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ABSTRACT

Satellite images are increasingly valuable for modeling regional climate change.
Earth surface forecasting is one task that combines satellite imagery and meteoro-
logical data to understand how climate evolves over time. However, understand-
ing the complex relationship between meteorological variables and land surface
changes remains a challenge. Our paper introduces a pipeline that integrates prin-
ciples from perturbation-based techniques like LIME and global explainability
techniques methods like PDP, addressing the limitations of these techniques in
high-dimensional spatiotemporal models. This pipeline facilitates analyses such
as marginal sensitivity, correlation, and lag analysis, etc for complex land forecast-
ing models. Using ConvLSTM for surface forecasting, we analyzed influence of
variables like temperature, pressure, and precipitation on the NDVI of the surface
predictions. Our study in EarthNet2021 Dataset (primarily consists of samples
from the European Alps region, collected during the spring to fall seasons) re-
vealed that precipitation had the greatest impact, followed by temperature, while
pressure has little to no direct effect on NDVI. Additionally, interesting nonlinear
correlations between meteorological variables and NDVI have been uncovered.

1 INTRODUCTION

The Earth’s climate is undergoing a significant transformation, posing a substantial threat to human
existence. Its detrimental effects on terrestrial surfaces, which sustain most life on our planet, are
becoming increasingly evident. From the depletion of Arctic sea ice Shokr & Ye (2023) to the
intensification of fire incidents Lampe et al. (2023), the repercussions of climate change manifest
across diverse and variable geographic regions. Studying the effects of meteorological variables like
temperature, precipitation, and pressure is central to climate change analysis.

Over the past decade, there has been a notable increase in satellite sensors, leading to the availabil-
ity of Earth observation data on an unprecedented scale. Initiatives like the Copernicus program
Geudtner et al. (2014) offer high-resolution data with enhanced temporal coverage, enabling the
generation of dense predictions and analyses that were previously unattainable. Land surface fore-
casting using spatiotemporal forecasting models plays a crucial role in predicting changes in surface
conditions over time, such as vegetation growth Beyer et al. (2023) van Oorschot et al. (2023), soil
moisture levels Chrysanthopoulos et al. (2023) Zhang et al. (2023), and land use patterns Witjes et al.
(2022) Wang et al. (2023). However, interpreting the outputs of these models and understanding the
factors driving their predictions pose significant challenges, particularly in the context of complex
spatiotemporal data and high-dimensional feature spaces.

Explainability has emerged as a critical requirement for ensuring the transparency, trustworthiness,
and reliability of machine learning models, including those used in land surface forecasting. Tradi-
tional explainability techniques, such as Local Interpretable Model-agnostic Explanations (LIME)
Ribeiro et al. (2016) and partial dependence plots (PDP) Friedman (2001) etc, have limitations
when applied to land surface forecasting models. These models often operate in high-dimensional
spatiotemporal feature spaces, making it challenging to isolate the effects of individual variables on
model predictions.
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We introduce the Cluster-Segregate-Perturb (CSP) pipeline, a novel approach to explainability in
land surface forecasting models. CSP pipelines clustering, segregation, and perturbation to enable
comprehensive investigative analyses of model predictions. By clustering instances of meteorologi-
cal variables, we identify unique patterns within each meteorological variable. After clustering, the
data samples are segregated based on the earlier clusters. This segregation organizes the data into
segments we termed, weather segments, representing smaller, more homogeneous subsets of the
dataset based on distinct sets of meteorological conditions. Finally, by perturbing the meteorologi-
cal variables of data samples within each segment, the pipeline creates artificial samples representing
variations from the original data. These artificial samples make the analyses more robust.

In this paper, we present the development and evaluation of the CSP pipeline for investigative anal-
yses on land surface forecasting models. We demonstrate its effectiveness through empirical evalu-
ations in uncovering the relationships between meteorological variables and land surface evolution
via NDVI.

2 CHALLENGES IN EXPLAINABILITY OF SPATIOTEMPORAL LAND SURFACE
FORECASTING MODELS

• The primary challenge lies in managing the temporal dynamics of meteorological variables.
Unlike global explainability techniques like PDP, which use simple artificial samples to as-
sess the marginal effects of features, generating realistic high-dimensional spatiotemporal
data is complex due to the curse of dimensionality. Even if natural-looking spatiotemporal
samples are created, the reliability of a pre-trained model’s predictions can be compromised
if it has not been trained on data reflecting similar patterns. This issue is prevalent in com-
plex models with high-dimensional latent spaces, where approximating the distribution is
often sparse and difficult.
To address these challenges, we applied perturbations to the original training data, keeping
them within natural weather patterns. This approach generated realistic data points, allow-
ing the model to make robust predictions without the need for creating artificial samples
from scratch.

• Another challenge is handling weather-based variations. As we know, within a season it-
self, different temperature, pressure, and precipitation patterns will affect the land surface
evolution differently. Therefore, any analysis without properly segregating these natural
weather patterns might yield incorrect aggregated values.
To address this limitation, we divided the data into weather segments—smaller, more ho-
mogeneous subsets based on specific meteorological conditions. This approach allowed
us to better understand the model’s behavior across different weather scenarios, similar to
LIME, but operating at the segment level instead of the sample level.

3 RELATED WORK

3.1 EXPLAINABLE AI

Explainable AI (XAI) techniques have been developed to address the lack of interpretability in deep
learning models, including Convolutional Neural Networks (CNNs) and LSTM models. These tech-
niques aim to provide insights into the decision-making process of these models. One approach is to
use saliency maps, feature attribution, and local interpretable model-agnostic explanations (LIME)
to enhance transparency and trustworthiness, another approach involves modifying the architecture
of CNNs to improve interoperability, such as in Habib et al. (2022) Habib et al. uses sinc-convolution
layers and explanation vectors to identify domain-specific insights and in De la Fuente et al. (2023)
authors proposed a modification of the LSTM architecture called HydroLSTM, which enhances the
interpretability of the model by representing internal system processes in a manner analogous to a
hydrological reservoir.

Quantifying the global relationship between input features and model predictions in time-series
image forecasting presents a significant challenge and remains an active area of research and the
attention given to model explainability in time-series applications has not been as significant as in
the fields of computer vision or natural language processing Rojat et al. (2021). Huang et al. in
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Huang et al. (2022) suggest two techniques for explainability in the spatiotemporal predictive learn-
ing task (SPLT): first, the synthesis of multiple independent components to analyze how the features
contribute to the prediction; and second, a state decomposition and expansion technique to separate
intertwined signals in the spatiotemporal dynamical system helping in exploring the mechanisms
underlying motion formation. they concluded that a collaboration mechanism, namely, extending
the present and erasing the past (EPEP), explains the motion formation in SPLT. Duckham et al. in
Duckham et al. (2022) utilises the Simple Event Model and PROV-O ontologies to enable queries
not just about reasoner inferences but also about explanations for specific conclusions reached by
the system. This capability is embedded in the NEXUS system, which combines multiple reasoning
components that can support a wide range of spatiotemporal queries. Moosburger in Wang (2023)
proposed an interpretable and modular framework for unsupervised and weakly-supervised proba-
bilistic topic modelling of time-varying data. This framework merges generative statistical models
with computational geometric techniques. Pham et al. in Pham et al. (2023) proposed Temporally
Weighted Spatiotemporal Explainable Neural Network for Multivariate Time Series (TSEM) merges
RNN and CNN capabilities by using RNN hidden units to weigh the temporal axis of CNN feature
maps. It matches STAM’s accuracy and fulfils several interpretability standards, including causality,
fidelity, and spatiotemporality.

3.2 EXPLORING METEOROLOGICAL VARIABLES THROUGH NDVI ANALYSIS

Several studies have examined the sensitivity, correlation, lag, etc of meteorological variables such
as precipitation and temperature concerning NDVI. Li and Guo, in Li & Guo (2010), analyzed the
response characteristics and sensitivity of NDVI to climatic factors in Tianjin, China. They found
that NDVI increases with rising temperatures but gradually decreases with increasing precipitation.
Moreover, the impact of temperature on NDVI was more pronounced in spring and autumn, while
precipitation had a dominant effect in spring, autumn, and early summer. Shun et al. Pan et al.
(2019), concluded that NDVI exhibits a higher correlation with air temperature in high-altitude
alpine and plateau areas, whereas it correlates more strongly with precipitation in grassland and
desert grassland regions. Yujie et al. in Yang et al. (2019), concluded that precipitation was iden-
tified as the most significant factor affecting vegetation evolution, followed by temperature, land
cover change, population, elevation, and nightlight. Hao et al. Hao et al. (2012) studied the link
between climatic variables and NDVI in the upper stream of the Yellow River and a strong ‘corre-
lation between NDVI and precipitation for grassland and forest. Their results suggest that higher
precipitation levels lead to elevated NDVI values. Additionally, the monthly highest temperature
and precipitation significantly affected NDVI. Similarly, Wang et al. in Wang et al. (2001) explored
the spatial distribution and year-to-year changes in NDVI across the central Great Plains and found
a clear link between NDVI patterns and average annual precipitation. A strong correlation was ob-
served between NDVI and precipitation deviations during dry years, like 1989, following another
dry year. Conversely, a weak correlation was observed during wet years, such as 1993, one of the
wettest on record. These findings indicate higher correlation coefficients during or after dry periods.
In Feng et al. (2021), Jianming et al. . studied the time accumulation effect of meteorological vari-
ables on NDVI. They observed a positive correlation between NDVI and accumulated temperature,
accumulated precipitation, and effective accumulated precipitation.

4 ASSUMPTION

• Input features are independent of each other. In marginal feature analysis, feature in-
dependence simplifies the process by isolating the effect of one variable on the outcome
while holding all others constant. This ensures that changes in one feature do not influence
the distribution or behaviour of other features, leading to a clearer understanding of their
relationship with the outcome.

5 CSP PIPELINE

• Cluster Identify the inherent and distinct spatiotemporal patterns within each input feature
by clustering.

• Segregate Partition the samples into segments containing smaller, more homogeneous sub-
sets of the dataset based on distinct sets of spatiotemporal patterns of the features, By doing
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this, any analysis performed on these groups reflects the behaviour of a specific local envi-
ronment, allowing for more focused and insightful interpretations.

• Perturb Perturbation creates artificial samples in a segment. This facilitates many ex-
ploratory studies besides sensitivity analysis and makes the aggregated values more robust.

To demonstrate the application of the CSP pipeline to a land surface forecasting model, we employed
a ConvLSTM model trained on the EarthNet21 dataset. It’s worth noting that the pipeline is model-
agnostic, meaning it can be seamlessly integrated with any other model architecture.

5.1 DATASET, MODEL AND METRIC OVERVIEW

5.1.1 EARTHNET2021 - DATASET

EarthNet2021 Requena-Mesa et al. (2021) is a large-scale dataset and challenge for Earth surface
forecasting, which involves predicting satellite imagery conditioned on future weather.
The Dataset consists of 32,000 samples within the European region, each comprising a series of 30
Sentinel-2 images, each captured at intervals of 5 days. These images contain four bands (red, green,
blue, and near-infrared) with a spatial resolution of 128x128px or 2.56 km2 and a ground resolution
of 20m. Moreover, accompanying weather-related meteorological data is included, such as precip-
itation, sea level pressure, and temperature (minimum, maximum, and mean), each comprising a
series of 150 images for 150 days, at a coarser spatial resolution of 80x80px or 102.4 km2, sourced
from the observational dataset E-OBS Haylock et al. (2008).
Before the model training, as a preprocessing step, the spatiotemporal resolution of meteorological
variables is matched to that of the Sentinel-2 images.

This study used the IID (In-Domain) train set fraction of the EarthNet2021 dataset denoted by D
containing 23904 samples denoted by N in our analyses.

D ={x1, x2, x3, . . . xN}
xi =(Tavgi , Tmini , Tmaxi , Pi, Ri)

(1)

xi is a data sample Tavgi , Tmini , Tmaxi , Pi, Ri are the 30 timesteps spatiotemporal channels repre-
senting average temperature, minimum temperature, maximum temperature, pressure and precipita-
tion respectively each ∈ R(30∗128∗128). Additionally, other channels representing DEM , red, blue,
green, near − infrared, cloud mask, scene classification label, and data quality mask are
also utilized during model training and inference. However, since they are not the main focus of this
study, they are not explicitly notated.

5.1.2 CONVLSTM

ConvLSTM (Convolutional Long Short-Term Memory) networks have been proposed as effective
methods for remote sensing time series analysis. These networks leverage the temporal and spatial
contextual information present in time series images to improve classification accuracy. It was first
used for precipitation nowcasting in Shi et al. (2015) since then it has been used for tasks such as
land cover classification, change detection, and time series reconstruction.

In this study, we utilized the ConvLSTM model, as described by Diaconu et al. Diaconu et al.
(2022). We trained the model on the IID (In-Domain) split of the EarthNet2021 dataset for 60
epochs. During this training phase, we attained an EarthNetScore of 0.3257, closely aligning with
the score reported in the original paper, 0.3266. Here the EarthNetScore (ENS) is a composite
evaluation metric used for assessing the performance of Earth surface prediction models it is the
harmonic mean of the four components (MAD, OLS, EMD, SSIM), scaled between 0 (worst) and 1
(best) as described in Requena-Mesa et al. (2021).

Let Mθ denote the ConvLSTM model having θ as pre-trained weights. then the prediction y1 is
equated as:

yi = Mθ (xi) (2)

here yi = (ri, gi, bi, niri), where ri, gi, bi and niri represent the red, blue, green and near-infrared
channels of the output respectively, and each channel ∈ R(20∗128∗128).
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5.1.3 SOFT-DTW (SOFT DYNAMIC TIME WARPING)

Soft-DTW Cuturi & Blondel (2017) is an extension of Dynamic Time Warping, which is a method
for measuring similarity between two sequences that may vary in time or speed. DTW is particularly
useful when comparing time series data where there might be temporal distortions or differences in
the pacing of events.

In our investigation, soft-DTW served as the distance metric within k-means for clustering meteo-
rological time series variables. For this purpose, we employed tslearn, a Python library specialized
in time series data analysis, featuring pre-implemented soft-DTW functionalities Tavenard et al.
(2020). The formal definition of soft-DTW :

soft−DTW γ(τ, τ ′) = minγπ∈ϕ(τ,τ ′)

∑
(i,j)∈π

f(τi, τ
′
j)

2 (3)

min γ(q1, . . . , qn) = −γ log
∑
i

e−qi/γ (4)

Here min γ is the soft-min operator parametrized by a smoothing factor γ this makes it differentiable
everywhere. ϕ(τ, τ ′) represents the set of all possible alignments between the two input sequences
τ and τ ′. This set contains all the possible ways the elements of the two sequences can be aligned to
each other. Each alignment, denoted by π, is a set of pairs (i, j) where i is an index from sequence
τ and j is an index from sequence τ ′. These pairs represent the correspondences between elements
of the two sequences in a particular alignment. f(τi, τ

′
j) represents the distance or dissimilarity

between the i-th element of sequence τ and the j-th element of sequence τ ′, in eq 4 it is denoted as
qi. In the case of tslearn Tavenard et al. (2020), this distance of dissimilarity is Euclidean distance.

5.2 APPLYING THE STAGES OF THE CSP PIPELINE

5.2.1 CLUSTERING THE METEOROLOGICAL VARIABLES

In the EarthNet21 dataset, each sample covers a small geographical area of only 2.56 km2, result-
ing in minimal variability of meteorological variables like temperature, precipitation, and pressure
across the spatial resolution at any given time step. Leveraging this characteristic, we simplified
the clustering process from spatiotemporal to temporal clustering. This involved downsampling
the meteorological variables to a single value for each time step, followed by time-series k-means
clustering using soft-DTW on the downsampled meteorological variables.

To downsample the meteorological variables of each data sample we computed the average of the
pixel values of each timestep image. The spatial resolution of each image is (128,128) px represent-
ing 2.56 km2 ground resolution, we average it down to a single value. This approach condenses the
meteorological variables to 30 values each representing one timestep. This downsampling is justi-
fied as the pixel values of these variables exhibit minimal variations within the channel images, and
this even aligns with the amount of variance of a meteorological variable in a small geographical
area.
Following the downsampling we conducted k-means clustering on each meteorological variable
across different cluster sizes and obtained the optimal cluster size K by selecting the one with the
highest cluster GoodnessScore.

GoodnessScoreK =
interCentroidScoreK
intraClusterScoreK

(5)

We performed clustering for cluster sizes ∈ {2, 3....15}. The goal is to identify a set of unique
cluster centroids for each meteorological variable exhibiting a low intraClusterScore and a high
interCentroidScore.

intraClusterScoreK =

K∑
i=1

∑
j∈di

eDTW (centroidK
i ,j)Ni

N
(6)

After clustering for a specific cluster size K, di is the subset of samples assigned to the cluster
with centroid centroidKi where i ∈ {1, 2....K}. In Equation 6, we calculate the fractional average
exponential DTW value between the centroid and the samples assigned to that centroid where Ni

N is

5
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Figure 1: We’ve identified 9 unique clusters (representing base temporal patterns) for precipitation
and pressure, and 7 unique clusters for temperature. The frequency displayed on each plot
indicates the number of data samples assigned to each cluster. In the pressure column the 2nd, 4th
and 8th plots exhibited noise patterns in the pressure data. Therefore, we can safely disregard these
clusters.

the weight for the fractional average. N refers to the total number of data samples, and Ni refers to
the count of samples belonging to cluster i. The function DTW (x, y) is unbounded from above and
its lower bound is zero. When the two temporal signals are more similar, the value of the function
approaches zero so ultimately a lower value of intraClusterScore is desirable.

interCentroidScoreK =
CentroidPairs(K)− SimilarCentroids(λ)2

CentroidPairs(K)

CentroidPairs(K) =
K(K − 1)

2

SimilarCentroids(λ) =
K∑
i=1

K∑
i=j+1

1 (DTW (centroidi, centroidj) < λ)

(7)

For interCentroidScore in the set of equations in 7 we penalise the cluster for having more
similar centroids because we aim to find unique temporal patterns. Hence, a higher value of
interCentroidScore is desirable. Again we used the DTW (x, y) function for calculating the
similarity score, as discussed earlier this function is only bounded from below so we put a threshold
λ for classifying the centroids into two classes i.e., similar or sufficiently different to be deemed
unique. through trial and error, we set its value to 0.4.

Figure 1 illustrates the unique clusters identified for each meteorological variable.

After the clustering step, the prediction of the cluster-index Iα of a time series signal Q is defined as

Iα = mK
α (Q) (8)

where mK
α denote the k-means model with the highest GoodnessScore having K unique clusters

for meteorological variable α where α is a ∈ {tavg, tmin, tmax, p, r} shortened notation for meteo-
rological variables.

5.2.2 SEGREGATING SAMPLES INTO WEATHER SEGMENTS

We partitioned the dataset into segments, containing smaller, more homogeneous subsets of distinct
temporal meteorological patterns. These segments are recognized by a tuple ci having five cluster-
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index Iα, one for each meteorological variable α. Since a segment is a set of samples with similar
weather conditions regardless of their geographical location, we refer to it as weather segment and
notate this set as Si.

ci = (Ir, Ip, Itavg , Itmin , Itmax) (9)
We identify the weather segment Si of a sample by determining the tuple ci, by applying the k-means
models in 8 to each meteorological variable of the sample.

Si = {xj : (m
9
r(Rj), m

9
p(Pj), m

7
tavg

(Tavgj ), m
7
tmin

(Tminj ), m
7
tmax

(Tmaxj )) = ci} (10)

Thus the entire dataset is segregated into distinct segments, D = S1∪S2∪S3 . . .∪SNc
and through

this process we uncovered a total of Nc = 784 weather segments.

5.2.3 PERTURBATION

Figure 2: Illustrate average NDVI signals for different perturbations of the meteorological variables
for a weather segment whose ci is (6,5,5,4,2), and frequency is 465 samples.

We created artificial samples by making small adjustments to one of the meteorological variables at
a time while treating the others as constant across all the samples within a segment.

Since the samples originate from Central and Western Europe, primarily within the temperate zone,
we have taken precautions to ensure that the variables remain within natural bounds. The average
temperature of the dataset hovers around 20 ◦C. Therefore, the additive adjustment for temperature
δ1 ∈ [−10,−5, 0,+5,+10,+15,+20] ◦C. Similarly, the average precipitation revolves around 1.5
mm/30 timesteps and the average pressure revolves around 1020 hPa so the additive adjustment
in precipitation and pressure are δ3 ∈ [−2, 0,+2,+4,+6,+8,+10] mm/30 timesteps and δ2 ∈
[−30,−20,−10, 0,+10,+20,+30] hPa respectively. The curves in fig 2 show a weather segment’s
average perturbed NDVI signals.

Let V (δ1,δ2,δ3) be the small additive adjustment done to the meteorological variables, defined as:

V (δ1,δ2,δ3) = (vδ1tavg
, vδ1tmin

, vδ1tmax
, vδ2p , vδ3r )

vtα = Aijs | ∀i∀j∀s{Aijs = t} and ∈ R(30∗128∗128)
(11)

eq: 11 simply suggests that adjustment V (δ1,δ2,δ3) is a tuple similar in shape and order to a data
sample defined in eq: 1. δ1, δ2, δ3 is the amount of additive adjustment for temperature, pressure
and precipitation channels respectively.

Also, the meteorological channels in the EarthNet21 dataset have been normalized using the eq: 12
so we also normalized these adjustments δ1, δ2, δ3 before adding them to their respective meteoro-
logical channels.

Rmm = 50R, PhPa = 200P + 900, T◦C = 50(2T − 1) (12)

6 EXPERIMENTS

We conducted two investigative analyses: marginal sensitivity analysis and marginal correlation
analysis between the meteorological variables and NDVI of the output of the ConvLSTM prediction.

7
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We choose NDVI (Normalized Difference Vegetation Index) for this study since changes in meteo-
rological variables like temperature, precipitation, and pressure greatly affect vegetation health and
density.

NDV I (yi) =
niri − ri
niri + ri

(13)

6.1 MARGINAL SENSITIVITY ANALYSIS

We conducted the marginal sensitivity analysis of each meteorological variable on the NDVI of the
predicted output within each weather segment. This analysis is localized because each weather seg-
ment contains only a subset of the samples thus following a distinct pattern of these meteorological
variables.

The average NDVI signal of a segment labelled with tuple ci having the sample set Si corresponding
to the perturbations (δ1, δ2, δ3) in a meteorological variable is defined as:

NDV I
ci
(δ1,δ2,δ3) =

∑
x∈Si

NDV I
(
Mθ(x+ V (δ1,δ2,δ3))

)
|Si|

(14)

The curves from the eq: 14 are visualized in fig:2.

Since we are doing marginal analysis, we set δ2 = δ3 = 0 when computing the above metric 14
for temperature. Similarly for pressure δ1 = δ3 = 0 and precipitation δ1 = δ2 = 0. Hence local
marginal sensitivity of temperature(tavg), pressure(p) and precipitation(r) for the weather segment
labeled with tuple ci is given as:

Senstivitycitavg
=

∑
a

∑
b|a̸=b

∣∣∣NDV I
ci
(a,0,0) −NDV I

ci
(b,0,0)

∣∣∣
|a− b|

Senstivitycip =
∑
a

∑
b|a̸=b

∣∣∣NDV I
ci
(0,a,0) −NDV I

ci
(0,b,0)

∣∣∣
|a− b|

Senstivitycir =
∑
a

∑
b|a̸=b

∣∣∣NDV I
ci
(0,0,a) −NDV I

ci
(0,0,b)

∣∣∣
|a− b|

(15)

After determining the marginal sensitivity of meteorological variables α ∈ {tavg, p, r} for individ-
ual weather segments, we found out that irrespective of the weather segment the sensitivity of the
variables remained almost the same so we approximated the global sensitivity by computing the
weighted average where weights are the cardinality of the sample sets of each weather segment,
denoted by |Si|.

Senstivityα =

Nc∑
i=1

(Senstivityciα ∗ |Si|) (16)

RESULT

Table 1: Marginal NDVI sensitivity table
Variable Sensitivity SD Unit

Precipitation 0.0183 0.0043 per mm
Temperature 0.0034 0.0014 per ◦C

Pressure 0.0015 0.0007 per hPa

Table 1 demonstrates that within the region of study i.e., Europe, a unit change in precipitation has
the most significant effect on the NDVI value, followed by temperature and pressure in sequence.
To quantify this impact, the weight of precipitation is approximately 12 times greater than that of
pressure and roughly 5 times greater than that of temperature.

8
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6.2 MARGINAL CORRELATION ANALYSIS

Figure 3: Correlation patterns between meteorological variables and NDVI of the predictions. Tem-
perature is split into two curves to enhance visualization: lower NDVI scenes exhibit greater corre-
lation curve curvature, which decreases as NDVI increases.

We conducted a correlation analysis between meteorological variables and NDVI of the predic-
tions. We aimed to identify a best-fitting correlation curve for each meteorological variable
α ∈ {tavg, p, r} within each weather segment denoted by the tuple ci. However, for curve fit-
ting, we needed a set of points representing the aggregated curve for each meteorological variable α
within a weather segment ci:

Pointsciα = {(xb1 , yb1), (xb2 , yb2), . . . } (17)

Here ybi is the median value obtained by downsampling the average NDVI signal of the weather
segment ci for the perturbation bi i.e., downsampling the curve obtained through the eq: 14 and
xbi is the mean value of the meteorological variable α of the weather segment ci added to the
perturbation bi. Value of the perturbation bi ∈ δ1 in case of temperature, ∈ δ2 in case of pressure
and ∈ δ3 in case of precipitation as given in 11 and ∀i∀j{bi ̸= bj}.

With the points set in hand, we conducted curve fitting using a range of linear and non-linear models,
including polynomial, exponential, logarithmic, sinusoidal, and Gaussian curves.

coeff ci
α = fit(eq, Pointsciα ) (18)

Here the fit function takes a curve equation and a set of points as parameters and returns the coef-
ficients of the best-fitting curve. It was discovered that second-degree polynomials gave the best fit
for most weather segments across all meteorological variables.

We plotted the curves from all the weather segments to visualize the underlying pattern in 3. We
standardized the range of xai

for different meteorological variables i.e., for temperature, the range
was standardized to [0, 35]◦C similarly for pressure and precipitation it was [990, 1040]hPa and
[−2, 12]mm respectively. Finally, we used the best-fitted curve to calculate the approximated value
of yai for the ranges of xai as mentioned above.

RESULT

Table 2: Correlation curves
Curve a′ b′ c′

Precipitation -0.0034 0.0252 0.5554
Temp-NDV Ihigh 0.0001 0.0044 0.5805
Temp-NDV I low -0.0002 0.0096 0.3750

Pressure 2.18e-05 -0.0441 22.8677

Table 2 illustrates the correlation curves. The analysis suggests that the correlations exhibit nonlinear
behaviour and can be described with the equation of the parabolic curve:

y = a′x2 + b′x+ c′

. Figure 3 illustrates that increasing precipitation and temperature lead to higher NDVI values.
However, with precipitation, this rise reaches a threshold somewhere around 4-5 mm, beyond which
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NDVI declines. Notably, when NDVI is low, the correlation curves for both temperature and precipi-
tation exhibit more pronounced curvature. This curvature diminishes as NDVI increases, suggesting
a diminishing effect of additional precipitation on NDVI in scenes with already high vegetation in-
dices. Additionally, the relationship between pressure and NDVI appears nearly linear, indicating
the minimal impact of pressure changes on NDVI.

7 LIMITATIONS

While the CSP pipeline is simple, model-agnostic and inherently generic, the approach can have
some limitations.

• The quality of results in the CSP pipeline depends heavily on selecting the appropriate
clustering method. Additionally, the performance of these methods is highly sensitive to
hyperparameter settings, such as the number of clusters or the choice of distance metric.
Poorly tuned parameters can result in suboptimal clustering, which negatively impacts the
overall analysis.

• Limited research in the field of Spatiotemporal clustering. In Ansari et al. (2020) Ansari
et al. categorised spatiotemporal clustering into six broad categories however the review fo-
cuses more on individual spatiotemporal points, such as events, geo-referenced data items,
time series, moving objects, and trajectories unlike which most land surface prediction
dataset contains sequences of satellite images and meteorological data. For clustering en-
tire spatiotemporal samples, the technique would need to be adjusted to emphasize the
clustering of these samples as a whole, rather than focusing solely on the characteristics of
individual points. Time complexity would be another crucial aspect to consider.

• Limited research in the field of perturbations for attaining meaningful transformations.
Most existing techniques, such as adversarial perturbation, Gaussian noise injection, etc
add random noise to enhance model’s robustness. In contrast, the CSP pipeline requires
perturbations for meaningful transformations tailored to specific analytical goals. For ex-
ample, given a real state cost prediction model using satellite imagery, one might ask how
the average cost of the scene changes when buildings become more compact or more green
space is added. while techniques like Variational Autoencoders (VAEs) may also be bene-
ficial, they can be difficult to train.

8 CONCLUSION AND FUTURE WORK

This paper presented a pipeline to improve the explainability of complex land surface prediction
models like ConvLSTM. The proposed methodology enables various investigative analyses, enhanc-
ing our understanding of the relationship between meteorological variables and model predictions.
Our analysis revealed that NDVI exhibits the highest marginal sensitivity against precipitation, fol-
lowed by temperature and pressure, with approximate ratios of 12:2:1. Moreover, we observed a
nonlinear correlation between NDVI and meteorological variables, resembling a parabolic curve.
Furthermore, as the average NDVI of the scene increases, the influence of precipitation and temper-
ature on the curvature of the correlation curve diminishes. Additionally, it is concluded that pressure
has little to no direct effect on NDVI.

In the future, we aim to pursue further advanced studies. This involves exploring the transitional
impacts of meteorological variables by using techniques like Perlin noise Perlin (1985) which can
ensure smoother interpolations, alongside conducting lag analysis. Nonetheless, the challenges in
the clustering process need to be researched more, It is imperative to cluster samples based on
factors other than meteorological variables, such as crop type, elevation, building density, etc and
downsampling might not be the option every time, to address this obstacle, we intend to develop
a spatiotemporal deep clustering method, thus enhancing the methodology’s adaptability to handle
more diverse datasets.
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