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ABSTRACT

Deep neural networks have a clear degradation when applying to the unseen envi-
ronment due to the covariate shift. Conventional approaches like domain adapta-
tion requires the pre-collected target data for iterative training, which is impracti-
cal in real-world applications. In this paper, we propose to adapt the deep models
to the novel environment during inference. An previous solution is test time nor-
malization, which substitutes the source statistics in BN layers with the target
batch statistics. However, we show that test time normalization may potentially
deteriorate the discriminative structures due to the mismatch between target batch
statistics and source parameters. To this end, we present a general formulation
α-BN to calibrate the batch statistics by mixing up the source and target statistics
for both alleviating the domain shift and preserving the discriminative structures.
Based on α-BN, we further present a novel loss function to form a unified test
time adaptation framework CORE, which performs the pairwise class correlation
online optimization. Extensive experiments show that our approaches achieve the
state-of-the-art performance on total twelve datasets from three topics, including
model robustness to corruptions, domain generalization on image classification
and semantic segmentation. Particularly, our α-BN improves 28.4% to 43.9% on
GTA5→ Cityscapes without any training, even outperforms the latest source-free
domain adaptation method.

1 INTRODUCTION

Deep neural networks (DNNs) achieve impressive success across various applications, but heavily
rely on the independent and identical distribution (i.i.d.) assumption. However, in real-world appli-
cations, the model is prone to encounter the novel instances. For examples, an automatic pilot should
have robust performance under different weather conditions. Unfortunately, when applying DNNs
to novel environment, the performance has a clear degradation due to the covariate shift (Ben-David
et al., 2010), i.e., the test data distribution differs from the training distribution.

Domain adaptation (DA) is a promising alternative, which transfers the knowledge learned on la-
beled source domain to unlabeled target domain, where the data distribution is distinct (Long et al.,
2015). However, domain adaptation needs the pre-collected target data, which is not applicable. Un-
like DA, Domain generalization (DG) aims at training a general model from multiple source domains
and generalizing to the unseen target domain. DG is more challenging since the target domain is to-
tally unseen during training. Recently, another practical scenario named test-time adaptation (TTA)
is proposed. In TTA, the target data are not pre-collected for iterative training, but used for adapting
the source-trained model during inference. We show the comparison between different settings in
Table 1. To make the comparison clear, we introduce two indicators. Iterative training means the
model is trained on the unlabeled target data iteratively. Online training means the model parameters
are updated during inference. Noticing that a recent DG work (Pandey et al., 2021) adapts the model
during inference, while most previous DG methods did not. We call it as optimization-free TTA. In
this paper, we focus on the practical scenarios: DG and TTA.

One of the main approaches to adapt during inference is test-time normalization (T-BN) (Nado et al.,
2020). T-BN re-calculates the target batch statistics to replace the source statistics in BN layers
during inference. Motivated by T-BN, Wang et al. (2021) proposed to perform test time adaptation
by re-calculating the target batch statistics and updating the affine parameters in BN layers with
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Table 1: The comparison between various settings. DG and TTA significantly differ from other settings since
both of them get rid of the iterative training on target data.

Setting Source data Target data Iterative training Online training
domain adaptation (DA) xs, ys xt 3 7
source-free domain adaptation (SFDA) - xt 3 7
domain generalization (DG) - xt 7 7
fully test-time adaptation (TTA) - xt 7 3

Figure 1: (Best viewed in color.) (a) Examples form two DG datasets: PACS and Office-Home. (b)
Error of the ideal target hypothesis. “Art painting” indicates that the model is trained on the remain-
ing source domains: Cartoon, Photo and Sketch, and the target representations are obtained by the
source-trained model. (c) Visualization of the target representations by t-SNE (Van der Maaten &
Hinton, 2008). The category cluster in T-BN shows larger variance.

entropy minimization. However, this paradigm has critical restrictions. For representation learning,
the discriminative representations are crucial for recognition task. Substituting the source statistics
with target statistics in BN layers will inevitably lead to a mismatch with the source-trained model
parameters. This mismatch will probably perturb the original discriminative structures. Another
limitation is the estimation error on target batch statistics. The source statistics in BN layers are
updated in a moving average manner during training time, while the target statistics are calculated
in each batch during test time. The statistics estimated in a batch introduces more errors in reflecting
the domain characteristics. A preliminary empirical investigation of the mentioned restrictions are
shown in Fig. 1 and Table 2.

Motivated by the hidden restrictions of T-BN, we propose a more general method named α-BN
to calibrate the batch statistics during inference. Specifically, we mix up the source and target
statistics in BN layers to both alleviate the domain shift and preserve the discriminative structures.
Equipped with α-BN, common DG models can be further improved without any training. Based on
α-BN, we further propose an unified test-time adaptation framework named CORE with an online
optimization, which exploits the pairwise Class correlation to facilitate robust and accurate test time
adaptation.

To sum up, we have following contributions:

1. We investigate two practical yet challenging transfer learning scenarios: domain gener-
alization and test time adaptation, which release the requirement of pre-collected target
domain data.

2. Motivated by the hidden restrictions of test time normalization, we present a general formu-
lation α-BN for both alleviating domain shifts and preserving discriminative informations
. It can be seamlessly incorporated into mainstream deep neural networks to improve the
generalization on unseen domains without any training.

3. Based on α-BN, we propose a unified framework CORE for test-time adaptation. CORE
optimizes the pairwise class correlation in an unsupervised online learning manner.

4. We conduct numerous experiments on total twelve datasets from three topics: robustness to
corruptions, DG on image classification and DG on semantic segmentations. The empirical
results show that both α-BN and CORE achieve the state-of-the-art (SoTA) performance in
their respective communities. The result on GTA5→ Cityscapes, for instance, is improved
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from 28.4% to 43.9% without any training, which even outperforms the SoTA source-free
DA method.

2 RELATED WORKS

Domain Adaptation and Generalization Domain adaptation (DA) enables transferring the knowl-
edge from source domain to target domain by jointly optimizing both labeled source data and unla-
beled target data. This paradigm has gained a lot of attention in the last decade and various methods
are proposed, which can be roughly divided into three categories: metric learning (Long et al., 2015;
Sun & Saenko, 2016; Kang et al., 2019; Li et al., 2020), adversarial training (Ganin et al., 2016;
Long et al., 2018; Tsai et al., 2018) and self-training Zou et al. (2019); Liang et al. (2020); Ge et al.
(2020). However, training with the large amounts source data is inefficient and impractical in many
real-world applications. To address this issue, source-free DA is proposed, which adapts to the tar-
get domain with target data and the model pre-trained on source domain. Chidlovskii et al. (2016)
are the first to investigate source-free DA and proposed a denoising auto-encoder for adaptation.
SHOT (Liang et al., 2020) is another representative work, which proposed information maximiza-
tion loss and clustering-based pseudo-labeling. However, despite getting rid of the source domain
data, source-free DA also requires the pre-collected target domain data for iterative training, limiting
its application scenarios.

Therefore, domain generalization (DG) and fully test-time adaptation (TTA) are proposed (Let us
elaborate TTA in the next paragraph). Domain generalization aims at generalizing the model trained
on a (multiple) source domain (s) to the unseen target domain directly. Recently, various DG meth-
ods are proposed including domain-invariant representation learning (Zhao et al., 2020; Matsuura &
Harada, 2020), proxy tasks (Carlucci et al., 2019; Huang et al., 2020), augmentations (Volpi et al.,
2018; Zhou et al., 2021), meta-learning (Li et al., 2018; Balaji et al., 2018) and so on. However, Gul-
rajani & Lopez-Paz (2020) provided a DG benchmark named DomainBed for fair comparison and
found a well-implemented empirical risk minimization (ERM) model outperforms most DG meth-
ods. Recently, Pandey et al. (2021) proposed label-preserving target projections during inference
time for DG. This work differs from most previous works, which focus on learning from source do-
mains, while it performs optimization-free TTA during inference. Our proposed α-BN also belongs
to it, but the methods differ.

Fully Test-time Adaptation Fully test-time adaptation is proposed by Wang et al. (2021), which
adapts the model to target domain by online training. TTA can be seen as a compromise between
source-free DA and DG. Different from source-free DA, TTA does not require the pre-collected
target domain data but trains on the target data in an online manner. Also, different from DG, TTA
allows optimization during test, which introduces additional test time cost but usually guarantees
better performance. Therefore, TTA is a really practical scenario since it gets rid of iterative training
and yields better performance compared to generalizing to the new environment directly. Wang
et al. (2021) proposed TENT to achieve TTA by feature modulation. Feature modulation contains
two steps: test-time normalization (we will elaborate it in the next paragraph.) and affine parameters
optimization by entropy minimization, which is a widely-used regularization term on DA and semi-
supervised learning (Grandvalet et al., 2005). Another similar scenario is test-time training, which
optimizes the networks before making a prediction during inference Sun et al. (2019). Since this
setting is weaker than TTA, we mainly talk about TTA in this paper.

Normalization and Adaptation Batch normalization (BN) is widely-used in DNNs nowadays for
stable training and fast converge. BN is originally proposed to alleviate the internal covariate shift
during training a very deep neural networks Ioffe & Szegedy (2015). Recently, Schneider et al.
(2020) and Nado et al. (2020) discovered that updating the batch statistics during testing improves
the robustness to common corruptions. In this paper, we call it as test-time normalization. Similar to
their works, Wang et al. (2021) proposed feature modulation, which also updates the batch statistics
rather than freezes them. The key insight for these methods is that batch statistics are closely related
to the domain characteristics (Li et al., 2016; Pan et al., 2018). Based on this finding, Jeon et al.
(2021) and Zhou et al. (2021) proposed to synthesise the novel domain styles to facilitate general-
ization. Another kind of work focuses on instance normalization (Ulyanov et al., 2016). Similarly,
Huang & Belongie (2017) found the instance-wise statistics are related to instance characteristics
(i.e., image styles). Motivated by this finding, Zhou et al. (2021) proposed to generate novel in-
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stances by mixing instance-level feature statistics to enhance out-of-distribution generalization. It is
worth noticing that the aforementioned DG method can be summarized as an augmentation-based
technique. Different from them, we propose a post-processing method to calibrate the batch statistics
on target domain during test time.

3 UNDERSTANDING TEST-TIME NORMALIZATION

Table 2: Accuracies (%) of “Source” and “T-
BN” on three DG classification benchmarks:
VLCS, PACS and Office-Home.

Method VLCS PACS Office-Home

Source 77.2 85.3 66.5
T-BN 57.9 83.7 63.9

drop 19.3↓ 1.6↓ 2.6↓

Test-time normalization (T-BN) re-calculates the
batch statistics on target domain during inference.
Since the batch statistics are closely related to the
domain characteristics (Li et al., 2016; Pan et al.,
2018), T-BN adapts the model to target domain ex-
plicitly. However, every coin has two sides, and
T-BN is not a free lunch. During training on the
source domain, the model parameters are associ-
ated with the source statistics. Therefore, substi-
tuting the source statistics with the target ones in-
evitably results in a mismatch with the model pa-
rameters, which leads to the degradation of discrim-
inative structures. In short, T-BN alleviates the negative effects caused by domain shift, but perturbs
the discriminative structures. We report the averaged accuracy of “Source” and “T-BN” on three DG
classification benchmarks in Table 2. We observe that the accuracy of “T-BN” is consistently lower
than “Source”, revealing that substituting the source statistics by the estimated target batch statistics
directly is not effective in generalizing to the new environment. To further understand T-BN, we
begin with the following two perspectives.

Error of ideal target hypothesis. Based on domain adaptation theory (Ben-David et al., 2010), the
domain shift can be reflected by the error of the ideal target hypothesis based on the target represen-
tations learned by source model. “target representation” means the representations are obtained on
the target domain data. To obtain the ideal target hypothesis, we train a new classifier over the tar-
get representations with corresponding labels. Two methods are compared: “Source” and “T-BN”.
“Source” obtains the target representations by the source model directly, while “T-BN” performs
test-time normalization. The error of the ideal target hypothesis is shown in Fig. 1 (b). As expected,
the error of the ideal target hypothesis in “T-BN” is lower over all tasks. It is worth noticing that the
only difference between them is that T-BN normalizes the BN layer inputs by the target statistics
rather than the source statistics, and others remain consistent (e.g., the same network architecture
and the same network parameters). Therefore, we reasonably postulate that T-BN alleviates the
domain shift, which results in the lower error of the ideal target hypothesis.

Representation visualization. Discriminative representation learning is essential for recognition
task. The discriminative representation satisfies two basic principles: intra-class tightness and inter-
class separation. To qualitatively verify that how T-BN affects the learned representations, we vi-
sualize the target representations in Fig. 1 (c). The variance of each category cluster in “T-BN” is
significantly larger compared to “Source”, which indicates the discriminative structures are injured
due to the mismatch between target statistics and source model parameters.

4 TEST-TIME BATCH STATISTICS CALIBRATION

Let {µ(i)
s , σ(i)

s } be the source statistics in i-th BN layers. After training on the source domain data,
the BN statistics are always fixed for stable inference. However, when encountering the data with
distinct distribution, the model performance usually has a clear degradation due to the covariate
shift. T-BN re-calculates the target statistics {µ(i)

t , σ(i)
t } to replace the fixed BN statistics, which

alleviates domain shift but perturbs the discriminative structures. In this paper, we present a general
formulation α-BN to generalize to new domains while preserve the discriminative structures. α-BN
considers both source and target statistics.

More specifically, α-BN mixes the source and target statistics during test time. During test time,
given an target input batch xt, α-BN re-calculates the target batch statistics {µ(i)

t , σ(i)
t } before
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forwarding i-th BN layer. Then, α-BN calibrates the batch statistics as:

µ(i) = αµ(i)
s + (1− α)µ(i)

t , (1)

σ(i) = ασ(i)
s + (1− α)σ(i)

t , (2)

where α is a hyper-parameter to balance the source and target statistics. Similar formulation is
also proposed by Schneider et al. (2020) for alleviating the estimated error caused by small batch
size. However, we discover that even with a large batch size (e.g., 200), T-BN also yields inferior
performance on the large distribution shift (e.g., Office-Home). In practice, we set α to 0.9 for clas-
sification tasks, and 0.7 for segmentation tasks on domain generalization benchmarks. Noticing that
α-BN is a post-processing method, and can be easily incorporated into mainstream neural networks
to enhance the generalization performance on unseen domains.

Based on α-BN, we adopt the class correlation optimization (Jin et al., 2020) for robust and accurate
test-time adaptation:

LCORE =

C∑
j=1

C∑
j′ 6=j

p>·jp·j′ , (3)

where p.j is the averaged softmax output, which indicates the probabilities that the samples in the
mini-batch belongs to j-th class. p>·jp·j′ depicts the correlation between j-th class and j′-th class.
Minimizing the class correlation leads to a more confident and accurate predictions like other reg-
ularization terms (e.g., entropy minimization). However, we theoretically show that CORE loss
prevents the easy samples dominate the learning procedure in Appendix C, thus providing a more
effective optimization-based test-time adaptation framework.

In short, we propose a unified framework named CORE for test-time adaptation based on α-BN
and class correlation. Firstly, we calibrate the batch statistics with proposed α-BN. Then, we only
optimize the affine parameters in BN layers with the loss function presented in Eq. (3). Noticing
that CORE is fully unsupervised, and only updates the parameters once in each test batch. The test
data will not be replayed just like the assembly line products.

5 EXPERIMENTS

5.1 DATASETS AND TASK DESIGNS

We evaluate our proposed method on 12 datasets, including three categories: robustness to corrup-
tions, DG on image classification and DG on semantic segmentation.

Topic 1: Robustness to corruptions. We evaluate the robustness on CIFAR10-C, CIFAR100-C and
ImageNet-C. For each dataset, 15 types of algorithmically generated corruptions with five levels of
severity are included. For CIFAR10/100-C, we evaluate models on the highest severity corruptions.
For ImageNet-C, the results are averaged on five levels of severity, i.e., 75 distinct corruptions.

Topic 2: DG on image classification. We evaluate our method on four datasets: VLCS, PACS,
Office-Home and DomainNet as suggested by DomainBed (Gulrajani & Lopez-Paz, 2020).

Topic 3: DG on semantic segmentation. We adopts two synthetic datasets (i.e., GTA5 and SYN-
THIA) and three real-world datasets (i.e., Cityscapes, BDD-100K, Mapillary).

More details about these datasets are provided in Appendix. A. Based on these datasets, we conduct
numerous tasks with various base models: ResNet (He et al., 2016), WideResNet (Zagoruyko &
Komodakis, 2016) with AugMix (Hendrycks* et al., 2020) and DeepLabV3 (Chen et al., 2017).
The task design is shown in Table 3.

5.2 IMPLEMENTATION DETAILS AND BASELINES

To guarantee the reproducibility of our results, we implement the proposed methods on the widely-
used benchmarks. We use RobustBench (Croce et al., 2020) for Topic 1, DomainBed (Gulrajani &
Lopez-Paz, 2020) for Topic 2 and RobustNet (Choi et al., 2021) for Topic 3. Since the proposed α-
BN is training-free, we illustrate the implementation details of test-time adaptation method CORE.

5

fumyou
下划线

fumyou
下划线



Under review as a conference paper at ICLR 2022

Table 3: Task design.

Category Dataset Model Task description Number of tasks

Model robustness
CIFAR10-C WideResNet-28-10 Clean CIFAR10 → Corrupted CIFAR10 (highest level) 15
CIFAR100-C WideResNet-40-2+AugMix Clean CIFAR100 → Corrupted CIFAR100 (highest level) 15
ImageNet-C ResNet50 Clean ImageNet → Corrupted ImageNet (total 5 levels) 75

DG on image classification

VLCS ResNet50 {LCS, VCS, VLS, VLC} → {V, L, C, S} 4
PACS ResNet50 {ACS, PCS, PAS, PAC} → {P, A, C, S} 4

Office-Home ResNet50 {CPR, APR, ACR, ACP} → {A, C, P, R} 4
DomainNet ResNet50 {IPQRS, CPQRS, CIQRS, CIPRS, CIPQS, CIPQR} → {C, I, P, Q, R, S} 6

DG on semantic segmentation see “Task description” ResNet50 + DeepLabV3+ {GTA5} → {SYNTHIA, Cityscapes, BDD-100K, Mapillary} 4
see “Task description” ResNet50 + DeepLabV3+ {GTA5+SYNTHIA} → {Cityscapes, BDD-100K, Mapillary} 3

Table 5: Test error values of different corruptions on CIFAR10-C and CIFAR100-C. The evaluation is imple-
mented on RobustBench (Croce et al., 2020) for fair comparison and easy reproducing. We compare proposed
CORE with T-BN (Schneider et al., 2020) and state-of-the-art method TENT (Wang et al., 2021). The best
results are highlighted.

Method Dataset Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean

Source CIFAR10-C 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
T-BN CIFAR10-C 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4
TENT CIFAR10-C 24.8 23.5 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2 18.6
CORE(ours) CIFAR10-C 22.5* 20.3* 29.8* 11.0* 29.2* 12.3* 10.2* 14.4* 14.8* 12.4* 7.7* 10.6* 20.4* 15.3* 21.4* 16.8

Source CIFAR100-C 65.7 60.1 59.1 32.0 51.0 33.6 32.3 41.4 45.2 51.4 31.6 55.5 40.3 59.7 42.4 46.8
T-BN CIFAR100-C 44.3 44.0 47.3 32.1 45.8 32.8 33.0 38.4 37.9 45.4 29.8 36.5 40.6 36.7 44.1 39.2
TENT CIFAR100-C 40.4 39.5 42.1 30.1 42.8 31.2 30.2 34.5 36.0 38.7 28.0 33.6 38.1 33.9 40.8 36.0
CORE(ours) CIFAR100-C 39.8* 39.3* 41.5* 29.5* 41.7* 30.6* 29.8* 34.2* 34.9* 38.6* 27.5* 32.6* 37.1* 32.7* 40.1* 35.3

We use SGD optimizer for ImageNet-C, and Adam optimizer (Kingma & Ba, 2015) for remain-
ing tasks. We set batch size (BS) as 200, learning rate (LR) as 0.001 for CIFAR10/100, which is
consistent with TENT’s settings1. For ImageNet-C, we set BS=64, LR=2.5e-4 for fair comparison
with other methods. For DG on image classification, we set BS=64, LR=1e-4 for all tasks except
DomainNet, on which we reduce the LR to 1e-5.

To verify the effectiveness of proposed two methods: α-BN and CORE, we compare them with
the state-of-the-art methods on each research community. For Topic 1, test-time normalization (T-
BN) (Nado et al., 2020) and test-time adaptation by entropy minimization (TENT) (Wang et al.,
2021) are noteworthy approaches. For Topic 2, we incorporate α-BN with two baselines: Empirical
Risk Minimization (ERM) and CORrelation ALignment (CORAL) (Sun & Saenko, 2016). For
Topic 3, we apply α-BN to the simplest method ERM to enhance the generalization on unseen
domains.

5.3 ROBUSTNESS TO CORRUPTIONS

Table 4: Test error values of different cor-
ruptions on ImageNet-C. The best results are
highlighted. The reported results are aver-
aged over total 75 tasks. Detailed results of
each task are shown in Appendix B.1.

Method Error (%)

Source 59.5
AugMix (Hendrycks* et al., 2020) 51.7
Norm (Schneider et al., 2020) 49.9
ANT (Rusak et al., 2020) 50.2
ANT+SIN (Geirhos et al., 2019) 47.4
TENT (Wang et al., 2021) 44.0
CORE (ours) 42.5*

The results of CIFAR10-C and CIFAR100-C are
shown in Table 5. Our proposed loss consistently
outperforms all existing approaches under TTA set-
ting, which demonstrates the effectiveness of our
method. To verify the performance on large-scale
dataset, we evaluate our method on ImageNet-C,
whose results are shown in Table 4. In the largest
dataset ImageNet-C, we achieve a new state-of-the-
art: 42.5% mean error over 75 tasks, which proves
the superiority of our method on improving the ro-
bustness to corruption by test-time adaptation. It is
worth noticing that we optimize the affine parame-
ters in BN layers by only one iteration in an online
manner. Therefore, the improvement is significant
and the proposed framework CORE shows clear ad-
vantages over previous state-of-the-arts like TENT.

1https://github.com/DequanWang/tent

6

https://github.com/DequanWang/tent
fumyou
下划线

fumyou
下划线

fumyou
下划线



Under review as a conference paper at ICLR 2022

Table 6: Accuracies of state-of-the-art methods on four datasets. The evaluation is implemented on Do-
mainBed (Gulrajani & Lopez-Paz, 2020). The best results on Optimization-Free Test-Time Adaptation (OF-
TTA) and optimization-based Test-Time Adaptation (TTA) are highlighted by bold and underline, respectively.

Method Protocols VLCS PACS Office-Home DomainNet Mean

ERM DG 77.5 85.5 66.5 40.9 67.6
CORAL (Sun & Saenko, 2016) DG 78.8 86.2 68.7 41.5 68.8
Mixup (Xu et al., 2020) DG 77.4 84.6 68.1 39.2 67.3
SagNet (Nam et al., 2019) DG 77.8 86.3 68.1 40.3 68.1
MLDG (Li et al., 2018) DG 77.2 84.9 66.8 41.2 67.5
RSC (Huang et al., 2020) DG 77.1 85.2 65.5 38.9 66.7

ERM† OF-TTA 77.2 85.3 66.5 40.9 67.5
ERM†+α-BN (ours) OF-TTA 77.8* 87.9* 68.4* 41.0 68.8
CORAL† OF-TTA 78.2 86.1 68.4 41.4 68.5
CORAL†+α-BN (ours) OF-TTA 78.7* 87.4* 69.8* 41.5 69.4

ERM†+ α-BN + TENT (Wang et al., 2021) TTA 78.7* 89.1* 67.8* 35.4* 67.8
CORAL†+ α-BN + TENT (Wang et al., 2021) TTA 78.9* 88.5* 69.9* 38.0* 68.8
ERM†+ CORE (ours) TTA 78.4* 89.4* 69.1* 43.8* 70.2
CORAL†+ CORE (ours) TTA 79.2* 88.7* 70.4* 43.6* 70.5

5.4 DG ON IMAGE CLASSIFICATION

In this topic, there are two proposed methods: ‘ERM+α-BN’ and ‘ERM+CORE’ with different
evaluation protocols. Firstly, the comparison between ‘ERM+α-BN’ and other DG methods is fair
since α-BN belongs to optimization-free TTA that only calibrates the batch statistics during infer-
ence without any training. Since ‘ERM+CORE’ belongs to optimization-based TTA, we compare it
with previous state-of-the-art work TENT. Noticing that TENT is based on T-BN but T-BN has infe-
rior performance on large distribution shift (see Table 2), we equip TENT with the proposed α-BN
for better comparison with our CORE. To emphasize the proposed α-BN and CORE are model-
agnostic, we also use CORAL (Sun & Saenko, 2016) as another baseline. The results are shown in
Table 6.

α-BN improves the performance on unseen target domain. Domain generalization is a really
challenging task and many recent proposed methods have few improvements or even degradations
compared to ERM. Equipped with our proposed α-BN, the performance on unseen target domain
is consistently improved. For instance, ERM+α-BN reaches 68.8% and CORAL+α-BN reaches
69.4% averaged accuracy over four DG benchmarks.

CORE outperforms TENT with robust performance. Equipped with α-BN, we compare the pro-
posed method CORE with TENT, the state-of-the-art algorithm in test-time adaptation. CORE con-
sistently outperforms TENT over four benchmarks, which verifies the effectiveness of our method.
Specifically, CORE surpass TENT by considerable margins of 2.4% and 1.7% averaged accuracy on
ERM and CORAL baselines. Noticing that test-time adaptation only updates the parameters once,
thus the improvement is significant. Another interesting finding is that CORE surpasses TENT by
8.4% and 5.6% accuracy on the most challenging dataset DomainNet.

5.5 DG ON SEMANTIC SEGMENTATION

To evaluate the universality of proposed methods, we conduct DG experiments on semantic seg-
mentation with five large-scale datasets: GTA5, SYNTHIA, Cityscapes, BDD-100K, Mapillary.
The results are shown in Table 7, and the segmentation visualization is presented in Fig. 2.

α-BN is embarrassingly simple but achieves state-of-the-art performance. Previous state-of-
the-art method ISW proposed instance selective whitening to remove the domain-specific styles,
and reaches 40.0% mIoU over all tasks. The popular IBN-Net achieves 38.2% mIoU by utilizing
both batch normalization and instance normalization. Different from previous works, we propose a
post-processing method named α-BN, which adapts the batch statistics during test time. Equipped
with α-BN, the baseline ERM reaches 40.7% mIoU over total nine tasks, yielding a new state-of-
the-art on domain generalization.
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Table 7: Results on semantic segmentation under domain generalization setting. We evaluate our method
on two popular simulation-to-real benchmarks. ‘†’ means the results are based on our implementation. The
evaluation metrics is the mean intersection-over-union (mIoU). We compare our method with recent state-of-
the-art methods: SW (Pan et al., 2019), IBN-Net (Pan et al., 2018), IterNorm (Huang et al., 2019), ISW (Choi
et al., 2021) and T-BN Nado et al. (2020).

Source GTA5 GTA5 + SYNTHIA Cityscapes

Target SYNTHIA Cityscapes BDD-100K Mapillary mean Cityscapes BDD-100K Mapillary mean BDD-100K Mapillary mean MEAN

ERM 26.2 29.0 25.1 28.2 27.1 35.5 25.1 31.9 30.8 45.0 51.7 48.4 33.1
SW 27.6 29.9 27.5 29.7 28.7 - - - - 48.5 55.8 52.2 -
IBN-Net 27.9 33.9 32.3 37.8 33.0 35.6 32.2 38.1 35.3 48.6 57.0 52.8 38.2
IterNorm 27.1 31.8 32.7 33.9 31.4 - - - - 49.2 56.3 52.8 -
ISW 28.3 36.6 35.2 40.3 35.1 37.7 34.1 38.5 36.8 50.7 58.6 54.7 40.0

ERM† 26.7 28.4 24.3 27.9 26.8 36.2 24.3 31.5 30.7 45.9 52.5 49.2 33.1
T-BN 27.2 41.0 32.5 38.1 34.7 44.0 34.3 39.3 39.2 47.6 48.2 47.9 39.1
α-BN(ours) 28.7 43.9 33.4 38.2 36.1 44.8 35.0 40.3 40.0 49.3 52.6 51.0 40.7

Image                                  ERM (Source only)                           ERM+α-BN                                 Ground truth

Figure 2: (Best viewed in color.) Qualitative results on GTA5→ Cityscapes. Equipped with our
α-BN, the source model yields better and cleaner segmentation map on target domain with little
additional test time (e.g., about 16ms on each image). Specifically, without any training, α-BN re-
discovers the missing class “person”, which is colored in red. More qualitative results are shown in
Appendix D.5.

α-BN even outperforms the source-free DA method without any training. Source-free
DA (Liang et al., 2020) becomes a popular topic in DA community recently. For semantic seg-
mentation, SFDA (Liu et al., 2021) shares similar backbone as ours, and reaches 43.2% mIoU with
the 34.1% mIoU ERM baseline on GTA5→ Cityscapes. With weaker ERM baseline (28.3% mIoU),
the proposed α-BN even achieves better performance (43.9% mIoU).

6 ANALYSIS

α-BN introduce little additional inference time. To evaluate the efficiency of proposed α-BN,
we calculate the wall-clock time on GTA5 → Cityscapes with the same running environments for
five times. The averaged wall-clock times for vanilla inference and α-BN are 72.84s and 80.94s,
respectively. With little additional inference time cost (i.e., additional 0.0158s on each image), the
proposed α-BN brings 15.5% mIoU improvement on GTA5→ Cityscapes.

Figure 3: (Best viewed in color.) Analysis of batch size, parameter sensitivity and LogME score.

Test-time batch size. Fig 3 (a) shows the results under different batch size on four DG segmentation
tasks. We observe that the performance is robust to test-time batch size (BS). For classification task,
the observation is similar to (Schneider et al., 2020): the performance begins robust when BS≥ 64.

The hyper-parameter α is robust to task. There are only one hyper-parameter in our proposed
α-BN. To evaluate the parameter sensitivity, we illustrate the results on four segmentation tasks
with different values of α in Fig. 3 (b). We observe that α = 0.7 is a great choice for all DG
segmentation tasks, and we also observe that α = 0.9 is robust for DG classification tasks. We also
present the comparison with other methods in Fig. 3 (c). The mIoU in Fig. 3 (c) is averaged on four
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tasks{GTA5}→ {SYNTHIA, Cityscapes, BDD-100K, Mapillary}. We observe that α-BN (α = 0.7)
outperforms all alternatives. It is worth noticing that α-BN is training-free, and only introduces little
additional inference time based on the ERM mdoel, while other methods like ISW has additional
loss functions and augmentations.

α-BN gains more transferable representations. The LogME score is a practical assessment for
the transferability of representations (You et al., 2021). Fig. 3 (d) shows the LogME score on tasks
{P,C,S} → {A}, {P,A,C} → {S} with the obtained representations of Source, T-BN and the pro-
posed α-BN. We observe that the LogME score on α-BN representations is larger than the LogME
score on Source and T-BN representations. The finding implies that α-BN gains more transferable
representations.

α-BN reaches statistical significance. To verify the statistical significance of α-BN, we conduct
the McNemars Test (Dietterich, 1998) to show the significant improvement brought by the proposed
α-BN contrast to the baseline ERM. The p-values for four tasks (the order of tasks is the same
as Table B.4) on Office-Home are 3.4×10−5, 2.4×10−13, 0.0012 and 0.0016, respectively. As is
widely acknowledged, we set the significance threshold as 0.05. Therefore, the significance test
indicates our α-BN brings significant improvement to the common baselines like ERM. We also
conduct statistical significance test on other benchmarks. The result with ‘*’ indicates that it is
statistical significant.

7 DISCUSSION

Why CORE (α-BN+CORE loss) outperforms TENT (T-BN+Entropy loss)? Firstly, T-BN leads
to a mismatch between target statistics and source-learned parameters, while α-BN balances the co-
variate shift alleviation and discriminative structure preservation. More essentially, α-BN provides
a better initialization of BN parameters. However, we show that a better initialization is important
for test-time adaptation (see Table 2, 8 and 9). Since the supervision signals come from the model
predictions, a better initialization leads to a better supervision signals in the online unsupervised
learning setting. In Appendix C, we provide a theoretical insight on why CORE loss outperforms
Entropy loss. Compare to Entropy loss, CORE loss has much smaller gradient on the easy sam-
ples, preventing easy samples dominate the learning procedure. Extensive empirical results further
demonstrate it (see Table 4, 5, 6, 8 and 9).

α-BN v.s. T-BN From Figure 3 (b,c), α-BN has limited improvement compared to T-BN, which
is inconsistent with the finding provided in Table 2. In fact, they are not contradictory. Previous
work TENT has shown that T-BN performs well on the synthetic-to-real adaptation (Figure 3 (b,c)).
However, in this paper, we first find that T-BN is not suitable for the nature distribution shift of
real-world datasets (Table 2). We think the latter one is more important since distribution shift
is a common phenomenon in real world. We have also provide the real-to-real adaptation results
on semantic segmentation in Table 7. We observe that α-BN outperforms T-BN by a margin (3.1
mIoU).

How to determine the value of α for a new dataset? The value of α plays an essential role in
α-BN and CORE. In this paper, we perform grid search, and find an empirical rule: α = 0.9 for
classification and α = 0.7 for semantic segmentation (see Figure 3 and 5). Actually, this setting is
not an optimal but an acceptable choice for each task, and always outperforms the original T-BN.
We think developing the learnable α-BN with an automatically adjusted α is an inspiring direction
for future work.

8 CONCLUSION

We present a general formulation named α-BN to generalize deep models to the novel environments.
By considering both source and target statistics, α-BN alleviates the covariate shift but preserves dis-
criminative structures. Based on α-BN, we further propose an unified test-time adaptation approach
CORE, which provides a robust optimization by investigating the pair-wise correlations. Differ-
ent from conventional domain adaptation approaches, our α-BN and CORE are online algorithms,
which adapts to the target domain during inference. Comprehensive experiments on twelve datasets
from three research topics validate the effectiveness and efficiency of our methods.
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A DATASETS DESCRIPTION

We evaluate our proposed method on 12 datasets from three communities: robustness to corruptions
(CIFAR10/100-C, ImageNet-C), DG on image classification (VLCS, PACS, Office-Home, Terra
Incognita, DomainNet) and DG on semantic segmentation (GTA5, SYNTHIA, Cityscapes, BDD-
100K, Mapillary). Some examples are illustrated in Fig. 4. Here are the detailed descriptions:

CIFAR10/100-C (Krizhevsky et al., 2009) has 50000 training samples and 10000 test samples with
10/100 classes. The corruptions include gaussian noise, shot noise, impulse noise, defocus blur,
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Figure 4: (Best viewed in color.) Some examples collected from the datasets: ImageNet-C,
DomainNet, GTA5, Cityscapes, BDD-100K and Mapillary. The ImageNet-C figure is borrow
from (Hendrycks & Dietterich, 2019) and the DomainNet figure is borrow from (Peng et al., 2019).

frosted glass blur, motion blur, zoom blur, snow, frost, fog, brightness, contrast, elastic, pixelate and
JPEG. (Hendrycks & Dietterich, 2019)

ImageNet-C (Russakovsky et al., 2015; Hendrycks & Dietterich, 2019) has 1.2 million training
samples and 50000 validation samples with 1000 classes. The corruption categories are the same as
CIFAR10/100-C.

VLCS (Fang et al., 2013) contains 10,729 examples from four domains: Caltech101 (C), LabelMe
(L), SUN09 (S), VOC2007 (V), with 5 classes.

PACS (Li et al., 2017) contains 9,991 examples from four domains: Art (A), Cartoons (C), Photos
(P), Sketches (S), with 7 classes.

Office-Home (Venkateswara et al., 2017) contains 15,588 examples from four domains: Art (A),
Clipart (C), Product (P), Real (R), with 65 classes.

DomainNet (Peng et al., 2019) is the largest dataset on DG community, and contains 586,575 ex-
amples from six domains: clipart (C), infograph (I), painting (P), quickdraw (Q), real (R), sketch
(S), with 345 classes.

GTA5 (Richter et al., 2016) is a large-scale synthetic dataset, which contains 24,966 high-resolution
images collected from the game, Grand Theft Auto V (GTA5), and the corresponding ground-truth
segmentation maps are generated by computer graphics. It shares 19 classes with Cityscapes.

SYNTHIA (Ros et al., 2016) is also a synthetic dataset rendered from a virtual city and comes with
pixel-level segmentation annotations. We adopt the subset of it, which is called SYNTHIA-RAND-
CITYSCAPES. This subset contains 9400 images and shares 16 common classes with Cityscapes
dataset.

Cityscapes (Cordts et al., 2016) is the widely-used real-world dataset, which contains 3,450 high-
resolution (i.e., 2048×1024) urban driving scene images.
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BDD-100K (Yu et al., 2020) is a recent real-world dataset containing 8000 urban scene images
(7000 images for training and 1000 images for validation) with resolution of 1280×720.

Mapillary (Neuhold et al., 2017) is another recent real-world dataset containing 25,000 street-view
images with a minimum resolution of 1920×1080.
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B FULL RESULTS

We implement our methods with Pytorch on a single NVIDIA RTX 3090 GPU. All results in this
section are obtained by our implementations.

B.1 IMAGENET-C

All results are statistical significant compared to baseline.

Corruptions Level 1 Level 2 Level 3 Level 4 Level 5 Mean

Guass. 32.33 37.13 45.00 55.15 69.06 47.73
Shot 32.83 38.09 45.08 57.57 67.19 48.15
Impulse 36.05 41.44 45.97 56.16 68.06 49.53
Defocus 34.13 39.33 50.59 60.67 70.60 51.06
Glass 33.26 39.22 52.83 58.89 70.23 50.89
Motion 30.32 34.06 41.03 49.81 57.08 42.46
Zoom 34.83 39.12 41.93 45.66 49.74 42.26
Snow 34.71 43.64 43.36 50.06 51.38 44.36
Frost 34.23 43.70 51.28 52.38 57.61 47.84
Fog 30.23 31.63 33.88 36.05 42.12 34.78
Bright 26.48 27.44 28.73 30.60 33.01 29.25
Contrast 28.73 30.42 33.35 43.01 66.79 40.46
Elastic 30.88 44.32 31.03 34.28 44.17 36.94
Pixel 28.82 29.70 32.93 37.88 41.14 34.09
JPEG 30.37 32.81 34.49 39.68 47.22 36.91

Mean 31.88 36.80 40.77 47.19 55.69 42.47

B.2 VLCS

Algorithm C L S V Avg.

ERM 97.5 63.4 73.8 74.0 77.2
ERM+α-BN 96.3* 67.7* 73.5* 73.5* 77.8
ERM+TENT 97.3* 69.7* 75.1* 72.8* 78.7
ERM+CORE 97.0* 67.7* 76.6* 72.4* 78.4
CORAL 97.9 66.1 73.2 75.4 78.2
CORAL+α-BN 97.0* 69.3* 74.4* 73.9* 78.7
CORAL+TENT 97.4* 69.1* 74.5* 74.6* 78.9
CORAL+CORE 97.3* 69.1* 75.7* 74.7* 79.2

B.3 PACS

Algorithm A C P S Avg.

ERM 84.7 80.2 96.9 79.2 85.3
ERM+α-BN 88.2* 83.5* 97.5* 82.4* 87.9
ERM+TENT 90.4* 83.5* 97.7* 84.8* 89.1
ERM+CORE 90.4* 83.8* 97.7* 85.8* 89.4
CORAL 88.2 80.0 97.3 78.8 86.1
CORAL+α-BN 89.0* 82.5* 97.7* 80.2* 87.4
CORAL+TENT 90.4* 82.9* 97.9* 82.9* 88.5
CORAL+CORE 90.5* 82.8* 97.9* 83.6* 88.7
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B.4 OFFICE-HOME

Algorithm A C P R Avg.

ERM 61.2 52.7 75.8 76.3 66.5
ERM+α-BN 63.2* 56.1* 76.9* 77.3* 68.4
ERM+TENT 62.6* 54.4* 77.2* 77.1* 67.8
ERM+CORE 63.6* 57.9* 77.3* 77.6* 69.1
CORAL 64.3 54.7 76.6 78.0 68.4
CORAL+α-BN 64.6* 58.4* 77.2* 78.9* 69.8
CORAL+TENT 64.7* 58.5* 77.8* 78.7* 69.9
CORAL+CORE 65.3* 60.1* 77.5* 78.7* 70.4

B.5 DOMAINNET

Algorithm cli info paint quick real sketch Avg.

ERM 57.9 19.1 46.7 12.4 59.6 49.8 40.9
ERM+α-BN 57.9 19.1 46.7 12.4 60.1 49.7 41.0
ERM+TENT 59.1* 11.2* 30.5* 1.8* 60.2* 49.4* 35.4
ERM+CORE 59.8* 20.7* 50.1* 17.9* 61.5* 53.0* 43.8
CORAL 59.2 19.8 47.3 13.1 59.0 50.2 41.4
CORAL+α-BN 59.2 19.8 47.3 13.1 59.1 50.2 41.5
CORAL+TENT 59.0* 11.7* 44.1* 3.2* 58.5* 51.2* 38.0
CORAL+CORE 60.8* 21.3* 48.1* 17.1* 61.5* 53.0* 43.6

B.6 DG ON SEMANTIC SEGMENTATION
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GTA5 → SYNTHIA

ERM 45.2 38.4 75.5 4.5 3.6 21.6 13.4 9.3 59.4 0.0 88.8 56.0 6.1 51.2 0.0 12.8 0.0 14.8 7.6 26.7 -
α-BN 51.2 29.5 80.7 7.6 10.1 28.8 15.4 11.2 61.0 0.0 89.5 52.4 7.9 51.5 0.0 25.5 0.0 14.8 7.3 28.7 +2.0

GTA5 → Cityscapes

ERM 39.7 23.8 52.9 16.0 17.5 23.8 30.7 14.5 81.1 27.2 39.8 58.6 6.4 57.2 18.5 14.0 1.0 7.3 9.3 28.4 -
α-BN 87.0 38.7 83.3 30.3 27.4 35.1 36.4 24.6 82.8 30.0 77.4 65.6 23.9 85.9 30.8 27.7 5.2 16.8 26.3 43.9 +15.5

GTA5 → BDD-100K

ERM 43.7 21.7 32.8 3.5 21.0 27.1 29.2 17.3 58.4 21.0 31.0 42.6 4.3 66.9 12.9 4.8 0.0 14.1 10.2 24.3 -
α-BN 76.4 27.3 60.0 8.9 24.5 33.5 35.2 22.3 63.9 20.4 68.8 42.1 7.6 76.9 17.4 11.8 0.0 12.9 24.3 33.4 +9.1

GTA5 → Mapillary

ERM 45.3 24.4 32.7 6.5 17.0 28.0 35.4 8.1 66.0 24.6 40.4 53.0 4.8 72.4 23.8 5.1 10.1 12.5 20.2 27.9 -
α-BN 75.7 38.3 48.0 14.6 22.6 36.1 38.8 36.2 71.5 25.4 61.2 50.8 16.5 79.2 30.4 19.7 9.9 25.4 24.8 38.2 +10.3

GTA5 + SYNTHIA → Cityscapes

ERM 74.5 36.7 66.5 11.5 3.0 31.4 35.8 21.4 84.7 10.8 73.2 66.2 12.0 84.6 15.7 25.7 0.0 12.0 21.6 36.2 -
α-BN 85.4 44.1 84.0 27.8 11.4 41.2 41.9 32.1 85.7 27.7 87.3 65.0 19.2 87.0 22.9 31.1 0.1 22.4 34.2 44.8 +12.6

GTA5 + SYNTHIA → BDD-100K

ERM 40.7 27.1 33.3 1.9 6.9 28.8 38.3 19.4 63.6 8.4 44.6 51.8 13.4 61.4 0.9 4.0 0.0 5.5 11.6 24.3 -
α-BN 74.9 30.4 60.3 5.8 18.4 36.8 40.4 32.4 71.3 21.6 77.8 39.9 13.0 76.5 7.6 14.7 0.0 18.2 24.1 35.0 +10.7

GTA5 + SYNTHIA → Mapillary

ERM 61.0 36.7 33.8 9.3 7.7 29.8 39.4 11.6 78.3 38.0 64.6 59.7 5.9 78.5 6.6 4.9 0.1 9.2 22.9 31.5 -
α-BN 74.4 39.1 52.1 17.1 15.6 40.4 46.6 44.4 79.2 42.4 72.6 48.3 14.1 77.5 25.3 17.5 1.0 24.7 33.6 40.3 +8.8
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C THEORETICAL INSIGHT ON CORE LOSS

In this paper, we adopt the CORE loss with class correlation optimization rather than the Entropy
loss suggested by TENT (Wang et al., 2021). From Table 4, 5 and 6, we observe that CORE loss
outperforms Entropy loss on a wide range of benchmarks. To better understand CORE loss, we
provide a theoretical insight on why CORE loss outperforms Entropy loss. Firstly, the CORE loss
in Eq. (3) is equal to:

LCORE = 1−
C∑
j

pjpj , (4)

where pj denotes the probability of class j. The entropy minimization loss is defined as:

LEntropy = −
C∑
j

pj log(pj). (5)

Consider a binary classification problem, we can obtain the values and the gradients with respect to
Entropy loss and CORE loss:

LEntropy = −p log p− (1− p) log(1− p), (6)

dLEntropy

dp
= log(1− p)− log p. (7)

LCORE = 1− p2 − (1− p)2, (8)

dLCORE

dp
= 2− 4p. (9)

From Eq. (7) and Eq. (9), the absolute value of Entropy loss gradient on the easy sample (p > 0.9
or p < 0.1) is much larger than the absolute value of CORE loss gradient. In other words, Entropy
loss pays too much attention to the easy samples.

D MORE EXPERIMENTAL RESULT AND ANALYSIS

D.1 ABLATION STUDY

CORE contains two components: α-BN and Class Correlation Optimization (COO), while TENT
also contains two components: T-BN and Entropy Minimization (EM). In Table 6, we compare α-
BN + COO with α-BN + EM, and show that COO significantly outperforms EM. In this section,
we further evaluate remaining two variants: T-BN + COO and T-BN + EM (Original TENT). From
Table 8, we observe that T-BN works badly on the nature distribution shift of real-world datasets.
Equipped with T-BN, COO achieves similar performance with EM, and both of them are worse
than the ERM baseline. This ablation study indicates that α-BN is really important for adapting the
model to a novel target domain.

Table 8: Results of four optimization-based TTA methods on VLCS, PACS and Office-Home.

Dataset VLCS PACS Office-Home

Algorithm C L S V Avg. A C P R Avg. A C P R Avg.

ERM 97.5 63.4 73.8 74.0 77.2 84.7 80.2 96.9 79.2 85.3 61.2 52.7 75.8 76.3 66.5
T-BN 66.9 49.3 53.2 62.1 57.9 87.4 81.3 95.6 74.6 84.7 61.2 50.4 72.0 76.1 64.9
T-BN + EM 68.7 50.9 52.5 63.6 58.9 87.8 81.5 95.6 75.6 85.1 61.8 51.7 73.0 76.4 65.7
T-BN + COO 68.5 50.3 54.6 62.4 59.0 87.8 81.8 95.6 75.2 85.1 61.8 51.8 73.0 76.6 65.8
CORE (ours) 97.0 67.7 76.6 72.4 78.4 90.4 83.8 97.9 85.8 89.4 63.6 57.9 77.3 77.6 69.1
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D.2 RESULT ON GTA5→ CITYSCAPES WITH ANOTHER BACKBONE

ResNet101+DeepLabV2 is the popular backbone adopted by many domain adaptation methods.
To better evaluate our α-BN, we report the performance with this backbone on the most popular
transfer task: GTA5 → Cityscapes. The mIoU of ERM baseline is 35.7%. α-BN achieves 44.7%
mIoU, which is also competitive state-of-the-art DG method FSDR (Huang et al., 2021) with a
44.8% mIoU.

Table 9: Results of four optimization-based TTA methods on GTA5→ Cityscapes.
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ERM 39.7 23.8 52.9 16.0 17.5 23.8 30.7 14.5 81.1 27.2 39.8 58.6 6.4 57.2 18.5 14.0 1.0 7.3 9.3 28.4 -
T-BN 85.4 41.9 81.5 26.2 23.0 33.3 35.0 20.7 74.9 20.7 75.6 62.2 26.3 83.7 26.4 25.8 1.4 15.0 20.6 41.0 +12.6
T-BN+EM (TENT) 86.5 43.9 80.6 24.7 21.3 32.8 33.1 19.5 75.4 22.5 74.8 60.4 23.6 82.6 26.8 22.4 1.5 16.0 18.4 40.4 +12.0
T-BN+COO 86.4 44.0 80.8 24.4 22.5 35.0 37.4 23.9 74.4 21.2 74.4 60.9 25.5 82.6 25.5 23.1 1.6 17.4 19.7 41.1 +12.7
α-BN 87.0 38.7 83.3 30.3 27.4 35.1 36.4 24.6 82.8 30.0 77.4 65.6 23.9 85.9 30.8 27.7 5.2 16.8 26.3 43.9 +15.5
α-BN+EM 88.5 40.7 82.8 29.4 21.9 33.9 29.7 19.7 83.2 30.2 79.0 65.5 28.1 85.6 30.0 27.3 1.7 18.0 22.8 43.1 +14.7
α-BN+COO (CORE) 88.8 43.4 83.5 28.6 27.0 40.5 42.4 33.1 82.7 27.6 77.0 65.6 29.6 85.6 25.5 28.0 2.7 17.7 26.5 45.0 +16.6

D.3 RESULT OF OPTIMIZATION-BASED TTA METHODS ON GTA5→ CITYSCAPES

We experiment the optimization-based TTA methods TENT, CORE and their variants on the se-
mantic segmentation task GTA5 → Cityscapes. We set batch size as 3 and learning rate as 1e-5
with Adam optimization. The results are shown in Table 9. We observe that COO outperforms EM
with both T-BN and α-BN. α-BN+COO achieves the best performance, demonstrating effectiveness
of each component of CORE. However, the single α-BN has already achieves 43.9% mIoU, COO
appears to have limited improvement, and EM even leads to negative transfer. Recent advances in
domain adaptive semantic segmentation also revealed that the universal unsupervised loss is not suit-
able for semantic segmentation, since this task has many intrinsic challenges like class-imbalance,
boundary confusion and so on. Inspired by that self-training has become the dominant method in
domain adaptive semantic segmentation, we think a well-designed self-training loss equipped with
our α-BN is a hopeful direction for test-time adaptive semantic segmentation.

D.4 PARAMETER SENSITIVITY OF HYPER-PARAMETER α

The value of hyper-parameter α plays an essential role in α-BN and CORE. In this paper, we de-
termine the value of α through grid search: from 0 to 1 with an interval of 0.1. The result of gird
search on semantic segmentation is illustrated in Figure. 3. For image classification, we find the
performance usually drops when α is decreasing from 0.9 to 0. Actually, α = 0.9 is not the optimal
choice for each task, but an acceptable choice. We further provide the result on image classifica-
tion in Figure. 5. We think developing the learnable α-BN with an automatically adjusted α is an
inspiring direction for future work.
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Figure 5: (Best viewed in color.) The results of grid search on classification datasets VLCS, PACS
and Office-Home. The horizontal coordinate represents the value of α and the vertical coordinate
represents the classification accuracy.
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D.5 QUALITATIVE RESULTS ON GTA5→ CITYSCAPES
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Figure 6: (Best viewed in color.) Qualitative results on GTA5→ Cityscapes. “GT” means ground
truth. Equipped with our α-BN, the segmentation performance on new environment is significantly
improved with little additional test time cost (e.g., about 16ms on each image).
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