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Abstract

This work investigates coronary artery disease (CAD) prediction from electrocar-
diogram (ECG) data taking into account different windows with respect to the time
of diagnosis. We report that ECG waveform measurements automatically collected
during ECG recordings contain sufficient features for good classification of CAD
using machine learning models up to five years before diagnosis. On the other
hand, convolutional neural networks trained on the ECG signals themselves appear
to best extract CAD related features when processing data collected within one
year before or after a diagnosis is made. Through this work we demonstrate that
the type of ECG data and the time window with respect to diagnosis should guide
model selection.

1 Introduction

Coronary artery disease (CAD) is a chronic and heterogeneous condition affecting millions of
people and is a leading cause of death in the US and worldwide [Tsao et al., 2022]. A diagnosis
is usually confirmed by invasive, time-consuming, and costly methods (e.g., angiography) [Fihn
et al., 2012]. The electrocardiogram (ECG), on the other hand, is a quick and affordable test that
measures the electrical activity of the heart, providing information on cardiac function. However,
ECG changes indicative of CAD may only become apparent to a trained physician when the condition
has progressed in severity [Mahmoodzadeh et al., 2011]. Machine learning (ML) and, in particular,
deep learning (DL) methods have successfully detected a variety of cardiac conditions from ECG
signals with high performance [Hughes et al., 2021, Galloway et al., 2019]. This suggests that there
may be subtle changes in an ECG that are beyond human detection but that a trained system could
identify and use to classify complex conditions such as CAD.

Such an approach would allow for routine CAD screening leading to earlier detection, efficient
resource allocation, and ultimately prevention of disease progression. However, in most studies,
models are trained on data within a relatively small window from diagnosis and do not take into
account the possible challenges arising when working with electronic health records (EHRs). Within
an EHR system, multiple measurements are collected at varying frequency for patients in the same
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cohort. The diagnosis itself can be given to a patient at various points in the clinical course of the
disease. Therefore, data associated with the same diagnosis can be heterogeneous and reflect different
disease states, which can both facilitate or hinder classification. Leveraging EHRs from a large
healthcare system, we aim to classify patients with CAD from their ECGs while investigating how
signals taken at different times from diagnosis modulate CAD prediction.

1.1 Related Works

A number of studies using ML/DL show promising performance in identifying a variety of cardiac
abnormalities, however these have been leveraging data collected within a small window. Raghunath
et al. [2021] used ECGs within 1 year from diagnosis to predict atrial fibrillation in patients that had
no history of the condition. Another study focused on CAD prediction using ECGs collected up
to 30 days prior to an angiogram to predict the presence and location of CAD from the procedure
reports [Huang et al., 2022]. Chen et al. [2022] leveraged ECGs taken within 7 days from diagnosis
to predict structural abnormalities found in echocardiograms. These papers demonstrate the ability of
ML/DL to identify disease in a more scalable and cost-effective manner using ECG around the same
time point of a gold-standard diagnosis.

However, it remains an open question whether a model could also diagnose patients with appreciable
disease but with a diagnosis that was recorded later in their EHRs, and thus excluded by design from
previous studies. The first contribution of this work is the evaluation of how model performance in
predicting CAD is affected by the time from ECG to diagnosis. Second, we investigate whether, to
efficiently classify CAD in the real-world, simpler ML models, that require less extensive experimen-
tation and lower computational resources, could be preferable than DL approaches. Towards this goal
we evaluated: (1) baseline models applied to automatically extracted waveform measurements from
ECG; (2) convolutional neural networks (CNNs) trained on ECG signals.

2 Data Description

2.1 Cohort Selection

Using EHRs from the Mount Sinai Health System, a large, ethnically and racially diverse hospital
network in New York City, cases were selected as those patients between the age of 20 and 90 year
with at least one ICD-10-CM code for “Atherosclerotic heart disease of native coronary artery” (i.e.,
“I25.1”). We define diagnosis date as the first appearance of the ICD code in the patient’s EHR and
use it to divide the cases into four datasets: a ‘t-after’ (t+1), comprising ECGs collected up to one
year after diagnosis, and three ‘t-before’ datasets comprising ECGs collected up to one year (t−1),
from one to 5 years (t−5), and from 5 to 10 years (t−10) before the diagnosis date.

Figure 1: Cohort Selection Strategy
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Controls were defined as those patients without any cardiac ICD-10-CM codes, i.e. falling under
the “I” category of “Diseases of the circulatory system.” We selected controls to match the case
population within each of the four datasets according to age, sex, race and ethnicity. See Figure 1
for summary of cohort selection strategy. The demographic characteristics of the final cohort can be
found in appendix A, Tables 4 and 5.

Datasets
t+1 t−1 t−5 t−10

Case: train+dev (test) 49, 684 (12, 422) 40, 611 (10, 152) 21, 820 (5, 455) 14, 434 (3, 608)
Control: train+dev (test) 49, 685 (12, 421) 40, 611 (10, 152) 21, 820 (5, 455) 14, 434 (3, 608)

Table 1: Counts of ECGs in each time-split dataset.

2.2 ECG Data

For each patient in the cohort we considered ECGs repeatedly collected throughout their medical
history, however we included at most one ECG per dataset as to avoid bias from patients with high
numbers of ECGs collected within the given time period. We obtained a total of 317, 768 ECGs, split
evenly between cases and controls (158, 186 in each group respectively). See appendix B Figure 3
for a visualization of time from diagnosis date to ECG recording. The entire cohort is comprised of
196, 159 unique patients with 87, 512 cases and 108, 661 controls. The case group has an average of
1.8 ECGs per patient while control group has an average of 1.5 ECGs. It is expected that CAD cases
have a higher number of ECGs conducted as they would likely have more encounters with the health
system in order to monitor their condition.

ECG data presents as (1) automatically calculated measurements describing characteristics of the
signal; (2) signals of voltage over time. Measurement data are numeric and represent counts, rates,
lengths, and onset/offset of sub-waves. Signal data are comprised of 8 waveforms, known as leads,
which show voltage over time and are sampled at a frequency of 500 s−1 for 10 seconds, resulting in
vectors of length 5, 000. The leads measure the same electrical event but from different angles.

Figure 2: Description of ECG data

3 Methods

3.1 Predicting CAD from ECG Measurements

Preprocessing Measurement features were filtered by dropping those with > 10% missingness
across the entire dataset, resulting in the 15 variables listed in appendix B Table 6. Individual
observations were dropped if missing > 30% of features or if containing outliers as determined by a
0.005% quantile filter. Missing values were imputed using a k-nearest neighbors strategy with k = 5,
euclidean distance, and uniform weights. Finally, data was scaled using a min-max strategy.

Models For CAD classification from ECG measurements, we chose logistic regression and random
forest. Details about models and hyperparameter selection can be found in the Appendix C.
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3.2 Predicting CAD from ECG Signal and Spectrogram

Preprocessing We applied band-pass and median signal filtering to the signal data to reduce the
baseline drift of the biological signal and the effect of motion artifacts and high frequency noise
[Fedotov, 2016]. Along with the processed signal, we also considered its spectrogram that, converting
the signal from the time domain into the frequency domain, represents the signal’s amplitude at
different frequencies over time [Rioul and Vetterli, 1991]. We decided to include the spectrogram
data format because a frequency-focused representation may add information that can be leveraged
by the models.

Model Architectures Separate CNNs were trained on signal and spectrogram data formats. Input
configurations included a 1-channel, as well as an 8-channel configuration for both signal and
spectrogram input formats, resulting in four models with different input configurations. For the
ECG signal: (A) tensors of dimension 1× (8× 5, 000) and (B) matrices of dimension 8× (5, 000)
; for the spectrogram: (C) tensors of dimension 1× (8× 19× 256) and (D) tensors of dimension
8× (19× 256).

A learning rate scheduler was used to reduce the learning rate by a factor of 10 after the cross-entropy
loss reached a plateau over a number of epochs, i.e., no decrease in loss after 8 epochs. The models
used an Adam optimizer starting at a learning rate of 10−3. Because the datasets vary in number of
samples, models were trained for the same number of steps (3.7 million) for fair comparison. The
specific convolutional kernel size, max pool kernel size, and number of convolutional/ReLU blocks
for each model and other hyperparameters are described in the appendix D, Table 9.

3.3 Study Design

For both ML and CNN classification, each of the four datasets was split into 60% training, 20%
development, and 20% testing. When creating the splits, data was grouped at the patient level to
ensure that an individual patient’s ECGs only appeared in a single split and to avoid biasing results.

All models were trained on each of the four time-windowed datasets and hyperparameters were
selected based on development set performance. We then evaluated the best models on the held-out
test set. We also evaluated the models trained on t+1 on each of the three test sets t−1, t−5, and t−10.
This was done to ultimately investigate whether CAD features can be automatically leveraged in real-
world scenarios for early predictions. Performance was assessed with the F1 score. Computational
time for cohort selection, ML model training, and CNN training totals ∼ 1, 200 hours on CPU, A100
GPU, or V100 GPU.

4 Results

As observed in Table 2, when identifying CAD from ECG measurements, a CNN model with 8-
channel input format performed best in the t+1 and t−1 datasets but random forest performed best in
the t−5 and t−10 datasets.

Datasets
Models t+1 t−1 t−5 t−10

Log. Regression 0.760 (0.763) 0.733 (0.722) 0.747 (0.741) 0.594 (0.600)
Random Forest 0.769 (0.771) 0.763 (0.754) 0.753 (0.747) 0.635 (0.633)
Signal 1-channel 0.788 (0.866) 0.765 (0.758) 0.707 (0.703) 0.580 (0.608)
Signal 8-channel 0.791 (0.856) 0.781(0.778) 0.709 (0.710) 0.617 (0.623)
Spect. 1-channel 0.773 (0.838) 0.764 (0.758) 0.740 (0.734) 0.667 (0.665)
Spect. 8-channel 0.775 (0.830) 0.777 (0.765) 0.749 (0.734) 0.665 (0.656)

Table 2: F1 score of models evaluated on the same time frame used for training. Test (dev).

Among the random forest models, the best performance was in t+1, with performance decreasing
the further away from diagnosis date (0.78% reduction in the t−1 dataset, 2.1% reduction in the t−5

dataset, and 17.4% reduction in the t−10 dataset).
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The best performing CNN models used signal with 8-channel configuration. However across the
datasets, there was no clear preference for signal over spectrogram, as shown in the higher perfor-
mance of spectrogram with 1-channel inputs performing best in the t−5 and t−10 datasets. With
the 8-channel signal CNN model, the best performance is in t+1, which then decreases the further
away from diagnosis date (1.3% reduction in the t−1 dataset, 10.4% reduction in the t−5 dataset,
and 22.0% reduction in the t−10 dataset). In conclusion, we found that signal data achieves higher
performance at CAD identification closer to diagnosis date in t+1 and t−1 but that measurement
data performs better in the t−5 and t−10 datasets. Additionally we find that models maintain good
performance in t−1 and t−5 datasets relative to data taken after diagnosis in t+1.

Table 3: F1 score: trained ‘t-after’ model evaluated on ‘t-before’ datasets; test(dev)
Datasets

Models t−1 t−5 t−10

Logistic Regression 0.762 (0.754) 0.744 (0.741) 0.649 (0.641)
Random Forest 0.770 (0.777) 0.766 (0.752) 0.671 (0.656)
Signal 1-channel 0.771 (0.763) 0.703 (0.696) 0.545 (0.545)
Signal 8-channel 0.771 (0.766) 0.696 (0.694) 0.531 (0.544)
Spectrogram 1-channel 0.768 (0.751) 0.732 (0.728) 0.605 (0.594)
Spectrogram 8-channel 0.762 (0.749) 0.705 (0.699) 0.555 (0.547)

Table 3 reports the results of the models trained on the ‘t-after’ and evaluated on the ‘t-before’ datasets.
Again we observe that the CNN performs better in the t−1 dataset while the ML models were able to
achieve better results over the CNN models in t−5 and t−10 datasets although less striking than in the
results reported above. Again we see performance decreasing the further away from diagnosis.

5 Discussion

In this study we acknowledge a number of limitations. We use the CAD ICD-10 code as the label
and its first occurrence as the patient’s diagnosis date, however it is possible that patients received a
diagnosis earlier at another health system or that it was recorded in a clinical note or in the report
of another diagnostic test. Although this is the most common way of cohort selection, in future
work the CAD label could also be extracted from clinical notes, or for the sub-group of patients with
angiograms in their procedure reports. Another limitation is that by grouping the ‘t-before’ datasets
into one to five year bins, we lose some temporal granularity in assessing model performance. In
future work we could create smaller time bins to perform a more fine-grain temporal classification
analysis.

Our results suggest that ECG measurements, up to 5 years before diagnosis, can contain sufficient
features for CAD prediction. With respect to study design, a larger time window could allow for
increased sample size as more ECGs could be considered for cohort inclusion. Additionally, using
a machine learning model would offer benefits in terms of reduced carbon footprint, training time,
and more manageable model size over deep learning models trained on ECG signal. Although the
CNN models do perform slightly better overall, they do show a preference for datasets closer to the
diagnosis date, +/- 1 year. Moreover, when models were trained on the ‘t-after’ dataset and tested
on the ‘t-before’ datasets, CNN showed results comparable to baselines, in particular on the t−1

dataset. This warrants further investigation into what features are extracted from the ECG signal
after diagnosis by the CNN models, that might not be caught by ECG measurements. In conclusion,
we argue that, when leveraging EHRs, the type of ECG data and the time window with respect to
diagnosis should guide model decisions for optimized CAD predictions towards precision medicine.
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A Appendix

The following tables describe demographic information about the selected cohort.

Age
Cohort t+1 t−1 t−5 t−10

Train+dev: mean (sd) 67.3(11.6) 66.9(12.1) 65.6(12.0) 62.4(12.1)
Test: mean (sd) 67.3(11.7) 67.1(12.0) 65.3(12.0) 62.1(11.6)
Train+dev: median (range) 68(20− 90) 67(20− 90) 66(20− 90) 63(20− 90)
Test: median (range) 68(20− 90) 67(20− 90) 66(20− 90) 63(20− 89)

Table 4: Age of patients in cohort

Race/Ethnicity t+1 t−1 t−5 t−10

Caucasian or White 42.7% 39.4% 38.9% 38.9%
Black or African-American 13.1% 14.5% 16.9% 16.7%
Hispanic or Latino 11.8% 13.2% 16.6% 17.1%
Other 11.5% 15.3% 13.9% 14.7%
Unknown 18.2% 13.6% 10.9% 9.7%
Asian 2.6% 3.6% 2.5% 2.7%
American Indian or Alaska Native 0.13% 0.18% 0.16% 0.15%
Native-Hawaiian or Pacific Islander 0.06% 0.12% 0.14% 0.10%

Table 5: Race/Ethnicity of patients in cohort
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B Appendix

The following figure and table describe ECG data characteristics.

Figure 3: Time from Diagnosis to ECG

Table 6: Description of measurement data.
Variable name Description
VentricularRate Ventricular rate in BPM
AtrialRate Atrial rate (in BPM)
PRInterval P-R interval (in msec)
QRSDuration QRS duration (in msec)
QTInterval QT interval (in msec)
QTCorrected Bazett’s Algorithm
PAxis P axis
RAxis R axis
TAxis T axis
QRSCount QRS count
QOnset Q onset (median complex sample point)
QOffset P onset (median complex sample point)
POnset P onset (median complex sample point)
POffset P offset (median complex sample point)
TOffset T offset (median complex sample point)

C Appendix

Hyperparameters were chosen as those performing best on the development set in terms of F1 score.

Logistic Regression (LR) Hyperparameters were obtained via grid search over the following
parameter space:

lr_grid =
{"C": [100, 10, 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001],
"penalty": ["l2", "l1"]}

Table 7: Best performing hyperparameters.
t+1 t−1 t−5 t−10

C 0.1 0.001 100 0.1
Penalty type L2 L2 L2 L2
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Random Forest (RF) Hyperparameters were obtained via randomized search over the following
parameter space:

rf_grid =
{"n_estimators": [int(x) for x in np.linspace(start=10, stop=300, num=4)],
"max_depth": [int(x) for x in np.linspace(1, 80, num=4)],
"max_features": ["auto", "sqrt"],
"min_samples_leaf": [1, 2, 4, 8],
"min_samples_split": [2, 5, 10]}

Table 8: Best performing random forest hyperparameters.
t+1 t−1 t−5 t−10

Number of estimators 300 300 300 203
Maximum depth of the tree 80 80 27 27
Number of features when considering split auto auto auto auto
Minimum number of samples at a Leaf node 1 1 2 8
Minimum number of samples to Split node 2 2 2 2

D Appendix

In general the CNNs, have a batch norm layer, followed by a variable number of blocks consisting of
a convolutional layer, ReLU layer, and a max pooling layer. Following these blocks, there is single
fully connected linear layer, and softmax layer for binary classification.

Table 9: CNN architectures.
Data type Input configuration Kernel Max pool Conv. blocks
Signal 1-channel (8, 5) (3,3) 5
Signal 8-channel 5 3 5
Spectrogram 1-channel (5, 5, 5) (2, 2, 2) 3
Spectrogram 8-channel (5, 5) (2, 2) 4

9


	Introduction
	Related Works

	Data Description
	Cohort Selection
	ECG Data

	Methods
	Predicting CAD from ECG Measurements
	Predicting CAD from ECG Signal and Spectrogram
	Study Design

	Results
	Discussion
	Appendix
	Appendix
	Appendix
	Appendix

