
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Similarity-based Approach for Efficient LargeQuasi-clique
Detection

Anonymous Author(s)
∗

ABSTRACT
Identifying dense subgraphs called quasi-cliques is pivotal in vari-

ous graphmining tasks across domains like biology, social networks,

and e-commerce. However, recent algorithms still suffer from ef-

ficiency issues when mining large quasi-cliques in massive and

complex graphs. Our key insight is that vertices within a quasi-

clique exhibit similar neighborhoods to some extent. Based on this,

we introduce NBSim and FastNBSim, efficient algorithms that find

near-maximum quasi-cliques by exploiting vertex neighborhood

similarity. FastNBSim further uses MinHash approximations to re-

duce the time complexity for similarity computation. Empirical eval-

uation on 10 real-world graphs shows that our algorithms deliver

up to three orders of magnitude speedup versus the state-of-the-art

algorithms, while ensuring high-quality quasi-clique extraction.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis; •
Mathematics of computing→ Graph algorithms.

KEYWORDS
Quasi-cliques, neighborhoods, similarity, MinHash

ACM Reference Format:
Anonymous Author(s). 2018. A Similarity-based Approach for Efficient

Large Quasi-clique Detection. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Dense subgraph extraction from large graphs has emerged as a key

operation in graph mining. By identifying highly interconnected

groups of vertices, dense subgraphs enable the discovery of critical

components hidden in real-world networks. For example, dense

subgraph mining has been used to identify spam link farms in

web graphs [13, 31], discover regulatory motifs in genomic DNA

[12], compress graphs [3], and analyze social network [15, 38]. The

widespread utility of dense subgraphs underscores their importance

as a fundamental graph mining primitive.

Various formulations for extracting different classes of dense

subgraphs have been proposed based on different density metrics.

Clique is the most classic dense subgraph model, which requires

full connectivity between all vertices. While conceptually simple,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

(a) A clique (b) A quasi-clique with = 0.8α

Figure 1: Illustrating clique and quasi-clique.

cliques are often unrealistic for noisy, incomplete real-world data.

This has motivated the development of various flexible dense sub-

graph formulations in the literature.

Quasi-cliques represent a relaxation of the clique concept to al-

low for real-world noise and missing edges. An 𝛼-quasi-clique is a

subgraph where the number of edges is at least 𝛼 times the number

of edges in a clique of the same size, for some density parameter

𝛼 ∈ (0, 1). Figure 1 illustrates a clique, which is fully connected,

versus a quasi-clique which misses some edges. In the quasi-clique

shown, there are 15 possible edges but only 12 are present, giving

an edge-density of 12/15 = 0.8. Quasi-cliques provide a more flexi-

ble formulation by only requiring the subgraph to be nearly fully

connected based on the edge-density threshold 𝛼 . This makes them

better suited for real-world graphs compared to strict cliques.

Prior work. The maximum quasi-clique problem (MQCP) aims

to find the largest 𝛼-quasi-clique in a graph but is NP-hard to com-

pute [24]. Thus, several heuristic algorithms have been proposed.

Konar and Sidiropoulos [16] presented a polynomial-time algo-

rithm NB that mines large quasi-cliques from vertex neighborhoods

based on clustering coefficients. NB achieves the state-of-the-art

performance versus prior methods [22, 35] by refining well-chosen

neighborhoods.

However, as NB treats entire neighborhoods as quasi-cliques, it
risks overlooking dense subgraphs contained within larger neigh-

borhoods. Consider a vertex 𝑣 where the neighborhood 𝑁 (𝑣) has
size 110 and edge-density 0.5. While 𝑁 (𝑣) may not be optimal as a

whole, it could contain a dense subset 𝑆 of size 70 with edge-density

0.9 that meets the quasi-clique threshold, but 𝑆 is missed by NB.

Furthermore, NB has a high complexity of𝑂 (𝑚3/2) as it computes

the clustering coefficient for every vertex’s 1-hop neighbors via

triangle counting, including irrelevant ones. In summary, NB has

limitations in both accuracy and efficiency.

Our solution. To address the limitations of prior quasi-clique ex-

traction methods like NB, we propose NBSim and FastNBSim, novel
quasi-clique extraction algorithms based on similarity measures.

Different from NB, when checking each neighborhood (e.g., 𝑢’s

neighborhood), NBSim treats each neighbor 𝑣 in the neighborhood

as a unit, instead of treating the entire neighborhood as a whole.

Specifically, NBSim decides whether to include each vertex 𝑣 from

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

𝑢’s neighborhood based on the similarity between the neighbor-

hoods of𝑢 and 𝑣 , and has the ability to detect the dense quasi-clique

inside the whole neighborhood of 𝑢. This enables the extraction of

quasi-cliques missed by NB that are solely based on clustering coef-

ficients of whole neighborhoods. Theoretically, we prove that this

similarity-based algorithm provides a lower bound on edge-density

for extracted quasi-cliques. Besides, it avoids expensive cluster-

ing coefficient computations as NB needs. We have also devised

a new vertex ordering strategy to further enhance efficiency. By

pruning unpromising neighborhoods early, we significantly reduce

unnecessary computations on irrelevant vertices.

To further speed up the similarity computation, we propose an

algorithm FastNBSim that uses the MinHash technique to estimate

the similarity between two neighborhoods in constant time, rather

than the neighborhood size-dependent time of the exact compu-

tation. Experiments show that even using small-size signatures of

MinHash, we can achieve promising results compared to NBSim.
Our principal contributions are summarized as follows:

• A similarity-based algorithm NBSim can efficiently detect

quasi-cliques inside the neighborhoods.

• A novel vertex ordering strategy prioritizes vertices whose

neighborhoods have a high potential to contain large quasi-

cliques first.

• A MinHash-based algorithm FastNBSim incorporates ap-

proximations with MinHash to reduce the overall time com-

plexity to linear.

• Comprehensive experiments on 10 real-world datasets demon-

strate that our solutions, especially FastNBSim, are up to

three orders of magnitude faster than state-of-the-art base-

lines while ensuring high-quality quasi-cliques extraction.

Outline. The rest of the paper is organized as follows. We review

the related work in Section 2. Section 3 gives the preliminaries and

the definition of the maximum quasi-clique problem. We present

our similarity-based algorithm NBSim in Section 4 and MinHash-

based fast algorithm FastNBSim in Section 5. Experimental results

are presented in Section 6. We conclude the paper in Section 7.

2 RELATEDWORK
Finding dense subgraphs in large graphs is an important task in

graph mining. Among different dense subgraph models, clique is

the archetypal one. Here, we review related work on cliques and

some close variants, e.g., the densest subgraph and quasi-cliques.

MaximumClique Finding. Themaximum clique problem aims

to find a clique of maximum size in a given graph. This problem is

NP-hard. Branch-and-bound search methods have been extensively

studied for finding maximum cliques exactly [4, 5, 18, 23, 30, 39].

The key idea is to grow an initially empty clique by recursively

moving vertices from a candidate set to the clique, pruning branches

that cannot lead to a maximum clique. For sparse graphs, Chang

[6] proposes more efficient maximum clique finding algorithms.

MaximalClique Enumeration.The problem ofmaximal cliques

enumeration (MCE) in a graph is harder than MCC, since the out-

put size may itself be very large. MCE has also been extensively

studied. Bron and Kerbosch [2] introduced a backtracking search

method to enumerate maximal cliques. Tomita et al. [32] used the

idea of "pivoting" in the backtracking search. Eppstein et al. [11]

used a degeneracy-based vertex ordering schema on top of the pivot

selection strategy. In [8], Das et al. present shared-memory parallel

algorithms for MCE.

Densest SubgraphDiscovery.Due to the NP-hardness of clique
finding, a less stringent, polynomial-time formulation for mining

dense subgraphs is formulated. Goldberg [13] introduced the dens-

est subgraph (DS) discovery problem and proposed the maximum-

flow-based algorithm to seek the subgraph with maximum density,

i.e. ratio of edges to vertices. Variants of this problem include gener-

alizing the density measure to 𝑘-clique-based density [34], finding

dense subgraphs in bipartite graphs [22] and directed graphs [19],

and finding dense subgraphs in evolving graphs [10].

MaximumQuasi-Clique Problem.Another relaxation to cliques
is known as quasi-cliques. Given a threshold 𝛾 , a 𝛾-quasi-clique is

a subgraph with edge density above 𝛾 . The maximum quasi-clique

problem aims to find the largest 𝛾-quasi-clique in a graph. This

problem generalizes maximum clique finding and is NP-hard [24].

Algorithms for this problem can be classified as exact or heuristic.

Exact algorithms such as branch-and-bound can guarantee opti-

mality but have high runtime on large graphs [20, 21, 24, 27, 37].

Thus, many efficient heuristic algorithms have been developed.

Abello et al. [1] introduced an efficient semi-external memory algo-

rithm and relies on greedy randomized adaptive search procedures.

Tsourakakis et al. [35] studied the optimal-quasi-clique and de-

signed a greedy algorithm and a local-search algorithm for MQCP.

Pinto et al. [25, 26] proposed the biased random-key genetic algo-

rithm for the MQCP. Djeddi et al. [9] used an extension of adaptive

multi-start tabu search to approximate the MQCP solution. Konar

and Sidiropoulos [16] proposed an efficient algorithm for MQCP by

mining large quasi-cliques from vertex neighborhoods. Recently,

Chen et al. [7] developed an efficient local search algorithm by

taking a novel vertex selection strategy. However, state-of-the-art

heuristics remain inefficient on massive graphs. The algorithm in

[7] provides no polynomial time guarantees, while the polynomial

method in [16] has high runtimes on large graphs.

3 PRELIMINARIES
3.1 Problem Definition
We consider an unweighted and undirected graph𝐺 = (𝑉 , 𝐸), where
𝑉 and 𝐸 are the sets of vertices and edges respectively. We denote

the numbers of vertices and edges in 𝐺 by 𝑛 and𝑚 respectively.

For a vertex 𝑢, the neighborhood 𝑁 (𝑢) consists of the set of nodes
that are neighbors of node 𝑢 and 𝑢 itself [41]. The degree of 𝑢

is defined as the number of neighbors of 𝑢, denoted as 𝑑 (𝑢), i.e.,
|𝑁 (𝑢) | = 𝑑 (𝑢) + 1. Given a subset of vertices 𝑆 ⊆ 𝑉 , denote 𝐸 (𝑆)
as the subset of 𝐸 containing edges only between the vertices in

𝑆 , i.e., 𝐸 (𝑆) = 𝐸 ∩ (𝑆 × 𝑆). We use 𝐺 [𝑆] = (𝑆, 𝐸 (𝑆)) to denote the

subgraph induced by 𝑆 , and 𝑑𝑆 (𝑢) to denote degree of 𝑢 in 𝐺 [𝑆].

Definition 3.1 (Edge-density [7, 16]). Given a graph 𝐺 = (𝑉 , 𝐸)
and its subgraph 𝐺𝑆 = (𝑆, 𝐸 (𝑆)) induced by 𝑆 , its edge-density is

defined as:

𝛿 (𝑆) = |𝐸 (𝑆) |(|𝑆 |
2

) (1)

A clique is a subset of vertices such that every two distinct

vertices in the clique are adjacent, i.e., 𝛿 (𝑆) = 1 when 𝑆 is a clique.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A Similarity-based Approach for Efficient LargeQuasi-clique Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Given a parameter 𝛼 ∈ (0, 1], a subgraph 𝐺 [𝑆] is said to be a 𝛼-

quasi-clique if 𝛿 (𝑆) ≥ 𝛼 , i.e., if the number of its edges is at least

𝛼 ·
(|𝑆 |
2

)
.

Definition 3.2 (Maximum quasi-clique problem (MQCP)). Given a

graph 𝐺 = (𝑉 , 𝐸) and density threshold 𝛼 ∈ (0, 1], the maximum

quasi-clique is an 𝛼-quasi-clique 𝑆 ⊆ 𝑉 with maximum cardinality.

MQCP is proved to be an NP-hard problem [24]. Hence, we

will start by presenting an algorithm called NBSim that can find

approximate maximum quasi-cliques in polynomial time. We will

then improve this algorithm to a faster, linear time version called

FastNBSim, using minhash approximation.

Before we present our similarity-based algorithms, we first give

the definition of structure similarity. Given two neighboring ver-

tices 𝑢 and 𝑣 , the similarity 𝜎 (𝑢, 𝑣) between 𝑢 and 𝑣 is defined

as the set similarity between 𝑁 (𝑢) and 𝑁 (𝑣). In existing studies

[29, 41], Jaccard similarity is adopted to measure the similarity. The

definition of Jaccard similarity is as follows:

Definition 3.3 (Jaccard similarity [14]). Given two sets 𝑋 and 𝑌 ,

the Jaccard similarity between these two sets is defined as
|𝑋∩𝑌 |
|𝑋∪𝑌 | .

Based on Jaccard similarity, the similarity between two vertices

𝑢 and 𝑣 is defined as 𝜎 (𝑢, 𝑣) = |𝑁 (𝑢)∩𝑁 (𝑣) ||𝑁 (𝑢)∪𝑁 (𝑣) | .

4 NBSIM: A SIMILARITY-BASED ALGORITHM
In this section, we develop a novel polynomial-time algorithm

for finding near-maximum quasi-cliques. Our algorithm exploits

the existence of dense vertex neighborhoods of non-trivial sizes

in real-world graphs, as proven in Theorem 3.5 of [16]. This the-

orem demonstrates that large, high-quality quasi-cliques can be

extracted from neighborhoods with sufficiently high edge density.

Our algorithm has two key components. We first introduce our

similarity-based vertex selection strategy to extract high-quality

quasi-cliques from neighborhoods. We then speed up this algorithm

further by incorporating pruning techniques based on ordering and

bounds.

4.1 Similarity-based Vertex Selection
In this subsection, we focus on extracting quasi-cliques from the

neighborhood of a single vertex. As the vertices within a quasi-

clique tend to exhibit a higher level of similarity between each

other compared to vertices outside the quasi-clique, a straightfor-

ward idea to extract quasi-cliques from the neighborhood of 𝑢 is

to find neighbors with high similarities to 𝑢. However, the Jaccard

similarity is not very suitable for our case, while it was used in

many applications, such as graph clustering [33, 40, 41]. To find

large quasi-cliques from the neighborhood of 𝑢, our goal is to find

vertices {𝑣 |𝑣 ∈ 𝑁 (𝑢)} such that 𝑁 (𝑢) is mostly contained by 𝑁 (𝑣),
instead of finding a vertex v with 𝑁 (𝑣) similar to 𝑁 (𝑢). Hence, we
propose a new metric, containment score, as the vertex selection

criterion.

Definition 4.1 (Containment score). Given two vertices 𝑢 and 𝑣 ,

the containment score of 𝑢 in 𝑣 is defined as

𝑡 (𝑢, 𝑣) = |𝑁 (𝑢) ∩ 𝑁 (𝑣) |
|𝑁 (𝑢) | (2)

Algorithm 1: Extract quasi-clique from 𝑁 (𝑢): QCextract
Input: vertex 𝑢, threshold 𝛾 ∈ (0, 1], 𝑏 ∈ (0, 1]
Output: a vertex set extracted from 𝑁 (𝑢)

1 𝑆 ← ∅
2 for each vertex 𝑣 in 𝑁 (𝑢) do
3 if 𝑡 (𝑢, 𝑣) ≥ 𝛾 then 𝑆 ← 𝑆 ∪ {𝑣}

4 if |𝑆 |−1|𝑁 (𝑢) | < 𝑏 then 𝑆 ← ∅
5 return 𝑆

Compared to Jaccard similarity, the containment score is an

asymmetric definition, i.e., 𝑡 (𝑢, 𝑣) might not equal to 𝑡 (𝑣,𝑢), which
allows the scenario that only part of 𝑁 (𝑣) highly overlaps with

𝑁 (𝑢). Assuming that 𝑁 (𝑢) induces the ideal quasi-clique, all ver-
tices in 𝑁 (𝑢) can be selected based on the containment score, which

might not be achieved via Jaccard similarity. We further use the

following example to illustrate the advantage of containment score.

d

N(v)
N(u)

u

a b

c v

e

f

Figure 2: Subgraph induced by 𝑁 (𝑢) and 𝑁 (𝑣).

Example 4.2. Figure 2 depicts a subgraph induced by 𝑁 (𝑢) and
𝑁 (𝑣). The neighborhoods of 𝑢 and 𝑣 are denoted as 𝑁 (𝑢) = {𝑎, 𝑏, 𝑐 ,

𝑣 , 𝑢} and 𝑁 (𝑣) = {𝑎, 𝑏, 𝑑 , 𝑒 , 𝑓 , 𝑢 ,𝑣}, respectively. Suppose we want

to extract a 0.8-quasi-clique from 𝑁 (𝑢). Using Jaccard similarity,

𝜎 (𝑢, 𝑣) = |𝑁 (𝑢)∩𝑁 (𝑣) ||𝑁 (𝑢)∪𝑁 (𝑣) | =
4

8
= 0.5. Based on this, we may exclude

𝑣 from the quasi-clique. However, the containment score gives

𝑡 (𝑢, 𝑣) = |𝑁 (𝑢)∩𝑁 (𝑣) ||𝑁 (𝑢) | = 4

5
= 0.8, suggesting 𝑣 could be included.

Importantly, 𝑎, 𝑏,𝑢, 𝑣 forms a clique in the subgraph. This validates

the appropriateness of including 𝑣 based on the containment score.

Based on the above discussion, we present the algorithm to

extract quasi-cliques from neighborhoods, named QCextract, in
Algorithm 1. QCextract takes a vertex 𝑢 and threshold values 𝛾

and 𝑏 as input. It aims to extract a vertex set 𝑆 from 𝑁 (𝑢), where
the edge-density of𝐺 [𝑆] is controlled by 𝛾 and 𝑏. It first initializes

an empty set 𝑆 to store the result (line 1). Then it iterates over

each vertex 𝑣 in the neighborhood 𝑁 (𝑢) of vertex 𝑢 (line 2), checks

whether the containment score 𝑡 (𝑢, 𝑣) exceeds the threshold 𝛾 , and
adds vertex 𝑣 to the set 𝑆 if the condition is fulfilled (line 3). If the

extracted set 𝑆 is smaller than 𝑏 |𝑁 (𝑢) |, which implies only few

vertices of 𝑁 (𝑢) have highly overlapped neighbors with 𝑢, we will

set 𝑆 to ∅ (line 4). Finally, QCextract returns the extracted set 𝑆

(line 5).

If 𝑆 is not empty, we show that the lower bound of the edge-

density of 𝑆 is determined by 𝛾 and 𝑏, as follows:

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Theorem 4.3 (Lower bound of edge-density of qasi-cliqe

returned by Algorithm 1). Given a graph 𝐺 , a vertex 𝑢, and
threshold parameters 𝛾 and 𝑏, the edge-density of the quasi-clique 𝑆
returned by Algorithm 1 is lower bounded by, if 𝑆 is not empty:

𝛿 (𝑆) ≥ 1 − 1 − 𝛾
𝑏

(3)

Proof. According to line 3 of Algorithm 1, each vertex 𝑣 in

𝑆 satisfies that 𝑡 (𝑢, 𝑣) ≥ 𝛾 , which implies that |𝑁 (𝑢) ∩ 𝑁 (𝑣) | ≥
𝛾 |𝑁 (𝑢) |. According to line 4 of Algorithm 1, we have |𝑆 | − 1 ≥
𝑏 |𝑁 (𝑢) |.

For a specific 𝑣 ∈ 𝑆 , denote 𝑡 (𝑢, 𝑣) = 𝛾 ′ and |𝑆 | − 1 = 𝑏′ |𝑁 (𝑢) |.
By defining 𝑆 ′ = 𝑆 \ 𝑣 , we have |𝑆 ′ | = 𝑏′ |𝑁 (𝑢) |.

N(u) ∩N(v)

N(u)

N(u) ∩ S
′

N(u) ∩N(v) ∩ S
′

Figure 3: Illustrating the lower bound of 𝑑𝑆 (𝑣).

By applying the inclusion-exclusion principle (ref. Figure 3), we

can infer that the degree of 𝑣 in 𝐺 [𝑆] satisfies
𝑑𝑆 (𝑣) = |𝑁 (𝑢) ∩ 𝑁 (𝑣) ∩ 𝑆 ′ | ≥ (𝑏′ − (1 − 𝛾 ′)) |𝑁 (𝑢) | (4)

Hence, we obtain

|𝑁 (𝑢) ∩ 𝑁 (𝑣) ∩ 𝑆 ′ |
|𝑆 ′ | ≥

(
1 − 1 − 𝛾 ′

𝑏′

)
(5)

≥
(
1 − 1 − 𝛾

𝑏

)
, (6)

which means that ∀𝑣 ∈ 𝑆, 𝑑𝑆 (𝑣) ≥
(
1 − 1−𝛾

𝑏

)
(|𝑆 | − 1). Hence, the

edge-density 𝛿 (𝑆) is at least 1 − 1−𝛾
𝑏

, as |𝐸 (𝑆) | =
∑

𝑣∈𝑆 𝑑𝑆 (𝑣)
2

. □

Remark. The proof shows that each vertex in𝐺 [𝑆] is connected
to at least

(
1 − 1−𝛾

𝑏

)
(|𝑆 | − 1) other vertices within 𝐺 [𝑆], which

is a stricter requirement than Definition 3.1. Definition 3.1 only

requires that the overall density of the subgraph𝐺 [𝑆] is larger than
a specific threshold value.

Effect of parameters. By increasing both 𝛾 and 𝑏, the term

1−𝛾
𝑏

approaches 0. Consequently, the value of 𝛿 (𝑆) approaches 1,
and Algorithm 1 tends to output near-cliques. Although high 𝛾

and 𝑏 values may cause Algorithm 1 to return an empty set for

the neighborhoods of some specific nodes, we still have a high

probability of finding the large quasi-cliques from the whole graph,

because dense vertex neighborhoods of non-trivial sizes exist in

real-world graphs, according to Theorem 3.5 of [16].

To obtain an 𝛼-quasi-clique as in Lemma 4.3, we must set 𝑏 and 𝛾

such that 1− 1−𝛾
𝑏

> 𝛼 . In particular,𝑏 controls the similarity require-

ment between 𝑆 and 𝑁 (𝑢). Setting 𝑏 close to 1 makes Algorithm 1

return almost the entire neighborhood itself.

Algorithm 2: Find near-maximum quasi-clique: NBSim

Input: Graph 𝐺 , threshold 𝛾 ∈ (0, 1], 𝑏 ∈ (0, 1]
Output: A near-maximum quasi-clique

1 𝑆 ← ∅
2 for each vertex 𝑢 in descending 𝛾-degree order do
3 if 𝑑𝛾 (𝑢) < |𝑆 | then break

4 𝐶 ← QCextract(𝑢,𝛾, 𝑏)
5 if |𝐶 | > |𝑆 | then 𝑆 ← 𝐶

6 return 𝑆

4.2 Pruning via Ordering and Bound
In Section 4.1, we presented an algorithm to extract quasi-cliques

from a single vertex’s neighborhood. To find near-maximum quasi-

cliques across the full graph, an exhaustive approach is to extract

from every neighborhood. However, this involves significant unnec-

essary computation. To improve efficiency, we first derive the size

upper bound of quasi-cliques extractable from each neighborhood.

We then propose a vertex ordering strategy to prune unpromising

neighborhoods.

We first give a simple upper bound based on degree for Algo-

rithm 1, which is also an upper bound for maximum clique compu-

tation [28].

Lemma 4.4 (Degree-based Upper Bound). For a graph 𝐺 and
a vertex 𝑢 in 𝐺 , the size of the set returned by QCextract(𝑢) is no
larger than 𝑑 (𝑢) + 1.

The lemma follows from that all vertices returned by QCextract(𝑢)
are from the neighborhood of𝑢. However, this upper bound is quite

loose.

Inspired by core numbers from 𝑘-core, a subgraph model where

each vertex has at least 𝑘 neighbors within the subgraph, we pro-

pose a new concept 𝛾-degree, which is a tighter upper-bound for

the returned quasi-clique.

Definition 4.5 (𝛾-degree). Given a graph 𝐺 and a vertex 𝑢, we

define the 𝛾-degree of 𝑢 as the number of neighbors of 𝑢 with a

degree at least 𝛾 ∗ 𝑑 (𝑢), denote as 𝑑𝛾 (𝑢).
𝑑𝛾 (𝑢) = |{𝑣 ∈ 𝑁 (𝑢) | |𝑁 (𝑣) | ≥ 𝛾 · |𝑁 (𝑢) |}| (7)

Note that𝑢 is counted in its 𝛾-degree 𝑑𝛾 (𝑢) but not in its original

degree 𝑑 (𝑢).

Lemma 4.6 (𝛾-degree-based Upper Bound). For a graph 𝐺 and
a vertex 𝑢 in 𝐺 , the size of the set returned by QCextract(𝑢) is no
larger than 𝑑𝛾 (𝑢).

Proof. In Algorithm 1, for a vertex 𝑣 to fulfill the condition

𝑡 (𝑢, 𝑣) > 𝛾 , |𝑁 (𝑣) | must be at least 𝛾 · |𝑁 (𝑢) |. Hence, the size of the
returned set is upper bounded by 𝑑𝛾 (𝑢) via Definition 4.5. □

As 𝑑𝛾 (𝑢) ≤ 𝑑 (𝑢) + 1 holds for every 𝑢 ∈ 𝑉 , the 𝛾 degree-based

upper bound is tighter than the degree-based upper bound. Besides,

the 𝛾-degree for every vertex in 𝐺 can be efficiently computed by

iterating over each vertex 𝑣 ∈ 𝑁 (𝑢) to check whether |𝑁 (𝑣) | >
𝛾 · |𝑁 (𝑢) | fulfills, in 𝑂 (𝑚) total time.

Based on the above discussions, we propose the algorithm NBSim
for computing near-maximum quasi-clique. The pseudocode is

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A Similarity-based Approach for Efficient LargeQuasi-clique Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

shown in Algorithm 2. The algorithm initializes an empty set 𝑆

(line 1). Then, it iterates through each vertex 𝑢 in descending order

with respect to the 𝛾-degree (line 2). It compares the 𝛾-degree of

vertex 𝑢 with the size of 𝑆 . If the 𝛾-degree is less than the size of

𝑆 , the loop breaks, as there is no possibility of forming a larger

quasi-clique via Lemma 4.6 (line 3). For each vertex 𝑢 satisfying

the degree condition, the algorithm proceeds to construct a vertex

set 𝐶 by invoking QCextract(𝑢, 𝑟, 𝑏) (line 4). If the size of set 𝐶 is

greater than the size of 𝑆 , 𝑆 is updated to 𝐶 (line 5). Finally, 𝑆 is

returned as the near-maximum quasi-clique.

Complexity. Let 𝑑𝑚𝑎𝑥 denote the maximum degree of any ver-

tex in the graph. The time complexity of Algorithm 2 is𝑂 (𝑚 ·𝑑𝑚𝑎𝑥)
Because it calls QCextract for each vertex 𝑢, and QCextract(𝑢)
will compute 𝑡 (𝑢, 𝑣) for |𝑁 (𝑢) | times. In total, we need to com-

pute 𝑡 (𝑢, 𝑣) for each edge twice, and the cost to compute 𝑡 (𝑢, 𝑣) is
𝑂 (𝑑𝑚𝑎𝑥). Hence, the overall time complexity is 𝑂 (𝑚 · 𝑑𝑚𝑎𝑥)

In NBSim, we need to choose two user-defined parameters 𝛾 and

𝑏, which will also affect the actual runtime of NBSim.
Effect of 𝛾 : When 𝛾 is set to a higher value, the size of the

set 𝐶 returned by QCextract is smaller. As a result, the condition

in line 3 of Algorithm 2 is less likely to be satisfied, leading to

fewer opportunities to update the variable 𝑆 . Consequently, fewer

branches are pruned, requiring more iterations to find the candidate

vertex. Thus, the runtime of NBSim may increase when 𝛾 is set to a

higher value.

Effect of𝑏: In QCextract, the parameter𝑏 determines the thresh-

old for the proportion of |𝑆 | occupied by |𝑁 (𝑢) |. A higher value

of 𝑏 results in a stricter condition for considering 𝑆 as candidate

vertices. Consequently, the runtime of NBSim may increase when 𝑏

is set to a higher value because it could take more iterations to find

the near-maximum quasi-clique.

In Section 6, we present an empirical sensitivity analysis of

parameters 𝛾 and 𝑏 on the accuracy and runtime of the algorithm.

5 FASTNBSIM: A MINHASH-BASED
ALGORITHM

For real-world large graphs, some vertices can have a very high

degree, and their neighbors may need to be iterated repeatedly

when computing the containment scores. This can be quite time-

consuming with a time complexity of 𝑂 (𝑚 · 𝑑𝑚𝑎𝑥). To improve

efficiency, we propose approximating the containment score calcu-

lations via MinHash signatures.

To efficiently derive approximate similarity scores between adja-

cent vertex pairs, we adopt the 𝑘-MinHash technique proposed by

Tseng et al. [33]. The key idea is to represent each vertex’s neigh-

borhood using a MinHash signature, and then estimate similarity

by comparing signatures.

Specifically, we first assign a unique hash value to each vertex

𝑢 ∈ 𝑉 . For each 𝑢, we compute 𝑟𝑚𝑖𝑛 (𝑢), the minimum hash value

among all vertices in 𝑁 (𝑢). The Jaccard similarity 𝜎 (𝑢, 𝑣) between
vertices 𝑢 and 𝑣 can then be given as:

𝜎 (𝑢, 𝑣) = 𝑃𝑟 [𝑟𝑚𝑖𝑛 (𝑢) = 𝑟𝑚𝑖𝑛 (𝑣)] . (8)

To better estimate the probability, i.e., the similarity, we generate

𝑘 min hashes for each vertex using 𝑘 independent hash functions.

Let 𝑟 𝑖
𝑚𝑖𝑛
(𝑢) denote the minimum hash value among all vertices in

Algorithm 3: Extract quasi-clique byMinHash: QCMinHash

Input: vertex 𝑢, threshold 𝛾 ∈ (0, 1], 𝑏 ∈ (0, 1]
Output: a vertex set extracted from 𝑁 (𝑢)

1 𝑆 ← ∅
2 if the MinHash signature of 𝑢 is not computed then
3 Compute the signature of 𝑢, i.e., {𝑟 𝑖

𝑚𝑖𝑛
(𝑢) | 1 ≤ 𝑖 ≤ 𝑘}

4 for each vertex 𝑣 in 𝑁 (𝑢) do
5 if the MinHash signature of 𝑣 is not computed then
6 Compute the signature of 𝑣

7 Derive the estimated similarity �̂� (𝑢, 𝑣) with the

signatures of 𝑢 and 𝑣 via Equation (9)

8 Compute 𝑡 (𝑢, 𝑣) via Equation (10)

9 if 𝑡 (𝑢, 𝑣) ≥ 𝛾 then 𝑆 ← 𝑆 ∪ {𝑣}

10 if |𝑆 |−1|𝑁 (𝑢) | < 𝑏 then 𝑆 ← ∅
11 return 𝑆

𝑁 (𝑢) with respect to the 𝑖-th hash function. We can then estimate

𝜎 (𝑢, 𝑣) as:

�̂� (𝑢, 𝑣) ≈
|{𝑖 | 𝑟 𝑖

𝑚𝑖𝑛
(𝑢) = 𝑟 𝑖

𝑚𝑖𝑛
(𝑣), 1 ≤ 𝑖 ≤ 𝑘}|

𝑘
. (9)

Next, the estimated Jaccard similarity needs to be converted to

the containment score to serve the quasi-clique extraction. Specif-

ically, we introduce a transformation function via the inclusion-

exclusion principle to compute the corresponding estimated con-

tainment score, 𝑡 (𝑢, 𝑣):

𝑡 (𝑢, 𝑣) =
(𝑑 (𝑣)+1
𝑑 (𝑢)+1 + 1) ∗ �̂� (𝑢, 𝑣)

1 + �̂� (𝑢, 𝑣) (10)

Combining Equations (9) and (10), we can approximate the con-

tainment score for two neighborhoods by MinHash. This process to

estimate the containment score is further illustrated in the following

example.

Example 5.1. Consider the simple graph in Fig. 2. The neighbor-

hood of vertex 𝑢, denoted 𝑁 (𝑢), consists of the vertices {𝑎, 𝑏, 𝑐,𝑢, 𝑣 },
while 𝑁 (𝑣) consists of {𝑎, 𝑏, 𝑑, 𝑒, 𝑓 ,𝑢, 𝑣}. The intersection 𝑁 (𝑢) ∩
𝑁 (𝑣) yields {𝑎, 𝑏,𝑢, 𝑣 }. By Eq. 2, the direct containment score 𝑡 (𝑢, 𝑣)
is 0.8.

Now let’s approximate 𝑡 (𝑢, 𝑣) using MinHash with 𝑘 = 4 func-

tions: 𝑦 = (2𝑥 + 3) mod 11, 𝑦 = (3𝑥 + 3) mod 11,𝑦 = (2𝑥 + 6)
mod 11,𝑦 = (4𝑥 + 4) mod 11, and IDs {𝑎 = 1, 𝑏 = 2, 𝑐 = 3, 𝑑 = 4, 𝑒 =

5, 𝑓 = 6, 𝑢 = 7, 𝑣 = 8}. The signatures are {𝑟𝑚𝑖𝑛 (𝑢)} = {5, 1, 0, 1} and
{𝑟𝑚𝑖𝑛 (𝑢)} = {0, 2, 0, 1}. With �̂� (𝑢, 𝑣) = 0.5 based on Equation (9),

the estimated 𝑡 (𝑢, 𝑣) = 0.8, equal to the direct calculation. □

Based on the above discussion, we propose the MinHash-based

quasi-clique extraction algorithm from the neighborhood in Algo-

rithm 3, which follows a similar structure to Algorithm 1 but differs

in on-demand signature generation and score estimation, which

is shown in the shaded regions of the two algorithms. Specifically,

the MinHash signatures are computed on-demand when needed -

computing the signature for 𝑢 if not done yet (lines 2-3), and com-

puting the signature for 𝑣 if needed (lines 5-6). Then it derives the

estimated Jaccard similarity �̂� (𝑢, 𝑣) and corresponding containment

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

score 𝑡 (𝑢, 𝑣) using the lazily computed signatures and Equations 9

and 10 (lines 7-8).

By computing signatures lazily and estimating scores via Min-

Hash, the algorithm aims to efficiently extract quasi-cliques without

expensive direct neighborhood comparisons.

Effect of 𝑘 . Larger MinHash signature size 𝑘 leads to a better

approximation of the Jaccard similarity. However, bigger 𝑘 also

increases the computation time for signature generation and simi-

larity estimation.

Theoretically, we can give the lower bound of the edge-density

of the subgraph returned by Algorithm 3 via the following lemma.

Lemma 5.2. Given a graph 𝐺 , a vertex 𝑢, 𝑘 ≥ ln(𝑛𝑚)
2𝜌2

, and thresh-
old parameters𝛾 and𝑏, the edge-density of the quasi-clique 𝑆 returned
by Algorithm 3 is lower bounded by, if 𝑆 is not empty:

𝛿 (𝑆) ≥ 1 − 1 − 𝛾 ′
𝑏

(11)

where

𝛾 ′ ≥ 𝛽𝑢 · (𝛽𝑢 · 𝜌 − 𝜌 · 𝛾 − 𝛾)
𝛽𝑢 · 𝜌 − 𝜌 · 𝛾 − 𝛽𝑢

. (12)

and 𝛽𝑢 represents 𝑑𝑚𝑎𝑥+1
𝑑 (𝑢)+1 + 1 for the specific vertex 𝑢.

Proof. By setting𝑘 >= ln(𝑛𝑚)/(2𝜌2), we have �̂� (𝑢, 𝑣) ∈ [𝜎 (𝑢, 𝑣)−
𝜌, 𝜎 (𝑢, 𝑣) + 𝜌] [33]. Given that 𝑡 (𝑢, 𝑣) is required to be larger than

𝛾 , by applying Equation (10), we have

𝑡 (𝑢, 𝑣) = 𝛽 · �̂� (𝑢, 𝑣)
1 + �̂� (𝑢, 𝑣) ≥ 𝛾, (13)

and

𝑡 (𝑢, 𝑣) = 𝛽 · 𝜎 (𝑢, 𝑣)
1 + 𝜎 (𝑢, 𝑣) ≥ 𝛾

′, (14)

where 𝛽 =
𝑑 (𝑣)+1
𝑑 (𝑢)+1 + 1. Combining Equations (13) and (14) and the

error bound of �̂� (𝑢, 𝑣), we can derive:

𝛾 ′ ≥ 𝛽 · (𝛽 · 𝜌 − 𝜌 · 𝛾 − 𝛾)
𝛽 · 𝜌 − 𝜌 · 𝛾 − 𝛽 (15)

Equation (15) exhibits a diminishing trend with increasing values

of 𝛽 . Since 𝛽 =
𝑑 (𝑣)+1
𝑑 (𝑢)+1 + 1 ≤

𝑑𝑚𝑎𝑥+1
𝑑 (𝑢)+1 + 1, by replacing 𝛽 with

𝛽𝑢 =
𝑑𝑚𝑎𝑥+1
𝑑 (𝑢)+1 + 1, we can derive Equation (12). □

Examining Equation 12, we observe that 𝛾 ′ approximates 𝛾

closely when 𝜌 is set to a small positive real number. This is be-

cause large quasi-cliques are typically extracted from high-degree

vertices, where 𝑑 (𝑢) is not very small compared to 𝑑𝑚𝑎𝑥 . Thus, the

degree ratio 𝛽𝑢 remains low.

Empirically, we find that small 𝑘 is sufficient for high-quality

quasi-clique extraction in many cases.

Algorithm 4 outlines FastNBSim, which modifies NBSim using

QCMinHash. The algorithm first constructs a set of 𝑘 universal hash

functions upfront to enable later MinHash computations (line 1).

Within the loop, it applies QCMinHash to efficiently extract quasi-

cliques from each neighborhood using the MinHash signatures (line

5). The remaining loop order and candidate set updates are identical

to the original NBSim in Algorithm 2.

Complexity. FastNBSim adapts NBSim to leverage QCMinHash
for faster quasi-clique extraction via MinHash approximation. The

core steps of NBSim are preservedwhile substituting direct similarity

Algorithm 4: Find large quasi-clique: FastNBSim

Input: Graph 𝐺 , size 𝑘 , threshold 𝛾, 𝑏
Output: A near-maximum quasi-clique

1 Construct 𝑘 universal hash functions

2 𝑆 ← ∅
3 for each vertex 𝑢 in descending 𝛾-degree order do
4 if 𝑑𝛾 (𝑢) < 𝑇 then break

5 𝐶 ← QCMinHash(𝑢,𝛾, 𝑏)
6 if |𝐶 | > |𝑆 | then 𝑆 ← 𝐶

7 return 𝑆

computations with efficient signatures. The time complexity is

improved to 𝑂 (𝑚 · 𝑘).

6 EXPERIMENTS
We now present experimental results. We first discuss the setup

in Section 6.1, then describe the results of NBSim and FastNBSim
against the baseline algorithms. Then, we give some detailed analy-

sis of the effect of parameters and pruning techniques.

6.1 Setup
Datasets.We use ten real datasets from [17], and report the number

of vertices and edges of each dataset in Table 1. These graphs

cover various domains, including co-authorship graphs (e.g., Ca-

HepPh and Ca-AstroPh), social networks (e.g., Ego-Facebook and

Loc-Gowalla), and web graphs(e.g., Web-Stanford).

Algorithm. In our experiments, we employ our newly proposed

algorithms NBSim and FastNBSim to compute near-maximum quasi-

cliques. For NBSim, we set 𝛾 = 0.9 and 𝑏 = 0.6 , FastNBSim follows

NBSim with an additional setting 𝑘 = 8. Unless otherwise specified,

we use these settings by default. In addition to our algorithms, we

also evaluate the performance of the following existing methods:

• NB [16]: This algorithm computes large quasi-cliques using

vertex neighborhoods. It can be refined through a straight-

forward local search method [35], offering state-of-the-art

performance with relatively low complexity. The setting of

𝛼 follows [16].

• NuQClq [7]: As a state-of-the-art algorithm, NuQClq iden-

tifies the maximum quasi-clique based on a pre-defined

threshold for the quasi-value and a specified cutoff time.

The algorithm will terminate when it reaches the cutoff

time or the respected result is found. For comparative pur-

poses, we set the quasi threshold to match the quasi-value

derived from NBSim and set the cutoff time as sufficiently

large to achieve near-optimal results.

All the algorithms above are implemented in C++. For NB, which
needs triangle counting, we follow [16] and employ the MAximal

Clique Enumerator (MACE) algorithm [36] to obtain triangle counts.

We run all the experiments on a machine equipped with an Intel(R)

CPU @ 1.4GHz processor and 256GB of memory. The source codes

of our algorithms are publicly available
1
.

1
https://anonymous.4open.science/r/LargeQCDetection-1DFD/

6

https://anonymous.4open.science/r/LargeQCDetection-1DFD/

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

A Similarity-based Approach for Efficient LargeQuasi-clique Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Graphs used in our experiments.

Dataset Full name |𝑉 | |𝐸 |
FB Ego-facebook 4,039 88,234

HP Ca-HepPh 12,008 118,521

CM Ca-CondMat 23,133 93,497

ER Email-Enron 36,692 183,831

GW Loc-Gowalla 196,591 950,327

SF Web-Stanford 281,903 2,312,497

BS Web-BerkStan 685,230 7,600,595

GG Web-Google 875,713 5,105,039

PK Soc-Pokec 1,632,803 30,622,564

TC Wiki-Topcats 1,791,489 28,511,807

6.2 Main Results
We present the edge-density and size of the quasi-clique returned

by each algorithm in Table 2 and Table 3, respectively. We find that

in most cases, NBSim and FastNBSim can achieve comparable or

even larger sizes with similar edge-density compared with NB and

NuQClq.

Table 2: Density of the quasi-clique returned by eachmethod.

Dataset NBSim FastNBSim NB NuQClq

FB 0.99 0.94 0.94 0.99

HP 1 1 0.95 1

CM 1 1 0.95 1

ER 0.98 0.94 0.93 0.98

GW 0.99 0.98 0.94 0.99

SF 0.99 0.94 0.95 0.99

BS 0.99 0.99 0.93 0.99

GG 0.99 0.99 0.93 0.99

PK 0.98 0.98 0.95 0.98

TC 0.99 0.99 0.95 0.99

Table 3: Size of the quasi-clique returned by each method.

Dataset NBSim FastNBSim NB NUQClq

FB 71 103 50 92

HP 239 237 246 239

CM 26 26 28 26

ER 10 17 14 23

GW 31 28 36 31

SF 67 65 71 66

BS 202 201 142 144

GG 48 48 54 48

PK 32 31 33 31

TC 40 41 48 29

In Figure 4, we detail the efficiency of all tested algorithms.

FastNBSim stands out by markedly enhancing computational ef-

ficiency. It achieves speeds up to two orders of magnitude faster

FB HP CM ER GW SF BS GG PK TC
dataset

102

104

106

R
un

ni
ng

 T
im

e
(m

s)

FastNBSim

NBSim

NB

NuQClq

Figure 4: Efficiency of all algorithms.

than NBSim by utilizing MinHash to estimate similarity, thus reduc-

ing its time complexity to 𝑂 (𝑘𝑚). Furthermore, when compared

to NB and NuQClq, FastNBSim outperforms them, being quicker by

up to three orders of magnitude. This pronounced efficiency of

FastNBSim can be attributed to its adoption of the MinHash ap-

proximation combined with a bound and ordering-based pruning

strategy. Conversely, NB necessitates the calculation of the local

clustering coefficient for every vertex, leading to a more computa-

tionally intensive process.

Turning our attention to NBSim and NB, though they share the

same time complexity of 𝑂 (𝑚3/2), their performance varies, each

surpassing the other in specific datasets due to different computing

paradigms.

6.3 Effect of Parameters
6.3.1 Effect of 𝛾 and 𝑏. From Figure 5, in cases (a), (c), and (e),

holding 𝛾 constant and increasing 𝑏 shrinks the quasi-clique’s size

but augments its density for 𝑏 values between 0.6 and 0.9, aligning

with findings in Section 4. Additionally, a rise in 𝑏 escalates extrac-

tion time due to stricter constraints and more candidate clusters,

as detailed in Section 4.2. Similarly, cases (b), (d), and (f) illustrate

that increasing 𝛾 with a fixed 𝑏 mirrors the effects of increasing 𝑏

with a fixed 𝑟 .

6.3.2 Effect of varying 𝑘 . In Figure 6, we report the performance

of FastNBSim on datasets HP, ER, GG, and BS varying 𝑘 from 4 to

128 while fixing 𝛾 = 0.9 and 𝑏 = 0.6. The result of NBSim is marked

as “base” in Figure 6 for comparison. Remarkably, HP, GG and BS

all exhibit edge densities that are close to 1 for different k values.

Overall, both algorithms yield similar and high-quality outcomes.

For smaller 𝑘 values, inaccuracies arise in approximations, yielding

larger quasi-clique sizes and decreased edge-densities, especially in

ER. Such inaccuracies are attributed to the potential of MinHash to

overestimate or underestimate vertex similarities for smaller 𝑘 , as

evident in the GG and BS datasets for 𝑘 = 4. However, as 𝑘 grows,

the approximation becomes more accurate.

6.4 Effect of Pruning Techniques
6.4.1 Effect of bound and ordering. Here we show the effective-

ness of the bound and ordering pruning technique proposed in

Section 4.2. In Table 4, the proportion of executed branches relative

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0.5 0.6 0.7 0.8 0.9
b

0

100

200

Si
ze

(a) = 0.9

0.5 0.6 0.7 0.8 0.9
0

100

200
(b) b = 0.6

0.5 0.6 0.7 0.8 0.9
b

0.0

0.5

1.0

D
en

si
ty

(c) = 0.9

0.5 0.6 0.7 0.8 0.9
0.0

0.5

1.0
(d) b = 0.6

0.5 0.6 0.7 0.8 0.9
b

0

1

2

3

T
im

e(
s)

(e) = 0.9

0.5 0.6 0.7 0.8 0.9
0

1

2

3
(f) b = 0.6

Figure 5: The accuracy and runtime of NBSim on graph FB for
different 𝛾 and 𝑏. (a), (c), (e) is the result for different 𝑏 with 𝛾

fixed to 0.9. (b), (d), (f) is the result for different 𝛾 with 𝑏 fixed
to 0.6.

4 8 16 32 64 128 base
k

0

100

200

300

Si
ze

The size of QC

4 8 16 32 64 128 base
k

0.0

0.5

1.0

Ed
ge

 D
en

si
ty

The density of QC

HP ER GG BS

Figure 6: The quality of QC w.r.t different value of 𝑘 .

Table 4: Proportion of neighborhoods examined from the
total.

Dataset FB HP CM ER GW

Proportion 2.8% 0.8% 0.039% 6.9% 2.1%

Dataset SF BS GG PK TC

Proportion 0.18% 0.0001% 0.01% 12% 4.9%

to the total is presented. The total branches equate to the vertex

count, indicating that without our pruning strategy, an iteration

through every vertex would be necessary. Our findings are drawn

from an analysis of ten datasets, all of which consistently exhibit

proportion results significantly below 12%. In specific cases, such

as CM, GG, and BS, these values are exceptionally low. This under-

scores the substantial reduction in branches achieved through our

pruning approach.

Table 5: Ratio of signature building time to the overall.

Dataset FB HP CM ER GW

Proportion 63.8% 49.4% 15.8% 71.0% 68.4%

Dataset SF BS GG PK TC

Proportion 33.2% 12.5% 14.4% 64.7% 71.2%

6.4.2 Proportion of signature building time. In Table 5, we show-

case the proportions of the signature-building phase as a part of

the overall running time for the FastNBSim algorithm across ten

datasets when 𝑘 = 8. The high proportions for most datasets un-

derscore that the similarity computation time for FastNBSim is a
minimal fraction of the total runtime after signatures are built. In

cases where the proportions are relatively low, such as CM, BS, and

GG, this is mainly due to the fact that sorting operations occupy

the majority of the overall time. For CM, the sort time ratio stands

at 79.3%, while for BS, it sits at 75.9%, and for GG, it reaches 84.8%.

Table 6: Speedup ratio of lazy signature approach compared
to calculating all signatures upfront.

Dataset FB HP CM ER GW

Speedup 3.8× 21.9× 7.3× 1.4× 1.6×
Dataset SF BS GG PK TC

Speedup 7.9× 13× 8.1× 1.1× 1.1×

6.4.3 Effect of lazy signature construction. Table 6 presents the

speedup ratio of using a lazy signature construction approach

versus calculating all signatures upfront for the FastNBSim algo-

rithm. We observe that computing signatures on-demand based

on 𝛾-degree ordering accelerates the runtime since not all vertex

signatures need to be computed. On the HP dataset, the speedup

ratio is particularly pronounced, demonstrating the efficacy of the

proposed lazy signature technique.

7 CONCLUSION
In this study, we delved into the maximum quasi-clique problem.

We initiated our discussion by reviewing existing algorithms, high-

lighting their constraints and areas of inefficacy. To enhance the

efficiency of the MQC discovery process, we introduced an efficient

approximation algorithm, NBSim, and established lower bounds

on quasi-clique edge-density. Our efforts further led to the devel-

opment of an innovative pruning strategy, effectively minimizing

redundant computations. Additionally, we integrated an estimation

approach for similarity computation usingMinHash, culminating in

the proposal of the FastNBSim algorithm. This algorithm stands out

as it drastically reduces the time complexity associated with similar-

ity score computations to constant time. Through comprehensive

experiments on ten real, large-scale datasets, we demonstrated that

FastNBSim outpaces existing methods, clocking speeds up to three

orders of magnitude faster than state-of-the-art solutions.

In the future, we will explore efficient methods for identifying

large quasi-cliques in dynamic graphs, and investigate how to dy-

namically maintain the MinHash signatures.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

A Similarity-based Approach for Efficient LargeQuasi-clique Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] James Abello, Mauricio GC Resende, and Sandra Sudarsky. 2002. Massive quasi-

clique detection. In LATIN 2002: Theoretical Informatics: 5th Latin American
Symposium Cancun, Mexico, April 3–6, 2002 Proceedings 5. Springer, 598–612.

[2] Coen Bron and Joep Kerbosch. 1973. Algorithm 457: finding all cliques of an

undirected graph. Commun. ACM 16, 9 (1973), 575–577.

[3] Gregory Buehrer and Kumar Chellapilla. 2008. A scalable pattern mining ap-

proach to web graph compression with communities. In Proceedings of the 2008
international conference on web search and data mining. 95–106.

[4] Renato Carmo and Alexandre Züge. 2012. Branch and bound algorithms for the

maximum clique problem under a unified framework. Journal of the Brazilian
Computer Society 18 (2012), 137–151.

[5] Randy Carraghan and Panos M Pardalos. 1990. An exact algorithm for the

maximum clique problem. Operations Research Letters 9, 6 (1990), 375–382.
[6] Lijun Chang. 2019. Efficient maximum clique computation over large sparse

graphs. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 529–538.

[7] Jiejiang Chen, Shaowei Cai, Shiwei Pan, Yiyuan Wang, Qingwei Lin, Mengyu

Zhao, and Minghao Yin. 2021. NuQClq: an effective local search algorithm

for maximum quasi-clique problem. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35. 12258–12266.

[8] Apurba Das, Seyed-Vahid Sanei-Mehri, and Srikanta Tirthapura. 2018. Shared-

memory parallel maximal clique enumeration. In 2018 IEEE 25th International
Conference on High Performance Computing (HiPC). IEEE, 62–71.

[9] Youcef Djeddi, Hacene Ait Haddadene, and Nabil Belacel. 2019. An extension of

adaptive multi-start tabu search for the maximum quasi-clique problem. Com-
puters & Industrial Engineering 132 (2019), 280–292.

[10] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient densest

subgraph computation in evolving graphs. In Proceedings of the 24th international
conference on world wide web. 300–310.

[11] David Eppstein, Maarten Löffler, and Darren Strash. 2013. Listing all maximal

cliques in large sparse real-world graphs. Journal of Experimental Algorithmics
(JEA) 18 (2013), 3–1.

[12] Giorgio Gallo, Michael DGrigoriadis, and Robert E Tarjan. 1989. A fast parametric

maximum flow algorithm and applications. SIAM J. Comput. 18, 1 (1989), 30–55.
[13] Andrew V Goldberg. 1984. Finding a maximum density subgraph. (1984).

[14] Paul Jaccard. 1912. The distribution of the flora in the alpine zone. 1. New
phytologist 11, 2 (1912), 37–50.

[15] David Knoke and Song Yang. 2019. Social network analysis. SAGE publications.

[16] Aritra Konar and Nicholas D Sidiropoulos. 2020. Mining large quasi-cliques

with quality guarantees from vertex neighborhoods. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
577–587.

[17] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large network

dataset collection.

[18] Chu-Min Li, Zhiwen Fang, and Ke Xu. 2013. Combining MaxSAT reasoning and

incremental upper bound for the maximum clique problem. In 2013 IEEE 25th
International Conference on Tools with Artificial Intelligence. IEEE, 939–946.

[19] ChenhaoMa, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan,Wenjie Zhang,

and Xuemin Lin. 2020. Efficient algorithms for densest subgraph discovery on

large directed graphs. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1051–1066.

[20] Fabrizio Marinelli, Andrea Pizzuti, and Fabrizio Rossi. 2021. LP-based dual

bounds for the maximum quasi-clique problem. Discrete Applied Mathematics
296 (2021), 118–140.

[21] Zhuqi Miao and Balabhaskar Balasundaram. 2020. An ellipsoidal bounding

scheme for the quasi-clique number of a graph. INFORMS Journal on Computing
32, 3 (2020), 763–778.

[22] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,

and Shen Chen Xu. 2015. Scalable large near-clique detection in large-scale

networks via sampling. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 815–824.

[23] Panos M Pardalos and Jue Xue. 1994. The maximum clique problem. Journal of
global Optimization 4 (1994), 301–328.

[24] Jeffrey Pattillo, Alexander Veremyev, Sergiy Butenko, and Vladimir Boginski.

2013. On the maximum quasi-clique problem. Discrete Applied Mathematics 161,
1-2 (2013), 244–257.

[25] Bruno Q Pinto, Celso C Ribeiro, José A Riveaux, and Isabel Rosseti. 2021. A

BRKGA-based matheuristic for the maximum quasi-clique problem with an exact

local search strategy. RAIRO-Operations Research 55 (2021), S741–S763.

[26] Bruno Q Pinto, Celso C Ribeiro, Isabel Rosseti, and Alexandre Plastino. 2018. A

biased random-key genetic algorithm for the maximum quasi-clique problem.

European Journal of Operational Research 271, 3 (2018), 849–865.

[27] Celso C Ribeiro and José A Riveaux. 2019. An exact algorithm for the maximum

quasi-clique problem. International Transactions in Operational Research 26, 6

(2019), 2199–2229.

[28] Ryan A Rossi, David F Gleich, and Assefaw H Gebremedhin. 2015. Parallel

maximum clique algorithms with applications to network analysis. SIAM Journal
on Scientific Computing 37, 5 (2015), C589–C616.

[29] Boyu Ruan, Junhao Gan, Hao Wu, and Anthony Wirth. 2021. Dynamic structural

clustering on graphs. In Proceedings of the 2021 International Conference on
Management of Data. 1491–1503.

[30] Pablo San Segundo, Alvaro Lopez, and Panos M Pardalos. 2016. A new exact

maximum clique algorithm for large and massive sparse graphs. Computers &
Operations Research 66 (2016), 81–94.

[31] Nikita Spirin and Jiawei Han. 2012. Survey on web spam detection: principles

and algorithms. ACM SIGKDD explorations newsletter 13, 2 (2012), 50–64.
[32] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time

complexity for generating all maximal cliques and computational experiments.

Theoretical computer science 363, 1 (2006), 28–42.
[33] Tom Tseng, Laxman Dhulipala, and Julian Shun. 2021. Parallel index-based

structural graph clustering and its approximation. In Proceedings of the 2021
International Conference on Management of Data. 1851–1864.

[34] Charalampos Tsourakakis. 2015. The k-clique densest subgraph problem. In

Proceedings of the 24th international conference on world wide web. 1122–1132.
[35] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,

and Maria Tsiarli. 2013. Denser than the densest subgraph: extracting optimal

quasi-cliques with quality guarantees. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. 104–112.

[36] Takeaki Uno. 2005. Maximal Clique Enumerator (MACE). http://research.nii.ac.

jp/~uno/codes.htm.

[37] Alexander Veremyev, Oleg A Prokopyev, Sergiy Butenko, and Eduardo L Pasiliao.

2016. Exact MIP-based approaches for finding maximum quasi-cliques and dense

subgraphs. Computational Optimization and Applications 64, 1 (2016), 177–214.
[38] Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods

and applications. (1994).

[39] David R Wood. 1997. An algorithm for finding a maximum clique in a graph.

Operations Research Letters 21, 5 (1997), 211–217.
[40] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. 2007. Scan:

a structural clustering algorithm for networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining. 824–
833.

[41] Fangyuan Zhang and Sibo Wang. 2022. Effective indexing for dynamic structural

graph clustering. Proceedings of the VLDB Endowment 15, 11 (2022), 2908–2920.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

9

http://research.nii.ac.jp/~uno/codes.htm
http://research.nii.ac.jp/~uno/codes.htm

	Abstract
	1 Introduction
	2 RELATED WORK
	3 PRELIMINARIES
	3.1 Problem Definition

	4 NBSim: A Similarity-based Algorithm
	4.1 Similarity-based Vertex Selection
	4.2 Pruning via Ordering and Bound

	5 FastNBSim: A Minhash-based Algorithm
	6 EXPERIMENTS
	6.1 Setup
	6.2 Main Results
	6.3 Effect of Parameters
	6.4 Effect of Pruning Techniques

	7 Conclusion
	References

