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Abstract

Knowledge graph completion (KGC) aims to001
predict missing triples in knowledge graphs002
(KGs) by leveraging existing triples and textual003
information. Recently, generative large lan-004
guage models (LLMs) have been increasingly005
employed for graph tasks. However, current006
approaches typically encode graph context in007
textual form, which fails to fully exploit the po-008
tential of LLMs for perceiving and reasoning009
about graph structures. To address this limita-010
tion, we propose DrKGC (Dynamic Subgraph011
Retrieval-Augmented LLMs for Knowledge012
Graph Completion). DrKGC employs a flexi-013
ble lightweight model training strategy to learn014
structural embeddings and logical rules within015
the KG. It then leverages a novel bottom-up016
graph retrieval method to extract a subgraph017
for each query guided by the learned rules. Fi-018
nally, a graph convolutional network (GCN)019
adapter uses the retrieved subgraph to enhance020
the structural embeddings, which are then inte-021
grated into the prompt for effective LLM fine-022
tuning. Experimental results on two general023
domain benchmark datasets and two biomed-024
ical datasets demonstrate the superior perfor-025
mance of DrKGC. Furthermore, a realistic case026
study in the biomedical domain highlights its027
interpretability and practical utility.028

1 Introduction029

Knowledge graphs (KGs) are structured represen-030

tations of real-world facts, typically formulated031

as a set of triples that consist of entities and their032

relationships (Nickel et al., 2015; Ji et al., 2021).033

Biomedical Knowledge Graphs (BKGs) are spe-034

cialized forms of KGs tailored to the biomedi-035

cal domain. In a BKG, nodes represent biomed-036

ical entities—such as molecules, diseases, and037

genes—while edges capture various relationships038

among these entities, typically through functional039

predicates relevant to the biomedical domain (e.g.,040

“treats,” “inhibits,” and “causes”) (Walsh et al.,041

2020). BKGs have proved instrumental in numer- 042

ous biological tasks, including drug repurposing, 043

side-effect prediction, and drug–drug interaction 044

detection (Himmelstein et al., 2017; Zitnik et al., 045

2018; Lin et al., 2020). 046

BKGs, like other KGs, often suffer from incom- 047

pleteness, typically manifested as missing edges 048

between nodes (Chen et al., 2020) . This incom- 049

pleteness may arise because (1) the facts are absent 050

from the data source, or (2) they remain undis- 051

covered by humans. Such issues are particularly 052

prevalent in BKGs, as their data primarily origi- 053

nates from experimental results, clinical trials, and 054

scientific literature. 055

To tackle this issue, various Knowledge Graph 056

Completion (KGC) models have been proposed to 057

predict missing triples. These models generally fall 058

into four categories: structure-based, rule-based, 059

text-based, and generation-based. Structure-based 060

methods focus on learning low-dimensional vectors 061

for entities and relations by leveraging the graph’s 062

structural properties, including classical Knowl- 063

edge Graph Embedding (KGE) models (TransE 064

(Bordes et al., 2013)) and graph neural network 065

(GNN) based models (R-GCN (Schlichtkrull et al., 066

2018)). Rule-based methods apply predefined or 067

automatically learned logical rules—such as Horn 068

clauses—to capture the relationships and depen- 069

dencies among entities (Neural-LP (Yang et al., 070

2017)). Text-based methods incorporate textual 071

descriptions associated with entities and relations 072

in KGs, often through pre-trained language models 073

(PLMs) (KG-Bert (Yao et al., 2019)). More re- 074

cently, the emergence of generative large language 075

models (LLMs) has spurred generation-based meth- 076

ods. Rather than encoding textual descriptions into 077

embeddings as text-based methods do, these meth- 078

ods leverage LLMs to directly generate KGC pre- 079

dictions in a sequence-to-sequence format, often us- 080

ing prompting and fine-tuning strategies (KICGPT 081

(Wei et al., 2024), KoPA (Zhang et al., 2024)). 082
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Although generation-based methods have shown083

considerable promise in KGC tasks, they still ex-084

hibit several limitations. First, these approaches085

often lose the structural information inherent in086

the graph. While paths or subgraphs can be di-087

rectly encoded as text in prompts, large textual088

inputs can introduce noise and increase computa-089

tional costs. Injecting LLMs with structural em-090

beddings offers an alternative, yet these embed-091

dings are static and do not fully allow the model092

to exploit the context of the graph. Furthermore,093

without additional constraints, LLMs tend to pro-094

duce generic responses rooted in their pretraining095

rather than context-specific predictions. This short-096

coming is particularly evident in BKGs, where nu-097

merous high-degree entities with many-to-many098

relationships may lead the model to make correct099

but undesirable answers.100

To address these challenges, we propose101

Dynamic Subgraph Retrieval-Augmented LLMs102

for Knowledge Graph Completion (DrKGC).103

Our approach begins by converting incomplete104

triples into questions using an automatically gen-105

erated template lexicon. It then applies a flexible106

lightweight model training strategy to learn global107

entity embeddings, discover logical rules in the108

KG, and rank corrupted triples based on the query109

entities and relations. For each templated query110

triple, DrKGC extracts a candidate set and dynami-111

cally constructs a subgraph using these candidates112

and the learned logical rules, while additionally113

updating local entity embeddings. The prompt, in-114

corporating this information, instructs the LLM to115

select the correct answer from candidate entities116

by leveraging both the global and local structural117

embeddings as contextual references.118

The key contributions of our work are as follows:119

• We propose DrKGC, a novel and flexible120

framework for knowledge graph completion121

that effectively supports both general KGs and122

domain BKGs.123

• We develop two critical components of124

DrKGC to effectively integrate graph-125

structural information into the generative126

model. Specifically, we extend the standard127

retrieval-augmented generation to the graph128

scenario where we leverage logical rules to129

obtain a local subgraph that represents entities130

of potential interest. Then, we develop a131

technique that applies graph convolutional132

networks to the retrieved subgraphs to133

further generate local embeddings of entities, 134

effectively supplying structural information 135

for LLM-based prediction. 136

• We perform comprehensive experiments on 137

both benchmark datasets and biomedical use 138

cases to evaluate the performance of DrKGC 139

and show its significant improvement over 140

state-of-the-art baseline approaches. We fur- 141

ther conduct a biomedical case study on drug 142

repurposing to demonstrate the practical ap- 143

plicability of DrKGC. 144

2 Related Work 145

2.1 Structure-based Methods 146

Knowledge graph completion (KGC) can be ap- 147

proached by leveraging the structural informa- 148

tion of nodes and edges in large heterogeneous 149

graphs. Early methods learn low-dimensional em- 150

beddings for entities and relations based on indi- 151

vidual triples—for example, TransE (Bordes et al., 152

2013) views a relation as a translation from the sub- 153

ject to the object, while RotatE (Sun et al., 2019) 154

extends TransE into a complex space to model sym- 155

metric relations. Semantic matching approaches 156

(e.g., ComplEx (Trouillon et al., 2016), DistMult 157

(Yang et al., 2014)) compute the similarity of entity 158

and relation representations. However, these triple- 159

based methods handle each triple independently 160

and ignore higher-order neighborhood information. 161

To address this, GNN-based methods, such as R- 162

GCN (Schlichtkrull et al., 2018) and CompGCN 163

(Vashishth et al., 2019), introduce message passing 164

and neighborhood aggregation. 165

2.2 Rule-based Methods 166

Because two entities in a KG may be linked by a 167

few one-hop paths but numerous multi-hop paths, 168

rule-based methods have emerged to learn prob- 169

abilistic logic rules from these relation paths for 170

inferring missing triples. For example, Neural-LP 171

(Yang et al., 2017) offers an end-to-end differen- 172

tiable framework that jointly learns the parame- 173

ters and structures of first-order logical rules by 174

combining a neural controller with attention and 175

memory, composing differentiable TensorLog op- 176

erations. NCRL (Cheng et al., 2023) learns logical 177

rules by splitting rule bodies into smaller parts, en- 178

coding them via a sliding window, and then merg- 179

ing them recursively with an attention mechanism, 180

achieving efficient and scalable reasoning. 181
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2.3 Text-based Methods182

Knowledge graphs often include extensive textual183

information—such as names and descriptions of en-184

tities and relations—which text-based methods can185

exploit using pre-trained language models (PLMs)186

to predict missing triples. For example, KG-BERT187

(Yao et al., 2019) computes triple scores by feeding188

the text of head entities, relations, and tail entities189

into a BERT model. SimKGC (Wang et al., 2022)190

applies contrastive learning with three types of neg-191

ative samples to build more discriminative KGC192

models.193

2.4 Generation-based Methods194

With the rise of generative large language models195

(LLMs), generation-based approaches have gained196

attention by transforming KGC into a sequence-197

to-sequence text generation task. These methods198

still rely on textual information from KGs, but they199

reframe a KGC query as a natural language ques-200

tion, prompt the LLM for an answer, and map that201

output back to KG entities. For example, KICGPT202

(Wei et al., 2024) introduces an in-context learn-203

ing strategy that uses explicit instructions to guide204

LLM reasoning. KoPA (Zhang et al., 2024) intro-205

duces the Knowledge Prefix Adapter to integrate206

pre-trained structural embeddings into LLMs, en-207

hancing structure-aware reasoning. From a prompt-208

ing perspective, LPNL (Bi et al., 2024) uses a two-209

stage sampling and divide-and-conquer method210

for scalable link prediction via natural language211

prompts. KC-GenRea (Wang et al., 2024) refor-212

mulates KGC as a re-ranking task for LLMs, and213

DIFT (Liu et al., 2024) implements KGC using214

discriminant instructions.215

2.5 Biomedical Knowledge Graph Completion216

BKGs have gained substantial attention for model-217

ing structured knowledge in complex biomedical218

systems. Notable BKGs include Hetionet (Him-219

melstein et al., 2017), unifying 29 databases into220

a single network, PharmKG (Zheng et al., 2021),221

integrating 6 databases plus text-mined knowl-222

edge, and PrimeKG (Chandak et al., 2023), a pre-223

cision medicine–focused graph consolidating 20224

resources. For BKGs, KGC is vital in identifying225

missing triples to generate new hypotheses—for ex-226

ample, ICInet (Zhao et al., 2023) integrates GNNs,227

biological KGs, and gene expression profiles to228

predict cancer immunotherapy outcomes, while229

FuseLinker (Xiao et al., 2024) fuses pre-trained230

LLM text embeddings with Poincaré graph embed- 231

dings for improved GNN-based link prediction in 232

drug repurposing. 233

3 Methodology 234

In this section, we introduce the proposed DrKGC. 235

We begin with the preliminary and an overview, fol- 236

lowed by a detailed description of each component. 237

3.1 Preliminary 238

Knolwedgra graph (KG). A KG (or BKG) can 239

be represented as a directed multigraph, G = 240

(E ,R, T ), where E is the set of entities, R is the set 241

of relations and T = {(h, r, t)|h, t ∈ E , t ∈ R} is 242

the set of triples. Each triple (h, r, t), with h and 243

t the head and tail entities, and r representing the 244

relation between them, describes a fact in KG. 245

Knolwedgra graph Completion (KGC). KGC 246

aims to infer novel or missing triples from 247

those already present in the graph. Let triples 248

{(h′, r′, t′)|h′, t′ ∈ E , t′ ∈ R}, with (h′, r′, t′) /∈ 249

T , represent facts that are not unobserved in the 250

KG. In this work, we cast KGC as the tasks of 251

identifying missing entities in incomplete triples 252

(?, rq, tq) and (hq, rq, ?), which are referred to as 253

head prediction and tail prediction, respectively. 254

Here, we call hq or tq the query entity and rq the 255

the query relation. 256

3.2 Overview 257

For simplicity, we only consider the head predic- 258

tion scenario for illustration. Figure 1 illustrates 259

the overall framework of DrKGC. DrKGC first em- 260

ploys a Question Generator to convert the incom- 261

plete triples (?, rq, tq) into well-formed question Q. 262

Then, a pre-trained lightweight model score each 263

entity {e ∈ E | (e, rq, tq) /∈ T } for (?, rq, tq), and 264

selects the top k entities, where k is a hyperparam- 265

eter, to form a candidates set C = [e1, e2, e3..., ek]. 266

Subsequently, Subgraph Retriever retrieves a sub- 267

graph G based on the query entity tq, all entities in 268

C and the logic rules of rq. A GCN-based adapter 269

then leverages G to refine the embeddings of the 270

tq and the entities in C. Finally, the LLM selects 271

the most plausible entity from the C, using both its 272

own knowledge and the structured embeddings, to 273

answer the question Q. 274

3.3 Question Generator 275

To more accurately express the relations in the KG 276

and convey the specific functional semantics of re- 277

lations in BKGs, we reformulate the KGC task into 278

3



Input:
1. tq           2. rq
Output:
Candidates

rq

Incomplete Triple

You are an excellent biomedical scientist. The task is
to predict the answer based on the given question,
and you only need to answer one entity. The answer
must be in ('Tretinoin', 'Pindolol', 'Niacin', 'vitamine
E', ....) 

You can refer to: 
'Hypertension': [Placeholder],
'Tretinoin': [Placeholder],
'Pindolol': [Placeholder],
'Niacin': [Placeholder],
'vitamine E': [Placeholder],
 ....

Question: What is treatable for hypertension?

Answer:  

 Embeddings

{
relation 1: question 1, 
relation 2: question 2,
relation 3: question 3,
....
}

Input:
1. Query entity:
2. Rules:

3. Candidates:
     [                 ....  ]
Output:

Input:
1. Text of the relation
2. A few example triples
Output:
Questions template 

Knowledge Graph

GPT

Question-Template 
LexiconQuestion Generator

Training Ranking Model 

Subgraph Retriever

Enhanced embedding 

Prompt Template

Example:  ( _ , treats, Hypertension)

Llama-3-8B
Mistral-7B
MedLlama-3-8B

LLM LoRA
Fine-tuning

LLM Response

Pindolol

Candidates Retriever

GCN
Adapter

Subgraph

Subgraph with
embeddings for query  

Graph Embeddings

Logic Rules 

Lightweight
Model(s)

(_, rq, tq)
?

(_, rq, eq): [entity 1,
entity 2, entity 3, ...,
entity k] 

Candiadtes

Figure 1: Overview of the DrKGC framework. The process indicated by the light blue arrow leverages the entire
knowledge graph and is executed once per dataset, while the process indicated by the solid black arrow is applied to
each individual triple.

a question-answering paradigm that aligns with279

LLMs. To achieve this, we introduce a simple280

yet effective approach comprising two main stages:281

Template Generation and Question Generation.282

Template Generation. For each KG, we conduct283

a one-time process using GPT’s few-shot context284

learning. Specifically, GPT-o1 is provided with a285

relation’s name, its textual description, and a small286

set of sample triples, and is then instructed to gen-287

erate a corresponding question template (with a288

placeholder for the query entity) via pattern induc-289

tion. After processing each relation, we compile290

a question-template lexicon L (distinguishing be-291

tween head and tail predictions) covering the entire292

relations set. The Appendix A.3 provides the com-293

plete lexicon for all four datasets.294

Question Generation. After obtaining the lexi-295

con L, we first map the query relation rq to its296

corresponding question template. Next, we place297

the query entity rq into the placeholder position to298

generate the complete question Q, which can be299

expressed as Q = P (L(rq), tq).300

3.4 Candidates Retriever301

To mitigate the issues of an excessively large search302

space, limited LLM input capacity, and the ten-303

dency of LLMs to produce generic responses, we304

constrain the LLM’s input and output using can-305

didate sets. Similar to some previous works (e.g.,306

(Zhang et al., 2024; Wei et al., 2024; Liu et al.,307

2024)), we also employ lightweight KGC methods 308

to obtain entity rankings, which are then used to 309

collect candidate entities. 310

Lightweight Model Training. Unlike previous 311

work, we require more than just entity rankings. 312

Therefore, we train not only lightweight structure- 313

based models to obtain the structural embeddings 314

of entities, but also lightweight rule-based models 315

to learn the logical rules of relations in the KG, 316

which guide the subsequent subgraph retrieval. By 317

“lightweight,” we refer to simpler, more resource- 318

efficient approaches that do not rely on large-scale 319

pretraining. This process is inherently flexible and 320

any state-of-the-art method that can generate struc- 321

tured embeddings and perform rule mining may 322

serve as a substitute. In our implementation, we 323

focus on leveraging open-source methods that have 324

demonstrated strong performance on the KGC task. 325

The best structure-based model, MS , generates em- 326

beddings for all entities, which we denote as the 327

global embeddings Eglobal = {eglobal | e ∈ E}. 328

Similarly, the best rule-based model, MR extracts 329

logic rules for each relation. For every relation 330

r ∈ R, we denote the corresponding set of rules as 331

Lr. 332

Candidates Collection. The best performing 333

lightweight model is used to rank the candidates. 334

Specifically, for head prediction, we specify the 335

query relation and query entity, replace the head 336

with each entity {e ∈ E | (e, rq, tq) /∈ T } for 337
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(?, rq, tq), and compute a likelihood score for each338

resulting triple, which reflects its plausibility. The339

replaced entities in top k triples are then selected340

to form the candidate set C = [e1, e2, e3..., ek].341

3.5 Dynamic Subgraph RAG342

Retrieval-augmented generation (RAG) integrates343

retrieval-based methods with generative models to344

enhance the quality and accuracy of generated text345

(Lewis et al., 2020). Inspired by this idea, we pro-346

pose a dynamic subgraph RAG strategy tailored for347

KGC tasks, which comprises two key components:348

Dynamic Subgraph Retrieval and Structure-Aware349

Embedding Enhancement.350

Dynamic Subgraph Retrieval. To enable the351

LLM to select the correct answer from C based352

on the query entity tq and query relation rq, it is353

crucial to augment the graph context by retrieving354

an informative subgraph. To this end, we propose355

a bottom-up dynamic subgraph retrieval scheme,356

which is dynamic in that it does not mechanically357

retrieve the subgraph solely based on the tq and358

rq, but rather adapts to variable candidates sets.359

Specifically, we first ensure that both the tq and360

all candidate entities e ∈ C are included in the361

subgraph G, and then retrieve the shortest paths362

connecting each e ∈ C to the tq to guarantee con-363

nectivity. Next, we sort the logical rules in Lrq364

by their assigned confidence scores and sequen-365

tially use them to search the paths from the e ∈ C366

to tq, thereby enriching the subgraph. This pro-367

cess continues until the number of triples reaches368

a preset threshold τ , which serves to constrain the369

subgraph’s size. Finally, if the number of triples370

remains below τ after these steps, we augment the371

subgraph with additional triples connected to other372

entities from e ∈ C and tq via the rq and its logical373

rules.374

Structure-Aware Embedding Enhancement.375

Unlike traditional RAG, integrating structured376

subgraphs directly into the prompts is challenging.377

Even if described in text, much of the structural378

information is lost, and the text may be excessively379

long due to the richness of the subgraphs. To over-380

come this limitation, we exploit the subgraph’s381

structural information to vectorize the graph con-382

text. We refer to the resulting embeddings as local383

embeddings Elocal = {elocal | e ∈ E}.384

To obtain local embeddings and enhance the385

overall structural representation, we design a graph386

convolutional network (GCN)-based adapter. It387

comprises a low-dimensional relational GCN and388

a subsequent adapter that projects the resulting 389

vectors to the LLM input layer’s dimensionality. 390

Specifically, for each query subgraph, the GCN is 391

initialized with the global embeddings of all en- 392

tities and then updates these representations via 393

the neighborhood aggregation mechanism to pro- 394

duce the local embeddings. We concatenate the 395

global and local embeddings to form the final 396

enhanced structural embedding, i.e., eenhance = 397

[eglobal; elocal]. To reduce computational overhead 398

for graph, GCN computations are performed in a 399

low-dimensional space. Consequently, we employ 400

an adapter to map the resulting structural embed- 401

dings to the LLM input dimension for seamless 402

integration. During LoRA fine-tuning, we allow 403

gradients to flow through the entire model, includ- 404

ing the GCN adapter. 405

3.6 Prompt Template 406

Appendix A.2 presents the detailed prompt tem- 407

plate. In summary, for each queried incomplete 408

triple, our prompt comprises the following compo- 409

nents: the instruction I for KGC; the candidates 410

set C; special [Placeholder] tokens for the struc- 411

tured embeddings—they will be replaced by the 412

actual enhanced structural embeddings of tq and 413

each e ∈ C after token vectorization; and the ques- 414

tion Q generated by the Question Generator. 415

4 Experiments 416

4.1 Experiment Setup 417

Dataset. We evaluate our proposed method on two 418

benchmark KG datasets, WN18RR (Dettmers et al., 419

2018) and FB15k-237 (Toutanova et al., 2015), and 420

two widely used BKG datasets, PharmKG (Zheng 421

et al., 2021) and PrimeKG (Chandak et al., 2023). 422

Dataset statistics, detailed descriptions and process- 423

ing procedures are provided in Appendix A.1. 424

Baseline Methods. For the KG and BKG datasets, 425

we selected two sets of baselines. 426

(1) For the WN18RR and FB15k-237, we 427

consider baselines spanning multiple categories: 428

structure-based methods: TransE (Bordes et al., 429

2013), DistMult (Yang et al., 2014), RotatE (Sun 430

et al., 2019) and CompGCN (Vashishth et al., 431

2019); rule-based methods: Neural-LP (Yang et al., 432

2017), RLogic (Cheng et al., 2022), and NCRL 433

(Cheng et al., 2023); text-based methods: KG- 434

BERT (Yao et al., 2019), SimKGC (Wang et al., 435

2022), and GHN (Qiao et al., 2023); generation- 436

based methods: KICGPT (Wei et al., 2024), 437
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Methods WN18RR FB15k-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Structure-based

TransE 0.243 0.043 0.441 0.532 0.279 0.198 0.376 0.441
DistMult 0.444 0.412 0.470 0.504 0.281 0.199 0.301 0.446
RotatE 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533
CompGCN 0.479 0.443 0.494 0.546 0.355 0.264 0.390 0.535

Rule-based
Neural-LP 0.381 0.368 0.386 0.408 0.237 0.173 0.259 0.361
RLogic 0.470 0.443 – 0.537 0.310 0.203 – 0.501
NCRL 0.670 0.563 – 0.850 0.300 0.209 – 0.473

Text-based
KG-BERT 0.216 0.041 0.302 0.524 – – – 0.420
SimKGC 0.671 0.595 0.719 0.802 0.336 0.249 0.362 0.511
GHN 0.678 0.596 0.719 0.821 0.339 0.251 0.364 0.518

Generation-based
KICGPT 0.564 0.478 0.612 0.677 0.412 0.327 0.448 0.554
COSIGN 0.641 0.610 0.654 0.715 0.368 0.315 0.434 0.520
DIFT 0.686 0.616 0.730 0.806 0.439 0.364 0.468 0.586

Hybrid StAR 0.551 0.459 0.594 0.732 0.365 0.266 0.404 0.562
CoLE 0.587 0.532 0.608 0.694 0.389 0.294 0.430 0.574

DrKGC (Ours) 0.716 0.654 0.757 0.813 0.472 0.406 0.498 0.599

Methods PharmKG PrimeKG

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Structure-based

TransE 0.091 0.034 0.092 0.198 0.281 0.194 0.315 0.451
RotatE - - - - 0.382 0.285 0.419 0.588
DistMult 0.063 0.024 0.058 0.133 0.212 0.148 0.238 0.341
ComplEx 0.075 0.030 0.071 0.155 0.204 0.141 0.266 0.340
R-GCN 0.067 0.027 0.062 0.139 0.640 0.569 0.680 0.761
HRGAT 0.154 0.075 0.172 0.315 0.443 0.347 0.489 0.637

DrKGC (Ours) 0.266 0.183 0.293 0.436 0.658 0.592 0.705 0.770

Table 1: Main results of the comparison between DrKGC (utilizing Llama-3-8B) and the baselines on WN18RR,
FB15k-237, PharmKG and PrimeKG. For each metric, the best performance is highlighted in bold, and the second-
best is underlined.

COSIGN (Li et al., 2024) and DIFT (Liu et al.,438

2024); and hybrid methods: StAR (Wang et al.,439

2021) and CoLE (Liu et al., 2022). The baseline440

comparisons in this paper are based on the reported441

performance values of these methods.442

(2) For PharmKG and PrimeKG, we focus on443

structure-based methods well-suited for BKG, in-444

cluding TransE, RotatE, DistMult, ComplEx, R-445

GCN (Schlichtkrull et al., 2018), and HRGAT446

(Liang et al., 2023). The baseline performance447

for PharmKG is taken from the reported values448

reported in the original PharmKG (Zheng et al.,449

2021) paper; while for PrimeKG, the baseline com-450

parisons were conducted by ourselves.451

Implementation Details. In the lightweight model452

training stage, we trained NCRL to mine logical453

rules for the four datasets. For global structural454

embeddings, we employed RotatE for WN18RR455

and FB15k-237, and HRGAT for PharmKG, with456

hyperparameters consistent with the original publi-457

cations. For PrimeKG, we used R-GCN with our458

optimal hyperparameter settings to obtain global459

embeddings. For WN18RR and FB15k-237, we ad- 460

ditionally utilize the ranking results from SimKGC 461

and CoLE, whereas, for PharmKG and PrimeKG, 462

we directly employ HRGAT and R-GCN for rank- 463

ing. The candidates set size is fixed at 20. 464

For the fine-tuning stage, we compared Llama- 465

3-8B (Dubey et al., 2024), MedLlama-3-8B (john- 466

snowlabs, 2024) and Mistral-7B (Jiang et al., 2023) 467

as our LLMs. We employed LoRA for efficient pa- 468

rameter tuning, with the primary hyperparameters 469

set to r = 64, α = 16, a dropout rate of 0.1 and 470

a learning rate of 2 × 10−4. Model performance 471

was evaluated using ranking-based metrics, includ- 472

ing Mean Reciprocal Rank (MRR) and Hits@1, 473

Hits@3, and Hits@10 under the “filtered” setting 474

(Bordes et al., 2013). 475

All experiments were conducted on an AMD 476

EPYC 7763 64-Core CPU, an NVIDIA A100- 477

SXM4-40GB GPU (CUDA 12.4), and Rocky 478

Linux 8.10 (Green Obsidian). Additional details 479

are in Appendix A.4. 480

6



4.2 Main Results481

Table 1 demonstrates that the proposed DrKGC482

achieves state-of-the-art performance on WN18RR,483

FB15k-237, PharmKG, and PrimeKG across most484

metrics. On WN18RR, although DrKGC trails485

NCRL and GHN in Hits@10, it outperforms486

all generation-based approaches on all evalu-487

ated metrics. For instance, versus DIFT (Liu488

et al., 2024)—which employs the same SimKGC489

ranker—DrKGC increases 4.37% for MRR and490

6.17% for Hits@1. Moreover, compared with the491

results obtained by SimKGC alone, DrKGC im-492

proves MRR by 6.71% and Hits@1 by 9.91%.493

However, DrKGC’s Hits@10 performance lags494

behind that of NCRL (−4.35%), which can be495

attributed to the relations in WN18RR exhibit a496

hierarchical structure that enables explicit logical497

rules to capture inherent patterns directly. No-498

tably, both text-based and generation-based meth-499

ods yield lower Hits@10 scores than NCRL, and500

the gap between DrKGC and text-based GHN is501

minimal (only −0.97%).502

For FB15k-237, DrKGC outperformed all base-503

lines across every metrics, achieving improvements504

of 7.5% in MRR and 11.4% in Hits@1. Given505

FB15k-237’s diverse set of relations and semantic506

patterns, these results underscore demonstrate the507

advantage of DrKGC in capturing diverse relations508

and semantic nuances. Additionally, as FB15k-237509

encompasses extensive real-world knowledge and510

exhibits a long-tail distribution of relations, the511

general knowledge acquired during large-scale pre-512

training of LLM also contributes to superior per-513

formance of DrKGC. For PharmKG and PrimeKG,514

DrKGC also outperforms all baselines across all515

metrics. This demonstrates that, even though BKGs516

lack extensive text information and LLMs have not517

been pre-trained on specialized biomedical corpora,518

DrKGC can still achieve strong performance by519

leveraging LLMs’ understanding of semantics and520

structural embeddings.521

4.3 Ablation Studies522

We conducted ablation studies on all four datasets523

to assess the contribution of each component in524

DrKGC, with the results presented in Table 2.525

In the first ablation study, we removed the rule526

restrictions during subgraph retrieval. The results527

show that DrKGC’s performance declined across528

all four datasets, with a more pronounced drop in529

KGs than in BKGs. In the second study, we elimi-530

w/o
WN18RR FB15k-237

MRR (∆%) Hits@1 (∆%) MRR (∆%) Hits@1 (∆%)

rules 0.684 ( -4.47) 0.612 ( -6.42) 0.448 ( -5.08) 0.375 ( -7.64)
local embedding 0.676 ( -5.59) 0.596 ( -8.87) 0.439 ( -6.99) 0.361 ( -11.1)
embedding 0.669 ( -6.56) 0.582 ( -11.0) 0.433 ( -8.26) 0.351 ( -13.5)
question template 0.711 ( -0.70) 0.647 ( -1.07) 0.469 ( -0.64) 0.401 ( -1.23)

DrKGC (raw) 0.716 0.654 0.472 0.406

w/o
PharmKG PrimeKG

MRR (∆%) Hits@1 (∆%) MRR (∆%) Hits@1 (∆%)

rules 0.264 ( -0.75) 0.181 ( -1.09) 0.648 ( -1.52) 0.578 ( -2.36)
local embedding 0.261 ( -0.88) 0.176 ( -3.83) 0.631 ( -4.10) 0.539 ( -8.95)
embedding 0.260 ( -2.26) 0.174 ( -4.92) 0.619 ( -5.93) 0.510 ( -13.9)
question template 0.258 ( -3.01) 0.172 ( -6.01) 0.613 ( -6.83) 0.510 ( -13.9)

DrKGC (raw) 0.266 0.183 0.658 0.592

Table 2: Ablation study results on four datasets.

nated local embeddings and relied solely on global 531

embeddings as the structural reference for entities. 532

This change also led to performance degradation 533

on all datasets. In the third study, we removed the 534

structural embeddings entirely, forcing the LLM 535

to select the correct answer directly from the can- 536

didates set without any structural reference. The 537

significant performance decline observed for both 538

KGs and BKGs confirms the importance of incor- 539

porating structural information into LLM predic- 540

tions. Finally, we omitted the question template 541

and instead directly instructed the LLM to com- 542

plete the incomplete triple. While it resulted in 543

only a slight performance drop on KGs, it had a 544

substantial impact on BKGs. 545

We observed that weakening the local structural 546

information by removing rules or local embeddings 547

has a greater negative impact on WN18RR and 548

FB15k-237. One possible explanation is that gen- 549

eral KGs rely on local structural cues to disam- 550

biguate closely related entities. In contrast, remov- 551

ing question templates has a larger adverse effect 552

on BKGs. This is attribute that the relations in 553

BKGs are inherently functional and mechanism; 554

for instance, asking the LLM "What gene causes 555

Parkinson’s disease?" provides clearer instruction 556

than simply prompting it to complete an incomplete 557

triple such as (?, causes, Parkinson’s disease). 558

4.4 Analysis of LLM Selection 559

In this section, we further investigate the impact 560

of employing different LLMs within DrKGC on 561

prediction performance. In addition to Llama-3-8B, 562

we compare Mistral-7B and a biomedical-focused 563

LLM, MedLlama-3-8B. The results of replacing 564

the LLM component in DrKGC are presented in 565

Figure 2. Overall, Llama-3-8B delivers the best 566

performance, while Mistral-7B underperforms, de- 567

spite achieving the highest Hits@10 on FB15k-237. 568
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Figure 2: Comparison of DrKGC performance using
different LLMs across four datasets..

Notably, MedLlama-3-8B’s overall performance is569

slightly inferior to that of Llama-3-8B, even on the570

two BKGs; although MedLlama-3-8B is tailored to571

biomedical content, it only attained the best result572

in Hits@1 on PharmKG.573

4.5 Case Study574

To illustrate the practical utility of our approach,575

we conducted a drug repurposing case study for576

"breast cancer" using the PrimeKG dataset. In this577

study, we defined "Breast Cancer" as the query en-578

tity and "indication" as the query relation for head579

prediction. Recognizing that multiple drugs may580

be effective in treating breast cancer, we employed581

DrKGC to generate the top 10 predictions. The pro-582

cess was executed iteratively: at each step, DrKGC583

selects a drug from the candidates set and subse-584

quently removes the predicted entity from that set,585

and then adds the first-ranked entity outside the586

candidates set into it.587

To validate our results, we conducted a manual588

evaluation by clinical trials and published literature589

(Zheng et al., 2021; Xiao et al., 2024). Specifically,590

if a predicted drug is documented on ClinicalTri-591

als.gov, we record the corresponding NCT ID as592

evidence. If not, we search PubMed for supporting593

literature and record the corresponding PMID. In594

the absence of evidence from either source, "No595

evidence found" is recorded.596

The prediction results are presented in Ta-597

ble 3. Figure 3 illustrates a portion of the sub-598

graph from the first round of predictions, where599

Predicted Drugs Evidence Source PMID or NCT ID

1 Enzalutamide Clinical Trial NCT02750358
2 Troglitazone Literature 31894283
3 Rosiglitazone Clinical Trial NCT00933309
4 Dichloroacetic Acid Clinical Trial NCT01029925
5 GTI 2040 Clinical Trial NCT00068588
6 Uridine Monophosphate Literature 32382150
7 Nimesulide Clinical Trial NCT01500577
8 Cardarine Literature 15126355
9 Drospirenone Clinical Trial NCT00676065
10 Vitamin A Literature 34579037

Table 3: Top 10 predicted drugs for Breast Cancer.

TARGET

TARGET

TARGET

ASSOCIATED_WITH

PPI

ASSOCIATED_WITH

PPI
ASSOCIATED_WITH

PPI

TARGET

TARGET

TARGET

Troglitazone

PPARD

HDAC7

breast cancer
SLC29A1

SLC39A12

ACSL4

Rosiglitazone

Cardarine

Figure 3: Example of multi-hop mechanism paths from
drugs to Breast Cancer: purple, blue, and orange nodes
represent drugs, diseases, and genes/proteins.

three drugs—Troglitazone, Rosiglitazone, and Car- 600

darine—share mechanism paths that are multi-hop 601

connected to the breast cancer entity. Consider 602

the paths "Troglitazone–PPARD–breast cancer" 603

and "Troglitazone–PPARD–HDAC7–breast can- 604

cer": Troglitazone targets PPARD, a druggable 605

protein and a key molecular target in metastatic 606

cancer (Zuo et al., 2017), and PPARD also inter- 607

acts with HDAC7, which regulates genes critical 608

for tumor growth and the maintenance of cancer 609

stem cells (Caslini et al., 2019). This mechanism 610

insight provided by the DrKGC’s subgraph both 611

supports and explains our predictions in biomedical 612

domain. 613

5 Conclusion 614

In this paper, we propose a novel KGC frame- 615

work—DrKGC—that fully exploits graph context 616

information, overcoming the limitations of previ- 617

ous generation-based methods in utilizing graph 618

structure. Experimental results demonstrate that 619

DrKGC achieves state-of-the-art performance on 620

general KGs and performs exceptionally well on 621

domain-specific KGs such as BKGs. By captur- 622

ing graph context to generate informative sub- 623

graphs, DrKGC also enhances model interpretabil- 624

ity, which is particularly valuable for biomedical 625

applications. 626
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6 Limitations627

DrKGC relies on fine-tuning large language mod-628

els, a process that is computationally intensive, and629

its performance is inherently constrained by the cur-630

rent capabilities of LLMs and lightweight models.631

Future work will focus on optimizing fine-tuning632

efficiency, enhancing LLM performance, and ex-633

ploring extensions to other graph tasks such as634

reasoning and question answering. Moreover, re-635

trieving more informative subgraphs may present636

additional challenges that we plan to address in637

subsequent research.638
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A Appendix841

A.1 Details of the Dataset842

Table 4 presents the statistical details of the four843

datasets used in our study.844

Datasets Entities Relations Training Validation Testing

WN18RR 40,943 11 86,835 3,034 3,134
FB15K-237 14,541 237 272,115 17,535 20,466
PharmKG 7,601 28 400,788 49,536 50,036
PrimeKG 26,509 4 130,535 500 500

Table 4: Statistics of the four datasets.

WN18RR (MIT License), derived from WordNet845

(Miller, 1995), contains word sense entities and846

lexical-semantic relations like hypernymy. FB15k-847

237 (CC BY 4.0), from Freebase (Bollacker et al.,848

2008), consists of entities such as people and or-849

ganizations with factual relations like affiliation850

and location. PharmKG (Apache-2.0) focuse on851

pharmaceutical data, capturing information about852

genes, diseases, chemicals. PrimeKG (CC0 1.0)853

is a multimodal BKG that unifies other biological854

entities like phenotypes and pathways for precision855

medicine analysis.856

For WN18RR and FB15k-237, we adopted the857

node and relation texts provided by KG-BERT858

(Yao et al., 2019). For PharmKG, we utilized859

the PharmKG-8k version from the original work860

(Zheng et al., 2021),which filtered high-quality en-861

tities based on criteria such as FDA approval and862

MeSH tree classification and provided a partitioned863

dataset.864

The PrimeKG dataset used in our study is a sub-865

set extracted from the original PrimeKG (Chan-866

dak et al., 2023) tailored for drug repurposing task.867

Specifically, we first selected triples from PrimeKG868

that have a head node of type "drug", a tail node869

of type "disease", and a relation of "indication".870

There are 9,388 such triples in total. Next, we871

randomly split them into 8,388 triples for train-872

ing, 500 for validation, and 500 for testing, en-873

suring that the entities in the validation and test874

sets are also present in the training set. Finally,875

we enriched the training set by adding additional876

triples with the following (head, relation, tail) pat-877

terns: (drug, target, gene/protein), (gene/protein,878

associated with, disease), and (gene/protein, ppi,879

gene/protein). First, we added triples linking the ex-880

isting drug and disease entities to gene/protein enti-881

ties; then, we added triples connecting gene/protein882

entities to one another. In addition, to simplify the883

problem, we imposed an upper limit on the degree 884

of gene/protein entities to mitigate the influence of 885

hub nodes. 886

A.2 Prompt Template 887

As shown in Table 5, for both the general KG 888

(WN18RR and FB15k-237) and the biomedical 889

KG (PharmKG and PrimeKG), the prompt tem- 890

plate remains consistent generally, comprising a 891

simple instruction, a candidates set, correspond- 892

ing structural embeddings (initially represented by 893

[Placeholder]) for reference, and a question. The 894

only difference is the role name assigned to the 895

LLM (either linguist or biomedical scientist). 896

You are an excellent {linguist, biomedical
scientist}. The task is to predict the answer
based on the given question, and you only need to
answer one entity. The answer must be in
(’candidate1’, ’candidate2’, ’candidate3’,
’candidate4’, ’candidate5’, ’candidate6’,
’candidate7’, ’candidate8’, ’candidate9’,
’candidate10’, ’candidate11’, ’candidate12’,
’candidate13’, ’candidate14’, ’candidate15’,
’candidate16’, ’candidate17’, ’candidate18’,
’candidate19’, ’candidate20’).
You can refer to the entity embeddings: ’query
entity’: [Placeholder], ’candidate1’:
[Placeholder], ’candidate2’: [Placeholder],
’candidate3’: [Placeholder], ’candidate4’:
[Placeholder], ’candidate5’: [Placeholder],
’candidate6’: [Placeholder], ’candidate7’:
[Placeholder], ’candidate8’: [Placeholder],
’candidate9’: [Placeholder], ’candidate10’:
[Placeholder], ’candidate11’: [Placeholder],
’candidate12’: [Placeholder], ’candidate13’:
[Placeholder], ’candidate14’: [Placeholder],
’candidate15’: [Placeholder], ’candidate16’:
[Placeholder], ’candidate17’: [Placeholder],
’candidate18’: [Placeholder], ’candidate19’:
[Placeholder], ’candidate20’: [Placeholder].
Question: (The generated question)

Answer:

Table 5: Prompt template for DrKGC

A.3 Question-Template Lexicon 897

For each of the four datasets, two question-template 898

lexicons are provided. One lexicon is designed to 899

use the head node and relation to predict the tail 900

node (corresponding to the tail prediction task), 901

while the other is designed to use the tail node and 902

relation to query the head node (corresponding to 903

the head prediction task). In practice, the appropri- 904

ate lexicon is selected based on the dataset and the 905

prediction task (head or tail). For each incomplete 906

triple, the corresponding question template is re- 907

trieved using the query relation, and then the query 908

11



entity is inserted into the "{}" placeholder, gener-909

ating the final question. Tables 6 and 7 illustrate910

the two question-template lexicons for WN18RR911

as examples.912

# tail_prediction:
"also see":
"What is additionally relevant or similar to
{}?,"
"derivationally related form":
"What is a word or concept that is derivationally
related to {}?,"
"has part":
"What part does {} have?,"
"hypernym":
"What is a more general category or class that
includes {}?,"
"instance hypernym":
"Of what category or class is {} a specific
instance?,"
"member meronym":
"What is included as a member of {}?,"
"member of domain region":
"What is associated with {} in terms of regional
terms or concepts?,"
"member of domain usage":
"What is associated with {} in terms of specific
usage or context?,"
"similar to":
"What is similar to {}?,"
"synset domain topic of":
"What topic or field is {} associated with?,"
"verb group":

"What verb is in the same semantic or functional

group as {}?"

Table 6: Tail prediction question-template lexicon for
WN18RR.

A.4 Model Training913

Inspired by previous work (Wei et al., 2024; Liu914

et al., 2024), our model training does not strictly915

follow the traditional paradigm of using fixed train-916

ing, validation, and test sets. Specifically, we first917

use the KG dataset’s standard splits for training,918

validation, and testing to train a lightweight model.919

We then employ this trained lightweight model to920

perform head and tail predictions on every triple921

in the validation set, generating candidate rankings922

that are used to construct prompts. In the LLM923

fine-tuning phase, we re-partition the validation set924

(Liu et al., 2024) and utilize it to fine-tune the LLM.925

Finally, model performance is evaluated on the test926

set in the usual manner. For each triple in the test927

set, both head and tail predictions are conducted to928

ensure fairness. This approach not only reduces the929

volume of training data required for fine-tuning but930

also avoids the issue where the trained lightweight931

model consistently ranks the correct answer for932

# head_prediction:
"also see":
"What is related or similar to {}?,"
"derivationally related form":
"What word or concept leads to {}?,"
"has part":
"What includes {} as a part?,"
"hypernym":
"What is a example or specific instance of {}?,"
"instance hypernym":
"What entity is classified under {}?,"
"member meronym":
"What larger group does {} belong to?,"
"member of domain region":
"What is associated with the region of {}?,"
"member of domain usage":
"What is used in the same context as {}?,"
"similar to":
"What is considered similar to {}?,"
"synset domain topic of":
"What is associated with the field or topic of
{}?,"
"verb group":

"What other verb is in the same functional or

semantic group as {}?"

Table 7: Head prediction question-template lexicon for
WN18RR.

incomplete triples in the training set first, which 933

could mislead the LLM selection. 934

In lightweight models training phase, for 935

WN18RR, FB15k-237, and PharmKG, we use 936

the hyperparameters consistent with the original 937

publications of their corresponding methods. For 938

PrimeKG, the optimal parameters identified via 939

grid search are provided in Table 8 obtained by 940

grid search. In the LLM fine-tuning phase, we ad- 941

just the learning rate {2× 10−3, 2× 10−4} and the 942

size of GCN hidden dimension {128, 256}, and set 943

the epoch size to 15 with early stopping. The time 944

required for LLM fine-tuning is detailed in Table 9. 945

TransE RotatE DistMult ComplEx R-GCN HRGAT

Batch Size 512 512 512 512 256 128
Learning Rate 2e-3 1e-4 1e-4 2e-3 1e-3 1e-3
Negative Sampling 512 512 512 512 512 40
Hidden Dimension 1000 2000 2000 1000 200 200

Table 8: Optimal hyperparameters for lightweight
model on PrimeKG.

WN18RR FB15k-237 PharmKG PrimeKG

Runtime 3:01:31 19:12:11 2:22:27 37:09

Table 9: LLM fine-tuning time statistics.
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