
Knowledge-Empowered Dynamic Graph Network for
Irregularly Sampled Medical Time Series

Yicheng Luo, Zhen Liu*, Linghao Wang, Junhao Zheng, Binquan Wu, Qianli Ma∗
School of Computer Science and Engineering,

South China University of Technology, Guangzhou, China
{csluoyicheng2001, cszhenliu, cskyun_ng}@mail.scut.edu.cn,

{linghaowang6, junhaozheng47}@outlook.com, qianlima@scut.edu.cn

Abstract

Irregularly Sampled Medical Time Series (ISMTS) are commonly found in the
healthcare domain, where different variables exhibit unique temporal patterns
while interrelated. However, many existing methods fail to efficiently consider
the differences and correlations among medical variables together, leading to
inadequate capture of fine-grained features at the variable level in ISMTS. We
propose Knowledge-Empowered Dynamic Graph Network (KEDGN), a graph
neural network empowered by variables’ textual medical knowledge, aiming to
model variable-specific temporal dependencies and inter-variable dependencies
in ISMTS. Specifically, we leverage a pre-trained language model to extract se-
mantic representations for each variable from their textual descriptions of medical
properties, forming an overall semantic view among variables from a medical
perspective. Based on this, we allocate variable-specific parameter spaces to cap-
ture variable-specific temporal patterns and generate a complete variable graph
to measure medical correlations among variables. Additionally, we employ a
density-aware mechanism to dynamically adjust the variable graph at different
timestamps, adapting to the time-varying correlations among variables in ISMTS.
The variable-specific parameter spaces and dynamic graphs are injected into the
graph convolutional recurrent network to capture intra-variable and inter-variable
dependencies in ISMTS together. Experiment results on four healthcare datasets
demonstrate that KEDGN significantly outperforms existing methods. Our code is
available at https://github.com/qianlima-lab/KEDGN.

1 Introduction

In the medical environment, the widely used Electronic Health Records (EHRs) have abundant
typical Irregularly Sampled Medical Time Series (ISMTS) data [1]. Each ISMTS typically comprises
multiple medical variables for a patient, each with distinct medical properties, resulting in significant
differences in the sampling patterns of each variable series. Additionally, due to the dynamic changes
in a patient’s condition, the sampling rate of variables varies over different periods, resulting in
uneven sampling intervals [2].

Many existing methods for ISMTS primarily focus on addressing uneven sampling intervals and have
proposed approaches such as Ordinary Differential Equations (ODEs) [3, 4] and continuous-time
embeddings [5, 6], etc, which have already achieved significant success. Recent advancements in
regularly sampled multivariate time series analysis [7, 8] underscore the importance of capturing
variable-specific temporal patterns. However, many existing methods for ISMTS have not adequately
considered this aspect, having limited ability to explicitly distinguish multiple variable series with

∗Corresponding authors

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/qianlima-lab/KEDGN

different time patterns and thus lacking finer-grained capturing of variable-level features. Particularly
in ISMTS, different variables have distinct medical properties, further intensifying the degree of
differences among variables. In such cases, capturing differentiated variable patterns requires a
deeper exploration of inherent differences among variables.

1

2

Figure 1: Illustration of three vari-
ables in an ISMTS sample. In the
first 7 seconds (Box 1), a strong
correlation between HR and NI-
DiasABP is observed. As NIDi-
asABP becomes more sparse, the
correlation between HR and NIDi-
asABP weakens between 7 and 50
seconds (Box 2), while the corre-
lation between HR and DiasABP
increases.

Despite the differentiated temporal patterns occurring among
variables within ISMTS, they are not entirely independent but
exhibit medical correlations. Due to the dynamic changes in
the patient’s condition, this correlation varies along with the
sampling density of variables at different periods, as illustrated
in Figure 1. Some existing work has introduced graph neural
networks [9, 10] to model the time-varying correlations among
variables in ISMTS. However, due to the lack of prior medical
knowledge, these methods learn variable correlation graphs from
misaligned and imbalanced observations in variables of ISMTS
and rely solely on downstream tasks for graph optimization.
Consequently, the variable graphs learned by these methods may
face challenges in accurately reflecting the general medical cor-
relations among variables, resulting in suboptimal performance.

To this end, we aim to explicitly consider the differences and
correlations among variables in ISMTS, empowering the model
to capture fine-grained features at the variable level. However,
the sampling rates, sampling times, observation spans, and ob-
servation lengths of different variables vary in ISMTS, as shown
in three subgraphs in Figure 2. This makes it tough and complex
to infer these two aspects only from the time series modality of
variables. We rethink the issue based on an intuitive observation as shown in Figure 2: Variables that
exhibit (dis)similar temporal patterns frequently have (dis)similar medical properties in reality, which
motivates us to consider the differences and correlations of variables from the perspective of domain
knowledge directly. Recent work [11, 12] has successfully represented domain knowledge through
textual modal information, enhancing model performance in medical imaging, which provides us with
insights. Specifically, the medical properties of each variable can be described in natural language.
Leveraging the powerful semantic understanding capabilities of the Pre-trained Language model
(PLM), we can obtain semantic representations from the textual knowledge of each variable. This
set of textual representations forms an overall view of variables from the perspective of medical
knowledge, clearly showing inherent differences and correlations among variables—exactly what we
need.

Based on the above analysis, we propose the Knowledge-Empowered Dynamic Graph Network
(KEDGN), which utilizes textual semantic representations of variables obtained through PLM as
guidance. On this basis, we 1) allocate unique parameter space for each variable to capture their
specific temporal pattern, 2) generate a complete variable graph and introduce a density-aware
mechanism to explicitly model time-varying correlations among variables in ISMTS. Finally, these

(a) Invasive arterial blood pressure (b) Renal function indicators (c) Ion concentration indicators

Figure 2: The time patterns (sampling rates, sampling times, observation spans, observation lengths,
trends, etc.) of variables among different subgraphs exhibit significant differences, as they have
distinct medical properties. Meanwhile, variables within the same subgraph share similar time
patterns, and their medical properties are closely related. (More variable groups can be found in
Figure 7).

2

two modules are integrated with a graph convolutional recurrent network to capture both temporal
and inter-variable dependencies in ISMTS. Our contributions can be summarized in three aspects:

• We leverage variable-specific textual medical knowledge to empower the model to capture
variable-specific temporal patterns in ISMTS distinctively.

• We introduce a density-aware mechanism based on the knowledge-empowered variable
graph to model the time-varying inter-variable dependencies in ISMTS.

• Empirical results on four real-world medical datasets demonstrate that KEDGN outperforms
state-of-the-art methods. Visualization analysis further illustrates the strong interpretability
of our approach.

2 Related Work

Irregularly Sampled Multivariate Time Series Modeling Existing methods can be roughly
categorized into interpolation-based and raw data-based approaches. The former, employing methods
such as kernel-based approaches [13, 14], Gaussian process [15] or hourly aggregation [16], aims
to obtain a set of regularly spaced observations. However, interpolation may result in the loss of
useful information about the original sequences, such as missing patterns. The latter, raw data-
based methods, directly learn from irregular time series. To adapt to uneven sampling intervals,
[17] improves recurrent neural networks, [3, 4] introduce neural ordinary differential equations and
[6, 5, 18, 19] adopt time embeddings. [20] converts ISMTS into line graph images and utilizes
pretrained vision transformers for extracting features. These methods primarily focus on overall
temporal dependencies, needing more consideration for fine-grained variable-level patterns and
correlations. Despite recent research introducing attention [21, 22] or graph neural networks [9, 23]
to account for variable correlations, these methods have limited performance due to the lack of prior
knowledge and the use of shared parameter spaces among all variables.

Graph Neural Networks for Multivariate Time Series In recent years, a series of studies have
integrated GNN with various time series modeling frameworks to effectively capture both inter-
variable and inter-temporal dependencies in MTS [24]. These approaches have been widely applied
in diverse domains, including transportation [25], healthcare [26], economics [27], demonstrating
promising results in mainstream tasks such as prediction [28], classification [29], and imputation [30].
Although recent work [31, 32, 33, 34] has proposed the idea of modeling variable relationships through
learning dynamic graphs, most of these methods are primarily designed for regularly sampled MTS
with synchronous observations, and further improvements are needed to adapt them for irregularly
sampled time series.

Medical Knowledge Enhanced Models Several studies have utilized the rich domain knowledge
in the medical field to enhance models. [12, 35] apply knowledge for computing additional features,
while [36, 37] utilize knowledge to guide the final training loss, demonstrating the effectiveness of
medical prior knowledge. However, existing methods commonly focus on visual language pretraining
in medical scenes or medical report generation [11]. How to effectively integrate domain knowledge
to guide medical time series modeling remains a challenge.

3 Problem Definition

Given a dataset D = {(si, yi) | i = 1, . . . , N} containing N patient samples, the i-th sample
consists of an irregular multivariate time series si and a label yi. For the dataset with a total
variable count of V and a maximum sample observation length of T , si can be denoted as a tuple:
si = (ti, xi,mi), where ti ∈ RT represents the observation timestamps, xi ∈ RV×T represents the
multivariate time series observations, and any unobserved values or the missing parts of the time
series shorter than the maximum sample observation length are filled with 0. The binary indicator
mi has the same size as xi, indicating which elements in the xi are actually observed. We use 1
to represent observed values and 0 to represent missing values. In this paper, we focus on patient
mortality and morbidity prediction, i.e., classification task, aiming to correctly predict class label ŷi
given a sample si.

3

Query Vectors

Heart rate can be used as
an indicator of how well a.…

Body temperature is
typically measured using …

MAP reflects the average
pressure in a patient's …

Text description of variables’

medical properties

Pretrained
Language M

odel

4 4

1

3
4

2

3

(2) Variable-specific Parameter Learning

Density -aware Dynamic Adjustment

Variable Correlation Graph

Input Representations

3

1 1

2 2

5 5 5

q

q× …

Weights Pool

…

𝑾𝟏 ∈ ℝ𝑰×𝑶

𝑾𝟐 ∈ ℝ𝑰×𝑶

𝑾𝟓 ∈ ℝ𝑰×𝑶

𝑾 ∈ ℝ𝑰×𝑶

Pair -Wise

Cosine Similarity

Unobserved variables

× Matrix multiplication

…

Node

Embeddings

…

n

(3) Dynamic Variable Graph Generation

Frozen Projection heads

G(0) G(1) G(2)

(1) Variable Semantic
Representations Extraction

Observed variables

(4) Graph Convolutional Recurrent Network

𝒇

𝒈

𝒇 / 𝒈

t = t0
5

2
1

t = t1
3

5
1

t = t2
5

2

Figure 3: The model framework of KEDGN. We (1) utilize a PLM to extract semantic representations
for each variable from textual medical properties (Section 4.1). Based on this, we (2) allocate
variable-specific parameter space to capture variable-specific temporal patterns (Section 4.2), (3)
generate dynamic variable graphs by combining knowledge-empowered graph with a density-aware
mechanism to model time-varying correlations among variables (Section 4.3). (4) The above two
modules are injected into graph convolutional recurrent network to model intra-variable and inter-
variable dependencies in ISMTS simultaneously (Section 4.4).

4 The Proposed Model

4.1 Variable Semantic Representations Extraction

First, we introduce how to extract semantic representation for each variable from medical knowledge.
Let V = {v1, v2, . . . , vV } be the set of variables, and a descriptive sentence of medical properties
associated with the jth variable can be denoted as:

Pj =
{
wj,1, wj,2, ..., wj,lj

∣∣ j = 1, 2, . . . , V }, (1)

where lj is the length of the jth variable’s sentence and wj,i denotes the ith word of the jth sentence.
We leverage a PLM to represent each text description Pj as a d-dimensional embedding. Considering
the diverse types of PLMs with varying methods of utilization, we use the widely adopted encoder-
based model BERT [38] as an illustration:

ej = BERT([CLS], wj,1, wj,2, ..., wj,lj , [SEP]) ∈ R(lj+2)×d, (2)

where [CLS] and [SEP] are special tokens indicating a sequence’s beginning and end, respectively.
BERT generates an embedding for each token of the input sequence. Since the embedding at the
[CLS] position captures the semantic information of the entire input sequence, we take the hidden
state at the [CLS] position as the overall semantic representation of each variable: Ej = ej([CLS]).
This yields a semantic representation matrix E = [E1, E2, ..., EV] ∈ RV×d and forms an overall
view of variables from the perspective of medical knowledge.

4.2 Variable-specific Parameter Learning

Since temporal patterns of ISMTS vary from variable to variable, simply using shared parameter
space for all variables is insufficient to capture differentiated temporal dependencies. In this section,
we adjust parameter space for different variables to adapt to differentiated temporal patterns based
on the extracted variables’ semantic representations. For any parameter matrix w ∈ RI×O with
input dimension I and output dimension O, the total parameter space needed for V variables is
Θ ∈ RV×I×O. Inspired by [39], we decompose Θ into two matrices: a variable representation
matrix Q ∈ RV×q and a weight pool matrix W ∈ Rq×I×O, where q is a hyperparameter for the
intermediate dimension. Here, Q consists of q-dimensional query vectors for V variables used to
distinguish differences among variables and obtain variable-specific parameters from the weight pool.

4

We use a projection f(·) : Rd → Rq to variable semantic representations E for obtaining query
vectors rather than directly using E. On the one hand, the dimension of the query vector q directly
determines the size of the weight pool, but the output dimension of PLM is often large (e.g., 768 in
BERT), leading to a sharp increase in model complexity. On the other hand, there is a modality gap
between textual embeddings and the temporal parameter space. The projection f(·) can achieve both
feature reduction and modality transformation. In our implementation, we use a nonlinear projection
with one additional hidden layer (and ReLU activation). Thus, the parameter space specific to variable
i can be obtained using the following formula:

Θi = f(Ei)W ∈ RI×O, (3)

The approach we employ to generate variable-specific parameter space is general and not restricted
to a specific model backbone because any model architecture is composed of multiple parameter
matrices W .

4.3 Dynamic Variable Graph Generation

In this section, we introduce how to generate dynamic correlation graphs of variables for explicitly
modeling the time-varying correlations among variables in ISMTS.

4.3.1 Complete Variable Correlation Graph Learning

The misaligned and imbalanced observations of the variables in ISMTS make it difficult to learn the
variable correlations from the time series. Therefore, we extract a static complete variable correlation
graph based on the textual semantic representations of the variables directly from the perspective of
the actual medical properties of variables. We apply another non-linear projection g(·) : Rd → Rn to
the textual representations of variables E to obtain n-dimensional node embeddings for each variable.
Subsequently, we calculate the pairwise cosine similarity among the node embeddings of variables,
resulting in a V × V matrix of variable similarity. Finally, we use the softmax function to normalize
the edge weights corresponding to each node, producing a normalized graph of variable correlations.
The correlation weight between the ith and jth variables can be calculated as:

Aij = Softmax(
g(Ei) · g(Ej)

∥g(Ei)∥ · ∥g(Ej)∥
), (4)

where · represents vector dot product and ∥ · ∥ represents the vector magnitude. The introduction of
g(·) in this context not only performs feature reduction but also avoids using a completely fixed prior
graph. It preserves the model’s ability to adaptively optimize the graph structure based on different
data distributions and downstream tasks. Thus, we obtain a knowledge-empowered complete graph
with V nodes to measure the static correlation among variables in general medical cases, and its
adjacency matrix is denoted as A.

4.3.2 Dynamic Density-aware Adjustment Mechanism

Due to the varying subsets of variables observed at each timestamp in ISMTS, we use different
subgraphs of A to describe the variable correlations at different timestamps. Specifically, we use a
mask matrix M (t) ∈ RV×V to indicate the subgraph topology at timestamp t:

M
(t)
ij =

{
1, if both variables i and j are observed at t
0, otherwise

, (5)

Therefore, we can calculate the variable correlation subgraph A(t) at timestamp t through A(t) =

A ⊙ M (t), where ⊙ represents Hadamard product. Additionally, we introduce a density-aware
mechanism to dynamically adjust edge weights of subgraphs in different timestamps to fit in the
time-varying correlations among variables mentioned in Figure 1. Specifically, we estimate the
sampling density of any observation point by considering the average time interval between each
observation point and its preceding and succeeding observations. If there is no preceding/succeeding
observation, we take the time interval of the succeeding/preceding observation as the density. If
neither a preceding nor a succeeding observation exists, it indicates that this observation is the only

5

one for the variable, and we take half of the maximum observation time span as the density. The
formula for calculating the sampling density of the i-th observation of variable v at timestamp t is:

Z(t) = Zi,v =


((ti,v − ti−1,v) + (ti+1,v − ti,v))/2, if both ti+1,v and ti−1,v exist
ti,v − ti−1,v, if ti+1,v does not exist
ti+1,v − ti,v, if ti−1,v does not exist
tmax/2, if neither ti+1,v nor ti−1,v exists.

(6)

Then we calculate the density scores for various variables at timestamp t through:

D(t) = ασ(Z(t)) ∈ RV , (7)

where σ is an activation function and α is a hyperparameter that controls the proportion. At timestamp
t, the edge weight between the ith and jth variables is adjusted as:

G
(t)
ij = A

(t)
ij × (1−Wij |D(t)

i −D
(t)
j |), (8)

where W ∈ RV×V is a learnable parameter matrix. Thereby, we achieve the dynamic adjustment of
the variable graph weights in response to changes in variable sampling density.

4.4 Variable-specfic Dynamic Graph Convolutional Recurrent Network

Under the empowerment of variable textual representation, we have obtained variable-specific
parameters Θ ∈ RV×I×O and dynamic variable graph G ∈ RT×V×V . In this section, we integrate
these two modules into the graph convolutional neural network to handle ISMTS. GCRNN [40] is a
backbone network that introduces graph convolutional operations on top of an RNN variant, Gated
Recurrent Unit [41]. This structure is simple, effective, and easy-to-adapt for ISMTS, as it enables
variable-level parallel computation of asynchronous observations without explicit interpolation.
Specifically, we allocate a unique hidden state for each variable, updating the state only at the
observed timestamps to avoid imputation and preserve the individual sampling patterns of each
variable. The graph convolution operation over a graph signal S ∈ RV×I containing V nodes at
timestamp t is defined as follows:

Θ ⋆G(t) S ≈ (IV +G(t))TS ×Θ, (9)

where IV ∈ RV×V is identity matrix, × represents batch matrix multiplication. Here, we adopt
1st-order Chebyshev polynomial expansion approximation [42] for graph convolution. The updated
formulas for variable states at timestamp t are:

r(t) = σ(Θr ⋆G(t) [X(t)||H(t−1)] + br), (10)

u(t) = σ(Θu ⋆G(t) [X(t)||H(t−1)] + bu), (11)

C(t) = tanh(ΘC ⋆G(t) [X(t)||(r(t) ⊙H(t−1))] + bC), (12)

H
(t)
i =

{
H

(t−1)
i , if variable i is unobserved at time t

u
(t)
i ⊙H

(t−1)
i + (1− u

(t)
i)⊙ C

(t)
i , otherwise

, (13)

where || denotes the concatenate operation, H(t−1) ∈ RV×h is the variable states at the previous
timestamp and X(t) ∈ RV×k denotes the input representation at current timestamp. We follow the
structured input encoding method of [22], using multiple fully-connected mappings to encapsulate
each observed value and its corresponding timestamp into a k-dimensional input representation (All 0
vectors for unobserved values) to indicate flexible observation time and adapt to the uneven intervals
within variables. r(t), u(t) ∈ RV×h are reset gate and updated gate, respectively. Θr,Θu,ΘC ∈
RV×(k+h)×h are variable-specific parameters obtained by respectively multiplying the query vectors
matrix Q ∈ RV×q with three weight matrices Wr,Wu,WC ∈ Rq×(k+h)×h.

We calculate the sum of h channels for each variable’s hidden state Hi at the last observed timestamp
to get a V-dimensional vector C. Additionally, we follow the approach used in [9] to incorporate the
static features. Specifically, static features of each sample are mapped into a static vector S through
a linear layer. Finally, C and S are concatenated to predict the final classification probabilities:
ŷ = Softmax(W y[C||S] + by). The training objective is minimizing the cross-entropy loss between
ŷ and y. The pseudo-code for KEDGN is presented in Appendix A (Algorithm 1).

6

5 Experiment

5.1 Experimental Setting

Datasets and Baselines We conduct experiments on four widely used irregular medical time
series datasets, namely P19 [43], Physionet [44], MIMIC-III [45] and P12 [46] where Physionet is a
reduced version of P12 considered by prior work [6]. We compare our method with the state-of-the-art
methods for modeling irregular time series, including GRU-D [17], ODE-RNN [4], IP-Net [14],
SeFT [5], mTAND [6], Raindrop [9], StraTS [18], DuETT [19], ViTST [20] and Warpformer [22].
In addition, we also compare our method with two approaches initially designed for forecasting tasks,
namely DGM2-O [13] and MTGNN [47]. The implementation and hyperparameter settings of these
baselines are kept consistent with those used in [9]. More details of datasets and baselines can be
found in Appendix B and C.

Evaluation Setup For the data pre-processing of MIMIC-III, we follow the method described
in [48] and divide the dataset into three parts for training, validation, and testing with the ratio of
70%,15%,15%. For the remaining three datasets, we adhered to [9] ’s approaches, and the ratio of
training, validation, and testing set is 8:1:1. We measure the classification performance with the Area
Under the Receiver Operating Characteristic Curve (AUROC) and Area Under the Precision-Recall
Curve (AUPRC) since all the four datasets are binary classification datasets with highly imbalanced
class distribution. AUPRC has better sensitivity to sample imbalance [49]; thus, the optimal model
parameters that achieve the best AUPRC on the validation set are used for the test set. More details
of metrics can be found in Appendix D.

Implementation Details We adopt the Adam [50] optimizer, and the number of training epochs
is set as 10. Due to differences in dataset sizes, the learning rate is set as 0.001 for Physionet and
P12 and 0.005 for MIMIC-III and P19. The textual sources for variable descriptions are flexible;
we chose three sources, including the variable’s full name, Wikipedia source, and ChatGPT source
(Default), corresponding to model names KEDGN-Name, KEDGN-Wiki, and KEDGN-ChatGPT,
respectively. All experiments are conducted with five random seeds, and the average and standard
deviation are reported. More implementation details and hyperparameter settings can be found in
Appendix E.

5.2 Main Results

Table 1: Method benchmarking on irregularly sampled medical time series classification. The best
results are highlighted in bold, and the second-best results are in underlined. The results in the table
are presented in the form of (Mean ± Std %).

Methods P19 Physionet MIMIC-III P12

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GRU-D 88.7 ± 1.2 57.6 ± 2.3 79.1 ± 6.9 42.7 ± 7.2 82.2 ± 1.8 43.3 ± 2.1 79.6 ± 0.6 41.7 ± 1.8
ODE-RNN 87.1 ± 1.0 52.6 ± 3.2 75.5 ± 2.8 33.7 ± 4.1 81.0 ± 0.6 42.3 ± 0.7 78.8 ± 0.6 37.4 ± 2.6

IP-Net 90.2 ± 0.2 58.6 ± 0.8 86.8 ± 0.6 55.8 ± 1.4 84.1 ± 0.1 47.1 ± 0.9 83.7 ± 0.3 46.3 ± 1.3
SeFT 84.0 ± 0.3 49.3 ± 0.5 75.5 ± 0.2 29.4 ± 0.9 67.9 ± 0.2 23.2 ± 0.4 78.1 ± 0.5 35.9 ± 0.8

MTGNN 88.5 ± 1.0 55.8 ± 1.5 77.1 ± 4.4 35.4 ± 7.3 78.5 ± 2.3 35.2 ± 3.1 82.1 ± 1.5 41.8 ± 2.1
mTAND 82.9 ± 0.9 32.2 ± 1.5 86.9 ± 1.3 52.5 ± 1.3 83.8 ± 0.3 46.6 ± 0.5 85.3 ± 0.3 49.3 ± 1.0

DGM2-O 91.6 ± 0.5 60.0 ± 1.3 85.8 ± 0.7 50.4 ± 3.2 81.0 ± 0.9 37.6 ± 1.1 85.8 ± 0.1 48.3 ± 0.7
Raindrop 89.4 ± 0.6 61.2 ± 1.1 82.7 ± 1.4 41.2 ± 3.6 79.8 ± 1.3 35.2 ± 1.1 82.2 ± 1.1 43.3 ± 2.1
StraTS 91.2 ± 0.3 58.4 ± 1.4 84.9 ± 1.5 47.3 ± 5.3 84.4 ± 0.4 46.4 ± 0.8 86.7 ± 0.7 52.1 ± 1.5
DuETT 88.2 ± 0.5 56.0 ± 3.9 81.3 ± 1.4 44.9 ± 1.4 78.8 ± 0.8 34.3 ± 1.0 83.4 ± 1.2 45.4 ± 1.5
ViTST 91.7 ± 0.1 57.5 ± 0.7 81.3 ± 1.9 37.4 ± 2.9 81.8 ± 0.3 39.6 ± 1.3 86.3 ± 0.1 50.8 ± 1.5

Warpformer 91.8 ± 0.4 60.6 ± 2.6 83.3 ± 0.7 43.5 ± 2.3 84.6 ± 0.5 47.4 ± 0.9 85.4 ± 0.5 50.4 ± 1.5

KEDGN-Name 92.3 ± 1.0 62.5 ± 0.7 87.9 ± 1.4 56.0 ± 3.2 84.8 ± 0.3 48.4 ± 1.5 87.1 ± 0.8 54.1 ± 2.6
KEDGN-Wiki 92.2 ± 0.6 62.3 ± 1.4 88.2 ± 1.1 57.5 ± 2.5 84.3 ± 0.9 47.7 ± 1.8 87.0 ± 0.3 53.1 ± 0.5

KEDGN-ChatGPT 92.2 ± 0.5 62.0 ± 1.3 87.9 ± 0.2 57.1 ± 1.8 85.1 ± 0.3 48.3 ± 1.6 87.8 ± 0.5 54.5 ± 1.5

Classic time series classification The evaluation results are summarized in Table 1, in which we
use BERT to extract variables’ semantic representations. More experimental results and analyses
using other PLMs can be found in Appendix F.1. Overall, our KEDGN achieves the best performance
on all four datasets and outperforms the strongest baseline by an average of 0.9% on AUROC and

7

1.6% on AUPRC. In addition, the results of models using different text sources are similar, which
demonstrates that our method is not limited to a specific text source and exhibits generalizability. We
also provide an analysis of computational costs in Appendix F.2.

Leave-variables-out To demonstrate the robustness of our method, we test whether KEDGN can
achieve good performance when a subset of variables is completely missing. We uniformly discard
10%, 20%, 30%, 40%, and 50% of the variables, hiding all their observations in both validation and
test sets. Table 2 reports the results on the MIMIC-III dataset, while the results for the remaining
datasets are presented in Appendix F.3 (Table 8). Our method achieves the highest performance
on 35 out of 40 metrics across 4 datasets as the missing rate increases from 10% to 50%. This
may be attributed to KEDGN only handling actually observed points, avoiding the accumulation of
imputation errors, particularly in cases of higher missing ratios, thus exhibiting a degree of robustness.

Table 2: Classification performance on samples with a fixed set of left-out variables on the MIMIC-III
dataset. The best results are highlighted in bold and the second best results are in underlined.

Methods
Discard ratio

10% 20% 30% 40% 50%

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GRU-D 81.0 ± 0.6 42.1 ± 0.8 80.3 ± 0.9 41.7 ± 1.0 79.2 ± 1.8 41.0 ± 1.4 78.5 ± 2.1 40.4 ± 1.6 77.9 ± 2.2 39.9 ± 1.8
mTAND 81.2 ± 0.2 42.1 ± 0.8 80.4 ± 1.1 41.9 ± 1.2 79.7 ± 1.4 41.0 ± 1.7 79.3 ± 1.4 40.4 ± 2.0 78.8 ± 1.6 39.8 ± 2.3
DGM2-O 78.8 ± 0.5 34.2 ± 0.9 78.3 ± 0.8 33.9 ± 1.1 77.6 ± 1.2 33.4 ± 1.2 77.3 ± 1.3 33.1 ± 1.2 76.8 ± 1.5 32.6 ± 1.4
MTGNN 78.8 ± 1.1 34.5 ± 1.4 78.0 ± 1.6 34.0 ± 1.3 77.1 ± 2.2 33.5 ± 1.5 76.3 ± 2.5 32.8 ± 1.9 75.6 ± 3.2 32.2 ± 2.4
Raindrop 78.2 ± 1.1 33.7 ± 0.9 77.5 ± 1.3 33.5 ± 0.9 76.4 ± 2.1 32.8 ± 1.4 76.0 ± 2.0 32.5 ± 1.4 75.7 ± 2.0 32.3 ± 1.4
DuETT 78.0 ± 0.5 34.0 ± 0.9 77.2 ± 1.0 33.7 ± 0.8 76.6 ± 1.2 33.3 ± 1.0 76.4 ± 1.2 33.0 ± 1.0 76.1 ± 1.3 32.6 ± 1.3

Warpformer 82.5 ± 0.5 43.1 ± 0.8 81.7 ± 0.9 42.5 ± 1.2 81.2 ± 1.1 42.1 ± 1.2 80.6 ± 1.5 41.8 ± 1.3 80.0 ± 1.9 41.3 ± 1.6

KEDGN 83.0 ± 0.7 44.8 ± 2.0 82.3 ± 1.1 44.4 ± 1.9 81.3 ± 1.9 43.6 ± 2.2 80.6 ± 2.1 43.0 ± 2.4 80.0 ± 2.3 42.4 ± 2.5

5.3 Ablation Study

Table 3: The ablation study of our
proposed method KEDGN on P19.
The results in the table are presented
in the form of (Mean ± Std %).

Metrics AUROC AUPRC

w/o VSW 91.5 ± 0.3 56.9 ± 0.4
w/o Text 91.7 ± 0.6 60.6 ± 3.0

w/o Graph 90.8 ± 0.8 58.3 ± 1.6
w/o KEE 91.5 ± 0.6 60.4 ± 2.1
w/o DAG 91.6 ± 0.4 60.0 ± 1.3
w/o TE 91.4 ± 0.5 58.1 ± 2.6

Full 92.2 ± 0.5 62.0 ± 1.3

In this section, we investigate the performance benefits gen-
erated by each key component of the proposed method on all
four datasets. We compare the full versioned method with
its six variants: (1) w/o VSW: We apply shared RNN pa-
rameter weights for all variables; (2) w/o Text: We replace
the variable-specific textual semantic representations Ei with
randomly initialized learnable embeddings; (3) w/o Graph:
We set the graph G to be a fully zero matrix, disregarding
dependencies among variables; (4) w/o KEE: We replace
knowledge-empowered node embeddings of variables g(Ei)
with randomly initialized learnable embeddings, (5) w/o DAG:
We remove the density-aware adjustment for edge weights of
the graph, using static adjacency matrix A(t) during different
periods. (6) w/o TE: We remove the timestamp embedding
part of the structured input encoding X(t). The results on the
P19 dataset are presented in Table 3, while the results for the
remaining datasets are presented in Appendix F.4 (Table 9). The results show that all model compo-
nents are necessary and variable-specific parameter space makes the most significant contribution to
the performance of KEDGN.

5.4 Visualization Analysis

5.4.1 Visualization of Variables Textual Representations

In this section, we explore why textual information is effective for time series modeling through
visualization analysis. We first group variables with similar time patterns on the P12 dataset, as
illustrated in Figure 2 (More variables groups can be found in Appendix F.7 (Figure 7)). Subsequently,
we use T-SNE [51] to visualize the distribution of variable semantic representations. Figures 4a and
4b respectively display the distributions of ChatGPT and Wikipedia sources, while Figure 4c shows
the final distribution learned by replacing the text representation with randomly initialized learnable
embeddings. Variables with similar time patterns are labeled with the same color. It can be observed

8

(a) ChatGPT (b) Wikipedia (c) Random Initialized

Figure 4: T-SNE visualization of partial variable representations on the P12 dataset.

that the textual representation space of variables exhibits distinct clustering. Although there may be
occasional outliers when using different text sources, such as BUN in Figure 4a and HCO3 in Figure
4b, the overall clusters are generally consistent with the variable groups we divide based on time
series patterns. However, the learnable variable embeddings in Figure 4c, optimized by classification
loss, tend to be distributed uniformly, which is difficult to effectively reflect the intrinsic differences
among variables. More visualizations of other datasets and other PLMs can be found in Appendix
F.8 and F.9, respectively. Based on this phenomenon, we infer that text descriptions and time series
are both external manifestations of the inherent sense of variables; they just belong to different
data modalities. These two forms of data for the same variable should exhibit relative consistency.
Therefore, the relative distribution among variables extracted from text and time series should ideally
be similar. Leveraging PLM allows for the straightforward and efficient extraction of this universal
view from textual descriptions, which is equally applicable to describing the relative distribution
of temporal patterns among variables. Thus, the effectiveness of PLM and the cross-modal relative
consistency are the keys to guiding time series modeling based on textual information.

5.4.2 Visualization of Variable Correlation Graph

(a) (b)

Figure 5: Visualization of the learned correlation
graph of variables on the MIMIC-III dataset.

We visualize the learned partial inter-variable
correlation graphs on the MIMIC-III dataset in
the form of heatmaps. In Figure 5a, we depict
the graph learned based on node embeddings
mapped from textual representations, while in
Figure 5b, the graph is learned based on ran-
domly initialized learnable node embeddings.
We observe that the top-left and bottom-right
corners of the heatmap in Figure 5a exhibit
darker colors, indicating strong correlations con-
sistent with medical domain knowledge. Specif-
ically, the variables in the top-left corner, Heart
Rate (HR) and Respiration Rate (RR), are com-
monly monitored together in clinical settings
for assessing vital signs and respiratory system

function [52]. The variables in the bottom-right corner, GCS-MR, GCS-T, and GCS-VR, collectively
constitute the Glasgow Coma Scale (GCS), which is used to assess a patient’s neurological status
and level of consciousness [53]. These correlations are not evident in the graph without textual
representations. This once again validates our perspective that relying solely on downstream task
optimization for adaptive learning in graphs in ISMTS is insufficient to reflect the actual medical
correlations among variables and lacks interpretability. In contrast, textual representations can guide
the model to accurately extract variable correlations aligned with domain knowledge to provide high
interpretability.

5.4.3 Visualization of Dynamic Density-aware Graph

In Figure 6, we visualize the dynamic density-aware graph for the sample in Figure 1. We present the
time series of three variables and the corresponding correlation heatmaps learned by our model at

9

Figure 6: Visualization of the dynamic graph of
three variables over time for the sample in Figure 1.
To enhance the contrast ratio, we set the diagonal
elements to 0.

timestamps 4, 15 and 56. From the time se-
ries, we observe that around t = 4, HR shows
a strong correlation with NIDiasABP, while the
correlation with DiasABP is masked as 0 since
DiasABP has not been observed yet. Around
t = 15, the correlation between HR and NIDi-
asABP decreases, while a relatively strong cor-
relation with DiasABP emerges. By t = 56, HR
exhibits a strong correlation with both variables.
This process is clearly reflected in the heatmaps:
the color between HR and NIDiasABP transi-
tions from dark to light from t = 4 to t = 15
and darkens again from t = 15 to t = 56. The
color between HR and DiasABP remains dark
at t = 15 and t = 56. This demonstrates that
our dynamic density-aware mechanism exactly
reflects the time-varying correlations among variables in ISMTS.

6 Limitations

Although our proposed method effectively guides ISMTS modeling through the domain knowledge
from text modality, it has some limitations. The backbone of our model is a recurrent-based
architecture, which inherently has a sequential computation characteristic that can be a bottleneck in
terms of runtime. Additionally, our method is specifically tailored for medical applications, and its
performance may be limited in other irregular multivariate time series applications, such as human
activity recognition, where variables lack domain knowledge and thus cannot generate high-quality
text descriptions.

7 Conclusion

In this paper, we propose KEDGN for modeling ISMTS. The proposed method leverages a PLM to
flexibly extract semantic representation for each variable from the textual medical knowledge. Based
on these representations, we allocate the variable-specific parameter space to capture variable-specific
temporal patterns and extract a complete variable graph as a measure of the variables’ static medical
correlations. Considering the time-varying variables correlations in ISMTS, we introduce a density-
aware mechanism to dynamically adjust the subgraph across different periods. Our experimental
results demonstrate that KEDGN outperforms existing methods in ISMTS classification tasks and
provides high interpretability. Our future work will focus on investigating the applicability of KEDGN
in a range of related tasks, such as interpolation, extrapolation, and regression.

Acknowledgements

The work described in this paper was partially funded by the National Natural Science Foundation
of China (Grant No. 62272173), the Natural Science Foundation of Guangdong Province (Grant
Nos. 2024A1515010089, 2022A1515010179), the Science and Technology Planning Project of
Guangdong Province (Grant No. 2023A0505050106), and the National Key R&D Program of China
(Grant No. 2023YFA1011601). Yicheng Luo and Zhen Liu equally contributed to this work.

References
[1] Chenxi Sun, Shenda Hong, Moxian Song, and Hongyan Li. A review of deep learning methods

for irregularly sampled medical time series data. arXiv preprint arXiv:2010.12493, 2020.

[2] Satya Narayan Shukla and Benjamin M Marlin. A survey on principles, models and methods
for learning from irregularly sampled time series. arXiv preprint arXiv:2012.00168, 2020.

[3] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

10

[4] Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential
equations for irregularly-sampled time series. In Advances in Neural Information Processing
Systems, volume 32, 2019.

[5] Max Horn, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. Set functions
for time series. In International Conference on Machine Learning, pages 4353–4363. PMLR,
2020.

[6] Satya Narayan Shukla and Benjamin Marlin. Multi-time attention networks for irregularly
sampled time series. In International Conference on Learning Representations, 2021.

[7] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

[8] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. In International Conference on
Learning Representations, 2023.

[9] Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided
network for irregularly sampled multivariate time series. In International Conference on
Learning Representations, ICLR, 2022.

[10] Zhen Wang, Ting Jiang, Zenghui Xu, Jianliang Gao, and Ji Zhang. Irregularly sampled
multivariate time series classification: A graph learning approach. IEEE Intelligent Systems,
2023.

[11] Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Medklip: Medical
knowledge enhanced language-image pre-training for x-ray diagnosis. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 21372–21383, 2023.

[12] Xiaoman Zhang, Chaoyi Wu, Ya Zhang, Weidi Xie, and Yanfeng Wang. Knowledge-enhanced
visual-language pre-training on chest radiology images. Nature Communications, 14(1):4542,
2023.

[13] Yinjun Wu, Jingchao Ni, Wei Cheng, Bo Zong, Dongjin Song, Zhengzhang Chen, Yanchi Liu,
Xuchao Zhang, Haifeng Chen, and Susan B Davidson. Dynamic gaussian mixture based deep
generative model for robust forecasting on sparse multivariate time series. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pages 651–659, 2021.

[14] Satya Narayan Shukla and Benjamin Marlin. Interpolation-prediction networks for irregularly
sampled time series. In International Conference on Learning Representations, 2019.

[15] Qingxiong Tan, Mang Ye, Grace Lai-Hung Wong, and Pong Chi Yuen. Cooperative joint
attentive network for patient outcome prediction on irregular multi-rate multivariate health data.
In IJCAI, pages 1586–1592, 2021.

[16] Liantao Ma, Junyi Gao, Yasha Wang, Chaohe Zhang, Jiangtao Wang, Wenjie Ruan, Wen Tang,
Xin Gao, and Xinyu Ma. Adacare: Explainable clinical health status representation learning via
scale-adaptive feature extraction and recalibration. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 825–832, 2020.

[17] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific reports, 8(1):6085,
2018.

[18] Sindhu Tipirneni and Chandan K Reddy. Self-supervised transformer for sparse and irregularly
sampled multivariate clinical time-series. ACM Transactions on Knowledge Discovery from
Data (TKDD), 16(6):1–17, 2022.

[19] Alex Labach, Aslesha Pokhrel, Xiao Shi Huang, Saba Zuberi, Seung Eun Yi, Maksims Volkovs,
Tomi Poutanen, and Rahul G. Krishnan. Duett: Dual event time transformer for electronic
health records, 2023.

11

[20] Zekun Li, Shiyang Li, and Xifeng Yan. Time series as images: Vision transformer for irregularly
sampled time series. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[21] Sheo Yon Jhin, Minju Jo, Taeyong Kong, Jinsung Jeon, and Noseong Park. Ace-node: Attentive
co-evolving neural ordinary differential equations. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pages 736–745, 2021.

[22] Jiawen Zhang, Shun Zheng, Wei Cao, Jiang Bian, and Jia Li. Warpformer: A multi-scale
modeling approach for irregular clinical time series. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD ’23, page 3273–3285, New York,
NY, USA, 2023. Association for Computing Machinery.

[23] Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-temporal graph ode
networks for traffic flow forecasting. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pages 364–373, 2021.

[24] Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I Webb,
Irwin King, and Shirui Pan. A survey on graph neural networks for time series: Forecasting,
classification, imputation, and anomaly detection. arXiv preprint arXiv:2307.03759, 2023.

[25] Saeed Rahmani, Asiye Baghbani, Nizar Bouguila, and Zachary Patterson. Graph neural
networks for intelligent transportation systems: A survey. IEEE Transactions on Intelligent
Transportation Systems, 2023.

[26] Lijing Wang, Aniruddha Adiga, Jiangzhuo Chen, Adam Sadilek, Srinivasan Venkatramanan, and
Madhav Marathe. Causalgnn: Causal-based graph neural networks for spatio-temporal epidemic
forecasting. In Proceedings of the AAAI conference on artificial intelligence, volume 36, pages
12191–12199, 2022.

[27] Jianian Wang, Sheng Zhang, Yanghua Xiao, and Rui Song. A review on graph neural network
methods in financial applications. arXiv preprint arXiv:2111.15367, 2021.

[28] Guangyin Jin, Yuxuan Liang, Yuchen Fang, Zezhi Shao, Jincai Huang, Junbo Zhang, and
Yu Zheng. Spatio-temporal graph neural networks for predictive learning in urban computing:
A survey. IEEE Transactions on Knowledge and Data Engineering, 2023.

[29] Huaiyuan Liu, Xianzhang Liu, Donghua Yang, Zhiyu Liang, Hongzhi Wang, Yong Cui, and Jun
Gu. Todynet: Temporal dynamic graph neural network for multivariate time series classification.
arXiv preprint arXiv:2304.05078, 2023.

[30] Andrea Cini, Ivan Marisca, and Cesare Alippi. Filling the g_ap_s: Multivariate time series
imputation by graph neural networks. In International Conference on Learning Representations,
2022.

[31] Renhe Jiang, Zhaonan Wang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa Kobayashi,
Xuan Song, Shintaro Fukushima, and Toyotaro Suzumura. Spatio-temporal meta-graph learn-
ing for traffic forecasting. In Proceedings of the AAAI conference on artificial intelligence,
volume 37, pages 8078–8086, 2023.

[32] Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and
Yang Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refine-
ment. Advances in Neural Information Processing Systems, 36:46885–46902, 2023.

[33] Dingsu Wang, Yuchen Yan, Ruizhong Qiu, Yada Zhu, Kaiyu Guan, Andrew Margenot, and
Hanghang Tong. Networked time series imputation via position-aware graph enhanced vari-
ational autoencoders. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 2256–2268, 2023.

[34] Binwu Wang, Pengkun Wang, Yudong Zhang, Xu Wang, Zhengyang Zhou, Lei Bai, and
Yang Wang. Towards dynamic spatial-temporal graph learning: A decoupled perspective. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 9089–9097,
2024.

12

[35] Zhihong Chen, Yan Song, Tsung-Hui Chang, and Xiang Wan. Generating radiology reports
via memory-driven transformer. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu,
editors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1439–1449, Online, November 2020. Association for Computational
Linguistics.

[36] Xiaomeng Li, Xiaowei Hu, Lequan Yu, Lei Zhu, Chi-Wing Fu, and Pheng-Ann Heng. Canet:
cross-disease attention network for joint diabetic retinopathy and diabetic macular edema
grading. IEEE transactions on medical imaging, 39(5):1483–1493, 2019.

[37] Qing Liao, Ye Ding, Zoe L Jiang, Xuan Wang, Chunkai Zhang, and Qian Zhang. Multi-task
deep convolutional neural network for cancer diagnosis. Neurocomputing, 348:66–73, 2019.

[38] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[39] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional
recurrent network for traffic forecasting. Advances in neural information processing systems,
33:17804–17815, 2020.

[40] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In International Conference on Learning Representations
(ICLR ’18), 2018.

[41] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[42] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[43] Matthew A Reyna, Chris Josef, Salman Seyedi, Russell Jeter, Supreeth P Shashikumar, M Bran-
don Westover, Ashish Sharma, Shamim Nemati, and Gari D Clifford. Early prediction of sepsis
from clinical data: the physionet/computing in cardiology challenge 2019. In 2019 Computing
in Cardiology (CinC), pages Page–1. IEEE, 2019.

[44] Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-
hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012. In
2012 Computing in Cardiology, pages 245–248. IEEE, 2012.

[45] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

[46] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov,
Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley.
Physiobank, physiotoolkit, and physionet: components of a new research resource for complex
physiologic signals. circulation, 101(23):e215–e220, 2000.

[47] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang.
Connecting the dots: Multivariate time series forecasting with graph neural networks. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 753–763, 2020.

[48] Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg, and Aram Galstyan.
Multitask learning and benchmarking with clinical time series data. Scientific data, 6(1):96,
2019.

[49] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
Proceedings of the 23rd international conference on Machine learning, pages 233–240, 2006.

[50] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

13

[51] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[52] Craig Lockwood, Tiffany Conroy-Hiller, and Tamara Page. Vital signs. JBI Evidence Synthesis,
2(6):1–38, 2004.

[53] George L Sternbach. The glasgow coma scale. The Journal of emergency medicine, 19(1):67–71,
2000.

[54] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves.
volume 06, 06 2006.

[55] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[56] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. CoRR, abs/1910.13461,
2019.

[57] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[58] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv:2004.05150, 2020.

[59] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. Pegasus: Pre-training with
extracted gap-sentences for abstractive summarization, 2019.

14

A Algorithm of KEDGN

Algorithm 1 The pseudo-code of KEDGN

Input: An ISMTS sample observation values matrix: x(1:T) ∈ RV×T , binary mask matrix m(1:T) ∈
RV×T , observation timestamps t(1:T) ∈ RT , the sentences of V variables’ medical properties
P = {P1, P2, . . . , PV }
Output: Predicted classification label ŷ

1: extract semantic representations E ∈ RV×d for variables from P through PLM using Eq.(2)
2: obtain variable-specific parameter space Θ (including reset gate Θr, update gate Θu and candi-

date gate ΘC ∈ RV×(k+h)×h) using Eq.(3)
3: obtain complete variable correlation graph A using Eq.(4)
4: initialize the hidden state of V variables H(0) = 0V×h

5: for i = 1, 2, ..., T do
6: obtain dynamic variable subgraph G(i) ∈ RV×V according to m(i) and Eq.(8)
7: encode observation values x(i) and timestamp t(i) into X(i) ∈ RV×k by multiple fully-

connected mappings
8: update H(i) = GCRNN(Θ,G(i),X(i),H(i−1)) using Eq.(10), (11), (12) and (11)
9: end for

10: calculate the sum of h channels for H(i) to get C ∈ RV

11: calculate ŷ = Softmax(W yC + by)
12: return ŷ

B Datasets

We use four irregularly sampled medical time series datasets to evaluate the classification performance
of our model and baseline models. The dataset statistics are summarized in Table 4.

Table 4: Dataset statistics.
Datasets P19 P12 MIMIC-III Physionet

Samples 38803 11988 21107 3997
Variables 34 36 16 36

Max Observation Length 60 215 292 215
Missing Ratio 94.9% 88.4% 65.5% 84.9%

P19 The PhysioNet Sepsis Early Prediction Challenge 2019 [43] dataset consists of medical records
from 38,803 patients. Each patient’s record includes 34 variables of up to 60 hours and a static
vector indicating attributes such as age, gender, the time interval between hospital admission and
ICU admission, type of ICU, and length of stay in the ICU measured in days. Additionally, each
patient is assigned a binary label indicating whether sepsis occurs within the subsequent 6 hours. We
follow the procedures of [9] to ensure certain samples with excessively short or long time series are
excluded. It is available at https://physionet.org/content/challenge-2019/1.0.0/.

P12 The P12 [46] dataset comprises data from 11,988 patients after 12 inappropriate samples
identified by [5] were removed from the dataset. Each patient’s record in the P12 dataset includes
multivariate time series data collected during their initial 48-hour stay in the ICU. The time series
data consists of measurements from 36 sensors (excluding weight). Additionally, each sample is
associated with a static vector containing 9 elements, including age, gender, and other relevant
attributes. Furthermore, each patient in the P12 dataset is assigned a binary label indicating the
length of their stay in the ICU. A negative label signifies a hospitalization period of three days or
shorter, while a positive label indicates a hospitalization period exceeding three days. It is available
at https://physionet.org/content/challenge-2012/1.0.0/.

MIMIC-III The MIMIC-III [45] dataset is a widely used database that comprises de-identified
Electronic Health Records of patients who were admitted to the ICU at Beth Israel Deaconess

15

https://physionet.org/content/challenge-2019/1.0.0/
https://physionet.org/content/challenge-2012/1.0.0/

Medical Center from 2001 to 2012. It Originally encompassed around 57,000 records of ICU
patients, containing diverse variables such as medications, in-hospital mortality, and vital signs. [48]
established a variety of benchmark tasks using a subset of this database. In this paper, we focus
on the binary in-hospital mortality prediction task to assess classification performance. Following
preprocessing, our dataset consists of 16 features from the preceding 48 hours and 21,107 samples. It
is available at https://physionet.org/content/mimiciii/1.4/.

Physionet Physionet[44] contains the data from the first 48 hours of ICU patients, which is a
reduced version of P12 considered by prior work. Therefore, we follow the same preprocessing
methods used for the P12 dataset. The processed data set includes 3997 labeled instances. We focus
on predicting in-hospital mortality. It is available at https://physionet.org/content/challenge-2012/.

C Baselines

The implementation of baselines follows the corresponding papers or default implementation of their
code repositories. Considering that different baselines have varying convergence speeds, we search
for the number of epochs in the range of {10, 20, 50} to ensure all baselines can reach convergence.
We search for the learning in the range of {0.001, 0.005} due to the differences in model complexity
and dataset size. Since all four datasets are highly imbalanced, we upsample the minority class in each
batch to make the batch balance. Here are the detailed hyperparameter settings of these baselines:

ODE-RNN [4]: ODE-RNN uses neural ODEs to model hidden state dynamics and an RNN
to update the hidden state in the presence of a new observation. The latent dimension is set
as 40, and the ODE function has 3 layers with 50 units. The source code can be found at
https://github.com/YuliaRubanova/latent_ode

GRU-D [17]: GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural
network. It takes two representations of missing patterns, i.e., masking and time interval, and
effectively incorporates them into a deep model architecture. The number of hidden states of GRU-D
is set as 49. We use the open source code from https://github.com/Han-JD/GRU-D

SEFT [5]: A set function approach where all the observations are modeled individually before
pooling them together using an attention-based approach. We use a constant architecture for the
attention network f ′ with 2 layers, 4 heads and dimensionality of the dot product space d of 128. In
addition, the attention network f ′ was always set to use mean aggregation. We use the open source
code from https://github.com/BorgwardtLab/SeFT.

mTAND [6]: A deep learning framework for ISMTS data that learns an embedding of continuous
time values and uses an attention mechanism to produce a fixed-length representation. We use the
encoder of the overall framework for classification tasks. We set the latent dimension and the hidden
size of GRU to 32. The number of reference points and the dimension of time embedding is 128. The
source code can be found at https://github.com/reml-lab/mTAN.

IP-Net [14]: A model architecture for ISMTS data based on several semi-parametric interpolation
layers organized into an interpolation network followed by a prediction network GRU. The number
of reference points is set as 192. The hidden size of GRU is 100. We take the source code at
https://github.com/mlds-lab/interp-net.

DGM2-O [13]: A generative model, which tracks the transition of latent clusters instead of iso-
lated feature representations, achieves robust sparse time series modeling. We use the DGM2-O
and set both the hidden dimension and the cluster_num as 10. We use the source code at
https://github.com/thuwuyinjun/DGM2.

MTGNN [47]: A general graph neural network framework designed for MTS data. We use 5 graph
convolution and 5 temporal convolution modules with the dilation exponential factor 2. The graph con-
volution and temporal convolution modules have 16 output channels. The skip connection layers all
have 32 output channels. The first layer of the output module has 64 output channels, and the second
layer has 1 output channel. We use the open source code from: https://github.com/nnzhan/MTGNN.

16

https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/challenge-2012/
https://github.com/YuliaRubanova/latent_ode
https://github.com/Han-JD/GRU-D
https://github.com/BorgwardtLab/Set_Functions_for_Time_Series
https://github.com/reml-lab/mTAN
https://github.com/mlds-lab/interp-net
https://github.com/thuwuyinjun/DGM2
https://github.com/nnzhan/MTGNN

Raindrop [9]: A graph neural network that embeds ISMTS while learning the dynamics of sensors
purely from observation data. The dimension of observation embedding is 4. The dimensions of time
representation pt and rv are 16. We set the number of Raindrop layers L as 2. The dk is set to 20. The
da is set equal to the number of sensors. The source code can be found at https://github.com/mims-
harvard/Raindrop

StraTS [18] is a self-supervised transformer for sparse IMTS. We use the implementation at
https://github.com/sindhura97/STraTS and the following setting in our experiment: hidden_dim = 64,
num_layers = 2, num_heads = 16, dropout = 0.2.

DuETT [19] is a dual event time transformer for Electronic Health Records (EHRs). We use the
implementation at https://github.com/layer6ai-labs/DuETT and the default settings of the model
declaration in this repository.

ViTST [20] transforms IMTS into line graph images and adapts powerful vision transformers to
perform time series classification in the same way as image classification. We use the implementation
at https://github.com/Leezekun/ViTST.

Warpformer [22]: A transformer-based network that captures features at different scales in IMTS
using warping modules and dual attention mechanisms. We use three scales with normalized length
L̃(0) = 0, L̃(1) = 0.2 and L̃(2) = 1. The dimension of representations D is set as 32. The attention
heads and the layers of the warpformer are set as 1 and 2, respectively. We use the implementation at
https://github.com/imJiawen/Warpformer.

D Performance Metrics

AUROC AUROC is commonly employed in binary classification tasks, where one class is des-
ignated as positive and the other as negative. It represents the area under the Receiver Operating
Characteristic (ROC) curve, constructed by plotting the True Positive Rate (TPR) against the False
Positive Rate (FPR). AUROC ranges from 0 to 1, with a higher value indicating better model perfor-
mance in accurately discriminating between positive and negative instances. An AUROC equal to 0.5
indicates a model’s performance equivalent to random guessing, while an AUROC greater than 0.5
signifies superiority over random guessing.

AUPRC The Area Under the Precision-Recall Curve is widely used as a performance metric
for imbalanced binary classification tasks. It provides a comprehensive assessment of a model’s
precision-recall trade-off. The Precision-Recall curve is constructed by plotting recall on the x-axis
and precision on the y-axis. AUPRC ranges from 0 to 1, and a higher value indicates better model
performance in achieving high precision and recall simultaneously. It has been suggested as a good
criterion for unevenly distributed classification problems [54].

E More Implementation Details

Generation of Variables’ Textual Descriptions We have chosen three textual sources: the full
name of the variable, Wikipedia, and ChatGPT, for variable descriptions. The full name of the variable
and Wikipedia sources can be directly extracted from dataset descriptions and web pages without
requiring special processing, so we don’t delve into them further here. Regarding the ChatGPT
source, the medical properties description for each variable is generated by providing consistent
question templates to ChatGPT, aiming to maintain a relatively uniform format across variables. We
initiate queries to ChatGPT using the following template: What medical prior knowledge do you
know about the medical variable 1⃝ in 2⃝? to obtain a textual description for each variable in a
specific dataset. The position marked as ’ 1⃝’ corresponds to the variable name to be queried, and the
position marked as ’ 2⃝’ corresponds to the dataset-specific task description. For instance, the task for
the MIMIC-III dataset is ICU patients’ in-hospital mortality prediction, so the query for obtaining
textual information associated with the variable Heart Rate could be: What medical prior knowledge
do you know about the medical variable Heart Rate in diagnosing whether ICU patients will die
during hospitalization? The following is a part of ChatGPT’s answer for this example:

17

https://github.com/mims-harvard/Raindrop
https://github.com/mims-harvard/Raindrop
https://github.com/sindhura97/STraTS
https://github.com/layer6ai-labs/DuETT
https://github.com/Leezekun/ViTST
https://github.com/imJiawen/Warpformer

Heart rate is a fundamental physiological variable that plays a significant role in diagnosing and
assessing the condition of ICU patients and their potential risk of mortality during hospitalization.
Here’s what you need to know about the medical variable "heart rate" in this context: Normal Heart
Rate: A normal resting heart rate for adults typically ranges between 60 to 100 beats per minute
(bpm). Deviations from this range can indicate potential health issues. Tachycardia: An elevated
heart rate (tachycardia), often above 100 bpm, can be a sign of various medical conditions

The complete text description can be obtained through the code link.

Hyperparameters We search all hyperparameters in the grid to find the best hyperparameters for
our proposed model KEDGN. Specifically, our model has a total of 5 hyperparameters: dimension
of query vectors q, dimension of variables’ node embeddings n, proportion of density score α,
dimension of variables’ hidden state h, and dimension of structured encoding representations k. For
all datasets, h and k are set to be equal, and we search them over the range {8, 12, 16}. Additionally,
we search the dimension of query vectors q in {5, 7, 9}, the dimension of variables’ node embedding
n in {7, 9, 11} and the proportion of density score α in {1.0, 2.0, 3.0}. The best hyperparameters for
each dataset are reported in the code.

F Additional Experiment

F.1 Classification Results Using Different PLMs

Table 5: Details of Pre-trained Language Models.

Model Size HuggingFace Key Architecture

T5 223M t5-base Encoder-Decoder
Bart 139M facebook/bart-base Encoder-Decoder

GPT2 137M gpt2 Decoder-Only
LED 139M allenai/led-base-16384 Encoder-Decoder

Pegasus 568M google/pegasus-xsum Encoder-Decoder
BERT 110M bert-base-uncased Encoder-Only

In KEDGN, we utilize a PLM to extract
sentence embeddings of variables’ tex-
tual medical information as variable se-
mantic representations. The choice of
PLM is diverse, and in our default imple-
mentation, we use BERT. Additionally,
we have experimented with other PLMs,
including T5 [55], Bart [56], GPT2 [57],
LED [58], and Pegasus [59]. The de-
tailed information of these PLMs is listed
in Table 5. We extract the hidden state at
the [CLS] position for BERT. For other models, we uniformly take the last hidden state (average
pooling) of the models as the representations of the variables. The classification results of using
different PLMs on four datasets are listed in Table 6.

The results show that BERT (Encoder-Only model) achieved high performance on most datasets. Sev-
eral Encoder-Decoder-based models also demonstrated competitive results, with Bart outperforming
BERT on the P12 dataset, LED slightly surpassing BERT on the Physionet dataset and T5 showing
slightly lower performance than BERT on the MIMIC-III dataset. However, the Decoder-Only GPT
exhibited notably lower results on the P19 dataset and MIMIC-III compared to other models. This
situation may be attributed to the fact that, in our task, PLMs are used to extract sentence-level
semantic representations, which are utilized to differentiate variables and measure correlations among
them, resembling a text classification process among variables. On the one hand, Encoder-Only
models may excel at understanding tasks such as text classification, with BERT specifically adding a
special [CLS] token dedicated to extracting sentence-level overall semantic information. On the other
hand, models incorporating a decoder involve tasks related to predicting the next word and may be
more focused on text generation tasks. They may exhibit a slight deficiency in extracting distinctive
sentence-level representations, especially for Decoder-Only models. These models sometimes require
carefully designed prompts to guide them in generating high-quality outputs.

In summary, variable semantic representations extracted by different PLMs can impact downstream
task performance. Choosing a PLM that is more suitable for the task and dataset can further enhance
the performance of KEDGN. In the context of the application in this paper, a simple pure encoder
model may be more suitable for achieving optimal results.

F.2 Computational Cost Analysis

18

Table 6: Classification results using different PLMs. The best results are highlighted in bold, and the
second-best results are in underlined. The results in the table are presented in the form of (Mean ±
Std %).

P19 Physionet MIMIC-III P12

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

T5 91.4 ± 0.8 59.7 ± 1.2 87.3 ± 0.5 56.9 ± 2.5 84.6 ± 0.3 48.0 ± 0.8 87.5 ± 0.4 53.6 ± 2.3
Bart 91.6 ± 0.6 59.8 ± 1.6 85.7 ± 1.3 53.3 ± 2.5 82.5 ± 2.9 44.4 ± 4.6 87.7 ± 0.6 55.0 ± 2.0

GPT2 91.4 ± 1.6 54.8 ± 7.5 87.4 ± 0.7 56.1 ± 1.6 82.6 ± 2.0 43.1 ± 4.0 87.4 ± 0.2 53.2 ± 1.7
LED 91.7 ± 0.5 60.3 ± 0.8 87.5 ± 0.6 57.3 ± 2.5 84.5 ± 0.4 47.9 ± 0.8 86.8 ± 0.5 51.1 ± 1.6

Pegasus 91.9 ± 0.5 61.1 ± 1.2 87.1 ± 1.2 52.8 ± 2.5 84.4 ± 0.8 48.0 ± 1.9 87.3 ± 0.5 53.7 ± 1.1
BERT(Default) 92.2 ± 0.5 62.0 ± 1.3 87.9 ± 0.2 57.1 ± 1.8 85.1 ± 0.3 48.3 ± 1.6 87.8 ± 0.5 54.5 ± 1.5

Table 7: Comparison of computational
costs on Physionet dataset.

Model time(min/epoch) space(MiB)

ODE-RNN 5.06 2582
GRU-D 1.32 796
SeFT 0.07 684

mTAND 0.05 4658
DGM2-O 0.06 688
Raindrop 0.17 4864

Warpformer 0.33 11084

KEDGN 0.44 1798

We conduct a analysis of the time and space overhead
on the Physionet dataset, with a batch size of 128, and
utilizing Nvidia 1080Ti GPU infrastructure. The results
are shown in Table 7. Our method achieves a balanced
time and space overhead. The introduction of textual
information involves generating semantic embeddings
using PLMs, and the adjustment of the variable graph
based on observed local density, both of which can
be predetermined and integrated into the preprocess-
ing step without increasing model training overhead.
Attention-based methods (SeFT, mTAND) achieve par-
allel computing in the time dimension, resulting in low
time overhead, but this sacrifices fine-grained feature
extraction at the variable level. Furthermore, compared to the same RNN-based method GRU-D,
our method only deals with actual observation points at each timestamp, thus significantly reducing
time overhead. While our method’s runtime is 1.3 times that of the latest SOTA model, Warpformer,
our space overhead is only 16% of its size. In situations where computational resources permit,
our method can further reduce runtime by employing the space-for-time trade-off strategy (such as
increasing batch size).

F.3 More Results for Leave-variables-out

Table 8: Classification performance on samples with a fixed set of left-out variables. The best results
are highlighted in bold and the second best results are in underlined.

Dataset Methods
Discard ratio

10% 20% 30% 40% 50%

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

P12

GRU-D 68.6 ± 2.3 35.8 ± 2.2 68.2 ± 2.1 34.5 ± 2.9 66.8 ± 3.3 32.7 ± 4.6 65.8 ± 4.0 31.3 ± 5.2 65.1 ± 4.1 30.4 ± 5.5
mTAND 74.9 ± 0.6 37.7 ± 0.6 74.0 ± 1.3 36.5 ± 1.5 71.4 ± 3.8 34.1 ± 3.7 70.6 ± 3.6 33.2 ± 3.7 70.1 ± 3.5 32.5 ± 3.6
DGM2-O 76.3 ± 1.1 39.3 ± 1.5 76.1 ± 1.1 38.2 ± 1.7 74.8 ± 2.2 36.8 ± 2.6 72.0 ± 5.3 34.3 ± 5.0 70.4 ± 5.9 32.7 ± 5.7
MTGNN 71.2 ± 2.1 30.5 ± 1.5 70.3 ± 3.3 29.7 ± 2.8 68.9 ± 4.2 28.5 ± 3.3 68.1 ± 4.7 27.7 ± 3.6 67.6 ± 5.2 27.2 ± 3.8
Raindrop 73.2 ± 1.6 32.4 ± 0.9 73.0 ± 1.6 31.7 ± 1.1 72.2 ± 2.6 31.1 ± 2.7 71.5 ± 3.5 30.6 ± 3.5 70.8 ± 4.2 29.7 ± 4.3
DuETT 73.9 ± 1.7 35.8 ± 2.3 74.7 ± 1.8 35.3 ± 2.0 73.6 ± 2.2 34.1 ± 2.4 72.8 ± 2.6 33.3 ± 2.7 72.3 ± 2.7 32.6 ± 2.8

Warpformer 75.9 ± 0.7 37.3 ± 2.2 75.6 ± 0.8 36.7 ± 2.3 73.8 ± 2.9 34.3 ± 4.1 72.8 ± 3.4 33.0 ± 4.6 72.1 ± 3.7 32.2 ± 4.7

Ours 79.7 ± 0.4 43.6 ± 1.2 79.2 ± 0.8 42.5 ± 1.6 77.7 ± 2.2 40.0 ± 4.0 77.2 ± 2.2 39.6 ± 3.7 76.9 ± 2.2 39.2 ± 3.5

P19

GRU-D 88.5 ± 2.3 54.6 ± 3.7 88.8 ± 2.1 54.2 ± 3.4 88.0 ± 2.5 50.4 ± 7.5 87.5 ± 2.8 49.6 ± 6.9 86.4 ± 3.5 47.2 ± 8.6
mTAND 79.6 ± 1.8 28.6 ± 1.9 79.2 ± 1.9 28.1 ± 2.1 78.0 ± 2.4 26.9 ± 2.9 77.2 ± 2.7 26.3 ± 2.9 76.2 ± 3.2 24.3 ± 4.8
DGM2-O 87.4 ± 0.6 53.4 ± 1.5 87.3 ± 0.8 53.2 ± 1.7 86.6 ± 1.6 49.9 ± 5.1 85.8 ± 1.9 47.7 ± 5.9 85.2 ± 2.2 45.7 ± 6.7
MTGNN 84.5 ± 1.4 48.9 ± 2.3 84.8 ± 1.7 49.8 ± 3.1 84.0 ± 1.9 47.2 ± 4.8 83.3 ± 2.2 45.5 ± 5.5 82.5 ± 2.9 42.7 ± 9.2
Raindrop 88.2 ± 1.5 59.7 ± 1.5 88.1 ± 1.3 59.8 ± 1.4 87.8 ± 1.2 59.1 ± 1.7 87.6 ± 1.1 58.5 ± 1.9 87.1 ± 1.5 57.7 ± 2.3
DuETT 85.2 ± 1.0 53.7 ± 1.0 84.8 ± 1.1 53.9 ± 0.8 84.7 ± 1.0 53.3 ± 1.6 84.3 ± 1.4 52.7 ± 2.1 84.4 ± 1.3 52.5 ± 2.0

Warpformer 91.3 ± 0.8 55.2 ± 5.6 91.3 ± 0.8 55.1 ± 5.6 91.4 ± 0.8 56.0 ± 4.8 91.5 ± 0.7 56.4 ± 4.3 91.2 ± 0.8 56.2 ± 3.9

Ours 91.3 ± 0.3 59.9 ± 0.7 91.2 ± 0.5 59.6 ± 0.9 90.9 ± 0.9 59.1 ± 1.1 90.7 ± 1.0 58.9 ± 1.2 90.1 ± 1.6 58.1 ± 2.0

Physionet

GRU-D 70.0 ± 3.0 32.1 ± 4.1 69.5 ± 2.6 31.1 ± 3.6 69.2 ± 3.0 31.0 ± 4.4 68.3 ± 3.6 30.1 ± 5.3 68.1 ± 3.7 29.8 ± 5.3
mTAND 80.5 ± 2.1 42.8 ± 4.0 78.2 ± 3.4 40.5 ± 4.7 76.3 ± 4.0 37.7 ± 5.7 75.6 ± 3.9 36.6 ± 5.6 75.1 ± 3.9 36.1 ± 5.1
DGM2-O 80.2 ± 0.9 38.6 ± 2.8 80.4 ± 0.9 38.3 ± 2.8 79.3 ± 1.9 37.1 ± 3.4 77.5 ± 3.7 35.4 ± 4.4 75.6 ± 5.0 34.0 ± 4.8
MTGNN 68.9 ± 4.1 25.8 ± 4.8 69.3 ± 4.3 26.6 ± 4.5 69.0 ± 4.8 26.3 ± 5.2 68.3 ± 5.2 25.4 ± 4.8 67.2 ± 5.4 24.4 ± 4.8
Raindrop 76.5 ± 1.2 33.4 ± 2.2 76.5 ± 1.3 32.3 ± 2.3 75.6 ± 2.0 30.8 ± 3.2 74.7 ± 2.6 29.7 ± 3.5 73.6 ± 3.2 28.8 ± 3.9
DuETT 78.2 ± 2.8 39.9 ± 3.5 78.3 ± 3.0 39.9 ± 3.7 76.7 ± 3.7 37.9 ± 4.5 75.9 ± 3.8 37.0 ± 4.6 74.9 ± 4.3 35.9 ± 5.0

Warpformer 78.2 ± 1.0 33.3 ± 2.1 77.7 ± 1.6 33.6 ± 1.8 75.8 ± 3.4 31.8 ± 3.0 73.8 ± 4.6 30.2 ± 4.1 72.7 ± 4.9 29.2 ± 4.2

Ours 83.8 ± 1.0 49.4 ± 2.5 82.9 ± 2.5 48.0 ± 5.3 81.7 ± 2.8 46.4 ± 5.5 81.4 ± 2.5 45.8 ± 5.2 81.1 ± 2.4 45.2 ± 5.3

19

F.4 More Results for Ablation Study

Table 9: The ablation study of our proposed method KEDGN. The results in the table are presented
in the form of (Mean ± Std %).

Physionet MIMIC-III P12

AUROC AUPRC AUROC AUPRC AUROC AUPRC

w/o VSW 86.6 ± 1.2 51.1 ± 3.2 84.6 ± 0.5 47.6 ± 0.4 86.1 ± 0.9 50.8 ± 1.2
w/o Text 87.7 ± 0.4 54.3 ± 2.0 83.4 ± 0.7 44.5 ± 1.5 87.7 ± 0.5 54.9 ± 0.9

w/o Graph 86.8 ± 0.7 55.2 ± 1.6 84.5 ± 0.4 48.0 ± 0.5 87.8 ± 0.6 53.2 ± 1.3
w/o KEE 86.6 ± 1.2 53.3 ± 1.8 83.9 ± 0.7 46.1 ± 1.9 87.5 ± 0.4 53.3 ± 0.5
w/o DAG 87.2 ± 0.9 55.8 ± 2.4 84.7 ± 0.8 47.7 ± 2.3 87.4 ± 0.1 52.1 ± 1.1
w/o TE 86.7 ± 1.9 55.2 ± 3.6 84.2 ± 0.4 47.3 ± 1.6 87.3 ± 0.4 53.9 ± 1.8

Full 87.9 ± 0.2 57.1 ± 1.8 85.1 ± 0.3 48.3 ± 1.6 87.8 ± 0.5 54.5 ± 1.5

We find that the model performance declines after introducing text information on P12 dataset. As
indicated in Table 6, when we replace PLM from BERT to Bart, there is a slight improvement of
0.5% in AUPRC on the P12 dataset, slightly outperforming the model without text. Therefore, the
reason for the decline in model performance is likely attributed to the choice of default PLM (BERT),
which may not be optimal for extracting textual embeddings on this dataset, rather than the text
itself causing the decline. In other words, introducing text offers the potential for enhancing model
performance, with the extent of improvement depending on the degree of effective utilization of text.

F.5 Effects of different activation functions in Eq.(7)

Table 10: Comparison of the results of different activation functions in Eq.(7).

P19 Physionet MIMIC-III P12

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

w/o σ 90.3 ± 0.9 58.1 ± 1.8 86.2 ± 0.8 52.8 ± 4.5 84.3 ± 0.6 47.3 ± 1.5 86.8 ± 0.5 51.0 ± 1.2
σ Sigmoid 91.6 ± 0.8 59.6 ± 2.6 87.2 ± 0.7 56.0 ± 1.6 84.4 ± 0.7 47.5 ± 1.8 86.9 ± 0.8 52.9 ± 2.2

σ Tanh (Default) 92.2 ± 0.5 62.0 ± 1.3 87.9 ± 0.2 57.1 ± 1.8 85.1 ± 0.3 48.3 ± 1.6 87.8 ± 0.5 54.5 ± 1.5

On one hand, the activation function in Eq.(7) reflects the dynamics of variables, such as time decay
or exponential increase. On the other hand, this activation function serves a normalization purpose
because the edge weights in the knowledge-empowered complete graph A are normalized values. If
directly using the absolute value of the density to adjust the edge weights, the values might become
excessively large or small, which would severely disrupt the basic graph structure learned from textual
knowledge. Typical activation functions with normalization capabilities include Sigmoid and Tanh.
As shown in Table 10, Tanh is chosen since it performs better.

F.6 Parameter Complexity Analysis

Table 11: Comparison of the number of model parameters for three models.
Datasets P19 Physionet MIMIC-III P12

Raindrop 1947668 19789024 35647028 19789024
Warpformer 43780 43974 42034 43974

Ours 80262 46545 51129 63087

As shown in Table 11, the parameter count of our model is not particularly high. It is on the same
order of magnitude as Warpformer and significantly lower than Raindrop by three orders of magnitude.
Although we calculate an independent parameter space for each variable, the total Wt ∈ RV×I×O

does not equate to the parameter count. Wt is derived from the multiplication of two matrices: the
variable embedding matrix Q ∈ RV×q and the weight matrix W ∈ Rq×I×O. The first matrix is
computed from textual embeddings, and only the second matrix belongs to the model parameters.
The sizes q, I , and O are hyperparameters, independent of the number of variables, and typically
set to be less than 16. This ensures that the parameter complexity of our model remains within an
acceptable range.

20

F.7 More variables groups on the P12 dataset

(a) Invasive arterial blood pressure (b) Renal function indicators (c) Ion concentration indicators

(d) Non-invasive blood pressure (e) Blood cell indicators (f) Oxygenation status indicators.

Figure 7: Variable groups (Partial) divided by temporal patterns on the P12 dataset.

F.8 More Visualizations of Variables Textual Representations

(a) Vital signs indicators (b) Ion concentration indicators (c) Blood cell indicators

Figure 8: Variable groups (Partial) divided by temporal patterns on the P19 dataset.

(a) ChatGPT (b) Wikipedia (c) Random Initialized

Figure 9: T-SNE visualization of partial variable semantic representations on the P19 dataset.

(a) Vital signs indicators (b) Neurological scoring indicators

Figure 10: Variable groups (Partial) divided by temporal patterns on the MIMIC-III dataset.

21

(a) ChatGPT (b) Wikipedia (c) Random Initialized

Figure 11: T-SNE visualization of partial variable semantic representations on the MIMIC-III dataset.

F.9 Visualization of Variable Semantic Representations Using Different PLMs

(a) BERT(AUPRC=62.0) (b) LED(AUPRC=60.3) (c) GPT2(AUPRC=54.8)

Figure 12: T-SNE visualization of variable semantic representations generated by different PLMs on
the P19 dataset.

(a) BERT(AUPRC=48.3) (b) T5(AUPRC=48.0) (c) GPT2(AUPRC=43.1)

Figure 13: T-SNE visualization of variable semantic representations generated by different PLMs on
the MIMIC-III dataset.

We conduct T-SNE visualization analysis on variable representations obtained from different PLMs.
Figures 12 and 13 correspond to the results of the P19 and MIMIC-III datasets, respectively. We
observe that when the clusters of variable representations extracted by PLMs are consistent with the
grouping of variable time series patterns and exhibit distinctiveness, the corresponding downstream
classification task performance tends to be better. For example, on the P19 dataset, BERT and LED
achieve higher classification performance, with their corresponding variable representations having
good distinctiveness: the three groups of variables represented by blue, yellow, and green colors
show high cohesion and low coupling, while the T5 model, which exhibits suboptimal classification
performance, has a distribution where Resp, WBC, and Platelets are notably confused with the green
variables. Additionally, in the MIMIC-III dataset, the variable representations obtained from BERT
and T5, which achieve higher performance, with blue and green clusters having longer distances,
indicating better distinctiveness. On the other hand, variable representations obtained from GPT2
show poor distinctiveness, with the variable RR being close to GCS-EO and GCS-MR.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction have clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limiations of the work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

23

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code and data are provided by a Github repository link.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

24

Answer: [Yes]
Justification: The code and data are provided by a Github repository link.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Section 5.1 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the standard deviation of the mean in the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the computer resources in Appendix F.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

26

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

27

paperswithcode.com/datasets

Answer: [NA]
Justification: We release our model by a Github URL.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Related Work
	Problem Definition
	The Proposed Model
	Variable Semantic Representations Extraction
	Variable-specific Parameter Learning
	Dynamic Variable Graph Generation
	Complete Variable Correlation Graph Learning
	Dynamic Density-aware Adjustment Mechanism

	Variable-specfic Dynamic Graph Convolutional Recurrent Network

	Experiment
	Experimental Setting
	Main Results
	Ablation Study
	Visualization Analysis
	Visualization of Variables Textual Representations
	Visualization of Variable Correlation Graph
	Visualization of Dynamic Density-aware Graph

	Limitations
	Conclusion
	Algorithm of KEDGN
	Datasets
	Baselines
	Performance Metrics
	More Implementation Details
	Additional Experiment
	Classification Results Using Different PLMs
	Computational Cost Analysis
	More Results for Leave-variables-out
	More Results for Ablation Study
	Effects of different activation functions in Eq.(7)
	Parameter Complexity Analysis
	More variables groups on the P12 dataset
	More Visualizations of Variables Textual Representations
	Visualization of Variable Semantic Representations Using Different PLMs

