WEIGHTED CONFORMAL PREDICTION FOR TIME-DEPENDENT PDES

Anonymous authors

Paper under double-blind review

ABSTRACT

Uncertainty quantification is crucial in scientific machine learning, where models inform safety-critical tasks such as flood forecasting, aerodynamic optimization, and financial risk management. Conformal prediction provides distribution-free coverage guarantees, but in time-dependent settings common to physics and engineering, these guarantees can break down, leading to systematic undercoverage. We study this problem in the context of surrogate models for time-dependent physical systems described by partial differential equations (PDEs). We prove that in a function space setting, distributions at arbitrarily close times can be mutually singular, making exact coverage guarantees impossible. As a solution, we facilitate weighted conformal prediction for a broad class of PDE problems arising from discretized models and validate these results in experiments. While prior work often sidesteps time dependence—by assuming exchangeability, focusing on short horizons, or ignoring long-term deployment—we address it directly by providing exact coverage guarantees through reweighting calibration scores.

1 Introduction

Many problems in physics and engineering, such as weather prediction, aerodynamics, and financial modeling, are governed by partial differential equations (PDEs). Classical numerical solvers are accurate but computationally expensive, scaling poorly with dimensionality or repeated simulations. AI-based surrogate models have emerged as a promising alternative, providing fast approximations of PDE solutions. Prominent examples include physics-informed neural networks (PINNs) (Raissi et al., 2019), DeepONets (Lu et al., 2021), and neural operators (Anandkumar et al., 2019; Li et al., 2021). Most notably, neural operators have demonstrated remarkable success in generalizing across different discretizations, geometries, and boundary conditions.

Despite these advances, surrogate models still lack principled mechanisms for uncertainty quantification. This limitation is critical, since scientific and engineering decisions often depend on reliable confidence assessments of model outputs. Conformal prediction (CP) Vovk et al. (2022) provides a principled framework, producing distribution-free uncertainty sets with guaranteed marginal coverage. These guarantees, however, rely on exchangeability between calibration and test samples—a condition that is frequently violated in time-dependent PDEs.

Non-Stationarity in Time-Dependent PDEs. Let u_t denote the solution of a time-dependent PDE at time point t. In practice, we are interested in predicting $u_{t+\delta}$ for several time steps $\delta>0$, beyond the available training and calibration data. Unless u_t is a stationary process, test samples follow a different distribution than observed calibration samples, breaking the exchangeability assumption required by conformal prediction.

This type of non-stationarity is ubiquitous: sudden shocks (e.g., stock market crashes), long-term structural changes (e.g., climate trends), and limited development windows (e.g., laboratory testing) all produce systematic shifts in the data distribution (see figure 1). Even for simple PDEs, the marginal distribution of u_t may drift continuously in t and diverge arbitrarily as $t \to \infty$.

Implications for Conformal Prediction. The consequence is that conformal intervals calibrated at time t may undercover at future times $t + \delta$. Figure 2 illustrates this behavior on the backward heat equation. In the top row, calibration at time step δ still yields valid coverage at 3δ . In contrast,

Figure 1: Examples of different types of non-stationarity that arise in time-dependent systems. (a) Sudden distribution shift due to external shocks, illustrated by a stock market crash. (b) Long-term structural changes, as in climate time series. (c) Limited observation window during system development, where calibration and testing occur on different parts of the trajectory.

calibration at step 4δ (bottom row) leads to undercoverage already at the first prediction time step, because the PDE grows progressively unstable. This demonstrates that simply tuning the discretization step does not resolve the problem: coverage degradation is inherent to the temporal drift.

A concrete example arises in weather forecasting, where calibration on short-term simulations may produce intervals that appear reliable but fail to capture rare extreme events at later horizons. In such cases, nominal 90% coverage can collapse well below the target, producing forecasts that systematically underestimate risk.

Consequently, CP coverage guarantees do not hold in time-dependent PDEs. While there are first methods to sidestep the non-exchangeability (see section 2), all of these come with limiting assumptions that prohibit broad applicability.

Our Contributions. In this work, we address this gap by studying CP for time-dependent surrogate models of PDEs, providing the following contributions:

- 1. We analyze the function-space formulation of the learning problem and show that even in simple settings, such as the heat equation, the total variation (TV) distance is maximal for any time distance. This shows that a pure function-space perspective, as often used in the neural operator literature, is unsuitable for the non-exchangeable CP framework.
- 2. For a broad class of PDEs, we derive explicit densities for the discretized solutions over time, facilitating the use of *weighted conformal prediction*. This enables exact coverage guarantees for PDEs without limiting assumptions on their time-dependent behavior.
- 3. We empirically validate our method on several time-dependent PDEs and compare it to alternative CP approaches (which assume exchangeability or local exchangeability). We show that these limiting assumptions on the time dynamics indeed lead to undercoverage, and that our approach is the only method providing reliable coverage over time.

The paper is structured as follows. In section 2, we review related work. Section 3 provides background on CP, PDEs, and surrogate models. In section 4, we formalize the problem setting, present our result on function spaces, and our weighted CP framework. Section 5 presents empirical results demonstrating the effectiveness of our approach and section 6 concludes.

2 Related Work

Trajectory-Based Exchangeability. The most straightforward option to bypass the exchangeability issue is to treat entire trajectories as the exchangeable units. Moya et al. (2025) use DeepONets to predict full solution trajectories, calibrating CP on trajectory-level samples. This avoids assumptions on exchangeability within the calibrated time horizon, but does not address potential distribution shifts beyond this horizon, e.g. in a potential model deployment. Gray et al. (2025) follow the same strategy, though their method applies to arbitrary surrogate models beyond neural operators. Gopakumar et al. (2025) also adopt trajectory-level calibration, but focus on conformal sets for deviations between surrogates and the governing PDE operator, rather than for the solution itself.

Figure 2: CP bands when calibrating at different time resolutions of the backward heat equation. Each figure shows the solution u(x,t) and CP bands over the spatial domain x at one time point. (*Top*) Calibration on data from time step δ : prediction bands remain valid even at step 3δ . (*Bottom*) Calibration on data from time step 4δ : undercoverage occurs already after one time step.

Relaxed Exchangeability Assumptions. Motivated by data scarcity, Gopakumar et al. (2024) go beyond trajectory-based exchangeability and construct calibration samples by slicing long time series into shorter segments. This construction implicitly assumes that the time series is stationary across segments, which may hold approximately in periodic systems (e.g., weather data), but fails in general dynamical systems with non-periodic trends or sustained drifts.

Harris & Liu (2025) take a different approach with their Local Spectral Conformal Inference (LSCI) method, designed for neural operators. Instead of global exchangeability, they derive conformal bands with guarantees under *local exchangeability*, i.e., that points close in time are nearly exchangeable. When local exchangeability holds, LSCI provides the first principled way for time-adaptive prediction sets with coverage guarantees for neural operators. However, validating this assumption in practice is usually not feasible (see appendix A.1). Therefore, Harris & Liu (2025) *assume* local exchangeability in their experiments by taking very small time steps. In Figure 2, however, we saw one example where a calibration on time step 1 leads to good empirical coverage for three further time steps, but when calibrating again at a later time, coverage already drops after one time step because the solution gets exponentially noisier. Thus, tuning the step size at calibration does not ensure local exchangeability at test time.

Summary. While these methods provide valid guarantees in theory, they are restrictive in practice: trajectory-level exchangeability is often unrealistic given limited data, and relaxed exchangeability assumptions usually do not hold in practice and lead to loss of coverage guarantees. To the best of our knowledge, we are the first to propose a CP method with formally valid guarantees on time-dependent PDEs.

3 Background

3.1 CONFORMAL PREDICTION

Conformal prediction (CP) is a framework for constructing prediction sets with marginal finite-sample coverage guarantees Vovk et al. (2022). In the standard split setting, a model is trained on

 $\mathcal{D}_{\mathrm{train}}$ and calibrated on $\mathcal{D}_{\mathrm{cal}}$, yielding a set-valued predictor \mathcal{C} such that, for a test sample (x,y),

$$\mathcal{P}(y \in \mathcal{C}(x)) \geq 1 - \alpha$$

at coverage level $1 - \alpha$. This guarantee relies on **exchangeability** of calibration and test samples—that is, their joint distribution is invariant under permutations. When exchangeability is violated, coverage may fail.

Conformal Prediction Beyond Exchangeability. When calibration and test distributions differ but are related by a likelihood ratio, weighted CP provides a natural extension Vovk et al. (2022); Barber et al. (2023). In this setting, calibration samples are reweighted by

$$w_i \propto \frac{p_{\text{test}}(x_i)}{p_{\text{cal}}(x_i)}, \qquad \sum_i w_i = 1,$$

so that the conformal quantile is computed with respect to these weights. Here, the index i ranges over all calibration data points and the target test point. If the density ratio is known or can be estimated, weighted CP can restore exact coverage in covariate-shift settings. In our PDE setup, the linear–Gaussian structure allows us to compute these ratios in closed form, enabling precise conformal bands (see section 4.4).

In case a closed-form evaluation of the weights is not possible, Barber et al. (2023) provide corrections for the conformal guarantees based on the TV distance¹ between calibration and test distribution, that hold even in the general case of non-exchangeability:

$$\mathcal{P}(\mathbf{y} \in \mathcal{C}(\mathbf{x})) \geq 1 - \alpha - \sum_{i=1}^{n} w_i d_{TV}(\mathbf{z}, \mathbf{z}^i),$$

where $\mathbf{z} = ((\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_{n+1}, \mathbf{y}_{n+1}))$ for calibration samples $((\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n))$ and test point $(\mathbf{x}_{n+1}, \mathbf{y}_{n+1})$ and \mathbf{z}^i arises from permuting the test point with the i^{th} calibration point.

For further details, we recommend the summary by Angelopoulos et al. (2024).

3.2 PDEs as Operator Mappings

Many dynamical systems in physics and engineering can be described by evolution equations of the form

$$\frac{\partial u}{\partial t}(\boldsymbol{x},t) = \mathcal{L}_{\boldsymbol{x}} u(\boldsymbol{x},t),$$

where $u:\Omega\times[0,\infty)\to\mathbb{R}$ is the state variable, $\boldsymbol{x}\in\Omega\subset\mathbb{R}^d$ denotes spatial coordinates, $t\geq0$ is the time, and $\mathcal{L}_{\boldsymbol{x}}$ is a (possibly nonlinear) differential operator acting on the spatial variable \boldsymbol{x} . We write $u_t:=u(\cdot,t)$ for the spatial slice at time t. In this paper, we are interested in the Cauchytype problem, where we consider boundary conditions on Ω and initial conditions $u_0(\boldsymbol{x})$ from some Banach space of functions $(\mathcal{A},\|\cdot\|_{\mathcal{A}})$ and are interested in a solution $u_t(\boldsymbol{x})$ in some Banach space of functions $(\mathcal{U}_t,\|\cdot\|_{\mathcal{U}_t})$. Typically, $u_t:\Omega\to\mathbb{R}$ and $u_t\in L^2(\Omega)$. We will further only consider well-posed problems, where we can define solution operators

$$\mathcal{G}_t: \mathcal{A} \to \mathcal{U}_t, \, \mathcal{G}_t(\boldsymbol{a})(\boldsymbol{x}) \mapsto u(\boldsymbol{x},t)$$

that uniquely map an initial condition to a solution function $u_t(x)$ and the map $t \mapsto \mathcal{G}_t$ is continuous in t. In the rest of the paper, we will assume that all functions come from the same space, so $\mathcal{A} = \mathcal{U}_t$ for all $t \geq 0$, to simplify the notation, but the results apply more generally.

3.3 Surrogate Models

Physics-Informed Neural Networks (PINNs). PINNs (Raissi et al., 2019) approximate PDE solutions by training a neural network to satisfy both observed data and the underlying PDE. The loss function penalizes violations of the differential operator $\mathcal L$ and boundary/initial conditions, so that the neural network implicitly encodes the solution u(x,t). PINNs are flexible and require only point-wise evaluations of the PDE residual, but they often struggle with stiff dynamics, sharp gradients, or long time horizons.

¹The TV distance is originally defined on probability measures, and whenever we write $d_{\rm TV}(x,y)$ for random variables x and y, or $d_{\rm TV}(\mathcal{P}_x,\mathcal{P}_y)$ for probability distributions \mathcal{P}_x and \mathcal{P}_y , we refer to the TV distance between their corresponding probability measures.

Deep Operator Networks (DeepONets). DeepONets (Lu et al., 2021) aim to directly learn nonlinear operators between function spaces. They decompose the problem into a *branch net*, which encodes the input function (e.g., the initial condition), and a *trunk net*, which encodes the query point (\boldsymbol{x},t) . The outputs are combined to approximate $u(\boldsymbol{x},t) = \mathcal{G}_t(\boldsymbol{a})(\boldsymbol{x},t)$. DeepONets provide a general framework for operator learning and can handle diverse geometries and boundary conditions, but require large and representative training data.

Neural Operators. Neural operators Anandkumar et al. (2019); Li et al. (2021) generalize this idea further by parameterizing mappings \mathcal{G} directly in function space, rather than through pointwise regression. Unlike standard neural networks, which approximate finite-dimensional mappings, neural operators approximate \mathcal{G} itself and can generalize across discretizations. In practice, functions are observed on a finite set of points (grids or meshes), and the learned operator is evaluated on these (or other) discretizations. Popular variants include the Fourier Neural Operator, which uses spectral convolutions for global context, and the Graph Neural Operator, which extends to irregular meshes.

Other Surrogates. Beyond these, there are also kernel-based approaches, reduced-order models, and Gaussian process surrogates. However, in the machine learning literature, PINNs, DeepONets, and neural operators have emerged as the three most prominent classes of PDE surrogates.

4 WEIGHTED CONFORMAL PREDICTION FOR TIME-DEPENDENT PDE SURROGATE MODELS

4.1 PROBLEM SETTING FOR CONFORMAL PREDICTION ON TIME-DEPENDENT PDES

To apply CP in the PDE setting, we start by specifying the underlying structure.

From Initial Conditions to Solutions. Assume we have an analytical form of the PDE, so that we can generate our own data using numerical solvers. We first focus on the case where we want to predict the solution at one fixed time point t for a given initial condition. To obtain our training data $\mathcal{D}_{\text{train}}$, we would sample initial conditions $u_{0,i} \sim \mathcal{P}_0, \ i=1,\ldots,N_{\text{train}}$, from a distribution on \mathcal{U} , and obtain the corresponding solution at time t by numerically solving the PDE. This defines a pushforward measure²

$$\mathcal{P}_t := (S_t)_{\#} \mathcal{P}_0,$$

where $S_t : \mathcal{U} \to \mathcal{U}$ is the PDE solution operator mapping initial conditions u_0 to solutions u_t . Our training dataset then consists of

$$\mathcal{D}_{\text{train}} = \{(u_{0,i}, u_{t,i})\}_{i=1}^{N_{\text{train}}}, \quad u_{t,i} \sim \mathcal{P}_t.$$

If we now consider consecutive time points, our distribution changes over time:

$$\mathcal{P}_0 \xrightarrow{S_\delta} \mathcal{P}_\delta \xrightarrow{S_\delta} \mathcal{P}_{2\delta} \xrightarrow{S_\delta} \cdots$$

Thus, we obtain a sequence of probability distributions $\{\mathcal{P}_t\}_{t\geq 0}$ on the same function space, evolving under the PDE dynamics.

Implication for Conformal Prediction. Calibration and test data drawn from different \mathcal{P}_t are therefore **not exchangeable**: although they live in the same function space, their distributions shift with time.

4.2 DISTRIBUTION SHIFTS IN FUNCTION SPACES

Having specified the problem setup, we now investigate if we can calculate the TV distance between the laws of a PDE solution at different time points. If the TV distance of the laws of time points t and $t + \delta$ were moderate, we could recover CP coverage guarantees for the $t + \delta$ prediction using the approach from Barber et al. (2023).

²We slightly abuse notation here by writing the pushforward in terms of the distribution instead of the measure corresponding to the distribution.

We will start by analyzing the problem in the function-space setting, as is often employed in the neural operator literature and related CP works (Harris & Liu, 2025; Gray et al., 2025; Mollaali et al., 2024). We will show that even for a simple PDE, like the heat equation with Gaussian initial distribution, the TV distance between the solution-distributions $\mathcal{P}_t, \mathcal{P}_{t+\delta}$ at two time points $t, t+\delta$ is always maximal,

$$d_{\text{TV}}(\mathcal{P}_t, \mathcal{P}_{t+\delta}) = 1$$
, for all $t \ge 0$, $\delta > 0$.

This is representative of a broader phenomenon that "[...] measures in infinite-dimensional spaces have a strong tendency of being mutually singular." Hairer (2023).

Finally, note that, while this issue complicates theoretical considerations in the neural operator literature, it is not necessarily problematic for practical CP on surrogate models. In practice, we always work with finite-dimensional discretizations, which mitigate this effect, as will be discussed in section 4.3.

Theorem 4.1. Consider the one-dimensional heat equation on the domain $\Omega = (0,1)$ with Dirichlet boundary conditions

$$\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t), \quad x \in (0,1), \ t \ge 0,$$

$$u(0,t) = u(1,t) = 0, \quad t \ge 0,$$

$$u(x,0) = u_0(x), \quad x \in (0,1),$$

where $u: \bar{\Omega} \times [0, \infty) \to \mathbb{R}$ denotes the temperature at location x and time t. Suppose the initial condition is sampled from a Gaussian distribution

$$\mathcal{P}_0 \sim \mathcal{N}(\mathbf{0}, (\mathbf{I} - \mathbf{\Lambda})^{-1}),$$

where Λ is the Laplace operator on Ω with Dirichlet boundary conditions. Then, for any $t \geq 0$, $\delta > 0$, the TV distance between the measures \mathcal{P}_t and $\mathcal{P}_{t+\delta}$ of the solution $u(\cdot,t)$ and $u(\cdot,t+\delta)$ is maximal, i.e.

$$d_{\text{TV}}(\mathcal{P}_t, \mathcal{P}_{t+\delta}) = 1.$$

The proof is provided in appendix A.2.

We will now discuss how, despite the issue above, coverage guarantees can be recovered for time-dependent PDE surrogate models in practice.

4.3 RECOVERING COVERAGE GUARANTEES

The following theorem provides the exact distribution of the solution u_t on a discretized space, using the *method of lines*. We provide an intuitive example in appendix A.3.

Theorem 4.2. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, and let

$$\mathcal{M} := \{x_1, \dots, x_n\} \subset \Omega$$

denote a discretization of Ω . Consider the finite-difference scheme in space, with $\mathbf{A} \in \mathbb{R}^{n \times n}$ approximating the solution of

$$\frac{\partial u}{\partial t}(\boldsymbol{x},t) = \mathcal{L}_{\boldsymbol{x}}u(\boldsymbol{x},t), \qquad \boldsymbol{x} \in \Omega, \ t \ge 0,$$

with linear boundary conditions on $\partial\Omega$, where \mathcal{L}_x is a linear spatial differential operator. This yields the discretized dynamics

$$rac{doldsymbol{u}(t)}{dt} = oldsymbol{A}oldsymbol{u}(t) + oldsymbol{r}(t), \quad oldsymbol{u}(t), oldsymbol{r}(t) \in \mathbb{R}^n.$$

Suppose the initial condition satisfies $u(0) \sim \mathcal{N}(\mu_0, \Sigma_0)$. Then, for $t \geq 0$ and $\delta > 0$, the law \mathcal{P}_t of u(t) is Gaussian with mean

$$\mu_t = \exp(t\mathbf{A})\mu_0 + \int_0^t \exp((t-s)\mathbf{A})\mathbf{r}(s)ds$$

and covariance

$$\Sigma_t = \exp(t\mathbf{A})\Sigma_0 \exp(t\mathbf{A}^T).$$

Proof. As we discretized only in space, not in time, the finite difference scheme yields a linear system of ODEs

$$\frac{d\boldsymbol{u}(t)}{dt} = \boldsymbol{A}\boldsymbol{u}(t) + \boldsymbol{r}(t).$$

As A is independent of t and r(t) is the deterministic source term, the solution of the system of ODEs is given by

$$\boldsymbol{u}(t) = \exp(t\boldsymbol{A}) \, \boldsymbol{u}(0) + \int_0^t \exp((t-s)\boldsymbol{A}) \boldsymbol{r}(s) ds.$$

Note that we assumed u(0) is Gaussian, i.e.,

$$u_0 \sim \mathcal{N}(\mu_0, \Sigma_0), \quad \mu_0 \in \mathbb{R}^n, \Sigma_0 \in \mathbb{R}^{n \times n},$$

and $\exp(t\mathbf{A})$ is just a matrix, so $\mathbf{u}(t)$ is also Gaussian with mean $\mathbf{\mu}_t = \exp(t\mathbf{A})\mathbf{\mu}_0 + \int_0^t \exp((t-s)\mathbf{A})\mathbf{r}(s)\mathrm{d}s$ and covariance $\mathbf{\Sigma}_t = \exp(t\mathbf{A})\mathbf{\Sigma}_0 \exp(t\mathbf{A}^T)$.

Remark 4.3. This result can be generalized to other initial distributions. The location-scale family of distributions, for example, is closed under affine transformations leading to similar results. The location-scale family includes, among others, the Gaussian, Cauchy, Laplace, and logistic distributions. Note, however, that the Gaussian assumption we made is the most common in recent literature (Li et al., 2021; Santos et al., 2023; Gopakumar et al., 2024; Zhou & Barati Farimani, 2025; Gopakumar et al., 2025). Also, from a physical viewpoint, a Gaussian random field aligns well with the laws of nature in the sense that the aggregate effect of many small independent perturbations, forming the initial condition, is approximately Gaussian by the central limit theorem.

Remark 4.4. Theorem 4.2 also allows us to derive an upper bound on the TV distance of the laws of u_t and $u_{t+\delta}$. While we will not make use of this result in our method, we provide the theorem and proof in appendix A.4.

4.4 LIKELIHOOD-WEIGHTED CONFORMAL PREDICTION

Theorem 4.2 shows that under a discretized linear PDE with Gaussian initial conditions, the solution at time t is Gaussian with mean μ_t and covariance Σ_t as stated in the theorem. Consequently, both calibration and test distributions (corresponding to time points t and $t+\delta$ for one or more $\delta>0$) are Gaussian and their density ratio is available in closed form. This enables a likelihood-weighted conformal predictor:

$$w_{i,\delta} \propto \frac{\mathcal{N}(\boldsymbol{u}_i; \, \boldsymbol{\mu}_{t+\delta}, \boldsymbol{\Sigma}_{t+\delta})}{\mathcal{N}(\boldsymbol{u}_i; \, \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)},$$
 (1)

for all u_i belonging to the calibration set together with the target test point. Normalizing these weights and applying split CP with the weighted quantile yields conformal bands with formal coverage guarantees.

Remark 4.5. Within this CP framework applied to the discretized setting, we provide asymptotic—and in some cases even non-asymptotic—guarantees for the PDE solution u(x,t) in the original space. The nature of the bounds depends on both the PDE and the discretization scheme, but the key idea is that the bands on the discretized solution can be transferred to the original solution by leveraging numerical error guarantees of the scheme.

Table 1: Mean coverages and bandwidths over 500 sampled initial conditions. For WCP, we also report the number of samples where infinite bands were reported to maintain coverage guarantees. We mark guarantee violations in red. The gray font is chosen for better readability.

			Timestep				
			5	15	25	35	45
F–Diff	Naïve CP	Coverage	0.9	0.88	0.85	0.78	0.05
		Bandwidth	0.02	0.02	0.02	0.02	0.02
	LSCI	Coverage	1.0	1.0	1.0	0.0	0.0
		Bandwidth	0.01	0.01	0.01	0.01	0.01
	WCP (Ours)	Coverage	0.97	0.98	0.99	1.0	1.0
		Bandwidth	0.02	0.03	0.03	0.04	∞
		n_{∞}	0%	2%	26%	99%	100%
B–Heat	Naïve CP	Coverage	0.89	0.88	0.87	0.0	0.0
		Bandwidth	0.42	0.42	0.42	0.42	0.42
	LSCI	Coverage	0.98	0.94	0.0	0.0	0.0
		Bandwidth	0.21	0.21	0.21	0.21	0.21
	WCP (Ours)	Coverage	1.0	1.0	1.0	1.0	1.0
		Bandwidth	0.44	0.45	0.5	∞	∞
		n_{∞}	9%	13%	93%	100%	100%
R–Diff	Naïve CP	Coverage	0.91	0.93	0.94	0.95	0.96
		Bandwidth	0.04	0.04	0.04	0.04	0.04
	LSCI	Coverage	1.0	1.0	1.0	1.0	1.0
		Bandwidth	0.02	0.02	0.02	0.02	0.02
	WCP (Ours)	Coverage	1.0	1.0	1.0	1.0	1.0
		Bandwidth	0.04	0.04	0.04	0.04	0.03
		n_{∞}	0%	0%	79%	97%	99%

Figure 3: Mean coverages across increasing prediction horizon. We omit coverages when infinite conformal bands were reported (coverage of 1 would hold trivially). The 90% coverage target is highlighted in red.

5 EXPERIMENTS

Experimental Setup To demonstrate the necessity of statistical guarantees, we choose two unstable PDEs which become progressively noisier over time (fractional diffusion and backward heat equation), alongside one that behaves approximately stable over the observed time frame (a variant of the reaction—diffusion equation). As a base model, we train a geometry-informed neural operator (Li et al., 2023) and calibrate on the residuals with the respective CP method (note that the choice of surrogate model is not important for downstream analysis). The task of the base model is to predict the solution u_t at 50 time steps in the future. The task of the CP methods is to report conformal bands with 90% coverage. For each PDE, we sample 1000 trajectories to train the base

model, 100 for validation, and 500 for calibration and testing each. We adjusted the time steps and other parameters individually with more details in appendix A.5.

Baselines We define two baselines for our experiments. The first is a naïve implementation with no consideration of exchangeability (naïve CP). Specifically, we implemented Diquigiovanni et al. (2022), who define the score as the maximum absolute error over space and use the regular split CP algorithm. Since exchangeability does not hold in this setup, the conformal bands of naïve CP have **no formal guarantees**.

Secondly, we use the LSCI method (Harris & Liu, 2025) ($\lambda = 5$, projection dimension: 20, number of CP band samples: 5000). We chose a large number of band samples to push LSCI to overcoverage, so undercoverage can be evaluated in a fair manner. Note that because their guarantees only hold under the local exchangeability assumption which is not verifiable (see appendix A.1), the LSCI CP bands also have **no formal guarantees** in our experiments.

Our weighted conformal prediction (WCP) method is based on a weighted version of Diquigiovanni et al. (2022). Specifically, knowing that our solution is Gaussian at every time point, we weigh our score according to equation (1).

Evaluation For each method and each PDE, we report the mean coverage and bandwidth of the 500 test set samples. We consider a sample covered if at least 99% of points in the function are within the conformal bands (as in Harris & Liu (2025)). In cases where the distributional dissimilarity of u_t and $u_{t+\delta}$ is too large, our WCP method predicts infinite bands. If this is the case, we exclude the sample and only predict coverage of the other samples. We report the number of excluded samples in our results.

Note that reporting trivial bands is usually a more valuable result than delivering bands with undercoverage, especially in safety-critical tasks. The key strength of CP is its coverage guarantees and our WCP detects when it cannot predict meaningful bands and refrains from violating the target coverage.

Results We report our results in table 1 and figure 3. For the noisy PDEs (F-Diff and B-Heat), the naïve CP and LSCI violate the coverage target early, because of the PDEs' fast time-changes, while WCP reliably achieves guarantees. For the more stable PDE (R-Diff), test residuals are less restrictive than calibration residuals, so naïve CP and LSCI are successful. As discussed above, our method reports infinite bands for increasing distribution shift. Although this sacrifices meaningful bands, it ensures fully reliable coverage guarantees Lastly, we observed that WCP and naïve CP are significantly faster than LSCI: When running LSCI on a MacBook Pro M4 Pro with 24GB RAM, calibrating 500 samples takes approximately 15 seconds and sampling the conformal bands for 500 test samples takes approximately 40 seconds. The WCP and the naïve method took only 3 seconds.

Overall, WCP is the only method providing **formal guarantees**, and we can see empirically that this is a clear advantage as soon as our system exhibits significant dynamics.

6 DISCUSSION

Conformal prediction for time-dependent physical phenomena is often constrained by non-exchangeable data. In this work, we investigated whether coverage guarantees can be maintained beyond the exchangeability assumption. Our results show that this depends strongly on the setup. On function spaces, measures are typically mutually singular, making coverage guarantees unattainable. On discretized domains, however, we derived how weighted CP can be applied to linear PDEs to obtain coverage guarantees. We empirically validated that weighted CP is the only method that reliably achieves the target coverage compared to baselines.

These findings connect back to our starting point: non-stationarity in time-dependent PDEs breaks classical CP, but weighted CP offers a principled alternative. We established coverage for the class of linear PDEs. Although this class covers many practical problems, extending the analysis to nonlinear PDEs is a natural next step and would further broaden the applicability of conformal prediction in scientific machine learning.

REPRODUCIBILITY STATEMENT

We provided the code for the data generation, model training, fitting of conformal bands, and instructions on how to run it as supplementary material to the reviewers. With that, all figures and results can be reproduced independently. For the final version, we will set up a public GitHub repository. The proof for theorem 4.2 can be found in the main text, and the proof for theorem 4.1 can be found in appendix A.2.

REFERENCES

- Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki, Zongyi Li, Burigede Liu, and Andrew Stuart. Neural Operator: Graph Kernel Network for Partial Differential Equations. In *ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations*, 2019. URL https://openreview.net/forum?id=fg2ZFmXFO3.
- Anastasios Nikolas Angelopoulos, Rina Foygel Barber, and Stephen Bates. Theoretical Foundations of Conformal Prediction. 2024. URL https://api.semanticscholar.org/CorpusID:274131633.
- Rina Foygel Barber, Emmanuel J. Candes, Aaditya Ramdas, and Ryan J. Tibshirani. Conformal prediction beyond exchangeability, March 2023. URL http://arxiv.org/abs/2202.13415. arXiv:2202.13415 [stat].
- Guiseppe Da Prato and Jerzy Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge University Press, 1 edition, December 1992. ISBN 978-0-521-38529-9 978-0-521-05980-0 978-0-511-66622-3. doi: 10.1017/CBO9780511666223. URL https://www.cambridge.org/core/product/identifier/9780511666223/type/book.
- Jacopo Diquigiovanni, Matteo Fontana, and Simone Vantini. Conformal prediction bands for multivariate functional data. *Journal of Multivariate Analysis*, 189:104879, May 2022. ISSN 0047259X. doi: 10.1016/j.jmva.2021.104879. URL https://linkinghub.elsevier.com/retrieve/pii/S0047259X21001573.
- Vignesh Gopakumar, Ander Gray, Joel Oskarsson, Lorenzo Zanisi, Stanislas Pamela, Daniel Giles, Matt J. Kusner, and Marc Peter Deisenroth. Uncertainty Quantification of Surrogate Models using Conformal Prediction. 2024. URL https://api.semanticscholar.org/CorpusID: 271903374.
- Vignesh Gopakumar, Ander Gray, Lorenzo Zanisi, Timothy Nunn, Daniel Giles, Matt J. Kusner, Stanislas Pamela, and Marc Peter Deisenroth. Calibrated Physics-Informed Uncertainty Quantification, 2025. URL https://arxiv.org/abs/2502.04406. Version Number: 2.
- Ander Gray, Vignesh Gopakumar, Sylvain Rousseau, and Sébastien Destercke. Guaranteed Prediction Sets for Functional Surrogate Models. In *Conference on Uncertainty in Artificial Intelligence*, 2025. URL https://api.semanticscholar.org/CorpusID:275993804.
- Martin Hairer. An Introduction to Stochastic PDEs, July 2023. URL http://arxiv.org/abs/0907.4178. arXiv:0907.4178 [math].
- Trevor Harris and Yan Liu. Locally Adaptive Conformal Inference for Operator Models, July 2025. URL http://arxiv.org/abs/2507.20975. arXiv:2507.20975 [stat].
- Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential Equations. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=c8P9NQVtmnO.
- Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, and Animashree Anandkumar. Geometry-Informed Neural Operator for Large-Scale 3D PDEs. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 35836–35854. Curran Associates, Inc.,

2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/70518ea42831f02afc3a2828993935ad-Paper-Conference.pdf.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. *Nature Machine Intelligence*, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00302-5. URL http://arxiv.org/abs/1910.03193. arXiv:1910.03193 [cs].

Amirhossein Mollaali, Gabriel Zufferey, Gonzalo E. Constante-Flores, Christian Moya, Can Li, Guang Lin, and Meng Yue. Conformalized Prediction of Post-Fault Voltage Trajectories Using Pre-trained and Finetuned Attention-Driven Neural Operators. *Neural networks: the official journal of the International Neural Network Society*, 192:107809, 2024. URL https://api.semanticscholar.org/CorpusID:273707610.

Christian Moya, Amirhossein Mollaali, Zecheng Zhang, Lu Lu, and Guang Lin. Conformalized-DeepONet: A distribution-free framework for uncertainty quantification in deep operator networks. *Physica D: Nonlinear Phenomena*, 471:134418, January 2025. ISSN 01672789. doi: 10. 1016/j.physd.2024.134418. URL https://linkinghub.elsevier.com/retrieve/pii/S0167278924003683.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378:686–707, February 2019. ISSN 00219991. doi: 10.1016/j.jcp.2018.10.045. URL https://linkinghub.elsevier.com/retrieve/pii/S0021999118307125.

Fabricio Dos Santos, Tara Akhound-Sadegh, and Siamak Ravanbakhsh. Physics-Informed Transformer Networks. In *The Symbiosis of Deep Learning and Differential Equations III*, 2023. URL https://openreview.net/forum?id=zu80h9YryU.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random World*. Springer International Publishing, Cham, 2022. ISBN 978-3-031-06648-1 978-3-031-06649-8. doi: 10.1007/978-3-031-06649-8. URL https://link.springer.com/10.1007/978-3-031-06649-8.

Anthony Zhou and Amir Barati Farimani. Predicting change, not states: An alternate framework for neural PDE surrogates. *Computer Methods in Applied Mechanics and Engineering*, 441:117990, June 2025. ISSN 00457825. doi: 10.1016/j.cma.2025.117990. URL https://linkinghub.elsevier.com/retrieve/pii/S0045782525002622.

A APPENDIX

A.1 VALIDATING LOCAL EXCHANGEABILITY

To have formal guarantees with the LSCI approach from Harris & Liu (2025), it is required that the model's *residuals* r_t are locally exchangeable. Considering this for the most simple setup of two time points t and $t + \delta$ for some $\delta > 0$, this means that it must hold that

$$d_{\text{TV}}\left(\begin{pmatrix} \mathbf{r}_t \\ \mathbf{r}_{t+\delta} \end{pmatrix}, \begin{pmatrix} \mathbf{r}_{t+\delta} \\ \mathbf{r}_t \end{pmatrix}\right) \leq d(t, t+\delta)$$

for a pre-metric d on the time domain. Note however, that since we do not have access to the laws of the random vectors above, we cannot reason about their TV distance. Even though in theorem 4.2 we derive the laws of the solutions u_t , it is not clear how to reason about the above left hand side without further assumptions (like independence of the residuals over time—which is not plausible as the solution has a clear time-dependence in all non-stationary PDEs).

A.2 PROOF OF THEOREM 4.1

 Theorem A.1. Consider the one-dimensional heat equation on the domain $\Omega = (0,1)$ with Dirichlet boundary conditions

$$\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t), \quad x \in (0,1), \ t \ge 0,$$

$$u(0,t) = u(1,t) = 0, \quad t \ge 0,$$

$$u(x,0) = u_0(x), \quad x \in (0,1),$$

where $u: \bar{\Omega} \times [0,\infty) \to \mathbb{R}$ denotes the temperature at location x and time t. Suppose we sample the initial condition from a Gaussian distribution

$$\mathcal{P}_0 \sim \mathcal{N}(\mathbf{0}, (\mathbf{I} - \mathbf{\Lambda})^{-1}),$$

where Λ is the Laplace operator on Ω with Dirichlet boundary conditions. Then, for any $t \geq 0$, $\delta > 0$, the TV distance between the measures \mathcal{P}_t and $\mathcal{P}_{t+\delta}$ of the solution $u(\cdot,t)$ and $u(\cdot,t+\delta)$ is maximal, i.e.

$$d_{\text{TV}}(\mathcal{P}_t, \mathcal{P}_{t+\delta}) = 1.$$

Proof. Notice that our whole setup is on a Hilbert Space. We begin by showing that the $(I-\Lambda)^{-1}$ is a well-defined covariance operator on $L^2(\Omega)$. For this, according to Hairer (2023)[Proposition 4.17], the operator must be positive, symmetric and trace class. As both I and $-\Lambda$ are positive and symmetric, so is their sum. As $-\Lambda$ is positive, it follows that $(I-\Lambda)$ is invertible, due to strictly positive eigenvalues. Further, the eigenvalues of $-\Lambda$ with Dirichlet boundary conditions are given by $\lambda_n = (n\pi)^2$, with corresponding eigenfunctions $e_n(x) = \sqrt{2}\sin(n\pi x)$, which form an orthonormal basis of $L^2(\Omega)$. Therefore, the eigenvalues of $(I-\Lambda)^{-1}$ are given by $\mu_n = 1/(1+(n\pi)^2)$ and as

$$\sum_{n=1}^{\infty} \mu_n < \infty,$$

we conclude that $(I - \Lambda)^{-1}$ is a trace class operator and thus defines a Gaussian measure on $L^2(\Omega)$.

Now our proof will be based on the Feldman-Hájek theorem Da Prato & Zabczyk (1992)[Theorem 2.23], which gives a characterization of when two Gaussian measures on a Hilbert space are either equivalent or mutually singular. We will briefly state the whole chain of reasoning, and then provide the necessary details.

We will show that our measure at all times is Gaussian. By the Feldman-Hájek theorem, two Gaussian measures $\mathcal{N}(m_1,C_1)$ and $\mathcal{N}(m_2,C_2)$ on a Hilbert space are either equivalent or mutually singular. A necessary condition for equivalence is that the Cameron-Martin spaces, as given by $C^{1/2}$, of the two measures are equal as sets Da Prato & Zabczyk (1992)[Theorem 2.23]. Thus, if the ranges of the covariance operators $C_1^{1/2}$ and $C_2^{1/2}$ are not equal, then the measures are mutually singular and their TV distance is 1.

Calculating the Covariance Operators Starting with a measure μ_0 of the initial distribution, the heat equation induces a semigroup $S(t) = \exp(t\Lambda)$, which maps the initial condition u_0 to the solution at time t, i.e. $u(\cdot,t) = S(t)u_0$. Therefore, the measure μ_t of $u(\cdot,t)$ is induced by the pushforward measure μ_0 under S(t), i.e. $\mu_t = S(t)_{\#}\mu_0$. As S(t) is linear, μ_t is also a Gaussian measure with mean 0 and covariance operator

$$C_t = S(t)(I - \Lambda)^{-1}S(t)^* = \exp(t\Lambda)(I - \Lambda)^{-1}\exp(t\Lambda),$$

where $S(t)^*$ denotes the adjoint of S(t) (Hairer (2023) Chap. 4.3). As we have seen above, the eigenvalues of $(I-\Lambda)^{-1}$ are given by $\mu_n=1/(1+(n\pi)^2)$, with corresponding eigenfunctions $e_n(x)$. Further, the eigenfunctions of Λ are also given by $e_n(x)$, with corresponding eigenvalues $\lambda_n=-(n\pi)^2$. Lastly, by functional calculus, the eigenfunctions of $\exp(t\Lambda)$ are also given by $e_n(x)$ with corresponding eigenvalues $\nu_n=\exp(-t(n\pi)^2)$. With this, we can compute

$$C_t \boldsymbol{e}_n = \exp(t\boldsymbol{\Lambda})(\boldsymbol{I} - \boldsymbol{\Lambda})^{-1} \exp(t\boldsymbol{\Lambda}) \boldsymbol{e}_n$$
$$= (\exp(-t(n\pi)^2)) \left(\frac{1}{1 + (n\pi)^2}\right) (\exp(-t(n\pi)^2)) \boldsymbol{e}_n = \frac{\exp(-2t(n\pi)^2)}{1 + (n\pi)^2} \boldsymbol{e}_n.$$

Thus, the eigenvalues of C_t are given by $\lambda_n(t) = \nu_n^2 \mu_n = \exp(-2t(n\pi)^2)/(1+(n\pi)^2)$, with corresponding eigenfunctions $e_n(x)$.

Calculating the Cameron-Martin Spaces The functions $e_n(x)$ form an orthonormal basis of $L^2(\Omega)$, so we can express every element $f \in L^2(\Omega)$ as

$$f = \sum_{n=1}^{\infty} c_n e_n, \quad \sum_{n=1}^{\infty} c_n^2 < \infty.$$

The Cameron-Martin space H_t of \mathcal{P}_t is given by the range of $C_t^{1/2}$, which is given by

$$\operatorname{Ran}(\boldsymbol{C}_t^{1/2}) = \left\{ \boldsymbol{C}_t^{1/2} f \mid f \in L^2(\Omega) \right\} = \left\{ \sum_{n=1}^{\infty} \sqrt{\lambda_n(t)} c_n e_n \mid f \in L^2(\Omega) \right\}.$$

Therefore, $g \in H_t$ if and only if g can be expressed as

$$g = \sum_{n=1}^{\infty} d_n e_n, \quad \sum_{n=1}^{\infty} \frac{d_n^2}{\lambda_n(t)} < \infty.$$

Inserting the expression for $\lambda_n(t)$, we see that $g \in H_t$ if and only if

$$\sum_{n=1}^{\infty} d_n^2 \frac{1 + (n\pi)^2}{\exp(-2t(n\pi)^2)} < \infty.$$

Showing That the Cameron-Martin Spaces Are Not Equal Now it is easy to see that for any $t \ge 0$, $\delta > 0$, the Cameron-Martin spaces H_t and $H_{t+\delta}$ are not equal. For example, the function

$$h(x) = \sum_{n=1}^{\infty} \exp(-(t+\delta)(n\pi)^2)e_n(x)$$

is an element of H_t , as

$$\sum_{n=1}^{\infty} (\exp(-(t+\delta)(n\pi)^2))^2 \frac{1+(n\pi)^2}{\exp(-2t(n\pi)^2)} = \sum_{n=1}^{\infty} (1+(n\pi)^2) \exp(-2\delta(n\pi)^2) < \infty,$$

but it is not an element of $H_{t+\delta}$, as

$$\sum_{n=1}^{\infty} (\exp(-(t+\delta)(n\pi)^2))^2 \frac{1+(n\pi)^2}{\exp(-2(t+\delta)(n\pi)^2)} = \sum_{n=1}^{\infty} (1+(n\pi)^2) = \infty.$$

Therefore, by the Feldman-Hájek theorem, the measures \mathcal{P}_t and $\mathcal{P}_{t+\delta}$ are mutually singular, and their TV distance is 1.

A.3 ILLUSTRATION OF THE METHOD OF LINES

Consider the one-dimensional heat equation on the domain $\Omega=(0,1)$ with Dirichlet boundary conditions

$$\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t), \quad x \in (0,1), \ t \ge 0,$$

$$u(0,t) = u(1,t) = 0, \quad t \ge 0,$$

$$u(x,0) = u_0(x), \quad x \in (0,1),$$

where $u: \overline{\Omega} \times [0, \infty) \to \mathbb{R}$ denotes the temperature field. We will numerically solve this PDE using the *method of lines*.

Method of Lines We discretize the spatial domain with a uniform grid $\mathcal{M}=\{x_1,\ldots,x_n\}\subset\Omega$ with $x_i=\frac{i}{n+1}, i\in\{1,\ldots,n\}$, while leaving the time domain continuous. We can approximate the second derivative in space with the finite difference scheme

$$\frac{\partial^2 u}{\partial x^2}(x_i,t) \approx \frac{u(x_{i+1},t) - 2u(x_i,t) + u(x_{i-1},t)}{(\Delta x)^2}, \quad \Delta x = \frac{1}{n+1}.$$

This leads to the system of ODEs.

$$\frac{d\tilde{\boldsymbol{u}}(t)}{dt} = \boldsymbol{A}\tilde{\boldsymbol{u}}(t),$$

where $A \in \mathbb{R}^{n \times n}$ is the matrix

$$\boldsymbol{A} := \frac{1}{(n+1)^2} \begin{pmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ 0 & 1 & -2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -2 \end{pmatrix},$$

and $\tilde{\boldsymbol{u}}(t) \in \mathbb{R}^n$ is the discretization of $u(\cdot,t)$ on the grid \mathcal{M} . Consequently, the solution to this system of ODEs can be expressed in terms of the matrix exponential $\tilde{\boldsymbol{u}}(t) = \exp(t\boldsymbol{A})\,\tilde{\boldsymbol{u}}(0)$.

A.4 TV DISTANCE BOUND

Theorem A.2. Let $\mathcal{P}_t, \mathcal{P}_{t+\delta}$ be the laws of $u_t, u_{t+\delta}$. Under the assumptions and with the notation from theorem 4.2,

$$d_{\text{TV}}(\mathcal{P}_t, \mathcal{P}_{t+\delta}) = \frac{1}{2} \int_{\mathbb{R}^n} |p_t(\boldsymbol{x}) - p_{t+\delta}(\boldsymbol{x})| \, d\boldsymbol{x}, \tag{2}$$

where $p_t, p_{t+\delta}$ are the densities of $\mathcal{P}_t, \mathcal{P}_{t+\delta}$, and

$$d_{\text{TV}}(\mathcal{P}_t, \mathcal{P}_{t+\delta}) \le \sqrt{\frac{1}{4} \left[tr(\boldsymbol{\Sigma}_{t+\delta}^{-1} \boldsymbol{\Sigma}_t) - n + (\Delta \mu)^T \boldsymbol{\Sigma}_{t+\delta}^{-1} \Delta \mu + \log \frac{\det(\boldsymbol{\Sigma}_{t+\delta})}{\det(\boldsymbol{\Sigma}_t)} \right]}, \tag{3}$$

where

$$\Delta \mu = (\boldsymbol{\mu}_{t+\delta} - \boldsymbol{\mu}_t) \quad \boldsymbol{\mu}_t = \exp(t\boldsymbol{A})\boldsymbol{\mu}_0 + \int_0^t \exp((t-s)\boldsymbol{A})\boldsymbol{r}(s)\mathrm{d}s, \quad \boldsymbol{\Sigma}_t = \exp(t\boldsymbol{A})\boldsymbol{\Sigma}_0 \exp(t\boldsymbol{A}^T).$$

Proof. We know that $\mathcal{P}_t, \mathcal{P}_{t+\delta}$ admit densities from theorem 4.2. 2 follows by the definition of the TV distance between two distributions with densities $p_t, p_{t+\delta}$. For 3, we use Pinsker's inequality, which yields an upper bound on the TV distance by the Kullback–Leibler divergence

$$d_{\mathrm{TV}}(\mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1), \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)) \leq \sqrt{\frac{1}{2} D_{\mathrm{KL}}(\mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \parallel \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2))}.$$

The Kullback-Leibler divergence of two Gaussians above is well known, and given by

$$\frac{1}{2}\left[\operatorname{tr}(\boldsymbol{\Sigma}_2^{-1}\boldsymbol{\Sigma}_1) - n + (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)^T\boldsymbol{\Sigma}_2^{-1}(\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1) + \log\frac{\det(\boldsymbol{\Sigma}_2)}{\det(\boldsymbol{\Sigma}_1)}\right].$$

Thus the claim follows by plugging in the calculated means and covariances.

A.5 DATA GENERATION

We generated synthetic datasets from three one-dimensional periodic PDEs, each discretized with finite-difference schemes (sometimes combined with FFTs for efficiency). Initial conditions were sampled from Gaussian processes with covariance $(-\partial_x^2 + 25I)^{-2}$ to provide smooth but nontrivial trajectories. Each dataset is stored as a compressed <code>.npz</code> file containing $(n_{\text{samples}}, n_t + 1, n_x)$ trajectories together with grid and metadata.

• Backward heat equation.

$u_t = -\nu u_{xx}$

Ill-posed with exponentially growing high-frequency modes. Simulated with implicit finite-difference stepping on a periodic grid. *Parameters:* $n_x=256,~\Delta t=5\times 10^{-5},~T=5\times 10^{-3}$. Datasets: 1000 training, 100 validation, 500 calibration, 500 test.

· Reaction-diffusion.

$$u_t = \nu u_{xx} + \lambda u$$

Solved by operator splitting: implicit finite-difference step for diffusion and explicit update for the reaction. Balances diffusive damping with linear growth of long wavelengths. *Parameters:* $\Delta t = 2 \times 10^{-3}$, T = 0.2. Datasets: 1000 training, 100 validation, 500 calibration, 500 test.

· Fractional backward diffusion.

$$u_t = (+)(-\Delta)^{\alpha}u, \quad \alpha \in (0,2]$$

Implemented in Fourier space using finite-difference Laplacian eigenvalues, with Crank–Nicolson time stepping. Instability is tuned by α and growth factor σ . Parameters: $n_x = 256$, $\alpha = 0.5$, $\sigma = 0.08$, $\Delta t = 2 \times 10^{-3}$, T = 0.2. Datasets: 1000 training, 100 validation, 500 calibration, 500 test.

A.6 USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) helped in the creation and execution of this project. They assisted with improving the clarity and readability of the manuscript, suggesting alternative phrasings, providing feedback on mathematical arguments, and offering ideas during the research and coding process. All research contributions, results, and final formulations were verified manually.