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Abstract

A recent line of research on deep learning focuses on the extremely over-
parameterized setting, and shows that when the network width is larger than a high
degree polynomial of the training sample size n and the inverse of the target error
¢~ 1, deep neural networks learned by (stochastic) gradient descent enjoy nice opti-
mization and generalization guarantees. Very recently, it is shown that under certain
margin assumptions on the training data, a polylogarithmic width condition suffices
for two-layer ReLU networks to converge and generalize [15]. However, whether
deep neural networks can be learned with such a mild over-parameterization is
still an open question. In this work, we answer this question affirmatively and
establish sharper learning guarantees for deep ReLU networks trained by (stochas-
tic) gradient descent. In specific, under certain assumptions made in previous
work, our optimization and generalization guarantees hold with network width
polylogarithmic in n and e~'. Our results push the study of over-parameterized
deep neural networks towards more practical settings.

1 Introduction

Deep neural networks have become one of the most important and prevalent machine learning models
due to their remarkable power in many real-world applications. However, the success of deep learning
has not been well-explained in theory. It remains mysterious why standard optimization algorithms
tend to find a globally optimal solution, despite the highly non-convex landscape of the training loss
function. Moreover, despite the extremely large amount of parameters, deep neural networks rarely
over-fit, and can often generalize well to unseen data and achieve good test accuracy. Understanding
these mysterious phenomena on the optimization and generalization of deep neural networks is one
of the most fundamental problems in deep learning theory.

Recent breakthroughs have shed light on the optimization [12, 2, 23, 24] and generalization Allen-
Zhu et al. [1], Arora et al. [4], Cao and Gu [8] of deep neural networks (DNNs) under the over-
parameterized setting, where the hidden layer width is extremely large, which is typically a high
degree polynomial of the training sample size n and the inverse of the target error ¢ ~!. As there
still remains a huge gap between such network width requirement and the practice, many attempts
have been made to improve the over-parameterization condition. For two-layer ReL.U networks, a
recent work [15] showed that when the training data are well separated, polylogarithmic width is
sufficient to guarantee good optimization and generalization performances. However, their results
cannot be extended to deep ReLU networks since their proof technique largely relies on the fact that
the network model is 1-homogeneous, which cannot be satisfied by DNNs. Therefore, whether deep
neural networks can be learned with such a mild over-parameterization is still an open problem.
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In this paper, we resolve this open problem by showing that polylogarithmic network width is
sufficient to learn DNNs. In particular, unlike the existing works that require the DNNs to behave
very close to a linear model (up to some small approximation error), we show that a constant linear
approximation error is sufficient to establish nice optimization and generalization guarantees for
DNNSs. Thanks to the relaxed requirement on the linear approximation error, a milder condition on
the network width and tighter bounds on the convergence rate and generalization error can be proved.
We summarize our contributions as follows:

o We establish the global convergence guarantee of GD for training deep ReLU networks based on
the so-called NTRF function class [8], a set of linear functions over random features. Specifically,
we prove that GD can learn deep ReLU networks with width m = poly(R) to compete with the
best function in NTRF function class, where R is the radius of the NTRF function class, which
can be demonstrated to be O(1) under commonly used data separability assumptions.

e We also establish the generalization guarantees for both GD and SGD in the same setting. Specifi-
cally, we prove a diminishing statistical error for a wide range of network width m € (Q(l), 0),
while most of the previous generalization bounds in the NTK regime only works in the setting
where the network width m is much greater than the sample size n. Moreover, we establish (5(6’2)
(5(6’1) sample complexities for GD and SGD respectively, which are tighter than existing bounds

for learning deep ReLU networks [8], and match the best results when reduced to the two-layer
cases [5, 15].

For the ease of comparison, we summarize our results along with the most related previous results in
Table 1, in terms of data assumption, the over-parameterization condition and sample complexity.
It can be seen that under data separation assumption (See Sections A.l, A.2), our result improves
existing results for learning deep neural networks by only requiring a polylog(n, e 1) network width.

Table 1: Comparison of neural network learning results in terms of over-parameterization condition
and sample complexity. Here € is the target error rate, n is the sample size, L is the network depth.

Assumptions Algorithm ~ Over-para. Condition Sample Complexity =~ Network
Zou et al. [23] Data nondegeneration GD Q(n2LY(n? 4 1)) - Deep
This paper Data nondegeneration GD Q (L22 n12) - Deep
Cao and Gu [9] Data separation GD Qe 1) . 2(5) O(e™) - O Deep
Ji and Telgarsky [15]  Data separation GD polylog(n, e~ 1) O(e72) Shallow
This paper Data separation GD polylog(n, e~ 1) - poly(L)  O(e=2) . ") Deep
Cao and Gu [8] Data separation SGD Qe ') - poly(L) (2(672 ) - poly(L) Deep
Ji and Telgarsky [15]  Data separation SGD polylog(e™1) O(e™t) Shallow
This paper Data separation SGD polylog(e~1) - poly(L) O(e™ 1) - poly(L) Deep

2 Preliminaries on Learning Neural Networks
In this section, we introduce the problem setting in this paper, including definitions of the neural
network and loss functions, and the training algorithms, i.e., GD and SGD with random initialization.

Neural network function. Given an input x € R¢, the output of deep fully-connected ReLU network
is defined as follows,

fw(x) =m"PWro(Wi_i - o(Wix) ),

where W1 € R"™*¢ Wy, ... ' W;_; € R™*™ and W, € R*™. We denote the collection of all
weight matrices as W = {Wy, ..., W_}.

Loss function. Given training dataset {x;,y; }i1, .. With input x; € R? and output y; € {—1, +1},
we define the training loss function as

Ls(W) = - Lw).
=1

3=

where L;(W) = (y; fw (x;)) = log (1 + exp(—y; fw(x;))) is defined as the cross-entropy loss.
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3 Main Theory

In this section, we present the optimization and generalization guarantees of GD and SGD for learning
deep ReLU networks. We first make the following assumption on the training data points.

Assumption 3.1. All training data points satisfy ||x;[o =1, =1,...,n.

This assumption has been widely made in many previous works [2, 3, 12, 11, 23] in order to simplify
the theoretical analysis.

In the following, we give the definition of Neural Tangent Random Feature (NTRF) [8], which
characterizes the functions learnable by over-parameterized ReLU networks.

Definition 3.2 (Neural Tangent Random Feature, [8]). Let W () be the initialization weights, and
Fwo w(x) = fwo () + (Vfwo (x), W — W) be a function with respect to the input x.
Then the NTRF function class is defined as follows

FWO R) = {Fyo w(-): WeBWO R.m~1/2)}.

The function class Fyy o) w(x) consists of linear models over random features defined based on
the network gradients at the initialization. Therefore it captures the key “almost linear” property of
wide neural networks in the NTK regime [17, 8]. In this paper, we use the NTRF function class as a
reference class to measure the difficulty of a learning problem. In what follows, we deliver our main
theoretical results regarding the optimization and generalization guarantees of learning deep ReLU
networks. We study both GD and SGD with random initialization.

3.1 Gradient Descent

The following theorem establishes the optimization guarantee of GD for training deep ReLU networks
for binary classification.

Theorem 3.3. For 6, R > 0, let exntrr = inf ¢ F(WO),R) n~! Zzl:l L[y; F(x;)] be the minimum
training loss achievable by functions in F(W(®) | R). Then there exists

m* (6, R, L) = O(poly(R, L) - log™3(n/s)),
such that if m > m*(, R, L), with probability at least 1 — § over the initialization, GD with step

size n = @(L‘lm_l) can train a neural network to achieve at most 3entrr training loss within
T = O(L2R26§T1RF) iterations.

Theorem 3.3 shows that the deep ReLU network trained by GD can compete with the best function in
the NTRF function class 7 (W) R) if the network width has a polynomial dependency in R and L
and a logarithmic dependency in n and 1/3. Moreover, if the NTRF function class with R = (’3(1)
can learn the training data well (i.e., extrr 1S less than a small target error €), a polylogarithmic (in
terms of n and ¢~ !) network width suffices to guarantee the global convergence of GD, which directly
improves over-paramterization condition in the most related work [8]. In Appendix A, we show that
under commonly used data separability assumptions, NTRF function class with R = polylog(n, e~1)
can achieve enTrp < € for arbitrarily small € > 0. Moreover, under a much weaker data assumption
which covers the case of random labels, we also have extrr < € for R = Q(n*?log(n/e)), which
implies global convergence of GD when m = ﬁ(nm). For all cases, our over-parameterization
requirement is better than existing results for DNNs.

Compared with the results in [15] which give similar network width requirements for two-layer
networks, our result works for deep networks. Moreover, while Ji and Telgarsky [15] essentially
required all training data to be separable by a function in the NTRF function class with a constant
margin, our result does not require such data separation assumptions, and allows the NTRF function
class to misclassify a small proportion of the training data points'.

We now characterize the generalization performance of neural networks trained by GD. We denote
LY (W) = E(x,y)~p[1{fw(x) - y < 0}] as the expected 0-1 loss (i.e., expected error) of fw (x).

'A detailed discussion is given in Section A.2.
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Theorem 3.4. Under the same assumptions as Theorem 3.3, with probability at least 1 — 4, the iterate
W ® of gradient descent satisfies that

~ 3/2R L11/3R4/3 o (1/5)
0—1 W () w® L2 m L g

forallt =0,...,T.

Theorem 3.4 shows that the test error of the trained neural network can be bounded by its training error
plus statistical error terms. Note that the statistical error terms is in the form of a minimum between
two terms 4% L2 Ry/m/n and L3?R//n + L*'/3R*/3 /m'/5. Depending on the network width m,
one of these two terms will be the dominating term and diminishes for large n: (1) if m = o(n),
the statistical error will be 4% L2 R+/ m/n, and diminishes as n increases; and (2) if m = Q(n), the
statistical error is L%/2R/y/n + L*'/3 R*/3 /m'/6, and again goes to zero as n increases. Moreover,
in this paper we have a specific focus on the setting m = (5(1) under which Theorem 3.4 gives a
statistical error of order (5(71*1/ 2). This distinguishes our result from previous generalization bounds
for deep networks [9, 8], which cannot be applied to the setting m = (5(1)

3.2 Stochastic Gradient Descent

Here we study the performance of SGD for training deep ReLU networks. The following theorem
establishes a generalization error bound for the output of SGD.

Theorem 3.5. For 6, R > 0, let extre = inf perowo) gy n~ ' 2 €[y F(x;)] be the minimum
training loss achievable by functions in 7(W(®) R). Then there exists

m*(6, R, L) = O(poly(R, L) - log™3(n/9)),

such that if m > m*(d, R, L), with probability at least 1 — 6, SGD with step size = ©(m ™" -
(LR*n'eype A L71)) achieves

2 p2
< 8L°R N 8log(2/9)
n n

E[L% " (W)] + 24entrr,

where the expectation is taken over the uniform draw of W from (WO w=hy

For any € > 0, Theorem 3.5 gives a 6(6_1) sample complexity for deep ReLU networks trained with
SGD to achieve O(entrr + €) test error. Again, under commonly used data separability assumptions,
NTRF function class with R = polylog(n, e 1) can achieve extrr < € for arbitrarily small € > 0
(See Appendix A), which implies an m = €}(1) over-parameterization condition and an n = &(e 1)
sample complexity. Our result extends the result for two-layer networks proved in [15] to multi-layer
networks. Theorem 3.5 also provides sharper results compared with Allen-Zhu et al. [1], Cao and Gu

[8] in two aspects: (1) the sample complexity is improved from n = (5(672) ton = O(e~1); and (2)
the overparamterization condition is improved from m > poly(e~!) to m = Q(1).

4 Conclusion

In this paper, we established the global convergence and generalization error bounds of GD and SGD
for training deep ReLLU networks for the binary classification problem. We show that a network width
condition that is polylogarithmic in the sample size n and the inverse of target error e ! is sufficient
to guarantee the learning of deep ReLLU networks. Our results resolve an open question raised in Ji
and Telgarsky [15].
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A Discussion on the NTRF Class

Our theoretical results in Section 3 rely on the radius (i.e., R) of the NTRF function class F(W () R)
and the minimum training loss achievable by functions in F (W(O), R), i.e., extrr- Note that a larger
R naturally implies a smaller extrp, but also leads to worse conditions on m. In this section, for
any (arbitrarily small) target error rate ¢ > 0, we discuss various data assumptions studied in the
literature under which our results can lead to O(¢) training/test errors, and specify the network width
requirement.

A.1 Data Separability by Neural Tangent Random Feature

In this subsection, we consider the setting where a large fraction of the training data can be linearly
separated by the neural tangent random features. The assumption is stated as follows.

Assumption A.l. There exists a collection of matrices U* = {U¥,--- ,U}} satisfying
Z{;l |U#|% = 1, such that for at least (1 — p) fraction of training data we have

YV fwo (%), U*) = m!/2y,

where 7 is an absolute positive constant” and p € [0, 1).

The following corollary provides an upper bound of extrp under Assumption A.1 for some R.

Proposition A.2. Under Assumption A.1, for any €,8 > 0, if R > C[log"/?(n/8) + log(1/e)] /v
for some absolute constant C, then with probability at least 1 — 4,

n

= inf -1 ; ) < . )
ENTRF Fef(lélv(o)ﬁ)n i;g(yzF(XJ) e+p-O(R)

Proposition A.2 covers the setting where the NTRF function class is allowed to misclassify training
data, while most of existing work typically assumes that all training data can be perfectly separated
with constant margin (i.e., p = 0) [15, 21]. Our results show that for sufficiently small misclassifica-
tion ratio p = O(e), we have extrr = O(€) by choosing the radius parameter R logarithimic in n,
51 and e 1. Substituting this result into Theorems 3.3, 3.4 and 3.5, it can be shown that a neural
network with width m = poly(L, log(n/§),log(1/€))) suffices to guarantee good optimization and
generalization performances for both GD and SGD.

A.2 Data Separability by Shallow Neural Tangent Model

In this subsection, we study the data separation assumption made in Ji and Telgarsky [15] and show
that our results cover this particular setting. We first restate the assumption as follows.

Assumption A.3. There exists u(-) : R — R? and v > 0 such that [t(z)||2 < 1 forall z € R%, and

yif o' ((z, %)) - (u(z), xi)dpn(z) =y
Rd

for all ¢ € [n], where pn(+) denotes the standard normal distribution.

Assumption A.3 is related to the linear separability of the gradients of the first layer parameters at
random initialization, where the randomness is replaced with an integral by taking the infinite width
limit. Note that similar assumptions have also been studied in [9, 19, 13]. The assumption made in
[9, 13] uses gradients with respect to the second layer weights instead of the first layer ones. In the
following, we mainly focus on Assumption A.3, while our result can also be generalized to cover the
setting in [9, 13].

*The factor m*/? is introduced here since |Vyy (o) f(x;)| r is typically of order O(m'/?).
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In order to make a fair comparison, we reduce our results for multilayer networks to the two-layer
setting. In this case, the neural network function takes form

fw (X) = m1/2W20(W1x).

Then we provide the following proposition, which states that Assumption A.3 implies a certain choice
of R = O(1) such the the minimum training loss achieved by the function in the NTRF function
class F (W(O), R) satisfies entrr = O(€), where € is the target error.

Proposition A.4. Suppose the training data satisfies Assumption A.3. For any €¢,6 > 0, let R =
C|[log(n/d) + log(1/e)]/~ for some large enough absolute constant C. If the neural network width
satisfies m = Q(log(n/d)/~?), then with probability at least 1 — 4, there exist Fyy o) v (xi) €
F(W© R) such that £(y; - Fyyo w(Xi)) < € Vi€ [n].

Proposition A.4 shows that under Assumption A.3, there exists Fyy o) w(-) € F(W©, R) with
R = O(1) such that the cross-entropy loss of Fiy© 3(°) at each training data point is bounded by e.
This implies that extrr < €. Moreover, by applying Theorem 3.3 with L = 2, the condition on the
neural network width becomes m = Q(poly(log(n/d),log(1/€))) *, which matches the condition
proved in Ji and Telgarsky [15].

A.3 Class-dependent Data Nondegeneration

In previous subsections, we have shown that under certain data separation conditions extrr can be
sufficiently small while the corresponding NTRF function class has R of order (5(1) Thus neural
networks with polylogarithmic width enjoy nice optimization and generalization guarantees. In this
part, we consider the following much milder data separability assumption made in Zou et al. [23].

Assumption A.5. For all ¢ # i’ if y; # y;, then |x; — x]2 > ¢ for some absolute constant ¢.

In contrast to the conventional data nondegeneration assumption (i.e., no duplicate data points)
made in Allen-Zhu et al. [2], Du et al. [12, 11], Zou and Gu [24]*, Assumption A.5 only requires
that the data points from different classes are nondegenerate, thus we call it class-dependent data
nondegeneration.

We have the following proposition which shows that Assumption A.5 also implies the existence of a
good function that achieves e training error, in the NTRF function class with a certain choice of R.

Proposition A.6. Under Assumption A.5, if
R= Q(n3/2¢_1/2 log(né_le_l)), m = Q(L22n12¢_4),

we have entrp < € with probability at least 1 — 4.

Proposition A.6 suggests that under Assumption A.5, in order to guarantee exTrr < €, the size of
NTRF function class needs to be Q(n?®/ 2). Plugging this into Theorems 3.4 and 3.5 leads to vacuous
bounds on the test error. This makes sense since Assumption A.5 basically covers the “random label”
setting, which is impossible to be learned with small generalization error. Moreover, we would like
to point out our theoretical analysis leads to a sharper over-parameterization condition than that
proved in Zou et al. [23], i.e., m = (n*L¢=* + n12L16¢p~%e~1), if the network depth satisfies

L <On3 v e 1/6),

3Similar to Ji and Telgarsky [15], the margin parameter is considered as a constant and thus does not appear
in the condition on m.

4Specifically, Allen-Zhu et al. [2], Zou and Gu [24] require that any two data points (rather than data points
from different classes) are separated by a positive distance. Zou and Gu [24] shows that this assumption is
equivalent to those made in Du et al. [12, 11], which require that the composite kernel matrix is strictly positive
definite.
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B Proof of Main Theorems

In this section we provide the full proof of Theorems 3.3, 3.4 and 3.5.

B.1 Proof of Theorem 3.3

Here we introduce a key technical lemma used in the proof of Theorem 3.3.

Our proof is based on the key observation that near initialization, the neural network function can be
approximated by its first-order Taylor expansion. In the following, we first give the definition of the
linear approximation error in a 7-neighborhood around initialization.

€app(T) 1= sup sup |fw (xi) = fw (xi) =V fw (x:), W' = W)|.
i=1,n W, WeB(W(©) 1)

If all the iterates of GD stay inside a neighborhood around initialization with small linear approxima-
tion error, then we may expect that the training of neural networks should be similar to the training of
the corresponding linear model, where standard optimization techniques can be applied. Motivated
by this, we also give the following definition on the gradient upper bound of neural networks around
initialization, which is related to the Lipschitz constant of the optimization objective function.
M(7):= sup sup sup — |[Vw, fw (xi)F-
i=1,...,nl=1,..,L WeB(W©) 1)

By definition, we can choose W* € B(W (), Rm~1/2) such that n=* 37", £(y; Fyyco) w (xi)) =
entrRe- Then we have the following lemma.

Lemma B.1. Set ) = O(L~'M(7)~?). Suppose that W* € B(W () 7)and W® e B(W(© 7)
forall 0 < ¢ <t — 1. Then it holds that

_ WO — W — [WE — W3+ 2 exar
(3 — 4eapp(7))

t'—1
- > Ls(WH)
t=0

Lemma B.1 plays a central role in our proof. In specific, if W) € B(W(®) 1) for all ¢ < #/, then
Lemma B.1 implies that the average training loss is in the same order of extrr as long as the linear
approximation error €, (7) is bounded by a positive constant. This is in contrast to the proof in
Cao and Gu [8], where €., (7) appears as an additive term in the upper bound of the training loss,
thus requiring €,pp(7) = O(entrr) to achieve the same error bound as in Lemma B.1. Since we can

show that e,,, = O(m~'/6) (See Section B.1), this suggests that m = €)(1) is sufficient to make the
average training loss in the same order of exrgrg.

Compared with the recent results for two-layer networks by [15], Lemma B.1 is proved with different
techniques. In specific, the proof by [15] relies on the 1-homogeneous property of the ReLU activation
function, which limits their analysis to two-layer networks with fixed second layer weights. In
comparison, our proof does not rely on homogeneity, and is purely based on the linear approximation
property of neural networks and some specific properties of the loss function. Therefore, our proof
technique can handle deep networks, and is potentially applicable to non-ReLU activation functions
and other network architectures (e.g, Convolutional neural networks and Residual networks).

We provide the following lemma which is useful in the subsequent proof.

Lemma B.2 (Lemmas 4.1 and B.3 in Cao and Gu [8]). There exists an absolute constant x such that,
with probability at least 1 — O(nL?) exp[—Q(m7?>L)], for any 7 < kL~ %[log(m)]~/?, it holds
that

€app(T) < O(TY3L3MY2), M(7) < O(vm).
Now we provide the detailed proof which consists of two steps: (i) showing that all T" iterates stay

close to initialization, and (ii) bounding the empirical loss achieved by gradient descent. Both of
these steps are proved based on Lemma B.1.
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Proof of Theorem 3.3. Recall that W* is chosen such that

1 n
- Z UyiFwo wr (%)) = extrr
i=1
and W* € B(W©) Rm~1/2). Note that to apply Lemma B.1, we need the region B(W (%) 1) to in-

clude both W* and {W(t)}t=0,,,,,t/. This motivates us to set 7 = O(LY/2m~Y/2R), which is slightly
larger than m~Y/2R. With this choice of 7, by Lemma B.2 we have e, (7) = O(7¥3m!/2L3%) =
O(RY3L1/3m=1/6). Therefore, we can set

m = Q(R3L?) (B.1)

to ensure that €,p,(7) < 1/8, where Q(-) hides polylogarithmic dependencies on network depth L,
NTREF function class size R, and failure probability parameter §. Then by Lemma B.1, we have with
probability at least 1 — §, we have

t'—1

WO —wW*|2, — [W) — W2, > g Z Ls(W®) — 2t'nextre (B.2)

aslongas W(© .. W' =1 e B(W( 7). In the following proof we choose 7 = O(L~ m™1)
and T = [LR*m ™ 0 extpel-

We prove the theorem by two steps: 1) we show that all iterates {W () ... 'W(T)} will stay inside
the region B(W(O), 7); and 2) we show that GD can find a neural network with at most 3enTrr
training loss within 7" iterations.

All iterates stay inside B(W (), 7). We prove this part by induction. Speciﬁcally, given t' < T, we

assume the hypothesis W) € B(W () 1) holds for all ¢ < ' and prove that W) € B(W () 7).
First, it is clear that W(®) € B(W(®) 7). Then by (B.2) and the fact that Ls(W) > 0, we have

[WE — W[5 < [WO — WH[3. + 2’ extre
Note that T = [LR*m ™' Lexire] and W* € B(W (@) R - m~1/2), we have

L
SNIW - W3 = [WE) -~ W* |2 < CLR?*m ™

where C' > 4 is an absolute constant. Therefore, by triangle inequality, we further have the following
foralll e [L],

0 0
W = WO < W — Wi + WO — W
<VC Rm71/2 + Rm /2
< 2v/CLRm™'/2. (B.3)

Therefore, it is clear that HWl(t/) - Wl(O)HF < 2¢/CLRm~"? < 7 based on our choice of 7
previously. This completes the proof of the first part.

Convergence of gradient descent. (B.2) implies
T—1

WO —W*|3 — W) — W3 > n( > Ls(W) — 2T€NTRF>-
t=0
Dividing by nT on the both sides, we get
- W W2 LRZm™!
Z W(t M + 2enTRF < Zvm o + 2enTRF < 3€NTRF;
- nT nT

where the second inequality is by the fact that W* ¢ B(W©) R . m~Y 2) and the last in-
equality is by our choices of T and n which ensure that Tn > LR?m eNTRF Notice that

= [LR*m~'n 'extrr] = O(L?R%eqigp)- This completes the proof of the second part, and
we are able to complete the proof. O

10



332 B.2 Proof of Theorem 3.4

333 Following Cao and Gu [9], we first introduce the definition of surrogate loss of the network, which is
334 defined by the derivative of the loss function.

335 Definition B.3. We define the empirical surrogate error £5(W) and population surrogate error
a6 Ep(W) as follows:

Es(W) = —— Zé’ fw(@i)], Ep(W) = Eyyon{ =y - fw(x)]}-

337 The following lemma gives uniform-convergence type of results for £5(W) utilizing the fact that
sse —/¢'(-) is bounded and Lipschitz continuous.

s39 Lemma B.4. Forany R,§ > 0, suppose that m = Q(L'2R2) - [log(1/6)]*/2. Then with probability
sa0 atleast 1 — 4, it holds that

3 LR LPR'® log(1/6
6D<W)—es<vv)|<o<mm{4LL3/2R ji C })+@< 0g<n/>>
m
a1 forall W e B(W© R.m=1/2)

342 We are now ready to prove Theorem 3.4, which combines the trajectory distance analysis in the proof
343 of Theorem 3.3 with Lemma B .4.

344 Proof of Theorem 3.4. With exactly the same proof as Theorem 3.3, by (B.3) and induction we have
as WO WO W) e BWO  Rm~12) with R = O(v/LR). Therefore by Lemma B.4, we
346 have

~[ . L3/2R L1Y/3 R4S log(1/8
‘5D(W(t)) — ES(W(t))| < O(mm {4LL2R — \F —7 }) + O( #

sa7 forallt =0,1,...,T. Note that we have 1{z < 0} < —2¢'(z). Therefore,
ELYS Y (W®) < 26p(W W)

~( . L3/2R L'/3RY3 log(1/8
<2Ls(W®W) + o<mm {4%23 T T e +0 %

s t=0,1,...,T. This finishes the proof. O]

349 B.3 Proof of Theorem 3.5

350 In this section we provide the full proof of Theorem 3.5. We first give the following result, which is
a51  the counterpart of Lemma B.1 for SGD. Again we pick W* € B(W(®), Rm~1/2) such that the loss
352 of the corresponding NTRF model Fyy (o) w (x) achieves enTRE-

53 Lemma B.5. Setn) = O(L~'M(7)~2). Suppose that W* € B(W© 7)and W) e B(WO) 1)
354 forall 0 < n’ < n — 1. Then it holds that

n’ 3 u 11—
WO — W3 — W) — W*|3 > (5 - 4€app(7))77 DT Li(WOD) — 2nnexre.
1=1

355 We introduce a surrogate loss £;(W) = —¢'[y; - fw(x;)] and its population version Ep(W) =
356 Ez)~p[—'[y- fw(x)]], which have been used in [14, 8, 15]. Our proof is based on the application
357 of Lemma B.5 and an online-to-batch conversion argument [10, 8, 15]. We introduce a surrogate
a8 loss &(W) = —l'[y; - fw(=;)] and its population version Ep(W) = E g y.p[—'(y - fw(x))],
359 which have been used in [14, 8, 19, 15].

11
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Proof of Theorem 3.5. Recall that W* is chosen such that

1 n

- Z £(yi Fw o) w (Xi)) = entre

i=1
and W* € B(W( Rm~1/2). To apply Lemma B.5, we need the region B(W(®) 1) to include
both W* and {W®},_o .. This motivates us to set 7 = O(LY?m~Y/2R), which is slightly
larger than m~'/2 R. With this choice of 7, by Lemma B.2 we have e, (1) = O(7/3m!/2L3) =
O(R*3LY/3m=1/6). Therefore, we can set
m = Q(RSL??)

to ensure that €,p,(7) < 1/8, where Q(-) hides polylogarithmic dependencies on network depth L,
NTREF function class size R, and failure probability parameter §.

Then by Lemma B.5, we have with probability at least 1 — 4,

’I’L

WO — W2 — W) — W2 > Z Ly(WU=) — 2nnentrr (B.4)

aslongas W . W' -1 e BW©O 7),

We then prove Theorem 3.5 in two steps: 1) all iterates stay inside B(W(O), 7); and 2) convergence
of online SGD.

All iterates stay inside B (WO 7). Similar to the proof of Theorem 3.3, we prove this part by
induction. Assuming W) satisfies W) e B(W(O), 7) forall i < n' — 1, by (B.4), we have

WO — W < [W — W, + 2nenmer
< LR2 . m_l + 2nneNTRF,
where the last inequality is by W* € B(W(®), Rm~1/2). Then by triangle inequality, we further get
n’ 0 n’ 0
Wi =W |r < [W(™) = Wi+ [WF =W
< WO = WHp + [Wi = WO
O(IRm="2 + \/rmesie).
Then by our choices of = ©(m~! - (LR*nleqige A L)), we have [W) — WO | <
2v/LRm~'/? < . This completes the proof of the first part.
Convergence of online SGD. By (B.4), we have

WO =W (W = W (3 W) = 2nerer ).

i=1
Dividing by nn on the both sides and rearranging terms, we get
0)_W*2_W(n)_w*2 L2 R2
1 Z Ly < IW I~ O o

nn

where the second inequality follows from facts that W* € B(W() R.m~1/2)andn = © (m=*-
(LR*n'egige A L71)). By Lemma 4.3 in [15] and the fact that £(W (1) < L;(WE=D), we

have
IR - i i—
~ VLG W) < 2 ) ep(WEY)
i=1

-

1

- Ei(W(ifl))_F 810g(1/5)

?

Sloo 3w

n

S8L2R? 8log(1/6
< n + Og’ri / ) + 24€NTRF~

This completes the proof of the second part. O

<.
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C Proof of Results in Section A

C.1 Proof of Proposition A.2

We first provide the following lemma which gives an upper bound of the neural network output at the
initialization.

Lemma C.1 (Lemma 4.4 in Cao and Gu [8]). Under Assumptions 3.1, if m > C'Llog(nL/§) with
some absolute constant C, with probability at least 1 — §, we have

| fwo (x:)] < C+/log(n/d)

for some absolute constant C'.

Proof of Proposition A.2. Under assumption A.1, we can find a collection of matrices U* =
(U*,... [ U*} with Y, [U*|% = 1 such that y;{V fyvo (x;), U*) = m!/2y for at least 1 — o
fraction of training data. By Lemma C.1, for all i € [n] we have |fy o (x;)| < C+/log(n/d) for
some absolute constant C'. Then for any positive constant A, we have for at least 1 — o portion of
data,

i (fwo (%) + (Y fwo, AU*Y) = m2Ay — C/log(n/d).
For this fraction of data, we can set

C'[10g"?(n/5) + log(1/e)]
ml/z,y )

A\ =

where C” is an absolute constant, and get

m'2\y — C+/log(n/8) = log(1/e).

Now we let W* = W( 4 \U*. By the choice of R in Proposition A.2, we have W* &
B(W© R .m~12). The above inequality implies that for this at least 1 — o fraction of data,
we have E(yiFw(m W (xi)) < e. For the rest data, we have

i (fwo (xi) + <V fw, AU*)) = —C/log(n/8) — M|V fw |3 = —C1 R
for some absolute positive constant C, where the last inequality follows from fact that |V fyy ) [l2 =

(’3(m1/ 2) (see Lemma B.2 for detail). Then note that we use cross-entropy loss, it follows that for this
fraction of training data, we have ¢ (yz Fyo) w (xi)) < (3R for some constant C. Combining the
results of these two fractions of training data, we can conclude

ENTRF < Z (yiFwo wx (%)) < (1—0)e+ p- O(R)

This completes the proof.

C.2 Proof of Proposition A.4

Proof of Proposition A.4. We are going to prove that Assumption A.3 implies the existence of a good
function in the NTRF function class.

By Definition 3.2 and the definition of cross-entropy loss, our goal is to prove that there exists
a collection of matrices W = {W 1, W} satisfying max{|W; — HF, Wy — W H } <
R - m~/2 such that

yi - [fwo (%) + (Vw, fwo, Wi — W 1+ (Vw, fyo, W2 — WE] = log(2/e).

We first consider Vi, fyw ) (X;), which has the form

(Vw, fwo (x1)), = m!? - wl?) - o' ((wi?) %)) - %

13
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50]) are independently generated from N(0, 1/m) and (0, 2I/m) respectively,

thus we have P(|wéoj) | > 0.47m~'/2) > 1/2. By Hoeffeding’s inequality, we know that with
probability at least 1 — exp(—m/8), there are at least m/4 nodes, whose union is denoted by S,

Note that wéoj) and w

satisfying \w§°j>| > 0.47m~"2. Then we only focus on the nodes in the set S. Note that W§°> and

ng are independently generated. Then by Assumption A.3 and Hoeffeding’s inequality, there exists
a function T(+) : R — R< such that with probability at least 1 — &/,

2log(1/46")
yi - (W), x;) - o (W), x:)) = e
1 2 1 s
Define v; = ﬁ(wg?;)/wg,j if |wy j| = 0.47m~1/2 and v; = 0 otherwise. Then we have

Z wzj (vj,Xiy- 0o (<W1]7 Z y; - <u( W1 j) X;)- 0'/(<W§(’)J)-,Xi>)

JjES
> [Sly — v/2|S8|log(1/0").
Set § = 2nd’ and apply union bound, we have with probability at least 1 — §/2,

Sy ws) vy xiy ol (W) x;)) = [Sly — /2] S[log(2n/6).
j=1

Therefore, note that with probability at least 1 — exp(—m/8), we have |S| = m/4. Moreover, in
Assumption A.3, by y; € {£1} and |o/(")|, [T(")|2, [xill2 < 1 fori =1,...,n, we see that v < 1.
Then if m > 32log(n/§)/7?, with probability at least 1 — §/2 — exp (— 4log(n/5)/w2) >1-6,

m
Dy whe) - (Ve xay - ol (W), %) > [STy/2.
j=1

Let U = (v, Vo, , V) /o/m|S], we have

Shy _ m!/2y
5V, favo (x:), U) = mZyz wll) - Cvgyxiy o' (i) xp) = YT = T

where the last inequality is by the fact that |S| > m/4. Besides, note that by concentration and
Gaussian tail bound, we have | fyy ) (x;)| < Clog(n/d) for some absolute constant C. Therefore,

let W = W§O) + 4(log(2/e) + Clog(n/s))m~/2U/y and W5 = Wgo)’ we have

Yi - [fwo (xi) + (Vw, fwo, Wi — W§O)> +{V'w, fw©, Wz — W§0)>] > log(2/¢€). (C.1)
Note that [t(-)[2 < 1, we have |U|r < 1/0.47 < 2.2. Therefore, we further have |W; —
W p < 8.8y (log(2/e) + Clog(n/6)) - m~Y/2. This implies that W € B(W®), R) with
R = O(log (n/(6¢€)) /). Applying the inequality ¢(log(2/€)) < € on (C.1) gives

Uyi - o) w(xi)) <€

foralli = 1,...,n. This completes the proof. O

C.3 Proof of Proposition A.6

Based on our theoretical analysis, the major goal is to show that there exist certain choices of R
and m such that the best NTRF model in the function class 7(W(®) R) can achieve ¢ training
error. In this proof, we will prove a stronger results by showing that given the quantities of R
and m specificed in Proposition A.6, there exists a NTRF model with parameter W* that satisfies

TL_l Z?:l g(yiFW(U),W* (Xz)) <e.
In order to do so, we consider training the NTRF model via a different surrogate loss function.
Specifically, we consider squared hinge loss /(z) = (max{\ — z, O})Q, where A denotes the target

14
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margin. In the later proof, we choose A = log(1/e) + 1 such that the condition Z(x) < 1 can
guarantee that « > log(e). Moreover, we consider using gradient flow, i.e., gradient descent with
infinitesimal step size, to train the NTRF model. Therefore, in the remaining part of the proof, we
consider optimizing the NTRF parameter W with the loss function

1 n
- Z (vi P wi(x:))-

3

Moreover, for simplicity, we only consider optimizing parameter in the last hidden layer (i.e., W _1).

Then the gradient flow can be formulated as
dW_1(t) dW,(t)
dt dt
Note that the NTRF model is a linear model, thus by Definition 3.2, we have
Vw,_ Ls(W () = y:l (vi Fwwor wiy (%1)) - Vw,_, Fywo) wo) (%)
= ylf (yle(U) Wt )( )) . vWiﬂllfW“” (x;). (C.2)

= waL_lzg(W(t)), =0 foranyl# L —1.

Then it is clear that Vi, , Ls(W (t)) has fixed direction throughout the optimization.

In order to prove the convergence of gradient flow and characterize the quantity of R, We first provide
the following lemma which gives an upper bound of the NTRF model output at the initialization.

Then we provide the following lemma which characterizes a lower bound of the Frobenius norm of
the partial gradient Vv, _, Ls(W).

Lemma C.2 (Lemma B.5 in Zou et al. [23]). Under Assumptions 3.1 and A.5, if m = Q(n2¢~1),
then for all ¢ > 0, with probability at least 1 — exp ( — O(m¢/n)), there exist a positive constant C'
such that

n 2
IVw, . Ls(W()[3 > Cm[z ysz<o>,w<t><xi>>].

We slightly modified the original version of this lemma since we use different models (we consider
NTRF model while Zou et al. [23] considers neural network model). However, by (C.2), it is clear
that the gradient VES(W) can be regarded as a type of the gradient for neural network model at the
initialization (i.e., Vw,_, Ls(W(9))is valid. Now we are ready to present the proof.

Proof of Proposition A.6. Recall that we only consider training the last hidden weights, i.e., W _,
via gradient flow with squared hinge loss, and our goal is to prove that gradient flow is able to
find a NTRF model within the function class 7(W(?) R) around the initialization, i.e., achieving
n= Y (Y Fwo we (xi)) < e. Let W (t) be the weights at time ¢, gradient flow implies that

dt n3

LW _ v, Es(W(t)J2 < Cmd’(ﬁ v Py wu)(xz))) _ domeLs(Wit))

where the first equality is due to the fact that we only train the last hidden layer, the first inequality

is by Lemma C.2 and the second equality follows from the fact that #/(-) = —24/£(-). Solving the
above inequality gives

(C.3)

Ls(W(t)) < Ls(W(0)) - exp (— 40’”‘“).

3
Then, set T = O(nm =16~ - log(Ls(W(0))/')) and € = 1/n, we have Ls(W(t)) < ¢’. Then
it follows that Z(yiFW<0)7w(t) (x;)) < 1, which implies that YiF'w wt)(xi) = log(e) and thus

n 3 0(yiFywo wx (%)) < €. Therefore, W (T') is exactly the NTRF model we are looking
for.

15
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The next step is to characterize the distance between W (7') and W (0) in order to characterize the
quantity of R. Note that |[Vw, , Ls(W(t))||% = 4Cme¢Ls(W(t))/n3, we have

dIsW)  [Vw,  Ls(W)[3

_ < —|Vw, , Ls(W(®)|r -
d¢ 24/ Ls(W(t)) e ’

Taking integral on both sides and rearranging terms, we have

CV2m1 /2412
n3/2

T N 32 — —
[ 19w EstWoled < ol (VEswio) -y Eswiny ).

=0
Note that the L.H.S. of the above inequality is an upper bound of |W (t) — W (0)| r, we have for any
=0,

3/2

[W(t) = WO)lr < = n/lg(”/@)))

C12m12¢1/2 A/ Ls(W(0)) = ( ml2¢1/2
where the second inequality is by Lemma C.1 and our choice of A = log(1/¢) + 1. This implies that
there exists a point W* within the class F(W(®), R) with

R—O(’W)

such that

n

ENTRF 1= 1" Z g(yiFW(O)yV* (Xz)) <e
i=1

Then by Theorem 3.3, and, more specifically, (B.1), we can compute the minimal required neural
network width as follows,

N - [ 12212
m = Q(R¥L??) = Q( e )
This completes the proof. O

D Proof of Technical Lemmas

Here we provide the proof of Lemmas B.1, B.4 and B.5.
D.1 Proof of Lemma B.1

The detailed proof of Lemma B.1 is given as follows.

Proof of Lemima B.1. Based on the update rule of gradient descent, i.e., WD — W) —
nVWLS(W(t)), we have the following calculation.
W — W* |7 — [WED — w3,

M & L
= 2N WO W T L(WO) — 2 Y [Vw, Ls(W )3, (D)
=1 =1

Il 12

where the equation follows from the fact that Lg(W®) = n=1 3" [;(W(®)). In what follows,
we first bound the term /; on the R.H.S. of (D.1) by approximating the neural network functions with
linear models. By assumption, for ¢ = 0,...,# — 1, W®) 'W* € B(W(©) 7). Therefore by the
definition of €, (7),

yi - (Vfwe (x:), WO — W) <y - (fwo (xi) = fw# (X)) + €app(T) (D.2)
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Moreover, we also have
0 <y (fw(x:) — fwo (xi) — (V fwo (x:), W* = W) + e (7)
=yi - (fw=(xi) — Faw© w (i) + €app(T), (D.3)

where the equation follows by the definition of Fyy ) w (x). Adding (D.3) to (D.2) and canceling
the terms y; - fw=(x;), we obtain that

yi (Vwo (%), WO = W* <y - (fyo (1) — Py ws (X)) + 2€app(1). (D4

We can now give a lower bound on first term on the R.H.S. of (D.1). For¢ = 1, ..., n, applying the
chain rule on the loss function gradients and utilizing (D.4), we have

(WO - W* Vi Li(W®)) = ¢/ (yifwo (xi)) - yi - (WO - W* Yy fyo (%))
>V (yifwo (%)) - (i fwo (x%3) — yi fws (%) + 2€app (7))
> (1 = 2€app (M)l (yifwen (%)) = L(yi Fwo wx (i),  (D.5)
where the first inequality is by the fact that ¢/ (yi fwo (xl)) < 0, the second inequality is by convexity
of () and the fact that —¢' (y; fw o (x:)) < €(yifw (xi)).

We now proceed to bound the term I on the R.H.S. of (D.1). Note that we have ¢'(-) < 0, and
therefore the Frobenius norm of the gradient Vv, Lg (W®) can be upper bounded as follows,

F

9w 5OVl = | 33 e 050) T e ()
' (yifwo (%) - [Vw, fwo (i) 7,
1

7
17
<o

n «
i=

where the inequality follows by triangle inequality. We now utilize the fact that cross-entropy loss
satisfies the inequalities —¢'(-) < £(-) and —¢'(-) < 1. Therefore by definition of M (1), we have

3 [V Ls (W) 2 < O(LM(r)? ( Z o yszu)(xz)))

=1
< O(LM(7)?) -LS(W“)). (D.6)
Then we can plug (D.5) and (D.6) into (D.1) and obtain
[WE = WH[E — [WEHD — W3,

%7 Z [ — 2eapp (7)) (yi fw o (x:)) — f(yiFw<o>,w*(Xi))] — O(n’LM(7)?) - Ls(W®)

3 2

2 i=1
where the last inequality is by n = O(L~! M (7)~?) and merging the third term on the second line
into the first term. Taking telescope sum from ¢t = 0 to t = ¢’ — 1 and plugging in the definition
L3 U(yiFwo w (xi)) = entrr completes the proof. O

D.2 Proof of Lemma B.4

Proof of Lemma B.4. We first denote W = B(W(® R . m~'/2), and define the corresponding
neural network function class and surrogate loss functlon class as F = {fw(x) : W € W} and
G ={-Ly- fw(x)]: W € W} respectively.

By standard uniform convergence results in terms of empirical Rademacher complexity [7, 18, 20],
with probability at least 1 — § we have

1

sup |Es(W) —Ep(W)| = sup | — — Z Yi - fw(@i)] + Eegyonl' [y fw(x)]
WeWw Wew n=
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where (' is an absolute constant, and

mn(g) = IEE,;~Unif({i1} { bup - Z gz fW wz)]}

is the empirical Rademacher complexity of the function class G. We now provide two bounds on
5%” (G), whose combination gives the final result of Lemma B.4. First, by Corollary 5.35 in [22], with
probability at least 1 — L - exp(—Q(m)), HWI(O) |2 < 3foralll e [L]. Therefore for all W € W, we
have |[W||2 < 4. Moreover, standard concentration inequalities on the norm of the first row of Wl(o)
alsg implies that [W; |2 > 0.5 for all W € W and [ € [L]. Therefore, an adaptation of the bound in
[6]° gives

W - WO

R ml/2 L 2/373/2
mn<f)<<5< sup { T TIwWilz - [Z : ] })
wew | Vi a0 Iw?

3/2
- AL m1/2 L
<O[ su AN W (W] = WO )2
(o {0 S rwi - wi

< (5(4%3/21% A /m>. (D.7)
n

‘We now derive the second bound on é\‘in(g ), which is inspired by the proof provided in [9]. Since
y € {+1,1}, |¢(2)] < 1 and ¢'(z) is 1-Lipschitz continuous, by standard empirical Rademacher
complexity bounds [7, 18, 20], we have

~ 1 &
Rn(G) < Ra(F) = Eg, cUnir({1}) l sup — Z &fw(ﬂvi)},
Wwew 1t =

where E)A‘in (F) is the empirical Rademacher complexity of the function class 7. We have

Wew

{}\{n[}—] < Es{ Vi'légv % Z:Z:lfl [fw(wz) — Fw(o)’w<il:i)]} -‘rEg{ sup ’rlliZlfiFw(O)’W(wi)},

-

11 IZ
(D.8)

where Fyyo) w(X) = fwo (x) + {(Vw fwo (x), W = W For I;, by Lemma 4.1 in [8], with
probability at least 1 — d/2 we have

I; < max‘fw x;) — Fw<0>7w($i)| < O(L3]§4/3m_1/6 log(m))7
For I, note that E¢ [ supweyy Dy & fwo (z;)] = 0. By Cauchy-Schwarz inequality we have

N ST\ Rm~v2 &
- gZEg sup  Tr| W] Y &Vw, fwo (@) | § < ——— - 3 E,

Wi | p<Rm—1/2 i=1 =1 i=1
Therefore
~ 2 ~
Rm~12 & w Rm~12 & 2 2
< —— SIalEe| | D &Vw fwo ()| | = — DVw fwo (@), < O
=1 i=1 P =1 \i=1

SBartlett et al. [6] only proved the Rademacher complexity bound for the composition of the ramp loss and
the neural network function. In our setting essentially the ramp loss is replaced with the —¢'(-) function, which
is bounded and 1-Lipschitz continuous. The proof in our setting is therefore exactly the same as the proof given
in [6], and we can apply Theorem 3.3 and Lemma A.5 in [6] to obtain the desired bound we present here.

18
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where we apply Jensen’s inequality to obtain the first inequality, and the last inequality follows by
Lemma B.3 in [8]. Combining the bounds of I; and I gives

- ~(LR L*R'®
Further combining this bound with (D.7) and recaling 6 completes the proof. O

D.3 Proof of Lemma B.5

Proof of Lemma B.5. Different from the proof of Lemma B.1, online SGD only queries one data to
update the model parameters in each iteration, i.e., Wit! = W? — nVLiH(W(”). By this update
rule, we have

WO = WH[F — [WED — W
L
= 2(W O — W* Vw Lyt (WD) = 31 [V, Lin (W) 3. (D.9)
=1
With exactly the same proof as (D.5) in the proof of Lemma B.1, we have
(WO — W* VL (W) > (1 — 2000 (1) (yi v (%)) — £(yi Fw o) w (%)), (D.10)
foralli = 0,...,n’ — 1. By the fact that —¢'(-) < ¢(-) and —¢'(-) < 1, we have

L L
D IVw List (W) 3 < 3 e yia fw, (xis1)) - [Vw, fweo (ki) | 7
=1 =1

< O(LM(7)?) - Liy1 (W), (D.11)
Then plugging (D.10) and (D.11) into (D.9) gives
WO = WHF — [WED — W
> (2 — deapp(1))nLis1 (W) = 200 (y: Fyyo) w (xi)) — O (0 LM (7)?) Liy1 (W)

3 )
> (5~ Aeapp (1)1 Lis1 (WD) = 20f (y: Py e (%)),
where the last inequality is by n = O(L~! M (7)~?) and merging the third term on the second line
into the first term. Taking telescope sum over i = 0,...,n’ — 1, we obtain
WO — W[5 — W) — W3,
3 n’ _ n’
> (5~ deamn(m)) 1 20 Lu(W) =20 3% (3o ()
3 n/ i n
= (5 - 4€app(7'))77 Ly(WD) — 25 Z Uy Fwo w(X3)).
i=1 i=1
> (34 (1) S LW — 2npe
= 9 app 7’ 7 77 NTREF-
i=1
This finishes the proof. O

E Experiments

In this section, we conduct some simple experiments to validate our theory. Since our paper mainly
focuses on binary classification, we use a subset of the original CIFAR10 dataset [16], which only has
two classes of images. We train a 5-layer fully-connected ReLU network on this binary classification
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dataset with different sample sizes (n € {100,200, 500, 1000, 2000, 5000, 10000}), and plot the
minimal neural network width that is required to achieve zero training error in Figure 1 (solid line).
We also plot O(n), O(log?(n)), O(log?(n)) and O(log(n)) in dashed line for reference. It is evident
that the required network width to achieve zero training error is polylogarithmic on the sample size n,

which is consistent with our theory.

50 : 50 ,
10(n ””’ 10(n f”"
gasi O N P ) -
B4l | _--""0(og*(n)) | G 40| | __-=""0(log*(n))
I I
= 354 I = 357 I
= I = I
Z 30 ! Z 304 !
a i a i
= 251 = 251
I
2201 1 2 201
S €
£ 157 € 154
= 0] = 10]
51 . . . . . 5 : . . , .
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Sample Size (n)

Sample Size (n)
(a) “cat" vs. “dog"
Figure 1: Minimum network width that is required to achieve zero training error with respect to
the training sample size (blue solid line). The hidden constants in all O(-) notations are adjusted to
ensure their plots (dashed lines) start from the same point.

(b) “cat" vs. “ship"
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