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ABSTRACT

While pre-trained visual representations have significantly advanced imitation
learning, they are often task-agnostic as they remain frozen during policy learning.
In this work, we explore leveraging pre-trained text-to-image diffusion models to
obtain task-adaptive visual representations for robotic control, without fine-tuning
the model itself. However, we find that naively applying textual conditions—a
successful strategy in other vision domains—yields minimal or even negative gains
in control tasks. We attribute this to the domain gap between the diffusion model’s
training data and robotic control environments, leading us to argue for conditions
that consider the specific, dynamic visual information required for control. To this
end, we propose CoRoCo, which introduces learnable task prompts that adapt
to the control environment and visual prompts that capture fine-grained, frame-
specific details. Through facilitating task-adaptive representations with our newly
devised conditions, our approach achieves state-of-the-art performance on various
robotic control benchmarks, significantly surpassing prior methods.

1 INTRODUCTION

Recent advances in diffusion models (Ho et al., 2020) have not only facilitated high-quality image
synthesis, but also demonstrated as a strong visual representation for various vision tasks (Baranchuk
et al., 2021). Among them, pre-trained text-to-image diffusion models, e.g. Stable Diffusion (Rom-
bach et al., 2022), have shown that utilizing text conditions can significantly boost the performance
in visual perception tasks, without the need for fine-tuning the model (Zhao et al., 2023). The key to
leveraging text conditions lies in obtaining well-designed prompts (Kondapaneni et al., 2024)—often
describing objects in the image or the given task—that can funnel useful information into downstream
tasks. This not only enhances the proficiency of diffusion models on downstream tasks but also
broadens their applicability to a wider variety of vision tasks (Yin et al., 2025; Wu et al., 2025).

Robotic control, meanwhile, has also benefited greatly with the introduction of pre-trained visual rep-
resentations to imitation learning (Parisi et al., 2022). By leveraging frozen visual encoders pre-trained
on large-scale data, these representations have replaced the previous tabula-rasa paradigm of training
vision encoders from scratch on limited-scale control data. However, this approach is limited by its
task-agnostic nature, as the visual representations remain frozen during downstream policy learning.
Since the suitability of a representation for a specific task is unknown beforehand, determining
which representation performs best often requires manual, task-by-task inspection (Majumdar et al.,
2023), which becomes cumbersome given the vast variety of control tasks. While a straightforward
solution might be to fine-tune the vision encoder, this often results in poor results as the model loses
generalization capabilities by overfitting to specific scenes in imitation learning (Majumdar et al.,
2023).

In this work, we explore bridging text-to-image diffusion models to robotic control for achieving task-
adaptive visual representations through conditions, without fine-tuning the diffusion model. Inspired
from the effectiveness of conditions in visual perception tasks, we ask following question: How can
we effectively implement conditions for diffusion models in robotic control? We begin by investigating
textual conditions, generating captions with a state-of-the-art vision-language model (Comanici et al.,
2025) to observe their impact on control task performance. However, as shown in Fig. 1, the gains are
minimal, and in some cases, performance even declines. This result contrasts sharply with findings
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Figure 1: How can we condition diffusion models in robotic control? We investigate methods for
conditioning text-to-image diffusion models (Rombach et al., 2022) to perform control, aiming to
address various tasks in a task-adaptive manner. We observe that text prompts, unlike in other vision
tasks (Zhao et al., 2023), are ineffective for robotic control. Therefore, we propose to learn task
prompts in control environments and further incorporate dynamic details through visual prompts for
conditioning diffusion models.

in other vision tasks (Zhao et al., 2023), where machine-generated captions have served as strong
conditions (Kondapaneni et al., 2024).

Upon investigation, we find that pre-trained diffusion models often struggle to accurately associate
text condition to the image in control environments. We attribute this discrepancy to the nature of the
diffusion model being training on web-collected images, which suits visual tasks that involve real-
world images and common objects, such as semantic segmentation. However, control environments,
featuring specialized robotic agents performing specific tasks, would require a more careful and
deliberate approach to devising effective conditions for downstream policy learning.

Robotic control tasks, unlike semantic segmentation Zhao et al. (2023); Kondapaneni et al. (2024),
operate on dynamic video streams and require a finer visual granularity to interact with specific parts
of objects, not just to categorize them. This dynamic nature implies that effective conditions must
be generated uniquely for each frame (Hong et al., 2024) to guide evolving actions and adapt to
changing visual states. Consequently, we hypothesize that conditions for control should incorporate
visual information from every frame to capture both dynamic behavior and fine-grained details.

To this end, we propose a simple, yet effective method that incorporates visual information while
addressing the limitations of text conditions. Specifically, we replace the text prompt with learnable
task prompts, which are learned during downstream control tasks to ensure accurate grounding within
the specific environment. Furthermore, to enable the conditions to capture the detailed visual state
of each frame, we employ a vision encoder and utilize its representations as visual prompts. We
demonstrate that both the task and visual prompts can be learned end-to-end during downstream
policy learning using a standard behavior cloning objective.

Our framework for leveraging diffusion models with conditions in robotic control, CoRoCo, achieves
state-of-the-art performance in robotic control tasks (Tassa et al., 2018; Yu et al., 2020; Rajeswaran
et al., 2018), surpassing VC-1 (Majumdar et al., 2023). We verify our design choices by comparing
to baselines with text conditions and different conditioning methods (Zhou et al., 2022; Kondapaneni
et al., 2024) from visual perception tasks. In addition, we provide detailed analysis and ablations on
our approach, highlighting the importance of conditions in diffusion models for robotic control.

2 RELATED WORK

2.1 PRE-TRAINED VISUAL REPRESENTATIONS FOR ROBOTIC CONTROL

In recent years, visual representations derived from self-supervised pre-trained models (Radford et al.,
2021; Cherti et al., 2023; Majumdar et al., 2023; He et al., 2022; Caron et al., 2021) have demonstrated
notable effectiveness in visuo-motor manipulation tasks (Parisi et al., 2022). Specifically, Parisi et
al. (Parisi et al., 2022) showed that visual representations from frozen pre-trained encoders, such as
MoCo (He et al., 2020) and CLIP (Radford et al., 2021), can not only outperform representations
trained from scratch but are also comparable to ground-truth state features in behavior cloning. This
finding has spurred extensive exploration into pre-trained visual representations for control, alongside
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a search for self-supervised learning frameworks particularly suited for robotic manipulation. Among
these, R3M (Nair et al., 2022) employs a time-contrastive learning objective on ego-centric data
with vision-language alignment, whereas VIP (Ma et al., 2022) introduces value-implicit learning to
associate goal and initial states. MVP (Radosavovic et al., 2023) and VC-1 (Majumdar et al., 2023)
both adopt MAE (He et al., 2022) pre-training methodologies, curating large datasets that include
ego-centric and instructional videos to enhance transferability to robotic manipulation tasks. More
recently, SCR (Gupta et al., 2024) has investigated representations from Stable Diffusion (Rombach
et al., 2022) for navigation and control tasks. Nonetheless, these methods opted for keeping the visual
representation frozen, resulting them to be task-agnostic.

2.2 DIFFUSION MODELS AS PRE-TRAINED VISUAL REPRESENTATIONS

Recent advancements in diffusion models (Ho et al., 2020; Rombach et al., 2022) have enabled the
synthesis of high-resolution images with unprecedented fidelity. This progress has concurrently
motivated diverse investigations into the internal representations of generative diffusion models (Tang
et al., 2023; Luo et al., 2023; Baranchuk et al., 2021; Zhao et al., 2023; Xiang et al., 2023) for
various downstream vision tasks. DDPMSeg (Baranchuk et al., 2021) was among the first to explore
the efficacy of diffusion model’s representations in label-scarce segmentation, while DDAE (Xiang
et al., 2023) focused on image classification. DIFT (Tang et al., 2023), DHF (Luo et al., 2023) and
SD-DINO (Zhang et al., 2023) have demonstrated that the representation from diffusion models can
achieve state-of-the-art in semantic correspondence tasks. Notably, VPD (Zhao et al., 2023) demon-
strated that downstream performance can be enhanced by with text conditions, such as the names of
objects present in an image, in tasks such as semantic segmentation and monocular depth estimation.
SD4Match (Li et al., 2024) and EcoDepth (Patni et al., 2024) proposed prompting modules to derive
conditions for semantic correspondence and monocular depth estimation. TADP (Kondapaneni et al.,
2024) demonstrated that text descriptions generated from vision-language models can serve as strong
conditions, and could be further enhanced with style modifiers learned from Textual Inversion (Gal
et al., 2022). However, we distinguish our approach by focusing on robotic control, rather than for
visual tasks in general image domains.

3 PRELIMINARIES

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Kingma et al., 2021) constitute a
class of generative models that learn to reverse a multi-step noising process, thereby reconstructing
a target data distribution. In this work, we focus on conditional diffusion models (e.g. Stable
Diffusion (Rombach et al., 2022)), which enable image generation guided by a condition C, often
being text prompts. The training objective is to reverse the noising process, typically discretized into
T timesteps. A pre-defined noise schedule, denoted by αt, facilitates the definition of the noised
latent variable zt at timestep t as:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (1)

where z0 is the initial clean data, ᾱt =
∏t

i=1 αi, and ϵ ∼ N (0, I) is Gaussian noise. Following Ho et
al. (Ho et al., 2020), with appropriate parameterization, diffusion models can be trained by regressing
the added noise ϵ from zt:

LDM = Ez0,ϵ,t

[
∥ϵ− ϵθ(zt(z0, ϵ), t; C)∥22

]
, (2)

where ϵθ indicates the denoising network, typically a U-Net (Ronneberger et al., 2015) or a Trans-
former (Vaswani et al., 2017) architecture. Stable Diffusion, for our case, is a Latent Diffusion Model
(LDM) (Rombach et al., 2022) with an U-Net architecture, in which the diffusion process occurs in
a compressed latent space learned by an autoencoder, specifically a VQGAN (Esser et al., 2021).
For conditional generation, U-Net-based LDMs implement Transformer blocks with cross-attention
layers into the U-Net blocks to inject the condition C into the image generation process.

Extracting visual representation from diffusion models. To extract visual representations, ini-
tially, an input image I is encoded into its latent representation z0 = E(I) using the VQGAN encoder
E . For a chosen fixed timestep t, the corresponding noisy latent zt is computed via Eq. 1. This zt is
then processed by the denoising U-Net ϵθ(·). However, as the network ϵθ is trained to predict noise
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Figure 2: Motivation. We aim to overcome the limitations of existing task-agnostic approach
(a) with frozen pre-trained visual representations (Parisi et al., 2022), by leveraging conditions in
diffusion models for robotic control tasks in a task-adaptive approach (b). In this regard, we explore
text conditions(§ 4.1), more advanced methods(§ 4.2,§ 5) as conditions.

as shown in Eq. 2, we instead extract intermediate feature maps from within the U-Net (Meng et al.,
2024). We denote the set of extracted intermediate features as f , and denote f = ϵθ(zt, t; C) to be
the output of ϵθ for simplicity, and primarily consider features from the earlier blocks of the U-Net.

4 MOTIVATION

In this work, we explore conditional diffusion models to generate visual representations for robotic
control, aiming to overcome the limitations of task-agnostic approaches. While pre-trained visual
representations have been paramount to advancements in control, the standard approach of deploying
the same frozen representation across various tasks often fails to adapt to their specific requirements,
causing performance to fluctuate significantly (Majumdar et al., 2023). We aim to address this
limitation by leveraging text-to-image diffusion models, which have successfully handled diverse
visual tasks in a task-adaptive manner using well-designed textual prompts as conditions. Our goal
is therefore to explore effective ways to condition diffusion models for control, as illustrated in Fig. 2.

However, we find that text conditions are ineffective in robotic control environments (§ 4.1), as
using captions generated from vision-language models yields insignificant gains, or even degrades
performance. An in-depth inspection of the cross-attention maps reveals the underlying reason for
this failure - in tasks where performance degrades, the diffusion model struggles to correctly associate
words with their corresponding image regions. This underscores the need for alternatives to text
descriptions and for careful consideration when devising conditions specifically for robotic control.

Consequently, we discuss what do we need for effectively conditioning diffusion models in robotic
control (§ 4.2). By their nature, control tasks involve video frames with fine-grained movements
of agents and objects. Relying solely on textual conditions would necessitate generating a highly
detailed, frame-by-frame description of the specific agent parts relevant to the current action—a
challenging and often impractical task. Therefore, we posit that we should incorporate visual
information for effective conditions to capture the fine-grained details of each frame.

4.1 EXPLORING TEXTUAL CONDITIONS FOR ROBOTIC CONTROL

To obtain textual descriptions of control environments, we devise a baseline by prompting a state-
of-the-art vision-language model, Gemini 2.5 (Comanici et al., 2025), to generate descriptions of
these tasks. The full text descriptions are provided in the appendix. For our analysis, we compare the
null (∅) condition—implemented as an empty string with only <eos> and <bos> tokens—and the
text condition in downstream control tasks. However, as observed in Fig. 3(a), the results are mixed:
while text conditions benefit some tasks (e.g., Button-press, Reacher), they degrade performance in
others (e.g., Cheetah-run).

To take a deeper look, in Fig. 3(b), we visualize the cross-attention maps for Button-press, a task
where text conditions show noticeable gains. For words such as press or button, the cross-attention
maps are well-associated with the relevant regions within the image. These results are similar to what
is expected from text conditions in other visual perception tasks like semantic segmentation (Zhao
et al., 2023), which verifies the potential of using conditions in control tasks.
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Figure 3: Case study. (a) We find that text conditions can be disadvantageous in some control tasks.
(b) For Button-press, the cross-attention maps (e.g., for button, press) are well-grounded to relevant
image regions. (c) In contrast, for Cheetah-run, the attention maps (e.g., for cheetah, run) are noisy,
which presumably leads to a decline in performance. Nonetheless, our approach of using task and
visual tokens (§ 5) achieves consistent gains across all tasks, with its cross-attention maps capturing
diverse regions of the image relevant to the downstream task.

However, in Fig. 3(c), we observe the opposite for Cheetah-run, where words like cheetah or run
show noisy cross-attention maps. The <eos> token of the null condition is already roughly grounded
to the salient object, the agent in this case, which explains how a sub-optimal text condition can
degrade performance to be even worse than the null condition. We primarily attribute the failure of
text conditions, despite being generated from a state-of-the-art vision-language model, to the domain
gap between real-world images and simulated control environments. This finding highlights the need
for careful consideration when devising conditions in robotic control and motivates the exploration of
alternatives to text descriptions for representing the task.

4.2 WHAT DO WE NEED AS CONDITIONS IN ROBOTIC CONTROL?

In order to devise effective conditions, we discuss the characteristics of robotic control tasks and
contrast with other vision-based tasks, such as semantic segmentation. A primary distinction is that
control tasks operate on video streams rather than static images. Consequently, a logical approach
would be to generate a unique condition for each frame (Hong et al., 2024), allowing the representation
to adapt to the changing visual state of the environment. For instance, instructing an agent to walk
requires a sequence of distinct commands (e.g., move the left foot, then the right). Similarly, an
effective condition should vary across frames to guide such dynamic behaviors. However, generating
high-quality text descriptions on a frame-by-frame basis would not only be challenging but would
also inherit the same grounding limitations discussed previously.

In this regard, we hypothesize that to account for this dynamic adaptability, conditions should
incorporate visual information from each frame. While diffusion models like Stable Diffusion are
typically trained on text, several approaches exist for incorporating visual information, either by
introducing features from external vision encoders (Li et al., 2024; Patni et al., 2024) or by optimizing
specialized text tokens to represent visual concepts (Kondapaneni et al., 2024; Kim et al., 2025). These
existing methods, however, tend to embed the global representation into the condition, or require
additional optimization steps to acquire specialized tokens. Since our goal is to enable the recognition
of fine-grained regions within each frame, we consider that adopting global representations and extra
optimization steps should be avoided to facilitate effective frame-wise conditioning.
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Figure 4: Proposed framework. We propose CoRoCo, a framework for learning task and visual
prompts to condition diffusion models in robotic control. Specifically, we utilize the features from
the downsampling blocks and the bottleneck block of Stable Diffusion (Rombach et al., 2022) to
extract visual representations conditioned on our input, which are then fed to the policy network for
predicting the action.

5 COROCO: CONDITIONING DIFFUSION MODELS FOR ROBOTIC CONTROL

Based on our observations, we present CoRoCo, a simple yet effective approach that learns prompts
to condition diffusion models for control. We devise our condition adapt to the control environment
to prevent erroneous grounding, while simultaneously incorporating visual information to capture
dynamic details. To achieve this, we introduce learnable task and visual prompts, which are described
in detail below.

Task prompts. Recalling that text conditions show potential when well-grounded to task-relevant
regions, we design our task prompt to capture objects or areas that are critical to solving the
downstream task. To achieve this, we implement task prompts as learnable parameters that are shared
across all observations during training. We find that this allows the task prompts to implicitly learn to
focus on relevant regions, as shown in Fig. 3(b,c), where the cross-attention maps simultaneously
highlight both the button and the robot arm in Button-press and the agent in Cheetah-run.

Visual prompts. Furthermore, to incorporate visual information into the conditions, we adopt
a vision encoder EV to leverage its visual representation as prompts. Specifically, we utilize the
dense visual representations from EV , rather than global representations, and project them through a
small convolutional layer to complement the task prompts. This focus on dense features provides
the fine-grained, localized information necessary for control tasks. As visualized in Fig. 3(b,c), the
resulting attention from the visual prompts highlights various regions in detail, such as distinguishing
between the front and back legs of the agent in Cheetah-run.

Policy learning objective. We learn the prompts by directly optimizing for the behavior cloning
objective in downstream policy learning, as presented in Fig. 4. Let πϕ(·) be the policy network with
parameters ϕ that takes the visual state representations derived by the diffusion model and outputs
actions. Given sequences of To observations {Iio}

To
o=0 and actions {aio}

To
o=0 from the i-th trajectory,

we predict each action and train both the policy network πϕ(·), task prompts pt and visual prompts
pt by the behavior cloning loss:

LBC(ϕ,p) =

N∑
i=1

∑
o

||πϕ(ϵθ(zt, t; C∗))− aio||, (3)

where zt =
√
ᾱtE(Iio) +

√
1− ᾱtϵ, and condition C∗ = τθ(pt; pv) is derived from the text encoder

τθ with task prompt pv and visual prompt pv as the input. We find that pv and pt can be both learned
with the behavior cloning loss in downstream policy learning.
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Table 1: Experimental results on vision-based robot policy learning on DeepMind Control. The
performance of imitation learning agents on DeepMind Control (Tassa et al., 2018) is reported. We
report the normalized score averaged over three seeds with its standard deviation.

Methods Backbone Walker-stand Walker-walk Reacher-easy Cheetah-run Finger-spin Mean

CLIP ViT-L/16 87.3 ± 2.4 58.3 ± 4.4 54.5 ± 4.6 29.9 ± 5.6 67.5 ± 2.1 59.5
VC-1 ViT-L/16 86.1 ± 0.9 54.3 ± 6.6 18.3 ± 2.4 40.9 ± 2.7 65.7 ± 1.1 53.1
SCR SD 1.5 85.5 ± 2.6 64.3 ± 3.5 81.8 ± 9.9 43.4 ± 6.4 66.6 ± 2.7 68.3
Text (Simple) SD 1.5 87.6 ± 4.6 67.9 ± 4.6 84.3 ± 4.6 38.8 ± 5.9 66.7 ± 0.2 69.1
Text (Caption) SD 1.5 87.2 ± 4.5 68.3 ± 5.9 86.2 ± 1.9 37.5 ± 2.6 65.1 ± 1.8 68.9
CoOp SD 1.5 87.2 ± 2.2 67.8 ± 6.4 87.1 ± 5.9 45.0 ± 6.4 65.9 ± 1.0 70.6
TADP SD 1.5 89.0 ± 2.9 69.9 ± 7.9 86.6 ± 5.6 41.1 ± 3.9 66.9 ± 0.2 70.7
CoRoCo (Ours) SD 1.5 89.1 ± 1.8 76.9 ± 4.0 87.6 ± 2.9 50.0 ± 8.4 68.0 ± 1.0 74.3

Table 2: Experimental results on vision-based robot policy learning on MetaWorld. The
performance of imitation learning agents on MetaWorld (Yu et al., 2020) is reported. We report the
success rates (%) averaged over three seeds with their standard deviation.

Methods Backbone Assembly Bin-picking Button-press Drawer-open Hammer Mean

CLIP ViT-L/16 85.3 ± 12.2 69.3 ± 8.3 60.0 ± 13.9 100.0 ± 0.0 92.0 ± 8.0 81.3
VC-1 ViT-L/16 93.3 ± 6.1 61.3 ± 12.2 73.3 ± 8.3 100.0 ± 0.0 93.3 ± 6.1 84.2
SCR SD 1.5 92.0 ± 6.9 86.7 ± 4.6 74.7 ± 12.9 100.0 ± 0.0 98.7 ± 2.3 90.4
Text (Simple) SD 1.5 97.3 ± 2.3 85.3 ± 2,3 78.7 ± 2,3 100.0 ± 0.0 96.0 ± 6.9 91.5
Text (Caption) SD 1.5 96.0 ± 4.0 88.0 ± 6.9 80.0 ± 8.0 100.0 ± 0.0 98.7 ± 2.3 92.5
CoOp SD 1.5 96.0 ± 4.0 89.3 ± 2,3 81.3 ± 6.1 100.0 ± 0.0 96.0 ± 6.9 92.5
TADP SD 1.5 96.0 ± 4.0 90.7 ± 4.6 80.0 ± 10.6 100.0 ± 0.0 96.0 ± 4.0 93.1
CoRoCo (Ours) SD 1.5 98.7 ± 2.3 90.7 ± 4.6 88.0 ± 6.9 100.0 ± 0.0 98.7 ± 2.3 95.2

6 EXPERIMENTS

In this section, we establish the details for the evaluation (§ 6.1) and the implementation (§ 6.2) of
our method, and present extensive experimental results (§ 6.4) and analyses (§ 6.5). We also provide
further additional details ((§ C) and analyses (§ B) in the appendix.

6.1 EVALUATION SUITES

Walker-stand Walker-walk Reacher-easy RelocateFinger-spinCheetah-run

Assembly Bin-picking Button-press PenHammerDrawer-open

Figure 5: Visualization of evaluation tasks.

We conduct experiments on three widely-used vision-
based robot learning benchmarks with the total of
12 tasks following VC-1 (Majumdar et al., 2023), as
shown in Fig. 5.

DeepMind Control (DMC) (Tassa et al., 2018) is a
set of continuous control tasks with simulated robots.
We use five imitation learning cases: Walker-stand,
Walker-walk, Reacher-easy, Cheetah-run, and Finger-
spin. We report the normalized scores for all tasks.

MetaWorld (Yu et al., 2020) is a suite of simulated robotic manipulation tasks with a Sawyer robot
arm. We focus on a subset of five representative tasks: Assembly, Bin-picking, Button-press-topdown,
Drawer-open, and Hammer. We measure the best success rates among the online evaluation trials.

Adroit (Rajeswaran et al., 2018) is an imitation learning benchmark in a simulated environment,
consisting of dexterous manipulation tasks that require an agent to control a 28-DoF anthropomorphic
hand. Our study mainly focuses on Relocate and Pen, and measure the best success rates among the
online evaluation trials.

6.2 IMPLEMENTATION DETAILS

Diffusion model and conditions. We employ Stable Diffusion v1.5 (Rombach et al., 2022) as the
diffusion model. For extracting visual representation from observations, we leverage the features
from the downsampling blocks and the bottleneck block in the diffusion U-Net and forward through
a compression layer (Yadav et al., 2023). We set the timestep t = 0, the length of task tokens lt = 4,
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Table 3: Experimental results on vision-based robot policy learning on Adroit. The performance
of imitation learning agents on Adroit (Rajeswaran et al., 2018) is reported. We report the success
rates (%) averaged over three seeds with their standard deviation.

Methods Backbone Pen Relocate Mean

CLIP ViT-L/16 58.7 ± 2.3 44.0 ± 4.0 51.4
VC-1 ViT-L/16 65.3 ± 16.7 29.3 ± 8.3 47.3
SCR† SD 1.5 84.0 ± 4.0 32.0 ± 4.0 58.0

Text (Simple) 80.0 ± 6.9 34.7 ± 6.1 57.3
Text (Caption) 80.0 ± 4.0 34.7 ± 4.6 57.3
CoOp SD 1.5 82.7 ± 6.1 33.3 ± 6.1 58.0
TADP 81.3 ± 6.1 33.3 ± 8.3 57.3
CoRoCo (Ours) 86.7 ± 2.3 44.0 ± 4.0 65.3
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Figure 6: Cross-attention visualization for task/visual prompts. We visualize the cross-attention
maps for task prompt pt and visual prompts p1v and p2v in Relocate task across frames from Adroit.

and the length of visual tokens lv = 16, where all learnable parameters are randomly initialized.
For EV , we employ pre-trained DINOv2 (Oquab et al., 2023). Further implementation details are
presented in the appendix.

Vision-based robot policy learning. We consider two, five, and five demonstrations from Adroit,
DeepMind Control (DMC), and MetaWorld, respectively, where proprioceptive data is utilized except
for the DMC benchmark. We mainly follow the experimental setups in VC-1 (Majumdar et al., 2023)
except that we employ a compression layer for all baselines for fair comparison. For each task, we
train the agent for 100 epochs, with a periodic online evaluation in the simulated environment every
10 epochs.

6.3 BASELINES

We consider three baselines: CLIP (Radford et al., 2021), VC-1 (Majumdar et al., 2023), and
SCR (Gupta et al., 2024), as task-agnostic baselines, which follow the standard frozen pre-trained
visual representation approach. In addition, we provide four task-adaptive baselines: Textsimple,
Textcaption, CoOp (Zhou et al., 2022), TADP (Kondapaneni et al., 2024). We provide details for the
baselines in the appendix.

6.4 MAIN RESULTS

Quantitative results. We report experimental results from DMC, MetaWorld, and Adroit in Table 1,
Table 2, and Table 3, respectively. Among the task-agnostic baselines, while SCR performs best
overall, we observe that VC-1 and CLIP outperform it in certain tasks. This highlights a fundamental
limitation of such approaches: due to their task-agnostic nature, no single representation is guaranteed
to excel across all tasks. In contrast, across all 12 tasks in the 3 evaluation suites, CoRoCo establishes
the new state-of-the-art, outperforming all baselines by a significant margin.

Furthermore, we observe that more advanced task-adaptive baselines, CoOp and TADP, generally
outperform text conditions, which aligns with our analysis and confirms our hypothesis that incorpo-
rating visual information is critical. Nonetheless, since CoOp and TADP were originally designed for
tasks like image classification and semantic segmentation, their effectiveness in robotic control is
limited, as shown by their minimal gains on DMC and Adroit. In contrast, our method show solid
improvements across all tasks.
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Table 4: Components analysis. To ablate the design choices for learning conditions, we conduct
component analysis on task prompt pt and visual prompt pv . The performance of imitation learning
agents on DeepMind Control (Tassa et al., 2018) is reported. We report the normalized score averaged
over three seeds with its standard deviation.

Components DeepMind Control
pt pv Walker-stand Walker-walk Reacher-easy Cheetah-run Finger-spin Mean

85.5 ± 2.6 64.3 ± 3.5 81.8 ± 1.7 43.4 ± 4.4 66.6 ± 2.7 68.3
✓ 83.6 ± 3.2 71.4 ± 3.5 86.7 ± 6.6 38.9 ± 10.1 68.2 ± 1.2 69.8

✓ 85.9 ± 2.7 71.1 ± 2.3 87.3 ± 5.5 42.0 ± 10.4 66.1 ± 1.0 70.5
✓ ✓ 89.1 ± 2.3 76.9 ± 4.0 87.6 ± 2.9 50.0 ± 8.4 68.0 ± 1.0 74.3

Table 5: Ablation study on layer selection. We evaluate individual layers of the diffusion U-Net
by reporting layer-wise performance. The performance of imitation learning agents on DeepMind
Control (Tassa et al., 2018) is reported. We report the normalized score averaged over three seeds
with its standard deviation.

DeepMind Control
Layer Walker-stand Walker-walk Reacher-easy Cheetah-run Finger-spin Mean

down 1 86.3 ± 2.1 65.5 ± 1.1 82.1 ± 3.7 40.8 ± 1.1 67.6 ± 0.3 68.4
down 2 89.3 ± 1.2 68.3 ± 2.7 70.0 ± 18.8 31.2 ± 2.6 67.0 ± 1.0 65.1
down 3 86.2 ± 4.3 73.3 ± 3.9 75.3 ± 8.1 36.0 ± 4.8 67.0 ± 0.5 67.5
mid 88.3 ± 4.9 70.4 ± 1.3 62.3 ± 1.1 35.0 ± 4.7 67.2 ± 0.6 64.6
up 0 82.8 ± 2.6 71.7 ± 5.9 45.3 ± 4.0 28.5 ± 1.8 67.2 ± 0.6 59.0
up 1 79.5 ± 4.5 60.3 ± 16.1 55.9 ± 5.2 39.9 ± 7.0 66.4 ± 0.4 60.4
up 2 70.4 ± 4.5 39.1 ± 3.3 41.0 ± 7.0 30.9 ± 3.1 67.7 ± 1.0 49.7

down 1-3, mid 89.1 ± 1.8 76.9 ± 4.0 87.6 ± 2.9 50.0 ± 8.4 68.0 ± 1.0 74.3

6.5 ANALYSIS

Visualization of task and visual prompts. In Fig. 6, we visualize the cross-attention maps for our
task prompt pt and visual prompts, p1v and p2v, on Relocate. In this task, a robot hand first picks up
a blue ball from a table (Frames 1-30) and then moves it to the location of a green sphere (Frames
30-45). As discussed in § 5, we observe that the task prompt consistently captures regions relevant to
the overall goal, namely the robot hand and the target green sphere. Conversely, the visual prompts
exhibit more dynamic behaviors. While p1v tends to focus on the hand, p2v interestingly attends to the
table as the hand moves downward to pick up the ball, then shifts its focus to the hand as it lifts off
and moves toward the target, suggesting that it has learned to capture task-relevant movements.

Ablation study on each component. In Table 4, we conduct component analysis by ablating task
prompt pt and visual prompt pv respectively. Notably, we observe that when employed individually,
task and visual prompts can show divergent behavior across different tasks. This could suggest that
each tasks focus in different aspects of the scene, such as Reacher-easy focusing more in visual
details as it benefits more from visual prompts compared to text prompts. Nonetheless, when fully
incorporating both task and image prompts, we show consistent gains across all tasks.

Ablation study on layer selection. In Table 5, we provide a layer-wise evaluation of the diffusion
model. In practice, we leverage multi-layer features by concatenating the best-performing layers
(down 1,down 2,down 3,mid), which yields the best overall performance. This layer selection
coincides with SCR (Gupta et al., 2024), and also share findings with Parisi et al. (2022), where they
find that representations from early layers of vision encoders perform better in robotic control tasks.

7 CONCLUSION

In this work, we introduced CoRoCo, a framework for bridging text-to-image diffusion models
for robotic control to generate task-adaptive visual representations. We identified the limitations
of conventional text prompts in control settings, and we proposed a simple yet effective method
using learnable task and visual prompts. By training these prompts with the behavior cloning
objective, CoRoCo achieves state-of-the-art performance, highlighting the importance of task-adaptive
representations and the vast potential of properly conditioned diffusion models for robotic control.
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Reproducibility Statement To ensure reproducibility, we have provided the implementation details
in Sec. 6.2, and further specify details in Sec. C in the appendix. In Sec. 6.2, we have provided
the hyperparameter setups for our method and the details of the pre-trained vision encoder and the
diffusion model used in the method. In Sec. C, we provide details on the text conditions used in
the baselines, and also provide details on the compression layer (Yadav et al., 2023), including its
pseudo-code in Alg. 1.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023. 8

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. In international conference on machine
learning, pp. 17359–17371. PMLR, 2022. 1, 2, 4, 9

Suraj Patni, Aradhye Agarwal, and Chetan Arora. Ecodepth: Effective conditioning of diffusion
models for monocular depth estimation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 28285–28295, 2024. 3, 5

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021. 2, 8, 15

Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell. Real-
world robot learning with masked visual pre-training. In Proceedings of The 6th Conference on
Robot Learning, volume 205 of Proceedings of Machine Learning Research, pp. 416–426. PMLR,
14–18 Dec 2023. URL https://proceedings.mlr.press/v205/radosavovic23a.
html. 3

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforcement
Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS), 2018. 2, 7,
8, 16, 17

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022. 1, 2, 3, 6, 7

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pp. 234–241. Springer, 2015. 3

11

https://proceedings.mlr.press/v205/radosavovic23a.html
https://proceedings.mlr.press/v205/radosavovic23a.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Conference on robot learning, pp. 894–906. PMLR, 2022. 15

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015. 3

Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emergent
correspondence from image diffusion. Advances in Neural Information Processing Systems, 36:
1363–1389, 2023. 3

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018. 2, 7, 9, 13, 16, 18

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 3

Zhicong Wu, Hongbin Xu, Gang Xu, Ping Nie, Zhixin Yan, Jinkai Zheng, Liangqiong Qu, Ming
Li, and Liqiang Nie. Textsplat: Text-guided semantic fusion for generalizable gaussian splatting.
arXiv preprint arXiv:2504.09588, 2025. 1

Weilai Xiang, Hongyu Yang, Di Huang, and Yunhong Wang. Denoising diffusion autoencoders are
unified self-supervised learners. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 15802–15812, 2023. 3

Karmesh Yadav, Arjun Majumdar, Ram Ramrakhya, Naoki Yokoyama, Alexei Baevski, Zsolt Kira,
Oleksandr Maksymets, and Dhruv Batra. Ovrl-v2: A simple state-of-art baseline for imagenav and
objectnav. arXiv preprint arXiv:2303.07798, 2023. 7, 10, 15

Wen Yin, Yong Wang, Guiduo Duan, Dongyang Zhang, Xin Hu, Yuan-Fang Li, and Tao He.
Knowledge-aligned counterfactual-enhancement diffusion perception for unsupervised cross-
domain visual emotion recognition. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 3888–3898, 2025. 1

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, 2020. 2, 7, 16, 19

Junyi Zhang, Charles Herrmann, Junhwa Hur, Luisa Polania Cabrera, Varun Jampani, Deqing Sun,
and Ming-Hsuan Yang. A tale of two features: Stable diffusion complements dino for zero-shot
semantic correspondence. Advances in Neural Information Processing Systems, 36:45533–45547,
2023. 3

Wenliang Zhao, Yongming Rao, Zuyan Liu, Benlin Liu, Jie Zhou, and Jiwen Lu. Unleashing text-
to-image diffusion models for visual perception. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5729–5739, 2023. 1, 2, 3, 4

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022. 2, 8,
15

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

• §A: Further ablation studies

– §A.1: Ablation on timesteps

• §B: Further analysis

– §B.1: Analysis on the null condition

– §B.2: Efficiency comparison

• §C: Further implementation details

– §C.1: Full description of the text conditions

– §C.2: Details of the baselines

– §C.3: Implementation details of the compression layer

• §D: Large Language Model Usage

• §E: Qualitative results on robotic control tasks

A FURTHER ABLATION STUDIES

A.1 ABLATION ON DIFFUSION TIMESTEPS

Table 6: Ablation study on timestep selection. To ablate the choice for timestep t, we provide
results with t = 100 and t = 200. The performance of imitation learning agents on DeepMind
Control (Tassa et al., 2018) is reported. We report the normalized score averaged over three seeds
with its standard deviation.

DeepMind Control
Timestep Walker-stand Walker-walk Reacher-easy Cheetah-run Finger-spin Mean

200 92.2 ± 1.6 78.6 ± 2.2 85.4 ± 8.3 24.7 ± 4.5 66.5 ± 3.2 69.4
100 88.3 ± 4.7 72.6 ± 4.3 79.4 ± 6.8 36.1 ± 6.2 66.2 ± 3.5 68.5

0 (Default) 88.8 ± 2.3 76.9 ± 4.0 71.9 ± 5.6 48.2 ± 11.3 68.0 ± 1.0 70.8

To ablate the effects of the diffusion timestep t, in Table 6, we additionally provide results with
t = 100 and t = 200. Although some tasks (e.g. Reacher-easy) benefit from t = 100 or t = 200,
performance on other tasks such as Cheetah-run degrades significantly, lowering the overall score.
Therefore, we choose t = 0, which achieves the best overall performance.
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B FURTHER ANALYSIS

B.1 ANALYSIS ON THE NULL CONDITION
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Figure 7: Visualization of normalized attention weights and raw attention scores for <bos> and
<eos> tokens. We compare the visualization of the normalized attention weights obtained after
the softmax operation and the raw attention scores obtained before the softmax operation from the
cross-attention layers to further analyze the properties of <bos> and <eos> tokens.

Figure 7 illustrates the attention behavior of <bos> and <eos> tokens by visualizing their normal-
ized cross-attention maps (b,d) and raw attention scores (c,e). We observe that the <bos> token
consistently attends to background regions, whereas the <eos> is less reliable at focusing on salient
objects (e.g. the robot hand in Relocate). We attribute the background affinity of <bos> to the
typical structure of text prompts, which primarily describe foreground subjects. Moreover, since
Stable Diffusion employs a causal text encoder for both conditional prompts and the null condition ∅
in unconditional generation, this background-attending behavior is also transferred to unconditional
scenarios.

B.2 EFFICIENCY COMPARISON

Table 7: Efficiency comparison. We report the
total number of parameters (#Params), the number
of learnable parameters (#Learnable) and latency
for VC-1, SCR, and ours.

Method #Params #Learnable Time

VC-1 303.3M 0 11ms
SCR 382.9M 0 26ms
Ours 480.1M 10.6M 48ms

In Table 7, we report the number of parame-
ters, number of learnable parameters, and la-
tency for each modules for VC-1 (Majumdar
et al., 2023), SCR (Gupta et al., 2024) and our
proposed method. For VC-1 and SCR, we use
ViT-L/16, which was also used for comparison
in the main paper. Notably, the layer selection al-
lows us to drop the “up” blocks, which removes
around 500M parameters from the denoising
U-Net. This allows the U-Net to have similar pa-
rameter count to VC-1 encoder, which is used in
various robotic manipulation tasks. Furthermore,
most of the parameters added to our method are
the frozen parameters from DINOv2, and the learnable parameters consist mostly of the additional
projection layers for the visual prompts.
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C FURTHER IMPLEMENTATION DETAILS

C.1 FULL DESCRIPTION OF THE TEXT CONDITIONS

In Table 8, we provide the full descriptions used for Textsimple and Textcaption, which are generated
by Gemini 2.5 Pro (Comanici et al., 2025). For CoOp (Zhou et al., 2022), we use 4 learnable prefix
tokens, such as “[V ∗][V ∗][V ∗][V ∗] bin picking” for Bin-picking. For TADP, we add a style prefix
“in a [S∗] style”, which results in “The Sawyer robot arm must carefully pick a specific target object
out of the cluttered red bin and place it into the empty blue bin in a [S∗] style.” for Bin-picking.

Table 8: Full text descriptions used in baselines.

Task Method Text

Assembly Textsimple “assembly”
Textcaption “The Sawyer robot arm must pick up the green block and precisely insert it into the center of the silver ring to complete the assembly.”

Bin Textsimple “bin picking”
Textcaption “The Sawyer robot arm must carefully pick a specific target object out of the cluttered red bin and place it into the empty blue bin.”

Button Textsimple “button press”
Textcaption “The Sawyer robot arm must reach out and accurately press the red button on top of the yellow control box.”

Drawer Textsimple “drawer open”
Textcaption “The Sawyer robot arm must grasp the white handle and pull open the light green drawer.”

Hammer Textsimple “hammer”
Textcaption “The Sawyer robot arm must pick up the red hammer and use it to strike the nail, driving it completely into the wooden block.”

Pen Textsimple “pen”
Textcaption “A dexterous robotic hand must twirl a blue pen within its grasp to match the final orientation shown by the green target pen.”

Relocate Textsimple “relocate”
Textcaption “A dexterous robotic hand is tasked with picking up the small blue ball and moving it to the location of the green target sphere.”

Cheetah-run Textsimple “cheetah run”
Textcaption “A minimalist orange robot, shaped like a cheetah, runs across a reflective floor in a simulated environment.”

Walker-walk Textsimple “walker walk”
Textcaption “A minimalist, orange bipedal robot takes a step across a reflective floor in a simulated environment.”

Walker-stand Textsimple “walker stand”
Textcaption “A minimalist, orange bipedal robot stands upright on a reflective floor in a simulated environment.”

Finger-spin Textsimple “finger spin”
Textcaption “A simple robotic finger strikes a floating, hot dog-shaped object to make it spin against a starry background.”

Reacher Textsimple “reacher”
Textcaption “A simple robotic arm reaches for a red target ball on a checkered blue surface.”

C.2 DETAILS OF THE BASELINES

CLIP (Radford et al., 2021) is a vision-language model pre-trained on large-scale image-text pairs
through contrastive learning. CLIP has been widely used in various tasks, including navigation and
manipulation tasks (Shridhar et al., 2022; Khandelwal et al., 2022).

VC-1 (Majumdar et al., 2023) is a foundation model for various robotics tasks, spanning from
manipulation to locomotion and navigation tasks. VC-1 trains with MAE objective on egocentric
videos, as well as additional data including navigation and manipulation datasets.

SCR (Gupta et al., 2024) employs Stable Diffusion for various navigation and manipulation tasks.
We consider SCR as a baseline using the null condition ∅, which is implemented as an empty string.

Text(Simple/Caption) is a task-adaptive baseline using text conditions, where Text (Simple) directly
uses the task names as the condition, whereas Text (Caption) leverages descriptions generated from
Gemini 2.5 (Comanici et al., 2025). Full text used for each tasks are presented in the appendix.

CoOp (Zhou et al., 2022) extends on Textsimple by implementing learnable prefix tokens V ∗. CoOp
originally prompts CLIP with the format “[V ∗] classname” for image classification, which in our
case, the task names used in Textsimple are used as classnames.

TADP (Kondapaneni et al., 2024) extends on Textcaption, by adding a special token S∗ that encapsulates
the visual style information optimized through Textual Inversion (Gal et al., 2022). Since the visual
information is optimized into a single token S∗, we can consider TADP as a baseline with global
visual information, and not in a frame-wise manner.

C.3 IMPLEMENTATION DETAILS OF THE COMPRESSION LAYER

To provide further details of the compression layer (Yadav et al., 2023), we provide a PyTorch-style
pseudo-code of the compression layer in Alg. 1. We follow previous works (Yadav et al., 2023; Gupta
et al., 2024) for implementing a simple convolutional layer for the compression layer to obtain 1D
state representations from 2D features. For all methods, compress dim was set to 48. Note that
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Algorithm 1: PyTorch-style pseudocode for the compression layer
class CompressionLayer(nn.Module):

def init (self, hidden dim, compress dim):
self.layers = nn.Sequential(

nn.Conv2d(hidden dim, compress dim, kernel size=3,
padding=1),
nn.BatchNorm2d(hidden dim),
nn.ReLU(inplace=True),
nn.Flatten()
)

def forward(self, x):
return self.layers(x)

the compression layer was also used for compared baselines including CLIP (Cherti et al., 2023)
and VC-1 (Majumdar et al., 2023), which have been shown to yield better performance than using
<CLS> tokens (Gupta et al., 2024).

D LARGE LANGUAGE MODEL USAGE

As we have discussed in Sec. 4.1, we prompt a state-of-the-art large vision-language model, Gemini
2.5 Pro (Comanici et al., 2025) to generate text descriptions for control tasks, which are also specified
Sec. C.1.

Otherwise than generating text descriptions, for writing the manuscript, we disclose that LLMs were
only used to polish the writing and was not used in any research purpose, such as research ideation or
retrieval of related work.

E QUALITATIVE VISUALIZATION ON ROBOTIC CONTROL TASKS

We provide frame-wise comparison of our method, CLIP (Cherti et al., 2023), and VC-1 (Majumdar
et al., 2023) for tasks from DMC (Tassa et al., 2018) in Fig. 9, MetaWorld (Yu et al., 2020) in Fig. 10,
and Adroit (Rajeswaran et al., 2018) in Fig. 8. For each task, we report the normalized score for
DMC and whether the task has succeeded or failed for MetaWorld and Adroit.
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Figure 8: Visualization of agents performing downstream tasks in Adroit (Rajeswaran et al.,
2018). We provide visual comparison of our method to CLIP (Cherti et al., 2023), and VC-1 (Majum-
dar et al., 2023) for two tasks from Adroit. We additionally report whether the task has succeeded or
failed for each episode.
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Figure 9: Visualization of agents performing downstream tasks in DMC (Tassa et al., 2018). We
provide a visual comparison of our method to CLIP (Cherti et al., 2023), and VC-1 (Majumdar et al.,
2023) for five tasks in DMC. We additionally report the normalized score for each episode.
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Figure 10: Visualization of agents performing downstream tasks in MetaWorld (Yu et al., 2020).
We provide visual comparison of our method to CLIP (Cherti et al., 2023), and VC-1 (Majumdar
et al., 2023) for five tasks in MetaWorld. We additionally report whether the task has succeeded or
failed for each episode.
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