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Abstract

Diffusion-based generative models can synthesize
photo-realistic images of remarkable quality and
diversity. However, attributing these images back
to the training data—that is, identifying specific
training examples which caused an image to be
generated—remains a challenge. In this paper,
we propose a framework that: (i) frames data
attribution in the context of diffusion models, (ii)
provides a method for computing such attributions
efficiently, and (iii) allows us to counterfactually
validate them. We then apply our framework to
CIFAR-10 and MS COCO datasets.

1. Introduction
Diffusion-based generative models can generate images that
are simultaneously photo-realistic and highly controllable
with textual prompting (Ramesh et al., 2022; Rombach et al.,
2022). Beyond the architectural and algorithmic aspects,
the key driver of diffusion model performance is training
them on massive amounts of data (Schuhmann et al., 2022).

However, while it is clear that generated images depend on
the training data, we currently lack a method for attributing
such generated images back to the most influential training
examples—that is, identifying examples which caused a
given image to be generated.

Such attribution would enable us to tackle some of the key
challenges in deploying generative models. For example,
data attribution can help us diagnose various failure modes
of generative models, such as bias propagation (Luccioni
et al., 2023; Perera & Patel, 2023), memorization (Car-
lini et al., 2023), and mode collapse (Thanh-Tung & Tran,
2020). Moreover, in light of copyright concerns, data at-
tribution can inform a principled way for assigning credit
to content creators. Overall, identifying (and mitigating)
these problems is critical to having more control over the
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generated data, especially as diffusion models are now in-
creasingly used across the entire machine learning pipeline,
including training (Azizi et al., 2023) and model evaluation
(Kattakinda et al., 2022; Wiles et al., 2022; Vendrow et al.,
2023). Motivated by the above, we thus ask:

How can we attribute images synthesized by diffusion
models back to training data?

Indeed, data attribution has been extensively studied in the
context of supervised learning (Koh & Liang, 2017; Ghor-
bani et al., 2019; Jia et al., 2019; Ilyas et al., 2022; Park
et al., 2023). However, when it comes to the generative
setting, data attribution poses new challenges. In particular,
it is unclear what impact we hope to quantify with our at-
tributions. For example, given a generated image, certain
training images might be responsible for the look of the
background, while other ones might be responsible for the
choice of an object appearing in the foreground.

Our contributions. In this work, we present a framework
for data attribution for diffusion models. In this framework,
we cast data attribution as the identification of the most
influential training examples at each point along a given
sampling trajectory of the diffusion model. We then provide
an efficient method for computing such attributions by lever-
aging data attribution methods developed for the supervised
setting (Ilyas et al., 2022; Park et al., 2023).

Finally, we apply our method to denoising diffusion proba-
bilistic models (DDPM) (Ho et al., 2020) trained on CIFAR-
10, and latent diffusion models (LDMs) (Rombach et al.,
2022) trained on MS COCO and obtain attributions that are
both salient and counterfactually validated.

1.1. Related Work

While we are not aware of any prior work on attribution
for diffusion models, recent works have studied memoriza-
tion. Memorization can be thought of as a special case of
data attribution where only few, nearly identical images in
the training set are responsible for the generation of a cor-
responding image. In particular, Somepalli et al. (2022);
Carlini et al. (2023) use image similarity metrics (ℓ2 dis-
tance in pixel space and CLIP embeddings, respectively)
to pinpoint cases of memorization in diffusion models. In
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Figure 1. Overview of our attribution method. For a given synthesized image x0, we apply our attribution method at individual steps
(denoted by t) along the sampling trajectory. At each step, our method pinpoints the training examples with the highest influence (positive
in green, negative in red) on the generative process. In particular, training examples with positive attribution scores guide the trajectory
towards x0; in contrast, ones with negative scores guide the trajectory away from x0. For more examples, see Appendix G.

Appendix C, we present a more complete coverage of the
related work.

2. Formalizing Attribution for Diffusion
Models

We start by introducing background on data attribution (Sec-
tion 2.1) and diffusion models (Section 2.2), and then pro-
ceed with formalizing our framework for attributing diffu-
sion models (Section 2.3).

2.1. Data attribution

Broadly, the goal of training data attribution (Koh & Liang,
2017; Ilyas et al., 2022; Hammoudeh & Lowd, 2022) is
to trace model outputs back to individual examples in the
training dataset S. Intuitively, we want to estimate how the
composition of the training set impacts some model output
of interest (e.g., the cross-entropy loss of a classifier).

More formally, given an input z and a model output function
f(z; θ) (where θ denotes the model parameters), a data
attribution method is a function τ : X → R that assigns a
score τ(z)i to each training example zi ∈ S, indicating the
change in f(z; θ) induced by removing zi from S.

As in Ilyas et al. (2022), we adopt the perspective that
a useful attribution should be counterfactually predictive.
Concretely, if we remove datapoints T from the training
set, re-train to obtain a model θ′, the change in model
output f(z; θ′) − f(z; θ) should correlate with the effect∑

zi∈T τ(zi) estimated by the attribution method τ .

2.2. Diffusion models and progressive estimation

Given a data distribution q(·) of natural images, generative
models learn a distribution pθ(·) approximating q(·). At a
high level, diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) sample from pθ(·) by progressively denoising

an initial “noise image” xT ∼ N (0, I) for T rounds. For-
mally, diffusion models are a class of latent variable genera-
tive models where the latent variables typically xT , . . . , x1
share the same sample space as the data. Specifically, the
diffusion model εθ is trained to predict the noise from a
noised image xt given the timestep t.

At each timestep t, one can approximate the final image x0
using only information up until xt:

x̂(t)0 :=
(
xt −

√
1− atεθ(xt, t)

)
/
√
at, (1)

where {at}t≤T is a fixed monotonically decreasing se-
quence parameterizing the diffusion model. We refer to
{x̂(T )

0 , x̂(T−1)
0 . . . , x̂(0)

0 = x0} as the sampling trajectory of
the diffusion model.

2.3. Attributing the diffusion sampling trajectory

Going back to our definition of data attribution, we need to
choose an appropriate model output function f for our diffu-
sion model. One natural option is to define ffull(xT ; θ) = x0,
where xT is the initial random noise, and x0 is the final gen-
erated image. This corresponds to attributing the entire
diffusion process to a given datapoint. However, computing
such attribution directly is undesirable for two reasons. First,
computing ffull involves multiple iterated calls to the dif-
fusion model εθ(·). Thus computing ∇θffull(xT ; θ) would
require us to backpropagate through a large number of iter-
ated model calls, which is numerically unstable and com-
putationally intractable. Also, as (Ho et al., 2020) have
shown, image features appear progressively throughout the
sampling trajectory, e.g., the background of an image may
appear early on, while the foreground may appear later.
Hence, we choose instead to compute attributions at each
timestep independently using a timestep-specific function
ft(xt; θ).
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Figure 2. Counterfactual evaluation. We report the impact (i.e.,
change in ℓ2 distance of the final generated image x0) induced by
removing the highest scoring training examples according to our
method, CLIP similarity, and ℓ2 similarity (and re-training). (Top)
Comparison of the original synthesized samples to those generated
from the same random seed with the re-trained models. (Bottom)
To quantify the impact of removing these images, we measure the
ℓ2 distance between 60 synthesized samples and corresponding
images generated by the re-trained models when sampling from the
same random seed. Error bars represent 95% confidence intervals.

3. Methods
At a high level, we want the timestep-dependent model
output function ft to capture the likelihood of the model
generating xt−1 from xt. As a computationally cheaper
proxy for that, we define each ft to be the reconstruction
loss (see (3)) of the diffusion model at timestep t.

Intuitively, we can decompose the i-th entry of an attribution
vector τ(z) into the following components: (i) the change in
model parameters θ when training without the i-th training
example, and (ii) the induced change in model output. In
particular, we can approximate the attribution function as:

τ(z)i ≈ (θ − θ−i)︸ ︷︷ ︸
change in model parameters

·
change in model output︷ ︸︸ ︷

∇θf(z; θ) , (2)

where we denote by θ−i the model parameters trained with-
out the i-th training example.

We compute attribution scores τ(·) by adapting TRAK (Park
et al., 2023) and estimate each component of Equation (2).

Estimating change in parameters. At a high level, TRAK
computes the change in parameters induced by removing
a training point (the first term in (2)) by linearizing the
model1, and applying classical data attribution methods for
generalized linear models (Pregibon, 1981). In practice, this
step only requires computing per-example gradients of the
training loss. See Section 3 of Park et al. (2023) for details.

Estimating gradients of model output. In classification
settings, TRAK computes the change in model output (the
second term in (2)) in the same way as the change in param-
eters. However, unlike in classification settings for which
TRAK was originally designed, diffusion models are applied
differently during training and inference. Specifically, dur-
ing inference (generation) the model is applied iteratively
to progressively sample an image. In particular, the model
at timestep t is applied not to the final image x0 := x̂(0)0

(which is unavailable during sampling), but rather to an
intermediate estimate x̂(t)0 of the synthesized image.

Motivated by this observation, we decompose the sampling
process by attributing each individual timestep separately
using the timestep-dependent model output ft(x), as defined
in Section 2. Then, when we attribute a given timestep t, we
match the sampling process along two axes. First, we treat
the predicted final image x̂(t)0 (at timestep t) as the actual
final image x0 (which, again, is unavailable at inference
time). Second, we measure the reconstruction loss (i.e., how
well the diffusion model is able to denoise a noisy image)
when adding noise with magnitude matching the sampling
process at timestep t. Specifically, we compute the Monte
Carlo estimate

ft

(
x̂(t)0

)
=

1

k

k∑
i=1

∥∥∥εi − εθ

(√
ᾱtx̂

(t)
0 +

√
1− ᾱtεi, t

)∥∥∥2
2

(3)

where εi ∼ N (0, 1) for all i ∈ [k], and ᾱt is the DDPM
variance schedule (Ho et al., 2020).

Once we have the above two components, we can plug them
into Equation (2) to obtain the desired attribution scores.

4. Experiments
We now evaluate our method using denoising diffusion prob-
abilistic models (DDPMs) trained on CIFAR-10 and latent
diffusion models (LDMs) trained on MS COCO (see Ap-
pendix A for setup details).

Data attribution on CIFAR-10. We use our method (see
Section 3) to compute attribution scores along the sampling

1TRAK computes the after kernel, empirical NTK at conver-
gence (Jacot et al., 2018; Atanasov et al., 2022; Wei et al., 2022).
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Figure 3. Patch-based attribution. Attributions restricted to user-specified patches (denoted with red squares) of a generated image. We
show examples of attributing patches capturing individual concepts in images from a latent diffusion model trained on MS COCO.
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Figure 4. Predicting model behavior. Evaluation of the counter-
factual predictiveness of different attributions using the LDS score
at every fifth timestep of the sampling trajectory for TRAK (com-
puted using 10 or 50 models), CLIP similarity, and ℓ2 distance.
Smaller timesteps are closer to the final synthesized image.

trajectory of DDPMs trained on CIFAR-10. In Figure 1,
we visualize the sampling trajectory for a generated image
along with the most positive and negative influencers identi-
fied by TRAK (see Appendix G for further examples). We
find that positive influencers resemble the generated im-
age throughout, while negative ones tend to differ from the
generated image along specific attributes (e.g., class, back-
ground, color) depending on the corresponding timestep.
Interestingly, the negative influencers increasingly resem-
ble the generated image towards the end of the sampling
trajectory. (We suspect that this is caused by the fact that
the model has already generated most of the image by this
point, and very dissimilar images are no longer influential).

Counterfactuals: Removing top influencers and re-
training. To evaluate the faithfulness of our attribution
scores, we compare the change in pixel space resulting from
generating images from the same random seed using a model
trained after removing the top positive influencers identi-
fied by TRAK, as well as CLIP-similarity and ℓ2-similarity
(see Figure 2). Our results suggest that TRAK is able to

identify training points that have a significant impact on the
sampling trajectory of the diffusion model, and outperforms
in this regard the other two baselines (see Appendix F for
additional counterfactual experiments).

LDS: Predicting model behavior when trained on a sub-
set of the data. To quantify the counterfactual predictive-
ness of attribution scores more generally, we use the linear
datamodeling score (LDS) (Ilyas et al., 2022), which evalu-
ates the extent to which the attribution scores can predict the
behavior of models trained on random subsets of the train-
ing dataset; see Appendix B for more details. To compute
the LDS, we train additional CIFAR-10 models on random
subsets of the training set. We then measure the correla-
tion between the true and predicted outputs from TRAK,
CLIP-similarity, and ℓ2-similarity at every five time steps
along the sampling trajectory (see Figure 4). Unlike in many
computer vision settings (Zhang et al., 2018), we find that
ℓ2-similarity in the pixel space has competitive performance
in comparison with CLIP, especially towards the beginning
of the sampling trajectory. However, only TRAK remains
counterfactually predictive across the entire trajectory.

Attributing Patches. Oftentimes, a synthesized image
may contain multiple concepts or features. By restricting
our model output function to specific patches (we apply a
pixel-wise mask to Equation (3)), we can attribute only to
those parts of the generated images. To test that, we generate
images containing multiple concepts using textual prompts
fed to an MS COCO-trained LDM. We then manually create
per-concept masks for which we compute TRAK scores (see
Figure 3). The resulting attributions for different masks
surface training examples relevant only to the corresponding
concepts in that region. This provides us with even more
fine-grained control over the attribution process, allowing
us to attribute to specific patches of interest.
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A. Experimental details
Throughout our paper, we train various diffusion models on CIFAR-10 and MS COCO.

DDPM training on CIFAR-10. We train 100 DDPMs (Ho et al., 2020) on CIFAR-10 for 200 epochs using a cosine
annealing learning rate schedule that starts at 1e-4. We used the DDPM architecture that match the original implemen-
tation (Ho et al., 2020), which can be found here https://huggingface.co/google/ddpm-cifar10-32. At
inference time we sample using a DDIM scheduler with 50 inference steps.

LDM training on MS COCO. We train 20 text-conditional latent diffusion models (LDMs) (Rombach et al., 2022) on
MS COCO for 200 epochs using a cosine annealing learning rate schedule that starts at 2e-4. We used the exact CLIP
and VAE used from Stable Diffusion 2, but used a custom (smaller) UNet. These models can be found here https:
//huggingface.co/stabilityai/stable-diffusion-2-1. At inference time, we sample using a DDPM
scheduler with 1000 inference steps.

We will open-source our code upon publication.

B. Linear Datamodeling Score (LDS)
A useful data attribution should help us answer counterfactual questions of the form: can a model still generate x0 if we
trained our instead on S′ ⊂ S from the training set?

To quantify the usefulness of an attribution method for counterfactual predictions, we use the linear datamodeling score
(Park et al., 2023) used in evaluation of prior attribution methods. The LDS measures the degree to which the attribution can
be used to predict the model output ft that would result from training on a random subset S′ (averaged over random choices
of S′); a score of one indicates perfect predictions, while a score of zero indicates lack of predictiveness.

More formally, viewing the output function f(x, θ) as a function ft(x, θ(S′)) of the training dataset S′ ⊂ S, we consider
the task of predicting f(x̄, S′) given S′. This is the so-called datamodeling task introduced in (Ilyas et al., 2022; Park et al.,
2023).

Then, consider predicting f using a linear function of the attribution scores τ :

f̂(x, S) := 1S′ · τ(x)

where 1S′ ∈ R|S| is an indicator vector encoding the subset S′ and τ(x) is the data attribution vector corresponding to
generated sample x.

Given this setup, the LDS is defined as the correlation between true and predicted outputs:

LDS(τ, x) := Spearman-r({f(x, Si), f̂τ (x, Si)})

where Si ⊂ S are randomly sampled subsets of the training set.

C. Related Work
Data Attribution Methods for data attribution face a trade-off of computational cost and accuracy. There is a long line
of work in influence functions (Hampel et al., 2011; Koh & Liang, 2017; Koh et al., 2019; Schioppa et al., 2022), which
are efficient to compute but perform poorly in non-convex settings (such as neural networks). Other works use Shapley
values (Ghorbani & Zou, 2019; Jia et al., 2019; Karlaš et al., 2022) or data models (Ilyas et al., 2022), which more accurately
perform data attribution but are significantly more computational expensive.

Memorization in Generative Models Prior to the increasing popularity of diffusion models, a number of previous works
studied memorization in other generative models. For example, (Feng et al., 2021) study the impact of properties of a
dataset (size, complexity) on training data replication in Generative Adversarial Networks (GANs), and (van den Burg &
Williams, 2021) introduce a memorization score for Variational Autoencoders (VAEs) that can be additionally applied to
arbitrary generative models. Following the release of large text-to-image diffusion models, the creators of one of these
models (DALL·E 2) investigated memorization issues themselves and found that memorization could be significantly
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decreased through de-duplication of the training data (Nichol et al., 2022). Recently, (Somepalli et al., 2022) explored the
data replication behavior of diffusion models from the lens of ‘digital forgery,’ and identified many cases where, even when
Stable Diffusion produced ‘unique’ images, it directly copies style and semantic structure from individual images in the
training set. On the other hand, (Carlini et al., 2023) investigate memorization from the perspective of privacy, and show that
query access to diffusion models can enable an adversary to directly extract the models’ training data.

D. Diffusion models are consistent across seeds
A priori, two independent models trained on the same dataset do not share the same latent space. That is, a given noise
sequence εT , ..., ε0 could be denoised to two unrelated images for two different models. However, we find empirically
that latent spaces from two diffusion models are highly aligned; we call this property seed consistency. In fact, we find
that images generated by many independently trained DDPMs on CIFAR-10 from the same random seed and nearly
indistinguishable (see Figure 5, right). To evaluate seed consistency quantitatively, we measure the ℓ2 distance between
images generated by two models when using identical or distinct noise sequences, and find that matching the noise sequences
leads to a far smaller ℓ2 distances (see Figure 5, left).

We additionally evaluate seed consistency on multiple checkpoints of Stable Diffusion2 and find that images generated
across these models with a fixed seed share significantly more visual similarity that those generated from independent
random seeds (see Figure 6.)

We take advantage of this property when evaluating the counterfactual impact of removing the training examples relevant to
a given generated image. Specifically, we now expect that re-training a model on the full training set and then sampling
from the same seed should produce a highly similar image to the generated image of interest. Thus, we can evaluate the
counterfactual significance of removing the training examples with the top attribution scores for a given generated image by
re-training and measuring the distance (in pixel space) of an image synthesized with the same seed to the original generated
image.
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Figure 5. Seed consistency of CIFAR-10 DDPMs. We find that across DDPMs trained independently on CIFAR-10, when using a
fixed random seed during sampling, the resulting synthesized images are very similar, and often visually indistinguishable (Right).
Quantitatively, we find that the ℓ2 distance between images generated from two different models is significantly smaller when we fix the
noise sequence (Left).

2We use checkpoints provided at https://huggingface.co/CompVis/stable-diffusion and https://huggingface.co/runwayml/stable-
diffusion-v1-5.
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Radom Seed Fixed Seed

Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5

“A horse on grass”

“A man in a coffee shop”

“A bear in New York city 
on a skateboard”

“An astronaut eating 
donuts in the kitchen”

“A bird with a cowboy 
hat flying in France”

Figure 6. Seed consistency holds for Stable Diffusion models. We find that seed consistency holds even for large, text conditioned
model, specifically for Stable Diffusion models that are trained on LAION-5B. We compare multiple checkpoints of Stable Diffusion
provided by Stability AI, and find that fixing the noise sequence during sampling surfaces very similar images (in comparison to using
independent noising sequences).
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E. Attributing individual timesteps along the diffusion process
As additional motivation for performing attribution at individual time steps rather than the entire sampling trajectory, we
highlight the following phenomena: the same training image can be both positively influential and negative influential for a
generated sample at different timesteps. For example, consider an image of a red car on a grey background generated by our
DDPM trained on CIFAR-10 (See Figure 7, top). We find that a specific training example of a red car on grass is the single
most positively influential image according to TRAK at the early stages of the generative process (as it is forming the shape
of the car), but is later the single most negatively influential image (possibly due to the difference in background, which
could steer the model in a different direction). If we were to create a aggregate attribution score for the entire sampling
trajectory, it is unclear what the attribution score would signify for this training example.

To evaluate this phenomena quantitatively, we measure the percentage of generated images for which, for a given K, there
exists a training example that is one of the top K highest scoring images at some timestep and one of the top K lowest
scoring images at another timestep (according to TRAK). We consider every fifth timestep, and ignore timestep 45, for which
TRAK has low correlation (see Figure 4). In Figure E, we show how this percentage varies with K. As a baseline, we also
include the probability of such a training example existing given completely random attribution scores. We find that our
observed probabilities match those expected with random scores, signifying that an image being highly positively influential
at a given timestep does not decrease the probability that it is highly negatively influential at a different timestep.

Pos + Neg Influencers

Negative Influencers

Positive Influencers

Figure 7. Single time-step attribution reasoning. Here, we visualize the generative process for two images generated by a DDPM on
CIFAR for which there exists a training image that is both positively and negatively influential at different time steps. If we consider an
aggregate attribution score across all time-steps of the sampling trajectory, we might lose the significance of such training examples which
alternate between being positively and negatively influential during the sampling process.
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Figure 8. The relationship between positive and negative influencers. Here, we plot the probability that within the attribution scores for
a given generated image, there exists a training example that is a one of the K most positive influencers at some timestep and one of
the bottom K most negative influencers at another timestep. We compute this probability empirically with the attribution scores from
TRAK and find that it closely aligns with the hypothetical baseline of completely random attribution scores. This signifies that being a top
positive influencer at some timestep does not decrease the likelihood of being a top negative influencer at a different timestep.
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F. Omitted Counterfactual Experiments
In Figure 2 we present counterfactuals where we measure how much the generated image changes when we remove the top
k most influential examples from the training set. To ground our results, we first present the change in generated images
under the “null” intervention, where we simply re-train the model on the full training set. We observe that diffusion models
trained independently show a remarkable consistency acorss retraining. We discuss this further in Appendix D.

Given this consistency, we can then measure the change (in a metric of choice) in generated images before and after removing
the top k most influential training examples. We train 10 models on the full CIFAR-10 training set, and one model for each
removal of k examples for each of the 60 synthesized images. We then report the difference between the average distance of
the image generated after re-training without the top k to the images generated by the models trained on the full data, and
the average distance between the images generated by the models trained on the full data.

With our choice of model output function ft, the TRAK attribution scores τt approximate the effect on the reconstruction loss
from x(t)0 to x(t−1)

0 . Nevertheless, we find that this change is highly correlated with the change in various image similarity
metrics (SSIM, ℓ2 similarity) between the final generated images.

In addition to Figure 2, which reports the change in ℓ2 distance in the final images, we also report the change in SSIM in
Figure F.
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Additionally, in Figure F we present what happens if we restart from the beginning x(t)0 of the sampling trajectory, instead of
conditioning on the trajectory up to x(t)

0 .
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G. Omitted plots
In this section, we present results that complement some of the result of our main paper.

G.1. More examples of the diffusion process and discovered influences.

Figure 9. Additional examples similar to Figure 1. Here, we visualize the sampling trajectory for generated images along with the most
positively (green) and negatively (red) influential images at individual timesteps throughout the sampling trajectory.
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