∈ Rn and features
X = (x1, . . . ,xp) ∈ Rn×p, SR assumes the existence of
an analytical data-generating function that links X to y:

yi = f0(xi1, . . . , xip) + εi, for i = 1, . . . , n, (1)

in the presence of observation noise εi. The goal of SR is to
recover the unknown regression function f0(·) symbolically.
For example, consider regressing the gravitational force be-
tween two objects, F , on their masses (m1,m2) and the dis-
tance between their centers (r). An SR algorithm would ide-
ally re-discover the Newton’s Law of Universal Gravitation,
F = 6.6743× 10−11 ·m1m2/r

2. This is typically done by
randomly constructing mathematical expressions using the

features, X = (m1,m2, r) in this case, and a set of math-
ematical operations, e.g., O = {+,−,×,÷, exp, log, ·2}.
Even for this low-dimensional problem, it has been shown
that exploring all expressions F(X,O), induced by X and
O, is NP-hard (Virgolin & Pissis, 2022). Hence, typical SR
algorithms only traverse through a small subset of the full
search space, such as limiting the complexity of the can-
didate SR models, total runtime, number of mathematical
operations, etc.

In realistic scientific applications, particularly in the era of
big data, scientists often include as many intuitively reason-
able features as possible, many of which may be irrelevant to
the target y. This practice causes the search space F(X,O)
to expand double-exponentially quick (Ye et al., 2024), mak-
ing it extremely challenging–if not impossible–to recover
f0(·) using algorithmic approaches alone. To this end, we
propose the PAN+SR framework, which integrates the non-
parametric module of PAN as a model-based pre-screening
step. This framework excludes irrelevant features prior to
applying SR methods, thereby mitigating the explosion of
the search space in high-dimensional problems. Here, we
assume that a high-dimensional SR problem in (1) can be
reduced to

yi = f0(Xi,S0
) + εi, for i = 1, . . . , n, (2)

where only a small subset S0 of p0 = |S0| ≪ p of fea-
tures exert influence on y. Then the oracle search space
F(XS0

,O) is a significantly smaller subspace of the full
search space F(X,O). Thus, the successful identification
of S0, or at least a superset of S0, is critical for reduc-
ing high-dimensional SR problems into manageable low-
dimensional ones. With this reduction, the dataset (y,XS0

)
becomes sufficient for discovering f0(·), enabling SR meth-
ods to handle high-dimensional problems without requiring
any modifications to their algorithms.

3. Related Work
SRBench (La Cava et al., 2021) is a reproducible and open-
source benchmarking platform for SR that has made signifi-
cant strides in the field through its curation of 122 real-world
datasets and 130 ground-truth problems and its comprehen-
sive evaluations of 14 contemporary SR methods. SRBench
has quickly gained adaptions with numerous studies leverag-
ing it to evaluate accuracy, exact solution rate, and solution
complexity (Kamienny et al., 2022; Landajuela et al., 2022;
Kamienny et al., 2023; Keren et al., 2023; Shojaee et al.,
2023; Makke & Chawla, 2024). Despite its widespread
use, SRBench primarily focuses on low-dimensional prob-
lems, which limits its applicability in the context of high-
dimensional problems, a hallmark of the era of big data. In
particular, the 130 ground-truth problems from the Feynman
Symbolic Regression Database (Udrescu & Tegmark, 2020)
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and the ODE-Strogatz repository (Strogatz, 2015) contain
only the oracle features XS0 with at most p = 9 features.
This low and narrow dimensional scope leaves SRBench
less suited for analyzing SR at extreme scales, underscoring
the need for a high-dimensional SR database.

4. Method
Inspired by PAN, the PAN+SR framework utilizes a one-
step nonparametric variable selection strategy to pre-screen
a high-dimensional dataset (y,X) and parse the reduced
dataset (y,XŜ) to SR methods for subsequent expression
synthesis and selection. Unlike traditional variable selection
literature, where the primary focus is controlling the false
discovery rates, the PAN criterion calls for minimizing the
false negative rate (FNR) while controlling the false positive
rate (FPR) is secondary. In other words, the selected set
of features Ŝ should be a superset of S0 and as small as
possible. When Ŝ fails to be the superset of S0 (i.e., there
is at least one FN), the reduced search space F(XŜ ,O) no
longer contains f0(·), rendering any subsequent discovery
based on XŜ to be false.

Nonparametric or model-free variable selection has been ex-
tensively studied in the literature. Lafferty and Wasserman
(2008) propose the RODEO method for nonparametric vari-
able selection through regularization of the derivative expec-
tation operator. Candès et al. (2018) propose a model-free
knockoff procedure controlling FDR with no assumptions
on the conditional distribution of the response. Fan et al.
(2011) propose a sure independence screening method for
B-spline additive model. In the Bayesian literature, Bleich
et al. (2014) design permutation tests for variable inclusion
proportion of Bayesian Additive Regression Tree (BART);
Liu et al. (2021) deploy spike-and-slab priors directly on
the nodes of Bayesian forests.

Despite this diverse array of methods, few meet the unique
proposition of the PAN criterion. Among the few recent
methods investigated in Ye et al. (2024), they found BART-
G.SE (Bleich et al., 2014), a BART-based permutation
variable selection method, to be particularly suitable for
PAN. However, our comprehensive simulation study in Ap-
pendix D.2 reveals that BART-G.SE, along with three other
methods, exhibit insufficient TPR, particularly under noisy
or low-sample-size conditions. This deficiency renders these
methods unsuitable for the PAN+SR framework.

In this paper, we introduce a novel BART-based variable
selection method and demonstrate its PAN criterion consis-
tency through an extensive simulation study in Section 6.2.
The key idea behind BART is to model the regression func-

tion f0(·) by a sum of regression trees,

y =

M∑
i=1

Ti(x1, . . . ,xp) + ε, ε ∼ Nn(0, σ
2In), (3)

where each regression tree Ti(x1, . . . ,xp) partitions the
feature space based on the values of x1, . . . ,xp. For each
posterior sample, we calculate the proportion of splits in
the ensemble (3) that use xj as the splitting variable, for
j = 1, . . . , p. The variable inclusion proportion (VIP) qj
of xj is then estimated as the posterior mean of these pro-
portions across all posterior samples (Chipman et al., 2010).
Intuitively, q1, . . . , qp encode the relative importance of each
feature, where a large VIP qj suggests xj being an impor-
tant driver of the response y. However, deciding on how
large a VIP value must be to indicate relevance remains
a challenge. For instance, BART-G.SE addresses this by
using a permutation test on q1, . . . , qp to identify significant
features, whereby controlling the family-wise error rate.

Here, we propose an alternative approach that utilizes the
rankings of VIPs instead of their raw values. Specifically,
let rj denote the ranking of the VIP qj . Relevant features
XS0 are expected to occupy top-ranking positions, namely
{1, . . . , p0}, due to their strong associations with y. In con-
trast, irrelevant features XS1

, S1 = [p] \S0, are expected to
appear in lower-ranking positions, namely {p0 + 1, . . . , p},
since they are only selected sporadically or by chance (Chip-
man et al., 2010; Bleich et al., 2014). Consequently, a
natural decision rule is to select feature xj if rj falls within
{1, . . . , p0}.

However, this decision rule is impractical in real-world ap-
plications since the sparsity p0 is unknown. To address this
limitation, we propose a method that leverages multiple in-
dependent runs of BART to estimate the feature rankings
more robustly. Let rj,k denote the VIP ranking of xj in
the kth run. Assume that the rankings of xj are randomly
distributed over the K independent runs (see Appendix D.1
for empirical justification):

rj,1, . . . , rj,K
iid∼

{
Unif({1, . . . , p0}), if j ∈ S0

Unif({p0 + 1, . . . , p}), if j /∈ S0

Then the average ranking r̄j· =
∑K

k=1 rj,k/K of xj across
K independent runs forms two distinct clusters, C0 for XS0

and C1 for XS1
. Specifically, r̄j· for XS0

are expected to
cluster in C0 with mean (1 + p0)/2, while those for XS1

tend to cluster in C1 with mean (p0 + 1 + p)/2. Although
both cluster means are unknown due to the unknown spar-
sity p0, their separation can be identified using clustering
techniques.

To illustrate, consider the extended Feynman I-38-12 dataset
(defined in Section 5.2) with p = 204 features, of which
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p0 = 4 are relevant. Without loss of generality, we as-
sume that the relevant features XS0 are x1,x2,x3,x4,
i.e., S0 = {1, 2, 3, 4} and S1 = {5, . . . , 204}. When
K = 20 independent BART models are trained on the
dataset, the rankings r1,k, r2,k, r3,k, r4,k frequently fall
within {1, 2, 3, 4} across all k = 1, . . . , 20 runs. This is
because the relevant features are frequently selected for tree
splits due to their strong associations with the response vari-
able y, leading to high VIPs and consistently top rankings.
In contrast, irrelevant features x5, . . . ,x204 are included
sporadically in BART, with r5,k, . . . , r204,k distributed ran-
domly across {5, . . . , 204}. As evident in Figure 5 in Ap-
pendix D.1, the average VIP rankings r̄j· of the relevant
features form a low-mean cluster C0 with a cluster mean
of (1 + p0)/2 = 2.5, while those of the irrelevant fea-
tures form a high-mean cluster C1, concentrating around
(p0 + 1 + p)/2 = 104.5.

However, the sparse regression setting naturally leads to a
class imbalance problem as |C0| = p0 is much smaller than
|C1| = p− p0. To this end, we propose to apply agglomera-
tive hierarchical clustering (AHC) with Euclidean distance
and average linkage to (r̄1·, . . . , r̄p·) and cut the dendro-
gram to form two clusters: Ĉ0 and Ĉ1. Then, features in Ĉ0
are retained, while those in Ĉ1 are discarded. Notably, the
proposed data-driven selection criterion does not require any
knowledge about the sparsity level p0 or a tunable selection
threshold. An ablation study evaluating the effect of differ-
ent clustering algorithms on selection accuracy is available
in Appendix D.3. We herein refer to this variable selection
method for SR pre-screening as PAN; see Appendix C.2 for
implementation details.

5. Experiment Design
Using an open-source benchmarking platform, SRBench,
we evaluate the PAN+SR framework on two separate tasks.
First, we assess its ability to make accurate predictions on
“black-box” regression problems in which the underlying
regression function remains unknown. Second, we test
PAN+SR’s ability to find the correct data-generating func-
tion f0 on synthetic datasets with known data-generating
functions originating from Feynman Lectures on Physics
(Feynman et al., 2010; Udrescu & Tegmark, 2020).

The experiment settings are summarized in Table 1. All
experiments were run on a heterogeneous cluster. Each al-
gorithm was trained on each dataset in 10 repeated trials
with a different random state to control both the train/test
split and the seed of the algorithm. Each run was performed
until a 24-hour time limit was reached or up to 500,000
expression evaluations for black-box problems or 1,000,000
for ground-truth problems. For ground-truth problems, we
chose a few representative algorithms in the black-box prob-
lems and investigated additional settings of sample size and

signal-to-noise ratio. Datasets were split 75%/25% in train-
ing and testing. For black-box problems, hyperparameters
were either set to the optimal values published by SRBench
or to values recommended by the original authors of the
respective methods. The best hyperparameter settings in
black-box regression problems were used in ground-truth
problems. Instructions for reproducing the experiment is
available in Appendix A, and detailed experimental settings
are described in Appendix C.

5.1. Symbolic Regression Methods

Here we summarize the SR methods evaluated in this pa-
per. A long strand of SR methods is based on genetic pro-
gramming (GP), a technique for evolving executable data
structures, such as expression trees. The most vanilla ver-
sion we test is gplearn (Stephens, 2020), which performs
random expression proposal and iterates through the steps
of tournament selection, mutation, and crossover. Advanced
GP-based methods utilize different evolutionary strategies
and optimization objectives, ranging from Pareto optimiza-
tion for efficient trade-offs between accuracy and model
complexity to program semantics optimization for increas-
ing coherence in expression. Here we test an array of ad-
vanced GP-based SR algorithms, including Age-Fitness
Pareto optimization (AFP) (Schmidt & Lipson, 2010), AFP
with co-evoloved fitness estimate (AFP FE) (Schmidt & Lip-
son, 2010), Epigenetic Hill Climber (EHC) (La Cava et al.,
2014), ε-lexicase selection (EPLEX) (La Cava et al., 2019a),
Feature Engineering Automation Tool (FEAT) (La Cava
et al., 2019b), Fast Function Extraction (FFX) (McConaghy,
2011), GP version of Gene-pool Optimal Mixing Evolu-
tionary Algorithm (GP-GOMEA) (Virgolin et al., 2021),
Interaction-Transformation Evolutionary Algorithm (ITEA)
(de Franca & Aldeia, 2021), Multiple Regression Genetic
Programming (MRGP) (Arnaldo et al., 2014), Operon
(Burlacu et al., 2020), PySR (Cranmer, 2023), and Semantic
Back-propagation Genetic Programming (SBP-GP) (Vir-
golin et al., 2019).

Additional methods include Bayesian Symbolic Regression
(BSR) (Jin et al., 2020), which places a prior on the ex-
pression tree; Deep Symbolic Regression (DSR) (Petersen
et al., 2021), Unified Deep Symbolic Regression (uDSR)
(Landajuela et al., 2022), and Dynamic Symbolic Network
(DySymNet) (Li et al., 2024) utilize recurrent neural net-
works to propose symbolic expressions; Transformer-based
Planning for Symbolic Regression (TPSR) (Shojaee et al.,
2023) leverages pretrained transformer models; AIFeynman
2.0 (Udrescu et al., 2020) which uses a divide-and-conquer
technique to recursively decomposing complex problems
into lower-dimensional sub-problems.
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Table 1: Settings used in the experiments.

SETTING BLACK-BOX PROBLEMS GROUND-TRUTH PROBLEMS

# OF DATASETS 35 100
# OF ALGORITHMS 19 19
# OF TRIALS PER DATASET 10 10
TRAIN/TEST SPLIT .75/.25 .75/.25
TERMINATION CRITERIA 500K EVALUATIONS OR 24 HOURS 1M EVALUATIONS OR 24 HOURS
SAMPLE SIZE ALL 500, 1000, 1500, 2000
SIGNAL-TO-NOISE RATIO NONE 0.5, 1, 2, 5, 10, 15, 20, NONE
TOTAL COMPARISONS 12250 142000
COMPUTATION COST 34K CORE HOURS 104K CORE HOURS
MEMORY ALLOCATION 16 GB 16 GB

5.2. Datasets

We curated a database of high-dimensional regression prob-
lems for testing the capability of PAN+SR. We selected 35
black-box regression problems available in PMLB v1.0 (Ro-
mano et al., 2021) using the following criteria: n < 200 and
p ≥ 10 or n ≥ 200 and p ≥ 20. These problems were used
in SRBench and overlap with various open-source reposito-
ries, including OpenML (Vanschoren et al., 2014) and the
UCI Machine Learning Repository (Kelly et al., 2013).

We also curated 100 high-dimensional ground-truth regres-
sion problems by modifying the Feynman Symbolic Re-
gression Database (Udrescu & Tegmark, 2020) to include
irrelevant features and white noise. For each equation f0(·)
in the Feynman Lectures on Physics, we generated the rele-
vant features XS0

following Udrescu and Tegmark (2020):

(x1,j , . . . , xn,j)
iid∼ Unif(aj , bj), for 1 ≤ j ≤ p0, (4)

where p0 = |S0| is the number of relevant features, n is the
sample size, and aj and bj are the lower and upper bounds
for feature xj described in Udrescu and Tegmark (2020). To
study the effect of noise on PAN+SR, we tuned the signal-
to-noise ratio (SNR) by adding a Gaussian error term when
generating the response variable:

yi = f0(xi,1, . . . , xi,p0) + εi, for 1 ≤ i ≤ n, (5)

where εi
iid∼ N(0, σ2

ε), σ
2
ε = σ2

f/SNR. When σ2
ε = 0

or SNR = ∞, (4) and (5) generate the original Feynman
Symbolic Regression Database.

In addition to the relevant features XS0 = (x1, . . . ,xp0),
we included an array of irrelevant features Xirr, represent-
ing the era of big data where all reasonable features are in-
cluded in the dataset. Specifically, for each relevant feature
xj , j ∈ S0, we generate (x1

j,irr, . . . ,x
s
j,irr)

iid∼ Unif(aj , bj),
representing s copies of independent and irrelevant features
coming from the same distribution as xj . Then, the final fea-
ture matrix is X = [XS0 ,X

1
irr, . . . ,X

p0

irr ] ∈ Rn×p, where

Xj
irr = (x1

j,irr, . . . ,x
s
j,irr) ∈ Rn×s is the irreverent feature

matrix induced by the jth relevant feature for j = 1, . . . , p0,
totaling p = p0(1+s) features. In Section 6.2, we fix s = 50
so the total number of features is p = 51p0. Additional
dataset information and sampling process are available in
Appendix B.

Besides the 3,200 distinct simulation settings described in
Table 1 (100 datasets, 8 SNRs, and 4 sample sizes), we
include additional simulation settings in Appendix D.4 to
further assess PAN+SR’s behavior under alternative feature
structures. These include (1) additive noise in features, (2)
duplicated features, and (3) correlated features.

5.3. Metrics

Predictive Accuracy We assessed predictive accuracy using
the coefficient of determination, defined as

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
.

Model Complexity In line with SRBench, we define model
complexity as the total number of mathematical operators,
features, and constants in the model. To avoid redundancy,
symbolic models are first simplified using SymPy (Meurer
et al., 2017), a Python library for symbolic mathematics.

Solution Criteria For ground-truth regression problems,
we follow SRBench’s definition of symbolic solution. A
model f̂(X) is considered a solution to the SR problem of
y = f0(X) + ε if f̂(X) does not reduce to a constant and
(1) f̂ − f0 = a for some a ∈ R or (2) f̂/f0 = b for some
b ̸= 0. That is, the predicted model f̂ only differs from
the true model f0 by either an additive or a multiplicative
constant.

While predictive accuracy can be influenced by the simula-
tion design, the symbolic solution criterion offers a more
reliable metric for assessing whether an SR method can
uncover the true data-generating process. However, since
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Figure 1: Results on the black-box regression problems. Points indicate the mean test set performance and bars represent the
95% confidence intervals. Training time for PAN+SR includes the runtime of PAN, which averages only 74.14 seconds.

SymPy’s simplification process is not always optimal, it is
possible that some symbolic solutions are not identified in
the process.

Feature Usage Accuracy The irrelevant features present
a unique challenge for SR methods to identify the correct
data-generating model f0. When the predictive model f̂
includes irrelevant features (FPs), it cannot be considered
a symbolic solution to f0. Conversely, if f̂ excludes some
relevant features (FNs), it also fails to meet the symbolic so-
lution criteria. Although neither FPR nor FNR corresponds
directly to symbolic solution rate, they can provide insights
into why f̂ does not qualify as a symbolic solution.

6. Results
6.1. Blackbox Datasets

Figure 1 shows that PAN+SR consistently improves test
set R2 across 18 out of 19 SR algorithms, with the largest
gains observed in lower-performing methods such as BSR,
AIFeynman, and ITEA. For top-performing SR algorithms,
the improvements are more modest due to the natural upper
limit of R2, but the uplift remains significant. For instance,
PAN boosted uDSR from 14th to 5th place in the overall
ranking and to 2nd among the standalone SR methods. Fur-
thermore, these R2 improvements are not accompanied by
increased model complexity. In some cases, PAN+SR even
reduces model complexity, enhancing both parsimony and
interpretability.

In addition to accuracy gain, PAN+SR significantly reduces
training times for several SR algorithms, including SBP-GP,
uDSR, AFP FE, AIFeynman, and BSR. Notably, AIFeyn-
man, the 2nd slowest running SR algorithm, achieves a
5-fold speedup (from 71250 seconds to 13997 seconds),
while uDSR benefits from nearly a 3-fold speedup (from
7628 seconds to 2612 seconds) with PAN pre-screening.
The computational overhead introduced by PAN is mini-
mal, averaging only 74.14 seconds on a single core. As
PAN relies on independent MCMC chains, this overhead
can be further reduced through parallel processing, making
PAN+SR both efficient and scalable.

6.2. Ground-truth Datasets

Figure 2 summarizes performance on the ground-truth re-
gression problems with n = 1000, SNR = ∞, and s = 50.
Methods are sorted by their standalone R2 on the test set.
PAN+SR consistently improves both R2 and solution rate
across all 19 SR methods. Due to the high dimensionality
of the ground-truth problems, the standalone AIFeynman
encountered out-of-memory errors and failed to complete
any of the 1000 runs. However, PAN significantly improves
AIFeynman’s performance, lifting it from last place to 2nd
overall in symbolic solution rate. Furthermore, PAN consis-
tently outperforms all other nonparametric variable selection
methods tested, achieving the highest TPR among four other
methods and delivering the best R2 when paired with SR,
as detailed in Appendix D.2. This underscores the effec-
tiveness and necessity for nonparametric pre-screening in
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Figure 2: Results on the ground truth regression problems with n = 1000, SNR = ∞, and s = 50. Points indicate the mean
test set performance and bars represent the 95% confidence intervals. Training time for PAN+SR includes the runtime of
PAN, which averages 325 seconds. AIFeynman fails to complete any run in the standalone setting.

high-dimensional SR problems.

Similar to our findings in the black-box regression problems,
this performance gain is not driven by increased model size,
and PAN’s average computational overhead of 325 seconds
remains insignificant to many SR methods. Remarkably,
uDSR benefited from nearly a 6-fold speedup with PAN
(from 9573 seconds to 1596 seconds) while almost dou-
bling its solution rate (from 36.6% to 71.8%), making it the
best performer in solution rate. Additionally, PAN elevated
several mid-tier performers such as Operon, AFP FE, AFP,
and EHC, enabling them to surpass the 4th place method,
GP-GOMEA, in the standalone SR solution rate ranking.

Beyond the specific simulation setting of n = 1000
and SNR = ∞, we also investigated the sensitivity of
PAN+SR across a range of sample sizes and SNR. In
particular, we evaluated PAN+SR with all combinations
of sample size n ∈ {500, 1000, 1500, 2000} and SNR ∈
{0.5, 1, 2, 5, 10, 15, 20,∞}. Given the extreme computa-
tional burden, we select Operon, the best-performing al-
gorithm in black-box regression problems, to be the SR
module for the sensitivity analysis.

Figure 3a demonstrates that both Operon and PAN+Operon
maintain consistently lower FPR across all settings of n
and SNR, with negligible differences between them. This
low FPR reflects the rare inclusion of irrelevant features in
the final symbolic models. In noisy settings, we notice a
significant increase in PAN’s FPR, from 0% at SNR = ∞ to
over 30% at SNR = 0.5. While this noise sensitivity could

be a concern for typical variable selection applications, it
is crucial to emphasize that PAN’s primary objective is to
scale up SR methods by reliably identifying a superset of
the relevant features S0. In this context, minimizing FNs
during pre-screening is more critical than avoiding FPs.

Figure 3b illustrates that PAN achieves a near 0% FNR
across most simulation settings, highlighting its ability to
identify a superset of the true feature set S0. This is crucial
to ensure that the pre-screened dataset (y,XŜ) used for sub-
sequent SR modeling is comprehensive enough to generate
the correct expression f0. However, in the most extreme
case, where n = 500 and SNR = 0.5, PAN’s FNR rises
to over 5%, and caution is advised when relying on PAN
in such cases. On the other hand, the standalone Operon
often fails to include all relevant features in its final mod-
els across all n and SNR settings, while PAN consistently
lower Operon’s FNR, enhancing its chance to identify the
true function f0. Even with PAN, Operon fails to achieve
the best-case FNR set by PAN, particularly under noisy con-
ditions. This elevated FNR negatively impacts Operon’s
solution rate. For example, changing SNR from ∞ to 10,
PAN+Operon’s average solution rate drops from 27.4% to
0%, and Operon’s solution rate falls from 18.1% to 0%. As
La Cava et al. (2021) noted, this limitation persists even
when Operon is provided with only the relevant features
XS0

and under favorable conditions (n = 100, 000 and
SNR = 100), indicating that the issue lies beyond PAN
pre-screening. Other performance metrics of this sensitivity
analysis are available in Appendix D.5.
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Figure 3: FPR and FNR of Operon, PAN+Operon, and PAN on the ground truth datasets. PAN refers to the proposed
selection method in Section 4. Points indicate the mean performance and bars represent the 95% confidence intervals.
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Figure 4: Results of selected methods on the ground truth
problems with n = 1000, SNR ∈ {∞, 10}, and s = 50.
Points indicate the mean test set performance and bars rep-
resent the 95% confidence intervals.

Beyond Operon, we also evaluated several top-performing
SR methods on the ground-truth problems using n = 1000
and SNR ∈ {∞, 10}. As shown in Figure 4, PAN+SR
consistently improves SR methods across all SNR levels,
though all SR and their PAN-boosted variants become less
accurate at SNR = 10, indicating the challenge when noise
is present. In particular, GP-GOMEA performs similarly to
Operon, with its solution rate dropping to 0% at SNR = 10
for both the standalone and PAN-boosted variants. The best-
performing SR algorithm, uDSR, also exhibits vulnerability
to noise, with its PAN-boosted solution rate falling from
71.8% to 7.4%. Surprisingly, PAN significantly benefits

DSR, the weakest SR algorithm in Figure 4, increasing its
solution rate from 8.2% to 14.9% at SNR = 10 and from
8.9% to 25.8% at SNR = ∞. These findings highlight the
fundamental challenges noise introduces to SR algorithms.
To date, SR algorithms have been predominantly developed
for noiseless or high-SNR settings, even for “small p” prob-
lems. We expect that iterative application of the proposed
variable selection method, similar to Ye et al. (2024), along
with careful consideration of the challenges in extreme-scale
SR, could improve performance in low-SNR settings. This
will be explored in future work.

7. Discussion
In this paper, we introduce PAN+SR, a novel framework
designed to address the scalability challenges faced by SR
methods when applied to high-dimensional datasets. The
growing prevalence of big data necessitates tools capa-
ble of efficiently handling such complexity, and PAN+SR
addresses this need by integrating a nonparametric pre-
screening mechanism with SR. This integration enables the
framework to focus the model search on a relevant subset
of features, reducing computational burden and improving
accuracy.

The core innovation of PAN+SR lies in its nonparametric
variable selection method, which filters the input dataset
to reduce dimensionality before applying SR. A key chal-
lenge in this process is minimizing the risk of false nega-
tives (FNs), where relevant features are mistakenly excluded.
Such omissions can critically impair SR methods, as the
success of SR depends on having access to the true feature
set. To address this issue, we developed a variable selec-
tion method designed to ensure that the selected features

8
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form a superset of the true feature set, effectively minimiz-
ing the FNR. Our approach leverages the characteristics
of VIP rankings derived BART, providing a tuning-free,
data-driven variable selection criterion capable of retaining
relevant features while excluding irrelevant ones. By pre-
serving a comprehensive set of candidate features, PAN+SR
maximizes the likelihood of identifying the true underlying
model.

We evaluated PAN+SR across a diverse set of datasets, in-
cluding 35 high-dimensional real-world datasets from the
PMLB database and 100 modified simulated datasets based
on the Feynman Symbolic Regression Database. The results
were highly promising: PAN+SR improved the performance
of 18 out of 19 SR methods on real datasets and all 19 meth-
ods on simulated datasets when noise is absent. These
findings underscore the framework’s potential to enhance
the robustness and scalability of SR methods across diverse
datasets.

In addition, we explored the sensitivity of PAN+SR to vary-
ing sample sizes and SNR. Our analysis demonstrated that
the performance gains achieved by PAN+SR are consis-
tent across different sample sizes and remain robust in the
presence of noise. Like our extended Feynman database,
SDSR (Matsubara et al., 2024) augments the original Feyn-
man database with irrelevant features, bringing the synthetic
benchmarks closer to real-world scientific process. However,
SDSR adds only 1-3 irrelevant variables, while our setup
introduces 100-450 irrelevant variables, posing a substan-
tially more challenging test for both variable selection and
symbolic regression. Nonetheless, SDSR rectifies several
physical inconsistencies present in the original Feynman
benchmark, such as a more realistic treatment of constants
and integer-valued variables, and a more careful specifica-
tion of sampling ranges. Our investigation extends beyond
ground-truth datasets by incorporating black-box datasets,
thereby mitigating, to some extent, the limitations inherent
in purely simulated data. Still, we view SRSD as a valuable
and complementary benchmark and plan to incorporate its
refinements in future evaluations. In summary, PAN+SR
provides a significant step forward in enabling SR methods
to handle the complexities of modern datasets, offering im-
proved performance and scalability across a wide range of
applications.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Reproducing the Experiment
The experiment made use of an existing symbolic regression (SR) benchmarking platform, SRBench (La Cava et al., 2021),
and changes were made to facilitate other functionalities, including signal-to-noise ratio (SNR) tuning, feature pre-screening,
and variable usage accuracy calculation. The README file in our GitHub repository https://github.com/mattsheng/PAN SR
details the complete set of commands for reproducing the experiment. Here, we provide a short summary of the experiment
process. Experiments are launched from the experiments/ folder via the script analyze.py. After installing and
configuring the conda environment provided by SRBench, the complete black-box experiment on standalone SR methods
can be started via the following command:

1 python analyze.py /path/to/pmlb/ \
2 -results ../results_blackbox/SR/ \
3 -n_trials 10 \
4 -time_limit 24:00 \
5 -tuned -skip_tuning

To enable PAN pre-screening, the users can either specify the path to a pre-run variable selection result or run the pre-
screening in place. The first option is useful when the users need to compare different SR methods on the same dataset:

1 python analyze.py /path/to/pmlb \
2 -results ../results_blackbox/SR_BART_VIP \
3 -n_trials 10 \
4 -time_limit 24:00 \
5 -vs_method BART_VIP \
6 -vs_result_path ../results_blackbox/pmlb_BART_VIP_withidx.feather \
7 -vs_idx_label idx_hclst \
8 -tuned -skip_tuning

If no path is given to -vs result path, the PAN pre-screening will be run in place. Similarly, the ground-truth
experiment for the standalone SR methods on Feynman datasets with a sample size of n = 1000 and an SNR of 10 can be
run by the following command:

1 python analyze.py /path/to/feynman \
2 -results ../results_feynman/SR \
3 -signal_to_noise 10 \
4 -n 1000 \
5 -sym_data \
6 -n_trials 10 \
7 -time_limit 24:00 \
8 -tuned -skip_tuning

Note that -sym data enables more performance metric calculations only available for ground-truth problems. To run PAN
pre-screening only on the Feynman datasets with a sample size of n = 1000 and an SNR of 10, we can use the following
command:

1 python analyze.py /path/to/feynman \
2 -script BART_selection \
3 -ml BART_VIP \
4 -results ../results_feynman/BART_VIP/n_1000/ \
5 -signal_to_noise 10 \
6 -n 1000 \
7 -sym_data \
8 -n_trials 10 \
9 -rep 20 \

10 -time_limit 24:00

The -rep 20 argument instructs the program to run K = 20 replications of BART for estimating the variable ranking rjk
of the jth feature at the kth run. Users can use other variable selection methods by modifying the BART selection.py
script.
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B. Additional Dataset Information
PMLB datasets Black-box datasets and their metadata are available from PMLB under an MIT license and is described
in detail in Romano et al. (2021). In this experiment, we only focus on high-dimensional regression datasets available from
PMLB. Specifically, we use PMLB regression datasets satisfying the following criteria:

1. n < 200 and p ≥ 10, or

2. n ≥ 200 and p ≥ 20.

Furthermore, datasets that have categorical features (number of unique value ≤ 5) or non-continuous response variable
(proportion of unique value < 0.9) are excluded since they are incorrectly classified as regression task (Dick, 2022). Among
the datasets meeting these criteria, we found that two datasets, 195 auto price and 207 autoPrice, are identical,
and we only kept 195 auto price in our analysis. See Dick (2022) for a detailed analysis of the dataset duplication and
incorrect problem classification issues of PMLB.

Feynman datasets The original Feynman database described in Udrescu and Tegmark (2020) consists of only the rel-
evant features XS0 and a large sample size of n = 105, and is available in Feynman Symbolic Regression Database
(https://space.mit.edu/home/tegmark/aifeynman.html). We extended the Feynman Symbolic Regression Database to
include irrelevant features Xj

irr ∈ Rn×s for each relevant feature xj , j ∈ S0. To take advantage of the SRBench
platform, we standardized the Feynman equations to PMLB format and included metadata detailing the true model
and the units of each variable. The extended Feynman datasets are generated using the Python script provided in
feynman dataset code/generate feynman dataset.py. To avoid the need to generate different datasets
for each sample size n considered in the main paper, we set s = 50 and n = 100, 000 for all Feynman equations with
random state control; we refer to this as the full Feynman datasets. In the experiment, the full Feynman datasets are randomly
split into a 75%/25% train/test set. If the train set contains more samples than the desired training sample size n, the train
and test sets will be further subsampled so that Xtrain has exactly n samples and Xtest has exactly ⌊n/3⌋ samples.

Users can also generate datasets using other data-generating functions f0 by supplying a CSV file with the ex-
pression of f0(·) and an additional CSV file describing the desired uniform distribution (i.e., the lower and upper
bounds of the distribution) of each variable in f0(·). See feynman dataset code/FeynmanEquations.csv
and feynman dataset code/units.csv for more details.

Sampling Process for Extended Feynman Datasets The sampling process for the extended Feynman datasets is
described in the main text and is reproduced here for completeness of the data description in this section.

For each equation f0(·) in the Feynman Lectures on Physics, we generated the relevant features XS0
following Udrescu and

Tegmark (2020):

(x1,j , . . . , xn,j)
iid∼ Unif(aj , bj), for 1 ≤ j ≤ p0, (6)

where p0 = |S0| is the number of relevant features, n is the sample size, and aj and bj are the lower and upper bounds for
feature xj described in https://space.mit.edu/home/tegmark/aifeynman/FeynmanEquations.csv. Then, the response variable
is generated as follow:

yi = f0(xi,1, . . . , xi,p0) + εi, for 1 ≤ i ≤ n, (7)

where εi
iid∼ N(0, σ2

ε) is an additive Gaussian error, σ2
f denotes the sample variance of f0(·), and σ2

ε = σ2
f/SNR is the error

variance tuned to a prescribed signal-to-noise ratio (SNR). When σ2
ε = 0 (i.e., SNR = ∞), (6) and (7) generate the original

Feynman Symbolic Regression Database.

For each relevant feature xj , j = 1, . . . , p0, we generate s = 50 copies of irrelevant features following the distribution

of xj : (x1
j,irr, . . . ,x

s
j,irr)

iid∼ Unif(aj , bj). Then, the final feature matrix is X = [XS0 ,X
1
irr, . . . ,X

p0

irr ] ∈ Rn×p, where
Xj

irr = (x1
j,irr, . . . ,x

s
j,irr) ∈ Rn×s is the irreverent feature matrix induced by the jth relevant feature for j = 1, . . . , p0,

totaling p = p0(1 + s) number of features.

In Appendix D.4, we consider sampling processes where features are not iid sampled from a uniform distribution.
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C. Additional Experiment Details
C.1. General Experiment Settings

Experiments were run in a heterogeneous cluster composed of nodes with Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.60GHz,
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz, Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz, Intel(R) Xeon(R) Gold
6230 CPU @ 2.10GHz, and AMD EPYC 7642 CPU @ 2.3GHz processors. The training of a single method on a single
dataset for a fixed random seed was considered a job. Each job was managed by SLURM Workload Manager to receive
one CPU core, 16GB of RAM, and a time limit of 24 hours. For the ground-truth problems, each final model was given an
additional 5 minutes for each of the following steps: 1) cleaning the model for SymPy parsing, 2) simplifying the cleaned
model using SymPy, 3) checking the difference solution criterion of the simplified model, 4) checking the ratio solution
criterion of the simplified model, and 5) calculating model size (complexity). When the simplification of the cleaned model
exceeded the 5-minute wall clock, steps 3-5 were run on the cleaned model instead.

C.2. Implementation Details of the Proposed Variable Selection Method

The proposed method uses the bartMachine R package for its BART implementation. For each dataset, we fit K = 20
independent BART models and record the ranking rj,k of variable xj’s variable inclusion proportion (VIP) in the kth run;
the hyperparameters for bartMachine are summarized in Table 2. To cluster the VIP rankings into 2 clusters, we use the
hclust function in R to perform agglomeration clustering (unweighted pair group method with arithmetic mean) on the
Euclidean dissimilarity matrix of the VIP rankings. Then, xj is selected if r̄j· =

∑K
k=1 rj,k/K belongs to the low-mean

cluster.

Table 2: Hyperparameters in bartMachine.

Parameter Value

# of trees 20
# of burn-in samples 10,000
# of posterior samples 10,000

D. Additional Results
D.1. Visualization of Average VIP Rankings r̄j·

Figure 5 shows the average BART VIP rankings for Feynman equation I-38-12 with n = 1000. At high SNR, there is a
clear separation between the low- and high-mean clusters, and the hypothesized cluster means closely match their actual
values. As SNR decreases, irrelevant features tend to receive higher rankings, slightly shifting the cluster means incurring
more false positives (FPs). Despite this deviation, the cluster means remain far apart, ensuring separation between relevant
and irrelevant features.

Figure 6 further demonstrates the clustering accuracy of the proposed method. Regardless of the SNR level, all true features
are consistently assigned to the low-mean cluster, which is highly desirable in the PAN+SR framework. While decreasing
SNR leads to some misclassification of the irrelevant features, the proposed method ensures that no true features are excluded.
This robustness in retaining the true features under varying noise levels makes the proposed method well-suited for PAN+SR
framework and high-dimensional SR tasks.
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Figure 5: Average BART VIP rankings r̄j· over K = 20 runs on Feynman equation I-38-12 with n = 1000, p0 = 4, and
p = 204. Black vertical dashed lines indicate the cluster means. Red solid vertical lines are the hypothesized cluster means:
(1 + p0)/2 = 2.5 and (p0 + 1 + p)/2 = 104.5.
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Figure 6: Hierarchical clustering accuracy on Feynman equation I-38-12 with n = 1000, p0 = 4, and p = 204. Red and
teal represent the low- and high-mean clusters, respectively. Circles and triangles represent relevant and irrelevant features,
respectively.
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D.2. Analysis of Different Nonparametric Variable Selection Methods
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Figure 7: True positive rate (TPR) on the Feynman datasets for n = 500, 1000, 1500, 2000 and SNR =
∞, 20, 15, 10, 5, 2, 1, 0.5. Points indicate the mean performance, and bars show the 95% confidence interval. VIP Rank is
the proposed method for PAN pre-screening. Local, G.SE, G.MAX, and RF are alternative nonparametric variable selection
methods.

PAN pre-screening presents a unique challenge to nonparametric variable selection methods where any missed signals
(false negative) will eliminate the correct expression f0(·) from the search space. That is, a true positive rate (TPR) near
100% in the pre-screening phase is necessary to ensure successful SR tasks. Figure 7 compares the average TPR of five
nonparametric variable selection methods across various configurations of n and SNR on the Feynman datasets. VIP
Rank, the proposed method, is compared with three BART permutation test-based methods (Local, G.SE, and G.MAX)
(Bleich et al., 2014) and the Random Forest (RF) variable selection method in PySR (Cranmer, 2023). Of the three BART
permutation test-based methods, BART-Local applies the least stringent selection criteria, while BART-G.MAX is the most
stringent, with BART-G.SE offering a balance between the two. The RF implementation requires users to specify the number
of selected variables k, which we tuned over {1, 2, . . . , 20} using 5-fold cross-validation.

VIP Rank consistently achieves the highest TPR, nearing or reaching 100% across all experimental settings. In noiseless
conditions (SNR = ∞), only VIP Rank attains a perfect TPR of 100%. Although there is a slight TPR decline for VIP
Rank at n = 500 and SNR ≤ 5, it still outperforms the other methods, particularly at n = 500 and SNR = 0.5. These
results reinforce the need for a specialized variable selection method for PAN pre-screening. In addition to the four methods
considered here, we point readers to Ye et al. (2024), where they analyzed three additional nonparametric variable selection
methods and showed that none outperform BART-G.SE in terms of TPR.

Figure 8 illustrates the false positive rate (FPR), a crucial metric for evaluating variable selection accuracy. As discussed in
the main paper, VIP Rank produces higher FPR under low SNR conditions–a tradeoff made to maintain a near-perfect true
positive rate (TPR). While this tradeoff may be undesirable for typical variable selection tasks, it is acceptable for PAN
pre-screening, where minimizing false negatives (FNs) is the priority. The three BART permutation-based methods and RF
consistently maintain low and robust FPRs across all settings of n and SNR. However, as Figure 7 shows, this strict control
of FPR comes at the cost of worse TPR performance.

To further evaluate the impact of variable selection methods in the PAN+SR framework, we replaced VIP Rank with
BART-G.SE and compared their performance using Operon as the SR method. Operon was chosen for this analysis due to
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Figure 8: False positive rate (FPR) on the Feynman datasets for n = 500, 1000, 1500, 2000 and SNR =
∞, 20, 15, 10, 5, 2, 1, 0.5. Points indicate the mean performance, and bars show the 95% confidence interval. VIP Rank is
the proposed method for PAN pre-screening. Local, G.SE, G.MAX, and RF are alternative nonparametric variable selection
methods.

its strong R2 performance in both the black-box and ground-truth experiments. Table 3 summarizes the average test set R2

on the Feynman dataset. VIP+SR consistently achieves the highest R2 across all experimental settings. For instance, at
n = 500 and SNR= 20, VIP+SR achieves an average R2 of 0.892, compared to 0.860 for GSE+SR and 0.846 for standalone
SR. Under high noise conditions, VIP+SR continues to demonstrate better robustness than GSE+SR. At n = 500 and
SNR= 0.5, VIP+SR scores 0.145, slightly outperforming GSE+SR (0.142) and standalone (0.142). This trend is consistent
across different different sample sizes n.

D.3. Effect of Different Clustering Algorithms

The proposed VIP Rank variable selection method can be implemented using various off-the-shelf clustering algorithms.
However, due to the class imbalance nature of the variable selection problem, not all clustering algorithms are suitable.
In this ablation study, we examine the effect of clustering algorithms on TPR and FPR performances of VIP Rank. We
elected 10 clustering algorithms available in scikit-learn v1.5.7: agglomerative hierarchical clustering (AHC),
k-means++, Gaussian mixture model (GMM), Birch, Mean Shift, Affinity Propagation, Spectral, OPTICS, HDBSCAN, and
DBSCAN.

As illustrated in Figure 9, the first 5 clustering algorithms (AHC, k-mean++, GMM, Birch, Mean Shift) achieve the highest
TPR across all simulation settings with indistinguishable differences. Affinity Propagation also has similar TPR compared
with the top 5 algorithms but lacks behind in noisy (e.g., SNR = 0.5) and small-n (e.g., n = 500) settings. The rest of the
pack has significantly worse TPR and are thus not suitable in VIP Rank.

Since the top 5 algorithms have indistinguishable TPR, we elect one with the least FPR. As shown in Figure 10, AHC has
significantly lower FPR than the rest of the top 5 algorithms across most simulation settings. Combine with its near 100%
TPR, AHC is capable of identifying a more compact feature set that has a high probability of containing all relevant features.

18



Ab Initio Nonparametric Variable Selection for Scalable Symbolic Regression with Large p

n = 1500 n = 2000

n = 500 n = 1000

noiseless 20 15 10 5 2 1 0.5

noiseless 20 15 10 5 2 1 0.5

25

50

75

100

25

50

75

100

25

50

75

100

25

50

75

100

SNR

T
P

R
 (

%
)

AHC
k−means++
GMM
Birch
MeanShift
AffinityPropagation
Spectral
OPTICS
HDBSCAN
DBSCAN

Figure 9: True positive rate of various ablations of clustering algorithm.

n = 1500 n = 2000

n = 500 n = 1000

noiseless 20 15 10 5 2 1 0.5

noiseless 20 15 10 5 2 1 0.5

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

SNR

F
P

R
 (

%
) AHC

k−means++
GMM
Birch
MeanShift

Figure 10: False positive rate of various ablations of clustering algorithm.
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Table 3: Average test set R2. The highest value in each experimental setting is in bold.

noiseless 20 15 10 5 2 1 0.5

n = 500

VIP+SR 0.974 0.892 0.870 0.837 0.730 0.525 0.335 0.145
GSE+SR 0.948 0.860 0.859 0.818 0.710 0.510 0.327 0.142
SR 0.915 0.846 0.840 0.792 0.702 0.506 0.322 0.142

n = 1000

VIP+SR 0.984 0.919 0.901 0.867 0.774 0.586 0.406 0.229
GSE+SR 0.971 0.914 0.897 0.851 0.774 0.574 0.405 0.229
SR 0.942 0.883 0.867 0.825 0.747 0.580 0.393 0.227

n = 1500

VIP+SR 0.990 0.928 0.909 0.874 0.792 0.612 0.433 0.260
GSE+SR 0.961 0.910 0.899 0.866 0.781 0.600 0.428 0.257
SR 0.956 0.895 0.878 0.856 0.761 0.592 0.426 0.255

n = 2000

VIP+SR 0.990 0.935 0.914 0.887 0.805 0.619 0.448 0.277
GSE+SR 0.963 0.918 0.905 0.872 0.787 0.617 0.445 0.272
SR 0.960 0.907 0.892 0.855 0.781 0.611 0.437 0.272

D.4. Effect of Noisy, Duplicated, and Correlated Predictors

In addition to the extensive simulation settings described in Section 5.2, we further evaluate VIP Rank under alternative
predictor structures that challenge common modeling assumptions:

• Baseline: x1, . . . , xp
iid∼ Unif(0, 1)

• Noisy X: Independent Gaussian noise is added to each predictor with variance equal to 1/5 of the signal variance

• Duplicated X: A redundant feature is added: x6 = x1 + x2, where x1 and x2 are relevant predictors

• Correlated X: x1, . . . , xp ∼ Unif(0, 1) with an autocorrelation structure: ρij = 0.9|i−j|.

The response variable y is generated according to the Friedman equation (1991):

y = 10 sin(πx1x2) + 20(x3–0.5)
2 + 10x4 + 5x5 + ε, ε ∼ N(0, σ2).

We fix n = 1000, p = 100, SNR = 10, and repeat each scenarios for 100 trials. Table 4 reports the average TPR and
FPR. VIP Rank consistently identifies all relevant features across all scenarios, demonstrating strong robustness to noise,
redundancy, and correlation among predictors.

Table 4: Average performance in each scenario across 100 trials.

Scenario TPR FPR

Baseline 100% 10.58%
Noisy X 100% 26.42%
Duplicated X 100% 11.11%
Correlated X 100% 15.98%
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D.5. Additional Performance Metrics for Operon vs PAN+Operon

Figures 11, 12, 13 show additional metrics not discussed in the main paper. Although PAN+Operon’s solution rate
plummeted from ∼27% at SNR = ∞ to 0% at SNR = 20 across all n, Figure 11 shows there is still improvement in R2 on
test set across all n and SNR, while improving model interpretability evidenced by the uniformly lower model size in Figure
12.

n = 1500 n = 2000

n = 500 n = 1000

noiseless 20 15 10 5 2 1 0.5

noiseless 20 15 10 5 2 1 0.5

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

SNR

R
2

PAN+SR SR

Figure 11: R2 on test set with Operon as the SR module. Points indicate the average R2 on test set and bars represent the
95% confidence intervals.
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Figure 12: Model size with Operon as the SR module. Points indicate the average model size and bars represent the 95%
confidence intervals.
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Figure 13: Solution rate with Operon as the SR module. Points indicate the average solution rate and bars represent the 95%
confidence intervals.
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