
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Similarity-based Approach for Efficient LargeQuasi-clique
Detection

Anonymous Author(s)
∗

ABSTRACT
Identifying dense subgraphs called quasi-cliques is pivotal in vari-

ous graphmining tasks across domains like biology, social networks,

and e-commerce. However, recent algorithms still suffer from ef-

ficiency issues when mining large quasi-cliques in massive and

complex graphs. Our key insight is that vertices within a quasi-

clique exhibit similar neighborhoods to some extent. Based on this,

we introduce NBSim and FastNBSim, efficient algorithms that find

near-maximum quasi-cliques by exploiting vertex neighborhood

similarity. FastNBSim further uses MinHash approximations to re-

duce the time complexity for similarity computation. Empirical eval-

uation on 10 real-world graphs shows that our algorithms deliver

up to three orders of magnitude speedup versus the state-of-the-art

algorithms, while ensuring high-quality quasi-clique extraction.
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1 INTRODUCTION
Dense subgraph extraction from large graphs has emerged as a key

operation in graph mining. By identifying highly interconnected

groups of vertices, dense subgraphs enable the discovery of critical

components hidden in real-world networks. For example, dense

subgraph mining has been used to identify spam link farms in

web graphs [13, 31], discover regulatory motifs in genomic DNA

[12], compress graphs [3], and analyze social network [15, 38]. The

widespread utility of dense subgraphs underscores their importance

as a fundamental graph mining primitive.

Various formulations for extracting different classes of dense

subgraphs have been proposed based on different density metrics.

Clique is the most classic dense subgraph model, which requires

full connectivity between all vertices. While conceptually simple,
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(a) A clique (b) A quasi-clique with    = 0.8α

Figure 1: Illustrating clique and quasi-clique.

cliques are often unrealistic for noisy, incomplete real-world data.

This has motivated the development of various flexible dense sub-

graph formulations in the literature.

Quasi-cliques represent a relaxation of the clique concept to al-

low for real-world noise and missing edges. An 𝛼-quasi-clique is a

subgraph where the number of edges is at least 𝛼 times the number

of edges in a clique of the same size, for some density parameter

𝛼 ∈ (0, 1). Figure 1 illustrates a clique, which is fully connected,

versus a quasi-clique which misses some edges. In the quasi-clique

shown, there are 15 possible edges but only 12 are present, giving

an edge-density of 12/15 = 0.8. Quasi-cliques provide a more flexi-

ble formulation by only requiring the subgraph to be nearly fully

connected based on the edge-density threshold 𝛼 . This makes them

better suited for real-world graphs compared to strict cliques.

Prior work. The maximum quasi-clique problem (MQCP) aims

to find the largest 𝛼-quasi-clique in a graph but is NP-hard to com-

pute [24]. Thus, several heuristic algorithms have been proposed.

Konar and Sidiropoulos [16] presented a polynomial-time algo-

rithm NB that mines large quasi-cliques from vertex neighborhoods

based on clustering coefficients. NB achieves the state-of-the-art

performance versus prior methods [22, 35] by refining well-chosen

neighborhoods.

However, as NB treats entire neighborhoods as quasi-cliques, it
risks overlooking dense subgraphs contained within larger neigh-

borhoods. Consider a vertex 𝑣 where the neighborhood 𝑁 (𝑣) has
size 110 and edge-density 0.5. While 𝑁 (𝑣) may not be optimal as a

whole, it could contain a dense subset 𝑆 of size 70 with edge-density

0.9 that meets the quasi-clique threshold, but 𝑆 is missed by NB.

Furthermore, NB has a high complexity of𝑂 (𝑚3/2) as it computes

the clustering coefficient for every vertex’s 1-hop neighbors via

triangle counting, including irrelevant ones. In summary, NB has

limitations in both accuracy and efficiency.

Our solution. To address the limitations of prior quasi-clique ex-

traction methods like NB, we propose NBSim and FastNBSim, novel
quasi-clique extraction algorithms based on similarity measures.

Different from NB, when checking each neighborhood (e.g., 𝑢’s

neighborhood), NBSim treats each neighbor 𝑣 in the neighborhood

as a unit, instead of treating the entire neighborhood as a whole.

Specifically, NBSim decides whether to include each vertex 𝑣 from

1
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𝑢’s neighborhood based on the similarity between the neighbor-

hoods of𝑢 and 𝑣 , and has the ability to detect the dense quasi-clique

inside the whole neighborhood of 𝑢. This enables the extraction of

quasi-cliques missed by NB that are solely based on clustering coef-

ficients of whole neighborhoods. Theoretically, we prove that this

similarity-based algorithm provides a lower bound on edge-density

for extracted quasi-cliques. Besides, it avoids expensive cluster-

ing coefficient computations as NB needs. We have also devised

a new vertex ordering strategy to further enhance efficiency. By

pruning unpromising neighborhoods early, we significantly reduce

unnecessary computations on irrelevant vertices.

To further speed up the similarity computation, we propose an

algorithm FastNBSim that uses the MinHash technique to estimate

the similarity between two neighborhoods in constant time, rather

than the neighborhood size-dependent time of the exact compu-

tation. Experiments show that even using small-size signatures of

MinHash, we can achieve promising results compared to NBSim.
Our principal contributions are summarized as follows:

• A similarity-based algorithm NBSim can efficiently detect

quasi-cliques inside the neighborhoods.

• A novel vertex ordering strategy prioritizes vertices whose

neighborhoods have a high potential to contain large quasi-

cliques first.

• A MinHash-based algorithm FastNBSim incorporates ap-

proximations with MinHash to reduce the overall time com-

plexity to linear.

• Comprehensive experiments on 10 real-world datasets demon-

strate that our solutions, especially FastNBSim, are up to

three orders of magnitude faster than state-of-the-art base-

lines while ensuring high-quality quasi-cliques extraction.

Outline. The rest of the paper is organized as follows. We review

the related work in Section 2. Section 3 gives the preliminaries and

the definition of the maximum quasi-clique problem. We present

our similarity-based algorithm NBSim in Section 4 and MinHash-

based fast algorithm FastNBSim in Section 5. Experimental results

are presented in Section 6. We conclude the paper in Section 7.

2 RELATEDWORK
Finding dense subgraphs in large graphs is an important task in

graph mining. Among different dense subgraph models, clique is

the archetypal one. Here, we review related work on cliques and

some close variants, e.g., the densest subgraph and quasi-cliques.

MaximumClique Finding. Themaximum clique problem aims

to find a clique of maximum size in a given graph. This problem is

NP-hard. Branch-and-bound search methods have been extensively

studied for finding maximum cliques exactly [4, 5, 18, 23, 30, 39].

The key idea is to grow an initially empty clique by recursively

moving vertices from a candidate set to the clique, pruning branches

that cannot lead to a maximum clique. For sparse graphs, Chang

[6] proposes more efficient maximum clique finding algorithms.

MaximalClique Enumeration.The problem ofmaximal cliques

enumeration (MCE) in a graph is harder than MCC, since the out-

put size may itself be very large. MCE has also been extensively

studied. Bron and Kerbosch [2] introduced a backtracking search

method to enumerate maximal cliques. Tomita et al. [32] used the

idea of "pivoting" in the backtracking search. Eppstein et al. [11]

used a degeneracy-based vertex ordering schema on top of the pivot

selection strategy. In [8], Das et al. present shared-memory parallel

algorithms for MCE.

Densest SubgraphDiscovery.Due to the NP-hardness of clique
finding, a less stringent, polynomial-time formulation for mining

dense subgraphs is formulated. Goldberg [13] introduced the dens-

est subgraph (DS) discovery problem and proposed the maximum-

flow-based algorithm to seek the subgraph with maximum density,

i.e. ratio of edges to vertices. Variants of this problem include gener-

alizing the density measure to 𝑘-clique-based density [34], finding

dense subgraphs in bipartite graphs [22] and directed graphs [19],

and finding dense subgraphs in evolving graphs [10].

MaximumQuasi-Clique Problem.Another relaxation to cliques
is known as quasi-cliques. Given a threshold 𝛾 , a 𝛾-quasi-clique is

a subgraph with edge density above 𝛾 . The maximum quasi-clique

problem aims to find the largest 𝛾-quasi-clique in a graph. This

problem generalizes maximum clique finding and is NP-hard [24].

Algorithms for this problem can be classified as exact or heuristic.

Exact algorithms such as branch-and-bound can guarantee opti-

mality but have high runtime on large graphs [20, 21, 24, 27, 37].

Thus, many efficient heuristic algorithms have been developed.

Abello et al. [1] introduced an efficient semi-external memory algo-

rithm and relies on greedy randomized adaptive search procedures.

Tsourakakis et al. [35] studied the optimal-quasi-clique and de-

signed a greedy algorithm and a local-search algorithm for MQCP.

Pinto et al. [25, 26] proposed the biased random-key genetic algo-

rithm for the MQCP. Djeddi et al. [9] used an extension of adaptive

multi-start tabu search to approximate the MQCP solution. Konar

and Sidiropoulos [16] proposed an efficient algorithm for MQCP by

mining large quasi-cliques from vertex neighborhoods. Recently,

Chen et al. [7] developed an efficient local search algorithm by

taking a novel vertex selection strategy. However, state-of-the-art

heuristics remain inefficient on massive graphs. The algorithm in

[7] provides no polynomial time guarantees, while the polynomial

method in [16] has high runtimes on large graphs.

3 PRELIMINARIES
3.1 Problem Definition
We consider an unweighted and undirected graph𝐺 = (𝑉 , 𝐸), where
𝑉 and 𝐸 are the sets of vertices and edges respectively. We denote

the numbers of vertices and edges in 𝐺 by 𝑛 and𝑚 respectively.

For a vertex 𝑢, the neighborhood 𝑁 (𝑢) consists of the set of nodes
that are neighbors of node 𝑢 and 𝑢 itself [41]. The degree of 𝑢

is defined as the number of neighbors of 𝑢, denoted as 𝑑 (𝑢), i.e.,
|𝑁 (𝑢) | = 𝑑 (𝑢) + 1. Given a subset of vertices 𝑆 ⊆ 𝑉 , denote 𝐸 (𝑆)
as the subset of 𝐸 containing edges only between the vertices in

𝑆 , i.e., 𝐸 (𝑆) = 𝐸 ∩ (𝑆 × 𝑆). We use 𝐺 [𝑆] = (𝑆, 𝐸 (𝑆)) to denote the

subgraph induced by 𝑆 , and 𝑑𝑆 (𝑢) to denote degree of 𝑢 in 𝐺 [𝑆].

Definition 3.1 (Edge-density [7, 16]). Given a graph 𝐺 = (𝑉 , 𝐸)
and its subgraph 𝐺𝑆 = (𝑆, 𝐸 (𝑆)) induced by 𝑆 , its edge-density is

defined as:

𝛿 (𝑆) = |𝐸 (𝑆) |( |𝑆 |
2

) (1)

A clique is a subset of vertices such that every two distinct

vertices in the clique are adjacent, i.e., 𝛿 (𝑆) = 1 when 𝑆 is a clique.

2
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Given a parameter 𝛼 ∈ (0, 1], a subgraph 𝐺 [𝑆] is said to be a 𝛼-

quasi-clique if 𝛿 (𝑆) ≥ 𝛼 , i.e., if the number of its edges is at least

𝛼 ·
( |𝑆 |
2

)
.

Definition 3.2 (Maximum quasi-clique problem (MQCP)). Given a

graph 𝐺 = (𝑉 , 𝐸) and density threshold 𝛼 ∈ (0, 1], the maximum

quasi-clique is an 𝛼-quasi-clique 𝑆 ⊆ 𝑉 with maximum cardinality.

MQCP is proved to be an NP-hard problem [24]. Hence, we

will start by presenting an algorithm called NBSim that can find

approximate maximum quasi-cliques in polynomial time. We will

then improve this algorithm to a faster, linear time version called

FastNBSim, using minhash approximation.

Before we present our similarity-based algorithms, we first give

the definition of structure similarity. Given two neighboring ver-

tices 𝑢 and 𝑣 , the similarity 𝜎 (𝑢, 𝑣) between 𝑢 and 𝑣 is defined

as the set similarity between 𝑁 (𝑢) and 𝑁 (𝑣). In existing studies

[29, 41], Jaccard similarity is adopted to measure the similarity. The

definition of Jaccard similarity is as follows:

Definition 3.3 (Jaccard similarity [14]). Given two sets 𝑋 and 𝑌 ,

the Jaccard similarity between these two sets is defined as
|𝑋∩𝑌 |
|𝑋∪𝑌 | .

Based on Jaccard similarity, the similarity between two vertices

𝑢 and 𝑣 is defined as 𝜎 (𝑢, 𝑣) = |𝑁 (𝑢 )∩𝑁 (𝑣) ||𝑁 (𝑢 )∪𝑁 (𝑣) | .

4 NBSIM: A SIMILARITY-BASED ALGORITHM
In this section, we develop a novel polynomial-time algorithm

for finding near-maximum quasi-cliques. Our algorithm exploits

the existence of dense vertex neighborhoods of non-trivial sizes

in real-world graphs, as proven in Theorem 3.5 of [16]. This the-

orem demonstrates that large, high-quality quasi-cliques can be

extracted from neighborhoods with sufficiently high edge density.

Our algorithm has two key components. We first introduce our

similarity-based vertex selection strategy to extract high-quality

quasi-cliques from neighborhoods. We then speed up this algorithm

further by incorporating pruning techniques based on ordering and

bounds.

4.1 Similarity-based Vertex Selection
In this subsection, we focus on extracting quasi-cliques from the

neighborhood of a single vertex. As the vertices within a quasi-

clique tend to exhibit a higher level of similarity between each

other compared to vertices outside the quasi-clique, a straightfor-

ward idea to extract quasi-cliques from the neighborhood of 𝑢 is

to find neighbors with high similarities to 𝑢. However, the Jaccard

similarity is not very suitable for our case, while it was used in

many applications, such as graph clustering [33, 40, 41]. To find

large quasi-cliques from the neighborhood of 𝑢, our goal is to find

vertices {𝑣 |𝑣 ∈ 𝑁 (𝑢)} such that 𝑁 (𝑢) is mostly contained by 𝑁 (𝑣),
instead of finding a vertex v with 𝑁 (𝑣) similar to 𝑁 (𝑢). Hence, we
propose a new metric, containment score, as the vertex selection

criterion.

Definition 4.1 (Containment score). Given two vertices 𝑢 and 𝑣 ,

the containment score of 𝑢 in 𝑣 is defined as

𝑡 (𝑢, 𝑣) = |𝑁 (𝑢) ∩ 𝑁 (𝑣) |
|𝑁 (𝑢) | (2)

Algorithm 1: Extract quasi-clique from 𝑁 (𝑢): QCextract
Input: vertex 𝑢, threshold 𝛾 ∈ (0, 1], 𝑏 ∈ (0, 1]
Output: a vertex set extracted from 𝑁 (𝑢)

1 𝑆 ← ∅
2 for each vertex 𝑣 in 𝑁 (𝑢) do
3 if 𝑡 (𝑢, 𝑣) ≥ 𝛾 then 𝑆 ← 𝑆 ∪ {𝑣}

4 if |𝑆 |−1|𝑁 (𝑢 ) | < 𝑏 then 𝑆 ← ∅
5 return 𝑆

Compared to Jaccard similarity, the containment score is an

asymmetric definition, i.e., 𝑡 (𝑢, 𝑣) might not equal to 𝑡 (𝑣,𝑢), which
allows the scenario that only part of 𝑁 (𝑣) highly overlaps with

𝑁 (𝑢). Assuming that 𝑁 (𝑢) induces the ideal quasi-clique, all ver-
tices in 𝑁 (𝑢) can be selected based on the containment score, which

might not be achieved via Jaccard similarity. We further use the

following example to illustrate the advantage of containment score.

d

N(v)
N(u)

u

a b

c v

e

f

Figure 2: Subgraph induced by 𝑁 (𝑢) and 𝑁 (𝑣).

Example 4.2. Figure 2 depicts a subgraph induced by 𝑁 (𝑢) and
𝑁 (𝑣). The neighborhoods of 𝑢 and 𝑣 are denoted as 𝑁 (𝑢) = {𝑎, 𝑏, 𝑐 ,

𝑣 , 𝑢} and 𝑁 (𝑣) = {𝑎, 𝑏, 𝑑 , 𝑒 , 𝑓 , 𝑢 ,𝑣}, respectively. Suppose we want

to extract a 0.8-quasi-clique from 𝑁 (𝑢). Using Jaccard similarity,

𝜎 (𝑢, 𝑣) = |𝑁 (𝑢 )∩𝑁 (𝑣) ||𝑁 (𝑢 )∪𝑁 (𝑣) | =
4

8
= 0.5. Based on this, we may exclude

𝑣 from the quasi-clique. However, the containment score gives

𝑡 (𝑢, 𝑣) = |𝑁 (𝑢 )∩𝑁 (𝑣) ||𝑁 (𝑢 ) | = 4

5
= 0.8, suggesting 𝑣 could be included.

Importantly, 𝑎, 𝑏,𝑢, 𝑣 forms a clique in the subgraph. This validates

the appropriateness of including 𝑣 based on the containment score.

Based on the above discussion, we present the algorithm to

extract quasi-cliques from neighborhoods, named QCextract, in
Algorithm 1. QCextract takes a vertex 𝑢 and threshold values 𝛾

and 𝑏 as input. It aims to extract a vertex set 𝑆 from 𝑁 (𝑢), where
the edge-density of𝐺 [𝑆] is controlled by 𝛾 and 𝑏. It first initializes

an empty set 𝑆 to store the result (line 1). Then it iterates over

each vertex 𝑣 in the neighborhood 𝑁 (𝑢) of vertex 𝑢 (line 2), checks

whether the containment score 𝑡 (𝑢, 𝑣) exceeds the threshold 𝛾 , and
adds vertex 𝑣 to the set 𝑆 if the condition is fulfilled (line 3). If the

extracted set 𝑆 is smaller than 𝑏 |𝑁 (𝑢) |, which implies only few

vertices of 𝑁 (𝑢) have highly overlapped neighbors with 𝑢, we will

set 𝑆 to ∅ (line 4). Finally, QCextract returns the extracted set 𝑆

(line 5).

If 𝑆 is not empty, we show that the lower bound of the edge-

density of 𝑆 is determined by 𝛾 and 𝑏, as follows:

3
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Theorem 4.3 (Lower bound of edge-density of qasi-cliqe

returned by Algorithm 1). Given a graph 𝐺 , a vertex 𝑢, and
threshold parameters 𝛾 and 𝑏, the edge-density of the quasi-clique 𝑆
returned by Algorithm 1 is lower bounded by, if 𝑆 is not empty:

𝛿 (𝑆) ≥ 1 − 1 − 𝛾
𝑏

(3)

Proof. According to line 3 of Algorithm 1, each vertex 𝑣 in

𝑆 satisfies that 𝑡 (𝑢, 𝑣) ≥ 𝛾 , which implies that |𝑁 (𝑢) ∩ 𝑁 (𝑣) | ≥
𝛾 |𝑁 (𝑢) |. According to line 4 of Algorithm 1, we have |𝑆 | − 1 ≥
𝑏 |𝑁 (𝑢) |.

For a specific 𝑣 ∈ 𝑆 , denote 𝑡 (𝑢, 𝑣) = 𝛾 ′ and |𝑆 | − 1 = 𝑏′ |𝑁 (𝑢) |.
By defining 𝑆 ′ = 𝑆 \ 𝑣 , we have |𝑆 ′ | = 𝑏′ |𝑁 (𝑢) |.

N(u) ∩N(v)

N(u)

N(u) ∩ S
′

N(u) ∩N(v) ∩ S
′

Figure 3: Illustrating the lower bound of 𝑑𝑆 (𝑣).

By applying the inclusion-exclusion principle (ref. Figure 3), we

can infer that the degree of 𝑣 in 𝐺 [𝑆] satisfies
𝑑𝑆 (𝑣) = |𝑁 (𝑢) ∩ 𝑁 (𝑣) ∩ 𝑆 ′ | ≥ (𝑏′ − (1 − 𝛾 ′)) |𝑁 (𝑢) | (4)

Hence, we obtain

|𝑁 (𝑢) ∩ 𝑁 (𝑣) ∩ 𝑆 ′ |
|𝑆 ′ | ≥

(
1 − 1 − 𝛾 ′

𝑏′

)
(5)

≥
(
1 − 1 − 𝛾

𝑏

)
, (6)

which means that ∀𝑣 ∈ 𝑆, 𝑑𝑆 (𝑣) ≥
(
1 − 1−𝛾

𝑏

)
( |𝑆 | − 1). Hence, the

edge-density 𝛿 (𝑆) is at least 1 − 1−𝛾
𝑏

, as |𝐸 (𝑆) | =
∑

𝑣∈𝑆 𝑑𝑆 (𝑣)
2

. □

Remark. The proof shows that each vertex in𝐺 [𝑆] is connected
to at least

(
1 − 1−𝛾

𝑏

)
( |𝑆 | − 1) other vertices within 𝐺 [𝑆], which

is a stricter requirement than Definition 3.1. Definition 3.1 only

requires that the overall density of the subgraph𝐺 [𝑆] is larger than
a specific threshold value.

Effect of parameters. By increasing both 𝛾 and 𝑏, the term

1−𝛾
𝑏

approaches 0. Consequently, the value of 𝛿 (𝑆) approaches 1,
and Algorithm 1 tends to output near-cliques. Although high 𝛾

and 𝑏 values may cause Algorithm 1 to return an empty set for

the neighborhoods of some specific nodes, we still have a high

probability of finding the large quasi-cliques from the whole graph,

because dense vertex neighborhoods of non-trivial sizes exist in

real-world graphs, according to Theorem 3.5 of [16].

To obtain an 𝛼-quasi-clique as in Lemma 4.3, we must set 𝑏 and 𝛾

such that 1− 1−𝛾
𝑏

> 𝛼 . In particular,𝑏 controls the similarity require-

ment between 𝑆 and 𝑁 (𝑢). Setting 𝑏 close to 1 makes Algorithm 1

return almost the entire neighborhood itself.

Algorithm 2: Find near-maximum quasi-clique: NBSim

Input: Graph 𝐺 , threshold 𝛾 ∈ (0, 1], 𝑏 ∈ (0, 1]
Output: A near-maximum quasi-clique

1 𝑆 ← ∅
2 for each vertex 𝑢 in descending 𝛾-degree order do
3 if 𝑑𝛾 (𝑢) < |𝑆 | then break

4 𝐶 ← QCextract(𝑢,𝛾, 𝑏)
5 if |𝐶 | > |𝑆 | then 𝑆 ← 𝐶

6 return 𝑆

4.2 Pruning via Ordering and Bound
In Section 4.1, we presented an algorithm to extract quasi-cliques

from a single vertex’s neighborhood. To find near-maximum quasi-

cliques across the full graph, an exhaustive approach is to extract

from every neighborhood. However, this involves significant unnec-

essary computation. To improve efficiency, we first derive the size

upper bound of quasi-cliques extractable from each neighborhood.

We then propose a vertex ordering strategy to prune unpromising

neighborhoods.

We first give a simple upper bound based on degree for Algo-

rithm 1, which is also an upper bound for maximum clique compu-

tation [28].

Lemma 4.4 (Degree-based Upper Bound). For a graph 𝐺 and
a vertex 𝑢 in 𝐺 , the size of the set returned by QCextract(𝑢) is no
larger than 𝑑 (𝑢) + 1.

The lemma follows from that all vertices returned by QCextract(𝑢)
are from the neighborhood of𝑢. However, this upper bound is quite

loose.

Inspired by core numbers from 𝑘-core, a subgraph model where

each vertex has at least 𝑘 neighbors within the subgraph, we pro-

pose a new concept 𝛾-degree, which is a tighter upper-bound for

the returned quasi-clique.

Definition 4.5 (𝛾-degree). Given a graph 𝐺 and a vertex 𝑢, we

define the 𝛾-degree of 𝑢 as the number of neighbors of 𝑢 with a

degree at least 𝛾 ∗ 𝑑 (𝑢), denote as 𝑑𝛾 (𝑢).
𝑑𝛾 (𝑢) = |{𝑣 ∈ 𝑁 (𝑢) | |𝑁 (𝑣) | ≥ 𝛾 · |𝑁 (𝑢) |}| (7)

Note that𝑢 is counted in its 𝛾-degree 𝑑𝛾 (𝑢) but not in its original

degree 𝑑 (𝑢).

Lemma 4.6 (𝛾-degree-based Upper Bound). For a graph 𝐺 and
a vertex 𝑢 in 𝐺 , the size of the set returned by QCextract(𝑢) is no
larger than 𝑑𝛾 (𝑢).

Proof. In Algorithm 1, for a vertex 𝑣 to fulfill the condition

𝑡 (𝑢, 𝑣) > 𝛾 , |𝑁 (𝑣) | must be at least 𝛾 · |𝑁 (𝑢) |. Hence, the size of the
returned set is upper bounded by 𝑑𝛾 (𝑢) via Definition 4.5. □

As 𝑑𝛾 (𝑢) ≤ 𝑑 (𝑢) + 1 holds for every 𝑢 ∈ 𝑉 , the 𝛾 degree-based

upper bound is tighter than the degree-based upper bound. Besides,

the 𝛾-degree for every vertex in 𝐺 can be efficiently computed by

iterating over each vertex 𝑣 ∈ 𝑁 (𝑢) to check whether |𝑁 (𝑣) | >
𝛾 · |𝑁 (𝑢) | fulfills, in 𝑂 (𝑚) total time.

Based on the above discussions, we propose the algorithm NBSim
for computing near-maximum quasi-clique. The pseudocode is

4
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shown in Algorithm 2. The algorithm initializes an empty set 𝑆

(line 1). Then, it iterates through each vertex 𝑢 in descending order

with respect to the 𝛾-degree (line 2). It compares the 𝛾-degree of

vertex 𝑢 with the size of 𝑆 . If the 𝛾-degree is less than the size of

𝑆 , the loop breaks, as there is no possibility of forming a larger

quasi-clique via Lemma 4.6 (line 3). For each vertex 𝑢 satisfying

the degree condition, the algorithm proceeds to construct a vertex

set 𝐶 by invoking QCextract(𝑢, 𝑟, 𝑏) (line 4). If the size of set 𝐶 is

greater than the size of 𝑆 , 𝑆 is updated to 𝐶 (line 5). Finally, 𝑆 is

returned as the near-maximum quasi-clique.

Complexity. Let 𝑑𝑚𝑎𝑥 denote the maximum degree of any ver-

tex in the graph. The time complexity of Algorithm 2 is𝑂 (𝑚 ·𝑑𝑚𝑎𝑥 )
Because it calls QCextract for each vertex 𝑢, and QCextract(𝑢)
will compute 𝑡 (𝑢, 𝑣) for |𝑁 (𝑢) | times. In total, we need to com-

pute 𝑡 (𝑢, 𝑣) for each edge twice, and the cost to compute 𝑡 (𝑢, 𝑣) is
𝑂 (𝑑𝑚𝑎𝑥 ). Hence, the overall time complexity is 𝑂 (𝑚 · 𝑑𝑚𝑎𝑥 )

In NBSim, we need to choose two user-defined parameters 𝛾 and

𝑏, which will also affect the actual runtime of NBSim.
Effect of 𝛾 : When 𝛾 is set to a higher value, the size of the

set 𝐶 returned by QCextract is smaller. As a result, the condition

in line 3 of Algorithm 2 is less likely to be satisfied, leading to

fewer opportunities to update the variable 𝑆 . Consequently, fewer

branches are pruned, requiring more iterations to find the candidate

vertex. Thus, the runtime of NBSim may increase when 𝛾 is set to a

higher value.

Effect of𝑏: In QCextract, the parameter𝑏 determines the thresh-

old for the proportion of |𝑆 | occupied by |𝑁 (𝑢) |. A higher value

of 𝑏 results in a stricter condition for considering 𝑆 as candidate

vertices. Consequently, the runtime of NBSim may increase when 𝑏

is set to a higher value because it could take more iterations to find

the near-maximum quasi-clique.

In Section 6, we present an empirical sensitivity analysis of

parameters 𝛾 and 𝑏 on the accuracy and runtime of the algorithm.

5 FASTNBSIM: A MINHASH-BASED
ALGORITHM

For real-world large graphs, some vertices can have a very high

degree, and their neighbors may need to be iterated repeatedly

when computing the containment scores. This can be quite time-

consuming with a time complexity of 𝑂 (𝑚 · 𝑑𝑚𝑎𝑥 ). To improve

efficiency, we propose approximating the containment score calcu-

lations via MinHash signatures.

To efficiently derive approximate similarity scores between adja-

cent vertex pairs, we adopt the 𝑘-MinHash technique proposed by

Tseng et al. [33]. The key idea is to represent each vertex’s neigh-

borhood using a MinHash signature, and then estimate similarity

by comparing signatures.

Specifically, we first assign a unique hash value to each vertex

𝑢 ∈ 𝑉 . For each 𝑢, we compute 𝑟𝑚𝑖𝑛 (𝑢), the minimum hash value

among all vertices in 𝑁 (𝑢). The Jaccard similarity 𝜎 (𝑢, 𝑣) between
vertices 𝑢 and 𝑣 can then be given as:

𝜎 (𝑢, 𝑣) = 𝑃𝑟 [𝑟𝑚𝑖𝑛 (𝑢) = 𝑟𝑚𝑖𝑛 (𝑣)] . (8)

To better estimate the probability, i.e., the similarity, we generate

𝑘 min hashes for each vertex using 𝑘 independent hash functions.

Let 𝑟 𝑖
𝑚𝑖𝑛
(𝑢) denote the minimum hash value among all vertices in

Algorithm 3: Extract quasi-clique byMinHash: QCMinHash

Input: vertex 𝑢, threshold 𝛾 ∈ (0, 1], 𝑏 ∈ (0, 1]
Output: a vertex set extracted from 𝑁 (𝑢)

1 𝑆 ← ∅
2 if the MinHash signature of 𝑢 is not computed then
3 Compute the signature of 𝑢, i.e., {𝑟 𝑖

𝑚𝑖𝑛
(𝑢) | 1 ≤ 𝑖 ≤ 𝑘}

4 for each vertex 𝑣 in 𝑁 (𝑢) do
5 if the MinHash signature of 𝑣 is not computed then
6 Compute the signature of 𝑣

7 Derive the estimated similarity 𝜎̂ (𝑢, 𝑣) with the

signatures of 𝑢 and 𝑣 via Equation (9)

8 Compute 𝑡 (𝑢, 𝑣) via Equation (10)

9 if 𝑡 (𝑢, 𝑣) ≥ 𝛾 then 𝑆 ← 𝑆 ∪ {𝑣}

10 if |𝑆 |−1|𝑁 (𝑢 ) | < 𝑏 then 𝑆 ← ∅
11 return 𝑆

𝑁 (𝑢) with respect to the 𝑖-th hash function. We can then estimate

𝜎 (𝑢, 𝑣) as:

𝜎̂ (𝑢, 𝑣) ≈
|{𝑖 | 𝑟 𝑖

𝑚𝑖𝑛
(𝑢) = 𝑟 𝑖

𝑚𝑖𝑛
(𝑣), 1 ≤ 𝑖 ≤ 𝑘}|

𝑘
. (9)

Next, the estimated Jaccard similarity needs to be converted to

the containment score to serve the quasi-clique extraction. Specif-

ically, we introduce a transformation function via the inclusion-

exclusion principle to compute the corresponding estimated con-

tainment score, 𝑡 (𝑢, 𝑣):

𝑡 (𝑢, 𝑣) =
( 𝑑 (𝑣)+1
𝑑 (𝑢 )+1 + 1) ∗ 𝜎̂ (𝑢, 𝑣)

1 + 𝜎̂ (𝑢, 𝑣) (10)

Combining Equations (9) and (10), we can approximate the con-

tainment score for two neighborhoods by MinHash. This process to

estimate the containment score is further illustrated in the following

example.

Example 5.1. Consider the simple graph in Fig. 2. The neighbor-

hood of vertex 𝑢, denoted 𝑁 (𝑢), consists of the vertices {𝑎, 𝑏, 𝑐,𝑢, 𝑣 },
while 𝑁 (𝑣) consists of {𝑎, 𝑏, 𝑑, 𝑒, 𝑓 ,𝑢, 𝑣}. The intersection 𝑁 (𝑢) ∩
𝑁 (𝑣) yields {𝑎, 𝑏,𝑢, 𝑣 }. By Eq. 2, the direct containment score 𝑡 (𝑢, 𝑣)
is 0.8.

Now let’s approximate 𝑡 (𝑢, 𝑣) using MinHash with 𝑘 = 4 func-

tions: 𝑦 = (2𝑥 + 3) mod 11, 𝑦 = (3𝑥 + 3) mod 11,𝑦 = (2𝑥 + 6)
mod 11,𝑦 = (4𝑥 + 4) mod 11, and IDs {𝑎 = 1, 𝑏 = 2, 𝑐 = 3, 𝑑 = 4, 𝑒 =

5, 𝑓 = 6, 𝑢 = 7, 𝑣 = 8}. The signatures are {𝑟𝑚𝑖𝑛 (𝑢)} = {5, 1, 0, 1} and
{𝑟𝑚𝑖𝑛 (𝑢)} = {0, 2, 0, 1}. With 𝜎̂ (𝑢, 𝑣) = 0.5 based on Equation (9),

the estimated 𝑡 (𝑢, 𝑣) = 0.8, equal to the direct calculation. □

Based on the above discussion, we propose the MinHash-based

quasi-clique extraction algorithm from the neighborhood in Algo-

rithm 3, which follows a similar structure to Algorithm 1 but differs

in on-demand signature generation and score estimation, which

is shown in the shaded regions of the two algorithms. Specifically,

the MinHash signatures are computed on-demand when needed -

computing the signature for 𝑢 if not done yet (lines 2-3), and com-

puting the signature for 𝑣 if needed (lines 5-6). Then it derives the

estimated Jaccard similarity 𝜎̂ (𝑢, 𝑣) and corresponding containment

5
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score 𝑡 (𝑢, 𝑣) using the lazily computed signatures and Equations 9

and 10 (lines 7-8).

By computing signatures lazily and estimating scores via Min-

Hash, the algorithm aims to efficiently extract quasi-cliques without

expensive direct neighborhood comparisons.

Effect of 𝑘 . Larger MinHash signature size 𝑘 leads to a better

approximation of the Jaccard similarity. However, bigger 𝑘 also

increases the computation time for signature generation and simi-

larity estimation.

Theoretically, we can give the lower bound of the edge-density

of the subgraph returned by Algorithm 3 via the following lemma.

Lemma 5.2. Given a graph 𝐺 , a vertex 𝑢, 𝑘 ≥ ln(𝑛𝑚)
2𝜌2

, and thresh-
old parameters𝛾 and𝑏, the edge-density of the quasi-clique 𝑆 returned
by Algorithm 3 is lower bounded by, if 𝑆 is not empty:

𝛿 (𝑆) ≥ 1 − 1 − 𝛾 ′
𝑏

(11)

where

𝛾 ′ ≥ 𝛽𝑢 · (𝛽𝑢 · 𝜌 − 𝜌 · 𝛾 − 𝛾)
𝛽𝑢 · 𝜌 − 𝜌 · 𝛾 − 𝛽𝑢

. (12)

and 𝛽𝑢 represents 𝑑𝑚𝑎𝑥+1
𝑑 (𝑢 )+1 + 1 for the specific vertex 𝑢.

Proof. By setting𝑘 >= ln(𝑛𝑚)/(2𝜌2), we have 𝜎̂ (𝑢, 𝑣) ∈ [𝜎 (𝑢, 𝑣)−
𝜌, 𝜎 (𝑢, 𝑣) + 𝜌] [33]. Given that 𝑡 (𝑢, 𝑣) is required to be larger than

𝛾 , by applying Equation (10), we have

𝑡 (𝑢, 𝑣) = 𝛽 · 𝜎̂ (𝑢, 𝑣)
1 + 𝜎̂ (𝑢, 𝑣) ≥ 𝛾, (13)

and

𝑡 (𝑢, 𝑣) = 𝛽 · 𝜎 (𝑢, 𝑣)
1 + 𝜎 (𝑢, 𝑣) ≥ 𝛾

′, (14)

where 𝛽 =
𝑑 (𝑣)+1
𝑑 (𝑢 )+1 + 1. Combining Equations (13) and (14) and the

error bound of 𝜎̂ (𝑢, 𝑣), we can derive:

𝛾 ′ ≥ 𝛽 · (𝛽 · 𝜌 − 𝜌 · 𝛾 − 𝛾)
𝛽 · 𝜌 − 𝜌 · 𝛾 − 𝛽 (15)

Equation (15) exhibits a diminishing trend with increasing values

of 𝛽 . Since 𝛽 =
𝑑 (𝑣)+1
𝑑 (𝑢 )+1 + 1 ≤

𝑑𝑚𝑎𝑥+1
𝑑 (𝑢 )+1 + 1, by replacing 𝛽 with

𝛽𝑢 =
𝑑𝑚𝑎𝑥+1
𝑑 (𝑢 )+1 + 1, we can derive Equation (12). □

Examining Equation 12, we observe that 𝛾 ′ approximates 𝛾

closely when 𝜌 is set to a small positive real number. This is be-

cause large quasi-cliques are typically extracted from high-degree

vertices, where 𝑑 (𝑢) is not very small compared to 𝑑𝑚𝑎𝑥 . Thus, the

degree ratio 𝛽𝑢 remains low.

Empirically, we find that small 𝑘 is sufficient for high-quality

quasi-clique extraction in many cases.

Algorithm 4 outlines FastNBSim, which modifies NBSim using

QCMinHash. The algorithm first constructs a set of 𝑘 universal hash

functions upfront to enable later MinHash computations (line 1).

Within the loop, it applies QCMinHash to efficiently extract quasi-

cliques from each neighborhood using the MinHash signatures (line

5). The remaining loop order and candidate set updates are identical

to the original NBSim in Algorithm 2.

Complexity. FastNBSim adapts NBSim to leverage QCMinHash
for faster quasi-clique extraction via MinHash approximation. The

core steps of NBSim are preservedwhile substituting direct similarity

Algorithm 4: Find large quasi-clique: FastNBSim

Input: Graph 𝐺 , size 𝑘 , threshold 𝛾, 𝑏
Output: A near-maximum quasi-clique

1 Construct 𝑘 universal hash functions

2 𝑆 ← ∅
3 for each vertex 𝑢 in descending 𝛾-degree order do
4 if 𝑑𝛾 (𝑢) < 𝑇 then break

5 𝐶 ← QCMinHash(𝑢,𝛾, 𝑏)
6 if |𝐶 | > |𝑆 | then 𝑆 ← 𝐶

7 return 𝑆

computations with efficient signatures. The time complexity is

improved to 𝑂 (𝑚 · 𝑘).

6 EXPERIMENTS
We now present experimental results. We first discuss the setup

in Section 6.1, then describe the results of NBSim and FastNBSim
against the baseline algorithms. Then, we give some detailed analy-

sis of the effect of parameters and pruning techniques.

6.1 Setup
Datasets.We use ten real datasets from [17], and report the number

of vertices and edges of each dataset in Table 1. These graphs

cover various domains, including co-authorship graphs (e.g., Ca-

HepPh and Ca-AstroPh), social networks (e.g., Ego-Facebook and

Loc-Gowalla), and web graphs(e.g., Web-Stanford).

Algorithm. In our experiments, we employ our newly proposed

algorithms NBSim and FastNBSim to compute near-maximum quasi-

cliques. For NBSim, we set 𝛾 = 0.9 and 𝑏 = 0.6 , FastNBSim follows

NBSim with an additional setting 𝑘 = 8. Unless otherwise specified,

we use these settings by default. In addition to our algorithms, we

also evaluate the performance of the following existing methods:

• NB [16]: This algorithm computes large quasi-cliques using

vertex neighborhoods. It can be refined through a straight-

forward local search method [35], offering state-of-the-art

performance with relatively low complexity. The setting of

𝛼 follows [16].

• NuQClq [7]: As a state-of-the-art algorithm, NuQClq iden-

tifies the maximum quasi-clique based on a pre-defined

threshold for the quasi-value and a specified cutoff time.

The algorithm will terminate when it reaches the cutoff

time or the respected result is found. For comparative pur-

poses, we set the quasi threshold to match the quasi-value

derived from NBSim and set the cutoff time as sufficiently

large to achieve near-optimal results.

All the algorithms above are implemented in C++. For NB, which
needs triangle counting, we follow [16] and employ the MAximal

Clique Enumerator (MACE) algorithm [36] to obtain triangle counts.

We run all the experiments on a machine equipped with an Intel(R)

CPU @ 1.4GHz processor and 256GB of memory. The source codes

of our algorithms are publicly available
1
.

1
https://anonymous.4open.science/r/LargeQCDetection-1DFD/
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Table 1: Graphs used in our experiments.

Dataset Full name |𝑉 | |𝐸 |
FB Ego-facebook 4,039 88,234

HP Ca-HepPh 12,008 118,521

CM Ca-CondMat 23,133 93,497

ER Email-Enron 36,692 183,831

GW Loc-Gowalla 196,591 950,327

SF Web-Stanford 281,903 2,312,497

BS Web-BerkStan 685,230 7,600,595

GG Web-Google 875,713 5,105,039

PK Soc-Pokec 1,632,803 30,622,564

TC Wiki-Topcats 1,791,489 28,511,807

6.2 Main Results
We present the edge-density and size of the quasi-clique returned

by each algorithm in Table 2 and Table 3, respectively. We find that

in most cases, NBSim and FastNBSim can achieve comparable or

even larger sizes with similar edge-density compared with NB and

NuQClq.

Table 2: Density of the quasi-clique returned by eachmethod.

Dataset NBSim FastNBSim NB NuQClq

FB 0.99 0.94 0.94 0.99

HP 1 1 0.95 1

CM 1 1 0.95 1

ER 0.98 0.94 0.93 0.98

GW 0.99 0.98 0.94 0.99

SF 0.99 0.94 0.95 0.99

BS 0.99 0.99 0.93 0.99

GG 0.99 0.99 0.93 0.99

PK 0.98 0.98 0.95 0.98

TC 0.99 0.99 0.95 0.99

Table 3: Size of the quasi-clique returned by each method.

Dataset NBSim FastNBSim NB NUQClq

FB 71 103 50 92

HP 239 237 246 239

CM 26 26 28 26

ER 10 17 14 23

GW 31 28 36 31

SF 67 65 71 66

BS 202 201 142 144

GG 48 48 54 48

PK 32 31 33 31

TC 40 41 48 29

In Figure 4, we detail the efficiency of all tested algorithms.

FastNBSim stands out by markedly enhancing computational ef-

ficiency. It achieves speeds up to two orders of magnitude faster

FB HP CM ER GW SF BS GG PK TC
dataset

102

104

106

R
un

ni
ng

 T
im

e 
(m

s)

FastNBSim

NBSim

NB

NuQClq

Figure 4: Efficiency of all algorithms.

than NBSim by utilizing MinHash to estimate similarity, thus reduc-

ing its time complexity to 𝑂 (𝑘𝑚). Furthermore, when compared

to NB and NuQClq, FastNBSim outperforms them, being quicker by

up to three orders of magnitude. This pronounced efficiency of

FastNBSim can be attributed to its adoption of the MinHash ap-

proximation combined with a bound and ordering-based pruning

strategy. Conversely, NB necessitates the calculation of the local

clustering coefficient for every vertex, leading to a more computa-

tionally intensive process.

Turning our attention to NBSim and NB, though they share the

same time complexity of 𝑂 (𝑚3/2), their performance varies, each

surpassing the other in specific datasets due to different computing

paradigms.

6.3 Effect of Parameters
6.3.1 Effect of 𝛾 and 𝑏. From Figure 5, in cases (a), (c), and (e),

holding 𝛾 constant and increasing 𝑏 shrinks the quasi-clique’s size

but augments its density for 𝑏 values between 0.6 and 0.9, aligning

with findings in Section 4. Additionally, a rise in 𝑏 escalates extrac-

tion time due to stricter constraints and more candidate clusters,

as detailed in Section 4.2. Similarly, cases (b), (d), and (f) illustrate

that increasing 𝛾 with a fixed 𝑏 mirrors the effects of increasing 𝑏

with a fixed 𝑟 .

6.3.2 Effect of varying 𝑘 . In Figure 6, we report the performance

of FastNBSim on datasets HP, ER, GG, and BS varying 𝑘 from 4 to

128 while fixing 𝛾 = 0.9 and 𝑏 = 0.6. The result of NBSim is marked

as “base” in Figure 6 for comparison. Remarkably, HP, GG and BS

all exhibit edge densities that are close to 1 for different k values.

Overall, both algorithms yield similar and high-quality outcomes.

For smaller 𝑘 values, inaccuracies arise in approximations, yielding

larger quasi-clique sizes and decreased edge-densities, especially in

ER. Such inaccuracies are attributed to the potential of MinHash to

overestimate or underestimate vertex similarities for smaller 𝑘 , as

evident in the GG and BS datasets for 𝑘 = 4. However, as 𝑘 grows,

the approximation becomes more accurate.

6.4 Effect of Pruning Techniques
6.4.1 Effect of bound and ordering. Here we show the effective-

ness of the bound and ordering pruning technique proposed in

Section 4.2. In Table 4, the proportion of executed branches relative
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Figure 5: The accuracy and runtime of NBSim on graph FB for
different 𝛾 and 𝑏. (a), (c), (e) is the result for different 𝑏 with 𝛾

fixed to 0.9. (b), (d), (f) is the result for different 𝛾 with 𝑏 fixed
to 0.6.
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Figure 6: The quality of QC w.r.t different value of 𝑘 .

Table 4: Proportion of neighborhoods examined from the
total.

Dataset FB HP CM ER GW

Proportion 2.8% 0.8% 0.039% 6.9% 2.1%

Dataset SF BS GG PK TC

Proportion 0.18% 0.0001% 0.01% 12% 4.9%

to the total is presented. The total branches equate to the vertex

count, indicating that without our pruning strategy, an iteration

through every vertex would be necessary. Our findings are drawn

from an analysis of ten datasets, all of which consistently exhibit

proportion results significantly below 12%. In specific cases, such

as CM, GG, and BS, these values are exceptionally low. This under-

scores the substantial reduction in branches achieved through our

pruning approach.

Table 5: Ratio of signature building time to the overall.

Dataset FB HP CM ER GW

Proportion 63.8% 49.4% 15.8% 71.0% 68.4%

Dataset SF BS GG PK TC

Proportion 33.2% 12.5% 14.4% 64.7% 71.2%

6.4.2 Proportion of signature building time. In Table 5, we show-

case the proportions of the signature-building phase as a part of

the overall running time for the FastNBSim algorithm across ten

datasets when 𝑘 = 8. The high proportions for most datasets un-

derscore that the similarity computation time for FastNBSim is a
minimal fraction of the total runtime after signatures are built. In

cases where the proportions are relatively low, such as CM, BS, and

GG, this is mainly due to the fact that sorting operations occupy

the majority of the overall time. For CM, the sort time ratio stands

at 79.3%, while for BS, it sits at 75.9%, and for GG, it reaches 84.8%.

Table 6: Speedup ratio of lazy signature approach compared
to calculating all signatures upfront.

Dataset FB HP CM ER GW

Speedup 3.8× 21.9× 7.3× 1.4× 1.6×
Dataset SF BS GG PK TC

Speedup 7.9× 13× 8.1× 1.1× 1.1×

6.4.3 Effect of lazy signature construction. Table 6 presents the

speedup ratio of using a lazy signature construction approach

versus calculating all signatures upfront for the FastNBSim algo-

rithm. We observe that computing signatures on-demand based

on 𝛾-degree ordering accelerates the runtime since not all vertex

signatures need to be computed. On the HP dataset, the speedup

ratio is particularly pronounced, demonstrating the efficacy of the

proposed lazy signature technique.

7 CONCLUSION
In this study, we delved into the maximum quasi-clique problem.

We initiated our discussion by reviewing existing algorithms, high-

lighting their constraints and areas of inefficacy. To enhance the

efficiency of the MQC discovery process, we introduced an efficient

approximation algorithm, NBSim, and established lower bounds

on quasi-clique edge-density. Our efforts further led to the devel-

opment of an innovative pruning strategy, effectively minimizing

redundant computations. Additionally, we integrated an estimation

approach for similarity computation usingMinHash, culminating in

the proposal of the FastNBSim algorithm. This algorithm stands out

as it drastically reduces the time complexity associated with similar-

ity score computations to constant time. Through comprehensive

experiments on ten real, large-scale datasets, we demonstrated that

FastNBSim outpaces existing methods, clocking speeds up to three

orders of magnitude faster than state-of-the-art solutions.

In the future, we will explore efficient methods for identifying

large quasi-cliques in dynamic graphs, and investigate how to dy-

namically maintain the MinHash signatures.
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