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Abstract

Recently Transformer has been largely explored in tracking and shown state-of-the-
art (SOTA) performance. However, existing efforts mainly focus on fusing and en-
hancing features generated by convolutional neural networks (CNNs). The potential
of Transformer in representation learning remains under-explored. In this paper, we
aim to further unleash the power of Transformer by proposing a simple yet efficient
fully-attentional tracker, dubbed SwinTrack, within classic Siamese framework.
In particular, both representation learning and feature fusion in SwinTrack leverage
the Transformer architecture, enabling better feature interactions for tracking than
pure CNN or hybrid CNN-Transformer frameworks. Besides, to further enhance
robustness, we present a novel motion token that embeds historical target trajectory
to improve tracking by providing temporal context. Our motion token is lightweight
with negligible computation but brings clear gains. In our thorough experiments,
SwinTrack exceeds existing approaches on multiple benchmarks. Particularly, on
the challenging LaSOT, SwinTrack sets a new record with 0.713 SUC score. It also
achieves SOTA results on other benchmarks. We expect SwinTrack to serve as a
solid baseline for Transformer tracking and facilitate future research. Our codes
and results are released at https://github.com/LitingLin/SwinTrack.

1 Introduction

Visual tracking has seen considerable progress since deep learning. In particular, the recent Trans-
former [30] has significantly pushed the state-of-the-art in tracking owing to its ability in modeling
long-range dependencies. However, existing methods usually leverage Transformer for fusing and
enhancing features generated from convolutional neural networks (CNNs), e.g., ResNet [14]. The
potential of exploiting Transformer for feature representation learning is largely under-explored.

Recently, Vision Transformer (ViT) [7] has exhibited great potential in robust feature representation
learning. Particularly, its extension Swin Transformer [23] has achieved state-of-the-art (SOTA)
results on multiple tasks. Taking inspiration from this, we argue, besides the feature fusion, the
representation learning in tracking can also benefit from Transformer via attention. Thus moti-
vated, we propose to develop a fully attentional tracking framework based on Siamese architecture.
Specifically, both the feature representation learning and the feature fusion of template and search
region are realized by Transformer. More concretely, we borrow the architecture of the powerful
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Figure 1: Comparison on LaSOT [9]. Our tracker (SwinTrack-B-384) sets a new record with 0.713
SUC score and still runs efficiently at around 45 fps. A lighter version (SwinTrack-T-224) achieves
0.672 SUC score and runs at around 96 fps, which is on par with existing SOTAs in accuracy but
much faster.

Swin Transformer [23] and adapt it to Siamese tracking. Note that, other Transformer architectures
can be used. For feature fusion, we introduce a simple homogeneous concatenation-based fusion
architecture, without a query-based decoder.

Moreover, taking into consideration that tracking is a temporal task, we propose a novel motion
token to improve robustness. Inspired by that the target usually moves smoothly in a short period,
motion token is represented by the historical target trajectory within a local temporal window. We
incorporate the (single) motion token in the decoder of feature fusion to leverage motion information
during tracking. Despite being conceptually simple, our motion token can effectively boost tracking
performance, with negligible computation.

We name our framework SwinTrack. As a pure Transformer framework, SwinTrack enables better
interactions inside the feature learning of template and search region and their fusion compared
to pure CNN-based [1, 20] and hybrid CNN-Transformer [5, 32, 36] frameworks, leading to more
robust performance (see Fig. 1). Fig. 2 demonstrates the architecture of SwinTrack. We conduct
extensive experiments on five large-scale benchmarks to verify the effectiveness of SwinTrack,
including LaSOT [9], LaSOText [8], TrackingNet [26], GOT-10k [15] and TNL2k [34]. On all
benchmarks, SwinTrack achieves promising results and meanwhile runs fast at 45 fps. In particular,
on the challenging LaSOT, SwinTrack sets a new record of 71.3 SUC score, surpassing the strongest
prior tracker [36] (to date) by 3.1 absolute percentage points and crossing the 0.7 SUC threshold
for the first time (see Fig. 1 again). It also achieves 49.1 SUC, 84.0 SUC, 72.4 AO and 55.9 SUC
scores on LaSOText, TrackingNet, GOT-10k and TNL2k respectively, which are better than or on par
with state-of-the-arts (SoTAs). In addition, we provide a lighter version of SwinTrack that obtains
comparable results to SoTAs but runs much faster at around 98 fps.

In summary, our contributions are as follows: (i) We propose SwinTrack, a simple and strong baseline
for fully attentional tracking; (ii) We present a simple yet effective motion token, enabling the
integration of rich motion context during tracking, further boosting the robustness of SwinTrack,
with negligible computation; (iii) Our proposed SwinTrack achieves state-of-the-art performance on
multiple benchmarks. We believe SwinTrack further shows the potential of Transformer and expect it
to serve as a baseline for future research.

2 Related Work

Siamese Tracking. The Siamese tracking methods formulate tracking as a matching problem and
aim to offline learn a generic matching function for this task. The seminal method of [1] introduces
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Figure 2: Architecture of SwinTrack, which contains three parts including Transformer-based feature
representation extraction, Transformer-based feature fusion and prediction head. Our SwinTrack
is a simple and neat tracking framework without complex designs such as multi-scale features or
temporal template updating, yet demonstrating state-of-the-art performance. Best viewed in color.

a fully convolutional Siamese network for tracking and shows a good balance between accuracy
and speed. To improve Siamese tracking in handling scale variation, the work of [20] incorporates
the region proposal network (RPN) [27] into the Siamese network and proposes the anchor-based
tracker, showing higher accuracy with faster speed. Later, numerous extensions have been presented
to improve Siamese tracking, including deeper backbone [19], multi-stage architecture [10, 11],
anchor-free Siamese trackers [41], deformable attention [37], to name a few.

Transformer in Vision. Transformer [30] originates from natural language processing (NLP) for
machine translation and has been introduced to vision recently and shows great potential. The
work of [3] first uses Transformer for object detection and achieved promising results. To explore
the capability of Transformer in representation learning, the work of [7] applies Transformer to
construct backbone network, and the resulting Vision Transformer (ViT) attains excellent performance
compared to convolutional networks while requiring fewer training resources, which encourages
many extensions upon ViT[29, 4, 38, 33, 23]. Among them, the Swin Transformer [23] has received
extensive attention. It proposes a simple shifted window strategy to replace the fixed-patch method in
ViT, which significantly improves efficiency and meanwhile demonstrates state-of-the-art results on
multiple image tasks. Our work is inspired by Swin Transformer, but differently, we focus on the
video task of visual tracking.

Transformer in Tracking. Inspired by the success in other fields, researchers have leveraged
Transformer for tracking. The method of [5] applies Transformer to enhance and fuse features in
the Siamese tracking for improvement. The approach of [32] uses Transformer to exploit temporal
features to improve tracking robustness. The work of [36] introduces a new transformer architecture
dedicated to visual tracking, explores the Spatio-temporal Transformer by integrating the model
updating operations into a Transformer module.

Our SwinTrack is related to but significantly different from the above Transformer-based trackers.
Specifically, the aforementioned methods mainly apply Transformer to fuse convolutional features and
belong to the hybrid CNN-Transformer architecture. Unlike them, SwinTrack is a pure Transformer-
based tracking architecture where both representation learning and feature fusion are realized with
Transformer, enabling the exploration of better features for robust tracking.

3 Tracking via Vision-Motion Transformer

We present SwinTrack, a vision-motion integrated Transformer for object tracking, in Fig. 2. The
proposed framework contains three main components, i.e., the Swin-Transformer backbone for
feature extraction, the encoder-decoder network for mixing vision-motion cues, and the head network
for localizing targets. In the following sections, we first shortly describe the Swin-Transformer
backbone network, then elaborate on the proposed vision-motion encoder-decoder. Afterward, we
give a discussion about our method and shortly describe the network head and training loss.
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3.1 Swin-Transformer for Feature Extraction

The deep convolutional neural network has significantly improved the performance of trackers.
Along with the advancement of trackers, the backbone network has evolved twice: AlexNet [17] and
ResNet [14]. Swin-Transformer [23], in comparison to ResNet, can give a more compact feature
representation and richer semantic information to assist succeeding networks in better localizing the
target objects (demonstrate in the ablation study demonstrated in the ablation study), which is thus
chosen for basic feature extraction in our model.

Our tracker, following Siamese tracking framework [1], requires a pair of image patches as inputs, i.e.,
template image z ∈ RHz×Wz×3 and search region image x ∈ RHx×Wx×3. As in the typical Swin-
Transformer procedure, template and search region images are divided to non-overlapped patches
and sent to the network, which generates template tokens (dubbed T-tokens) φ(z) ∈ R

Hz
s

Wz
s ×C and

search region tokens (dubbed S-tokens) φ(x) ∈ R
Hx
s

Wx
s ×C . s is the stride of the backbone network.

Since there is no dimension projection in our model, C is the hidden dimension of the whole model.

3.2 Vision-Motion Representation Learning

The essential step for matching-based visual tracking is injecting the template information into the
search region. In our framework, we adopt an encoder to fuse the features from the template and the
search region, meanwhile, a decoder is arranged to achieve vision-motion representation learning, as
illustrated in Fig. 2.

Encoder for fusing template and search tokens. The encoder contains a sequence of Transformer
blocks where each consists of a multi-head self-attention (MSA) module and a feed-forward network
(FFN). FFN contains a two-layers multi-layer perceptron (MLP), GELU activation layer is inserted
after the first linear layer. Layer normalization (LN) is always conducted before every module (MSA
and FFN). Residual connection is applied to MSA and FFN modules.

Before feeding the features into the encoder, the template and search region tokens are concatenated
along spatial dimensions to generate a mixing representation fm. For each block, the MSA module
computes self-attention over mixing union representation, which equals to separately conducting
self-attention on T-tokens/S-tokens and meanwhile performing cross-attention between T-tokens and
S-tokens, but more efficient. FFN refines the features generated by MSA. When the tokens get out
of the encoder, a de-concatenation operation is arranged to decouple the template and search region
tokens. The process of encoder can be expressed as:

f1m = Concat(φ(z), φ(x))

. . .

f l
′

m = f lm +MSA(LN(f lm))

f l+1
m = f l

′

m + FFN(LN(f l
′

m))

. . .

fLz , f
L
x = DeConcat(fL),

(1)

where l denotes the l-th layer and L denotes the number of blocks.

Decoder for fusing vision and motion information. Before describing the architecture of decoder,
we first detail how to generate a motion token (dubbed M-token). Motion token is the embedding
of the historical trajectory of the target object. The past object trajectory is represented as a set of
target object box coordinates, T = {o1,o2, ...,ot}, where t represents the frame index, o is the
bounding box of target object. o is defined by the top-left and bottom-right corners of the target
object, denotes as ot = (ox1

t , oy1

t , ox2
t , oy2

t ). For flexible modeling, a sampling process is required
to ensure the following properties: 1) fixed length, 2) focusing on the latest trajectories and 3)
reducing redundancy. In our method, we sample object trajectory as:

T = {os(1),os(2), ...,os(n)}, where s(i) = max(t− i×∆, 1), (2)

n is the number of sampled object trajectories, ∆ is the fixed sampling interval. For Siamese tracker,
the search region is cropped from the input image. In detail, a cropping with resizing operation can be
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used to describe the process. Giving the point in the input image as (xi,yi), the corresponding point
in the search region as (xo,yo), we can formulate the cropping process employed in pre-processing
of the Siamese Tracker as xo = (xi − ix)sx + ox and yo = (yi − iy)sy + oy, where (ix, iy) is
the center of the cropping window in the input image, (sx, sy) is the scaling factor, (ox, oy) is
the center of cropped and scaled window in the search region. We apply the same transformation
on the sampled object trajectory to make the object trajectory invariant to the cropping, denoting
T̄ = {ōs(1), ōs(2), ..., ōs(n)} as the result.

Then, to embed the transformed object trajectory into the network, we adopt four embedding
matrices to embed the elements in box coordinates separately. We denotes the embedding matrix as
W ∈ R(g+1)×d, g controls the embedding granularity of the object trajectory, d is the size of each
embedding vector. The last entry of the embedding matrix is used as the padding vector, indicating an
invalid state, like object absence or out of the search region. Thus, we normalize the sampled target
object box coordinates in the range [1,g], and quantize to integers to get the index of embedding
vector:

T̂ = {ôs(1), ôs(2), ..., ôs(n)},
where ôs(i) = [n(ōx1

s(i), w),n(ō
y1

s(i), h),n(ō
x2

s(i), w),n(ō
y2

s(i), h)],

n(o, l) =

{
⌊ o
l × g⌋ if valid,

g + 1 else,

(3)

(w, h) is the size of search region feature map.

Finally, the motion token Emotion ∈ R1×d is given by a concatenation of all box coordinate
embedding of the sampled object trajectory. FLOPs is negligible because the construction of motion
token is just a composition of embedding lookups and token concatenation.

The decoder consists of a multi-head cross-attention(MCA) module and a feed-forward network(FFN).
The decoder takes the outputs from the encoder and the motion token as input, generating the final
vision-motion representation fvm ∈ R

Hx
s ×Wx

s ×C of by computing cross-attention over fLx and
Concat(Emotion, f

L
z , f

L
x ). The decoder is akin to a layer in the encoder, except that the correlation

between the template tokens and the search tokens is dropped since we do not need to update the
features from the template image in the last layer. The process of the decoder is formulated as:

fDm = Concat(Emotion, f
L
z , f

L
x )

f ′vm = fLx +MCA(LN(fLx ),LN(fDm ))

fvm = f ′vm + FFN(LN(f ′vm)).

(4)

fvm will feed to the head network to generate a classification response map and a bounding box
regression map.

Positional encoding. Transformer requires a positional encoding to identify the position of the current
processing token[30] because the self-attention module is permutation-invariance. We adopt the
untied positional encoding [16] as our positional encoding method. The untied positional encoding
enhances the expressiveness of the model through untie the positional embeddings from token
embeddings with an isolated positional embedding matrix. It also considers the case of special tokens,
like the motion token in this paper. We generalize the untied positional encoding to multi-dimensions
multi-sources data to comply with concatenated-based fusion in our tracker. See the appendix for the
details.

3.3 Discussion

Why concatenated attention? To simplify the description, we call the method described above
concatenation-based fusion. To fuse and process features from multiple sources, it is intuitive to
perform self-attention on the feature from each source separately and then compute cross-attention
across features from different sources. We call this method cross-attention-based fusion. Transformer
makes fewer assumptions about the spatial structure of data, which provides great modeling flexibility.
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In comparison to cross-attention-based fusion, concatenation-based fusion can save computation cost
through operation sharing and reduce model parameters through weight sharing. From the perspective
of metric learning, weight sharing is an essential design to ensure the metric between two branches of
data is symmetric. Through concatenation-based fusion, we implement this property not only in the
feature extraction stage but also in the feature fusion stage. In general, concatenation-based fusion
improves both efficiency and performance.

Why not window-based self/cross-attention? Since we select stage 3 of the Swin-Transformer as
the output, the number of tokens involved is significantly reduced, window-based attention cannot
save too many FLOPs. Furthermore, considering the extra latency introduced by the window partition
and window reverse operations, window-based attention may even be the slower one.

Why not a query-based decoder? Derivated from vanilla Transformer decoder, many transformer-
based models in vision tasks leverage a learnable query to extract the desired objective features from
the encoder, like object queries in [3], target query in [36]. However, in our experiment, a query-based
decoder suffers from slow convergence and inferior performance. Most Siamese trackers [20, 35, 13]
formulate tracking as a foreground-background classification problem, which can better exploit the
background information. The vanilla Transformer decoder is a generative model, the generative
approaches are considered not suitable for the classification tasks. In another aspect, learning a
general target query for any kind of object might cause a bottleneck. In terms of vanilla Transformer
encoder-decoder architecture, SwinTrack is an "encoder" only model. Furthermore, quite a little
domain knowledge can be easily applied on a classic Siamese tracker to improve the performance,
like introducing the smooth movement assumption by using Hanning penalty window on the response
map.

Are other forms of motion token feasible? Other forms to construct motion token are possible, such
as constructing motion token by summing up the past box coordinate embeddings or representing
past object trajectories by one token per box. In our early experiments, we find that the proposed
motion token is more effective with the best performance. Summing up the past box coordinate
embeddings may result in over-parameterization on the coordinate embeddings. While adding
temporal motion representation along with visual features to the single-layer decoder in a multi-token
form is ineffective, precise temporal modeling may be required in this form.

3.4 Head and Loss

Head. The head network is split into two branches: classification and bounding box regression. Each
of them is a three-layer perceptron. And both of them receives the feature map from the decoder as
input to predict the classification response map rcls ∈ R(Hx×Wx)×1 and bounding box regression
map rreg ∈ R(Hx×Wx)×4, respectively.

Classification loss. In classification branch, we employ the IoU-aware classification score as the
training target and the varifocal loss [39] as the training loss function. IoU-aware design has been very
popular recently, but most works consider IoU prediction as an auxiliary branch to assist classification
or bounding box regression [41, 2, 35]. To remove the gap between different prediction branches,
[39] and [21] replace the hard classification target from the ground-truth value, (i.e., 1 for positive
samples, 0 for negative samples), to the IoU between the predicted bounding box and the ground-truth
one, which is named the IoU-aware classification score (IACS). IACS can help the model select a
more accurate bounding box prediction candidate from the pool by trying to predict the quality of the
bounding box prediction in another branch at the same position. Along with the IACS, the varifocal
loss was proposed in [39] to help the IACS approach outperform other IoU-aware designs.

The classification loss can be formulated as:

Lcls = LVFL(p, IoU(b, b̂)), (5)

where p denotes the predicted IACS, b denotes the predicted bounding box, and b̂ denotes the
ground-truth bounding box.

Regression loss. For bounding box regression, we employ the generalized IoU loss[28]. The
regression loss function can be formulated as:

Lreg =
∑
j

1{IoU(bj ,b̂)>0}[pLGIoU(bj , b̂)]. (6)
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The GIoU loss is weighted by p to emphasize the high classification score samples. The training
signals from the negative samples are ignored.

4 Experiments

4.1 Implementation

Model. We design two variants of SwinTrack with different configurations as follows:

• SwinTrack-T-224.
Backbone: Swin Transformer-Tiny [23], pretrained with ImageNet-1k;
Template size: [112× 112]; Search region size: [224× 224]; C = 384; N = 4;

• SwinTrack-B-384.
Backbone: Swin Transformer-Base [23], pretrained with ImageNet-22k;
Template size: [192× 192]; Search region size: [384× 384]; C = 512; N = 8;

where C and N are the channel number of the hidden layers in the first stage of Swin Transformer
and the number of encoder blocks in feature fusion, respectively. In all variants, we use the output
after the third stage of Swin Transformer for feature extraction. Thus, the backbone stride s is 16.

For motion token, the number of sampled object trajectory n is set to 16, the fixed sampling interval
∆ is set to 15. If the frame rate of the video sequence is available, the sampling interval is adjusted
according to the frame rate. Suppose the frame rate is f , the new sampling interval is getting by
∆
30f , 30 fps is the standard frame rate we assumed. g, which controls the embedding granularity,
is set to the same size as the search region feature map, like 14 for SwinTrack-T-224, and 24 for
SwinTrack-B-384. For the model for GOT-10k sequences, n is set to 8, ∆ is set to 8, and no frame
rate adjustment is applied.

Training. We train SwinTrack using the training splits of LaSOT [9], TrackingNet [26], GOT-10k [15]
(1,000 videos are removed following [36] for fair comparison) and COCO 2017 [22]. In addition,
we report the results of SwinTrack-T-224 and SwinTrack-B-384 with GOT-10k training split only to
follow the protocol described in [15].

The model is optimized with AdamW [24], with a learning rate of 5e-4, and a weight decay of 1e-4.
The learning rate of the backbone is set to 5e-5. We train the network on 8 NVIDIA V100 GPUs
for 300 epochs with 131,072 samples per epoch. The learning rate is dropped by a factor of 10 after
210 epochs. A 3-epoch linear warmup is applied to stabilize the training process. DropPath [18] is
applied on the backbone and the encoder with a rate of 0.1. For the models trained for the GOT-10k
evaluation protocol, to prevent over-fitting, the training epoch is set to 150, and the learning rate is
dropped after 120 epochs.

For the motion token, the object trajectory for the Siamese training pair is generated with the method
described above. The frames that object annotated as absent or out of the video sequence are
marked as invalid, the corresponding box coordinates set to −∞. Since the coarse granularity of the
coordinate embedding in our setting is already can be seen as an augmentation of historical object
trajectory, no additional data augmentation is applied.

Inference. We follow the common procedures for Siamese network-based tracking [1]. The template
image is cropped from the first frame of the video sequence. The target object is in the center
of the image with a background area factor of 2. The search region is cropped from the current
tracking frame, and the image center is the target center position predicted in the previous frame. The
background area factor for the search region is 4.

Our SwinTrack takes the template image and search region as inputs and output classification map
rcls and regression map rreg . To utilize positional prior in tracking, we apply hanning window penalty
on rcls, and the final classification map r′cls is obtained via r′cls = (1− γ)× rcls + γ × h, where γ is
the weight parameter and h is the Hanning window with the same size as rcls. The target position
is determined by the largest value in r′cls and the scale is estimated based on the corresponding
regression results in rreg .

For the motion token, the predicted confidence score and bounding box are collected on the fly. A
confidence threshold θconf is applied, if the confidence score given by the classification branch of the
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Table 1: Experiments and comparisons on five benchmarks: LaSOT, LaSOText, TrackingNet, GOT-
10k and TNL2k.

Tracker LaSOT [9] LaSOText [8] TrackingNet [26] GOT-10k [15] TNL2k [34]
SUC P SUC P SUC P AO SR0.5 SR0.75 SUC P

C-RPN [10] 45.5 44.3 27.5 32.0 66.9 61.9 - - - - -
SiamPRN++ [19] 49.6 49.1 34.0 39.6 73.3 69.4 51.7 61.6 32.5 41.3 41.2

Ocean [41] 56.0 56.6 - - - - 61.1 72.1 47.3 38.4 37.7
DiMP [2] 56.9 56.7 39.2 45.1 74.0 68.7 61.1 71.7 49.2 44.7 43.4

LTMU [6] 57.2 57.2 41.4 47.3 - - - - - 48.5 47.3
SiamR-CNN [31] 64.8 - - - 81.2 80.0 64.9 72.8 59.7 52.3 52.8

STMTrack [12] 60.6 63.3 - - 80.3 76.7 64.2 73.7 57.5 - -
AutoMatch [40] 58.3 59.9 37.6 43.0 76.0 72.6 65.2 76.6 54.3 - -

TrDiMP [32] 63.9 61.4 - - 78.4 73.1 67.1 77.7 58.3 - -
TransT [5] 64.9 69.0 - - 81.4 80.3 67.1 76.8 60.9 51.0 -

STARK [36] 67.1 - - - 82.0 - 68.8 78.1 64.1 - -
KeepTrack [25] 67.1 70.2 48.2 - - - - - - - -

SwinTrack-T-224 67.2 70.8 47.6 53.9 81.1 78.4 71.3 81.9 64.5 53.0 53.2
SwinTrack-B-384 71.3 76.5 49.1 55.6 84.0 82.8 72.4 80.5 67.8 55.9 57.1

head is lower than the threshold, the target object in the current frame is marked as lost by setting the
collected bounding box to −∞. θconf is set to 0.4 for LaSOT, the rests are set to 0.3.

4.2 Comparisons to State-of-the-arts

We conduct experiments and compare SwinTrack with SoTA trackers on five benchmarks.

LaSOT. LaSOT [9] consists of 280 videos for test. Tab. 1 shows the results and comparisons with
SoTAs. From Tab. 1, we can observe that SwinTrack-T-224 with light architecture reaches SoTA
performance with 0.672 SUC and 0.708 PRE scores, which is competitive compared with other
Transformer-based trackers, including STARK-ST101 (0.671 SUC score) and TransT (0.649 SUC),
and other trackers using complicated designs such as KeepTrack (0.671 SUC) and SiamR-CNN
(0.648 SUC score). With a larger backbone and input size, our strongest variant SwinTrack-B-384
sets a new record with 0.713 SUC score, surpassing START-ST101 and KeepTrack by 4.2 absolute
percentage points.

LaSOText. The recent LaSOText [8] is an extension of LaSOT by adding 150 extra videos. These
new sequences are challenging as many similar distractors cause difficulties for tracking. The results
of our tracker related to this dataset are an average of three times. KeepTrack uses a complex
association technique to handle distractors and achieves a promising 0.482 SUC score as in Tab. 1.
Compared with complicated KeepTrack, SwinTrack-T-224 is simple and neat, yet shows comparable
performance with 0.476 SUC score. In addition, due to complicated design, KeepTrack runs at less
than 20 fps, while SwinTrack-T-224 runs in 98 fps, 5× faster than KeepTrack. When using a larger
model, SwinTrack-B-384 shows the best performance with 0.491 SUC score.

TrackingNet. We evaluate different trackers on the test set of TrackingNet [26]. From Tab. 1, we
observe that our SwinTrack-T-224 achieves a comparable result with 0.811 SUC score. Using a larger
model and input size, SwinTrack-B-384 obtains the best performance with 0.840 SUC score, better
than STARK-ST101 with 0.820 SUC score and TransT with 0.814 SUC score.

GOT-10k. GOT-10k [15] offers 180 videos for test and it requires trackers to be trained using
GOT-10k train split only. From Tab. 1, we see that SwinTrack-B-384 achieves the best mAO of 0.724,
and SwinTrack-T-224 obtains a mAO of 0.713. Both models outperform other Transformer-based
counterparts significantly, including START-ST101 (0.688 mAO), TransT (0.671 mAO) and TrDiMP
(0.671 mAO).

TNL2k. TNL2k [34] is a newly released tracking dataset with 700 videos for test. As reported in
Tab. 1, both models surpass the others. SwinTrack-B-384 set a new state-of-the-art with 0.559 SUC
score.

2Multiply–accumulate operation
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Table 2: Comparison on running speed and # parameters with other Transformer-based trackers.
Tracker Speed (fps) MACs2 (G) Params (M)

TrDiMP [32] 26 - -
TransT [5] 50 - 23

STARK-ST50 [36] 42 10.9 24
STARK-ST101 [36] 32 18.5 42

SwinTrack-T-224 98 6.4 23
SwinTrack-B-384 45 69.7 91

Table 3: Ablation experiments of SwinTrack on four benchmarks. The experiments are conducted
on SwinTrack-T-224 without the motion token. ❶: baseline method, i.e., SwinTrack-T-224 without
motion token; ❷: replacing Transformer backbone in the baseline method with ResNet-50; ❸:
replacing our feature fusion with cross attention-based fusion in the baseline method; ❹: replacing
the decoder in baseline with a target query-based; ❺: replacing united positional encoding with
absolute sine position encoding in the baseline method; ❻: replacing the IoU-aware classification loss
with the plain binary cross entropy loss; ❼: removing the Hanning penalty window in the baseline
method inference.

LaSOT
SUC (%)

LaSOText

SUC (%)
TrackingNet

SUC (%)
GOT-10k3

mAO (%)
Speed

fps
Params

M
❶ 66.7 46.9 80.8 70.9 98 22.7
❷ 64.2 41.8 79.5 68.2 121 20.0
❸ 66.6 45.4 80.2 69.3 72 34.6
❹ 66.6 43.2 79.6 69.0 91 25.3
❺ 65.7 45.0 80.0 70.0 103 21.6
❻ 66.2 46.7 79.4 68.2 98 22.7
❼ 65.7 46.0 80.0 69.6 98 22.7

Efficiency comparison. We report the comparisons of SwinTrack with other Transformer-based
trackers in terms of efficiency and complexity. As displayed in Tab. 2, SwinTrack-T-224 with a
small model runs the fastest with a speed of 98 fps. Especially, compared with STARK-ST101 and
STARK-ST50 with 32 fps and 42 fps, SwinTrack-T-224 is 3× and 2× faster. Despite using a larger
model, our SwinTrack-B-384 is still faster than STARK-ST101 and STARK-ST50.

4.3 Ablation Experiment

Comparison with ResNet backbone. We compare the Swin-Transformer backbone with popular
ResNet-50 [14]. As shown in Tab. 3 (❶ vs. ❷). The Swin Transformer backbone significantly boosts
the performance by 2.5% SUC score in LaSOT, 5.1% SUC score in LaSOText. The result shows that
the strong appearance modeling capability provided by the Swin Transformer plays a crucial role.

Feature fusion. As displayed in Tab. 3 (❶ vs. ❸), compared with the concatenation-based fusion,
the cross attention-based fusion runs at a slower speed, occupies much more memory, and also has
an inferior performance on all datasets. Slower speed can be due to the latency brought by the extra
operations. The parameter-sharing strategy not only just reduces the number of parameters but also
benefits metric learning.

Comparison with the query-based decoder. Queries is commonly adopted in the decoder of
Transformer network in vision tasks, e.g. object query [3] and target query [36]. Nevertheless, our
empirical results in Tab. 3 (❶ vs. ❹) show that a target query-based decoder degrades the tracking
performance on all benchmarks, even with 2× training pairs. As discussed, one possible reason is the
generative model is not suitable for classification. Besides, learning a general target query for any
kind of object may also be difficult.

Position encoding. We compare the united positional encoding used in SwinTrack and the original
absolute position encoding in Transformer [30]. Notice, We make a little modification to the original
absolute position encoding: Except for the 2D embedding, the index of token source (e.g. 1 for the

3The GOT-10k results in this column are trained with full training datasets.
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Table 4: Ablation experiments on our proposed motion token on the tracking performance on
four benchmarks. The experiments are conducted on SwinTrack-T-224. ❶: SwinTrack-T-224; ❷:
SwinTrack-B-384; ❸: SwinTrack-T-224 without motion token; ❹: SwinTrack-B-384 without motion
token; ❺: replacing the motion token in SwinTrack-T-224 with a learnable embedding token.

LaSOT
SUC (%)

LaSOText
SUC (%)

TrackingNet
SUC (%)

GOT-10k
mAO (%)

Speed
fps

❶ 67.2 47.6 81.1 71.3 96
❷ 71.3 49.1 84.0 72.4 45
❸ 66.7 47.0 80.8 70.0 98
❹ 70.2 48.5 84.0 70.7 45
❺ 66.3 45.2 81.2 70.0 96

tokens from the template patch, 2 for the tokens from the search region patch) is also embedded. As
shown in Tab. 3 (❶ vs. ❺), our method with united positional encoding obtains improvements with
0.8-1.9 absolute percentage points on the benchmarks with negligible loss in speed (98 vs. 103).

Loss function. From Tab. 3 (❶ vs. ❻), we observe that the model trained with varifocal loss
significantly outperforms the one with binary cross entropy (BCE) loss without loss of efficiency.
This result indicates that the varifocal loss can assist the classification branch of the head to generate
an IoU-aware response map, and thus help the tracker to improve the tracking performance.

Post processing. One may wonder with highly discriminative Transformer architecture and IoU-
aware classification loss does the hanning penalty window is still functional, which introduces a
strong smooth movement assumption. In the experiments, we remove the hanning penalty window in
post-processing, as shown in Tab. 3 (❶ vs. ❼), the performance is dropped by 1.0 SUC for LaSOT,
1.3 AO for GOT-10k in absolute percentage, and less than 1% in the SUC metric of other datasets.
This suggests that the strong smooth movement assumption is still applicable for our tracker. But
compared with the former Transformer-based tracker [5], the performance gap between with and
without penalty window post-processing is narrowing.

Effectiveness of motion token. We study the effectiveness of the motion token by conducting
comparison experiments. As shown in Tab. 4 (❶ vs. ❸ and ❷ vs. ❹), the models with motion token
outperforms the models without motion token on all datasets, especially on LaSOText and GOT-10k.
The results indicate that the motion token can assist the tracker to handle hard similar distractors in
LaSOText and stabilize the short-term tracking like the sequences in GOT-10k test set. We also study
whether the effectiveness of the motion token is simply from the extra embedding vector. We set up
an experiment as in Tab. 4 (❺), which replaces the motion token with a learnable embedding token.
The result shows that the extra embedding vector has negative impacts indicating the effectiveness of
the embedding of object trajectory.

5 Conclusion

In this work, we present SwinTrack, a simple and strong baseline for Transformer tracking. In
SwinTrack, both representation learning and feature fusion are implemented with the attention
mechanism. Extensive experiments demonstrate the effectiveness of such architecture. Besides, we
propose the motion token to enhance the robustness of the tracker by providing the historical object
trajectory, showing the flexibility of the Transformer model in architectural design. With the power
of sequence-to-sequence model architecture, a context-rich tracker is possible, and more contextual
cues can be incorporated. Finally, We hope this work can inspire and facilitate future research.
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