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Abstract

A recent line of research on deep learning focuses on the extremely over-1

parameterized setting, and shows that when the network width is larger than a high2

degree polynomial of the training sample size n and the inverse of the target error3

ε´1, deep neural networks learned by (stochastic) gradient descent enjoy nice opti-4

mization and generalization guarantees. Very recently, it is shown that under certain5

margin assumptions on the training data, a polylogarithmic width condition suffices6

for two-layer ReLU networks to converge and generalize [15]. However, whether7

deep neural networks can be learned with such a mild over-parameterization is8

still an open question. In this work, we answer this question affirmatively and9

establish sharper learning guarantees for deep ReLU networks trained by (stochas-10

tic) gradient descent. In specific, under certain assumptions made in previous11

work, our optimization and generalization guarantees hold with network width12

polylogarithmic in n and ε´1. Our results push the study of over-parameterized13

deep neural networks towards more practical settings.14

1 Introduction15

Deep neural networks have become one of the most important and prevalent machine learning models16

due to their remarkable power in many real-world applications. However, the success of deep learning17

has not been well-explained in theory. It remains mysterious why standard optimization algorithms18

tend to find a globally optimal solution, despite the highly non-convex landscape of the training loss19

function. Moreover, despite the extremely large amount of parameters, deep neural networks rarely20

over-fit, and can often generalize well to unseen data and achieve good test accuracy. Understanding21

these mysterious phenomena on the optimization and generalization of deep neural networks is one22

of the most fundamental problems in deep learning theory.23

Recent breakthroughs have shed light on the optimization [12, 2, 23, 24] and generalization Allen-24

Zhu et al. [1], Arora et al. [4], Cao and Gu [8] of deep neural networks (DNNs) under the over-25

parameterized setting, where the hidden layer width is extremely large, which is typically a high26

degree polynomial of the training sample size n and the inverse of the target error ε´1. As there27

still remains a huge gap between such network width requirement and the practice, many attempts28

have been made to improve the over-parameterization condition. For two-layer ReLU networks, a29

recent work [15] showed that when the training data are well separated, polylogarithmic width is30

sufficient to guarantee good optimization and generalization performances. However, their results31

cannot be extended to deep ReLU networks since their proof technique largely relies on the fact that32

the network model is 1-homogeneous, which cannot be satisfied by DNNs. Therefore, whether deep33

neural networks can be learned with such a mild over-parameterization is still an open problem.34
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In this paper, we resolve this open problem by showing that polylogarithmic network width is35

sufficient to learn DNNs. In particular, unlike the existing works that require the DNNs to behave36

very close to a linear model (up to some small approximation error), we show that a constant linear37

approximation error is sufficient to establish nice optimization and generalization guarantees for38

DNNs. Thanks to the relaxed requirement on the linear approximation error, a milder condition on39

the network width and tighter bounds on the convergence rate and generalization error can be proved.40

We summarize our contributions as follows:41

• We establish the global convergence guarantee of GD for training deep ReLU networks based on42

the so-called NTRF function class [8], a set of linear functions over random features. Specifically,43

we prove that GD can learn deep ReLU networks with width m “ polypRq to compete with the44

best function in NTRF function class, where R is the radius of the NTRF function class, which45

can be demonstrated to be rOp1q under commonly used data separability assumptions.46

• We also establish the generalization guarantees for both GD and SGD in the same setting. Specifi-47

cally, we prove a diminishing statistical error for a wide range of network width m P prΩp1q,8q,48

while most of the previous generalization bounds in the NTK regime only works in the setting49

where the network widthm is much greater than the sample size n. Moreover, we establish rOpε´2q50

rOpε´1q sample complexities for GD and SGD respectively, which are tighter than existing bounds51

for learning deep ReLU networks [8], and match the best results when reduced to the two-layer52

cases [5, 15].53

For the ease of comparison, we summarize our results along with the most related previous results in54

Table 1, in terms of data assumption, the over-parameterization condition and sample complexity.55

It can be seen that under data separation assumption (See Sections A.1, A.2), our result improves56

existing results for learning deep neural networks by only requiring a polylogpn, ε´1q network width.57

Table 1: Comparison of neural network learning results in terms of over-parameterization condition
and sample complexity. Here ε is the target error rate, n is the sample size, L is the network depth.

Assumptions Algorithm Over-para. Condition Sample Complexity Network

Zou et al. [23] Data nondegeneration GD rΩ
`

n12L16
pn2

` ε´1
q
˘

- Deep
This paper Data nondegeneration GD rΩ

`

L22n12
˘

- Deep

Cao and Gu [9] Data separation GD rΩpε´14
q ¨ eΩpLq rOpε´4

q ¨ eOpLq Deep
Ji and Telgarsky [15] Data separation GD polylogpn, ε´1

q rOpε´2
q Shallow

This paper Data separation GD polylogpn, ε´1
q ¨ polypLq rOpε´2

q ¨ eOpLq Deep
Cao and Gu [8] Data separation SGD rΩpε´14

q ¨ polypLq rOpε´2
q ¨ polypLq Deep

Ji and Telgarsky [15] Data separation SGD polylogpε´1
q rOpε´1

q Shallow
This paper Data separation SGD polylogpε´1

q ¨ polypLq rOpε´1
q ¨ polypLq Deep

2 Preliminaries on Learning Neural Networks58

In this section, we introduce the problem setting in this paper, including definitions of the neural59

network and loss functions, and the training algorithms, i.e., GD and SGD with random initialization.60

Neural network function. Given an input x P Rd, the output of deep fully-connected ReLU network61

is defined as follows,62

fWpxq “ m1{2WLσpWL´1 ¨ ¨ ¨σpW1xq ¨ ¨ ¨ q,

where W1 P Rmˆd, W2, ¨ ¨ ¨ ,WL´1 P Rmˆm and WL P R1ˆm. We denote the collection of all63

weight matrices as W “ tW1, . . . ,WLu.64

Loss function. Given training dataset txi, yiui“1,...,n with input xi P Rd and output yi P t´1,`1u,65

we define the training loss function as66

LSpWq “
1

n

n
ÿ

i“1

LipWq,

where LipWq “ `
`

yifWpxiq
˘

“ log
`

1` expp´yifWpxiqq
˘

is defined as the cross-entropy loss.67
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3 Main Theory68

In this section, we present the optimization and generalization guarantees of GD and SGD for learning69

deep ReLU networks. We first make the following assumption on the training data points.70

Assumption 3.1. All training data points satisfy }xi}2 “ 1, i “ 1, . . . , n.71

This assumption has been widely made in many previous works [2, 3, 12, 11, 23] in order to simplify72

the theoretical analysis.73

In the following, we give the definition of Neural Tangent Random Feature (NTRF) [8], which74

characterizes the functions learnable by over-parameterized ReLU networks.75

Definition 3.2 (Neural Tangent Random Feature, [8]). Let Wp0q be the initialization weights, and76

FWp0q,Wpxq “ fWp0qpxq ` x∇fWp0qpxq,W ´Wp0qy be a function with respect to the input x.77

Then the NTRF function class is defined as follows78

FpWp0q, Rq “
 

FWp0q,Wp¨q : W P BpWp0q, R ¨m´1{2q
(

.

The function class FWp0q,Wpxq consists of linear models over random features defined based on79

the network gradients at the initialization. Therefore it captures the key “almost linear” property of80

wide neural networks in the NTK regime [17, 8]. In this paper, we use the NTRF function class as a81

reference class to measure the difficulty of a learning problem. In what follows, we deliver our main82

theoretical results regarding the optimization and generalization guarantees of learning deep ReLU83

networks. We study both GD and SGD with random initialization.84

3.1 Gradient Descent85

The following theorem establishes the optimization guarantee of GD for training deep ReLU networks86

for binary classification.87

Theorem 3.3. For δ,R ą 0, let εNTRF “ infFPFpWp0q,Rq n
´1

řn
i“1 `ryiF pxiqs be the minimum88

training loss achievable by functions in FpWp0q, Rq. Then there exists89

m˚pδ,R, Lq “ rO
`

polypR,Lq ¨ log4{3
pn{δq

˘

,

such that if m ě m˚pδ,R, Lq, with probability at least 1 ´ δ over the initialization, GD with step90

size η “ ΘpL´1m´1q can train a neural network to achieve at most 3εNTRF training loss within91

T “ O
`

L2R2ε´1
NTRF

˘

iterations.92

Theorem 3.3 shows that the deep ReLU network trained by GD can compete with the best function in93

the NTRF function class FpWp0q, Rq if the network width has a polynomial dependency in R and L94

and a logarithmic dependency in n and 1{δ. Moreover, if the NTRF function class with R “ rOp1q95

can learn the training data well (i.e., εNTRF is less than a small target error ε), a polylogarithmic (in96

terms of n and ε´1) network width suffices to guarantee the global convergence of GD, which directly97

improves over-paramterization condition in the most related work [8]. In Appendix A, we show that98

under commonly used data separability assumptions, NTRF function class with R “ polylogpn, ε´1q99

can achieve εNTRF ď ε for arbitrarily small ε ą 0. Moreover, under a much weaker data assumption100

which covers the case of random labels, we also have εNTRF ď ε for R “ Ωpn3{2 logpn{εqq, which101

implies global convergence of GD when m “ rΩpn12q. For all cases, our over-parameterization102

requirement is better than existing results for DNNs.103

Compared with the results in [15] which give similar network width requirements for two-layer104

networks, our result works for deep networks. Moreover, while Ji and Telgarsky [15] essentially105

required all training data to be separable by a function in the NTRF function class with a constant106

margin, our result does not require such data separation assumptions, and allows the NTRF function107

class to misclassify a small proportion of the training data points1.108

We now characterize the generalization performance of neural networks trained by GD. We denote109

L0´1
D pWq “ Epx,yq„Dr1tfWpxq ¨ y ă 0us as the expected 0-1 loss (i.e., expected error) of fWpxq.110

1A detailed discussion is given in Section A.2.
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Theorem 3.4. Under the same assumptions as Theorem 3.3, with probability at least 1´δ, the iterate111

Wptq of gradient descent satisfies that112

L0´1
D pWptqq ď 2LSpW

ptqq ` rO

˜

4LL2R

c

m

n
^

˜

L3{2R
?
n
`
L11{3R4{3

m1{6

¸¸

`O

˜

c

logp1{δq

n

¸

for all t “ 0, . . . , T .113

Theorem 3.4 shows that the test error of the trained neural network can be bounded by its training error114

plus statistical error terms. Note that the statistical error terms is in the form of a minimum between115

two terms 4LL2R
a

m{n and L3{2R{
?
n` L11{3R4{3{m1{6. Depending on the network width m,116

one of these two terms will be the dominating term and diminishes for large n: (1) if m “ opnq,117

the statistical error will be 4LL2R
a

m{n, and diminishes as n increases; and (2) if m “ Ωpnq, the118

statistical error is L3{2R{
?
n` L11{3R4{3{m1{6, and again goes to zero as n increases. Moreover,119

in this paper we have a specific focus on the setting m “ rOp1q, under which Theorem 3.4 gives a120

statistical error of order rOpn´1{2q. This distinguishes our result from previous generalization bounds121

for deep networks [9, 8], which cannot be applied to the setting m “ rOp1q.122

3.2 Stochastic Gradient Descent123

Here we study the performance of SGD for training deep ReLU networks. The following theorem124

establishes a generalization error bound for the output of SGD.125

Theorem 3.5. For δ,R ą 0, let εNTRF “ infFPFpWp0q,Rq n
´1

řn
i“1 `ryiF pxiqs be the minimum126

training loss achievable by functions in FpWp0q, Rq. Then there exists127

m˚pδ,R, Lq “ rO
`

polypR,Lq ¨ log4{3
pn{δq

˘

,

such that if m ě m˚pδ,R, Lq, with probability at least 1 ´ δ, SGD with step size η “ Θ
`

m´1 ¨128

pLR2n´1ε´1
NTRF ^ L

´1q
˘

achieves129

ErL0´1
D pxWqs ď

8L2R2

n
`

8 logp2{δq

n
` 24εNTRF,

where the expectation is taken over the uniform draw of xW from tWp0q, . . . ,Wpn´1qu.130

For any ε ą 0, Theorem 3.5 gives a rOpε´1q sample complexity for deep ReLU networks trained with131

SGD to achieve OpεNTRF ` εq test error. Again, under commonly used data separability assumptions,132

NTRF function class with R “ polylogpn, ε´1q can achieve εNTRF ď ε for arbitrarily small ε ą 0133

(See Appendix A), which implies an m “ rΩp1q over-parameterization condition and an n “ rωpε´1q134

sample complexity. Our result extends the result for two-layer networks proved in [15] to multi-layer135

networks. Theorem 3.5 also provides sharper results compared with Allen-Zhu et al. [1], Cao and Gu136

[8] in two aspects: (1) the sample complexity is improved from n “ rOpε´2q to n “ rOpε´1q; and (2)137

the overparamterization condition is improved from m ě polypε´1q to m “ rΩp1q.138

4 Conclusion139

In this paper, we established the global convergence and generalization error bounds of GD and SGD140

for training deep ReLU networks for the binary classification problem. We show that a network width141

condition that is polylogarithmic in the sample size n and the inverse of target error ε´1 is sufficient142

to guarantee the learning of deep ReLU networks. Our results resolve an open question raised in Ji143

and Telgarsky [15].144
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A Discussion on the NTRF Class201

Our theoretical results in Section 3 rely on the radius (i.e.,R) of the NTRF function classFpWp0q, Rq202

and the minimum training loss achievable by functions in FpWp0q, Rq, i.e., εNTRF. Note that a larger203

R naturally implies a smaller εNTRF, but also leads to worse conditions on m. In this section, for204

any (arbitrarily small) target error rate ε ą 0, we discuss various data assumptions studied in the205

literature under which our results can lead to Opεq training/test errors, and specify the network width206

requirement.207

A.1 Data Separability by Neural Tangent Random Feature208

In this subsection, we consider the setting where a large fraction of the training data can be linearly209

separated by the neural tangent random features. The assumption is stated as follows.210

Assumption A.1. There exists a collection of matrices U˚ “ tU˚1 , ¨ ¨ ¨ ,U
˚
Lu satisfying211

řL
l“1 }U

˚
l }

2
F “ 1, such that for at least p1´ ρq fraction of training data we have212

yix∇fWp0qpxiq,U
˚y ě m1{2γ,

where γ is an absolute positive constant2 and ρ P r0, 1q.213

The following corollary provides an upper bound of εNTRF under Assumption A.1 for some R.214

Proposition A.2. Under Assumption A.1, for any ε, δ ą 0, if R ě C
“

log1{2
pn{δq ` logp1{εq

‰

{γ
for some absolute constant C, then with probability at least 1´ δ,

εNTRF :“ inf
FPFpWp0q,Rq

n´1
n
ÿ

i“1

`
`

yiF pxiq
˘

ď ε` ρ ¨OpRq.

Proposition A.2 covers the setting where the NTRF function class is allowed to misclassify training215

data, while most of existing work typically assumes that all training data can be perfectly separated216

with constant margin (i.e., ρ “ 0) [15, 21]. Our results show that for sufficiently small misclassifica-217

tion ratio ρ “ Opεq, we have εNTRF “ rOpεq by choosing the radius parameter R logarithimic in n,218

δ´1, and ε´1. Substituting this result into Theorems 3.3, 3.4 and 3.5, it can be shown that a neural219

network with width m “ polypL, logpn{δq, logp1{εqq
˘

suffices to guarantee good optimization and220

generalization performances for both GD and SGD.221

A.2 Data Separability by Shallow Neural Tangent Model222

In this subsection, we study the data separation assumption made in Ji and Telgarsky [15] and show223

that our results cover this particular setting. We first restate the assumption as follows.224

Assumption A.3. There exists up¨q : Rd Ñ Rd and γ ě 0 such that }upzq}2 ď 1 for all z P Rd, and225

yi

ż

Rd

σ1pxz,xiyq ¨ xupzq,xiydµNpzq ě γ

for all i P rns, where µN p¨q denotes the standard normal distribution.226

Assumption A.3 is related to the linear separability of the gradients of the first layer parameters at227

random initialization, where the randomness is replaced with an integral by taking the infinite width228

limit. Note that similar assumptions have also been studied in [9, 19, 13]. The assumption made in229

[9, 13] uses gradients with respect to the second layer weights instead of the first layer ones. In the230

following, we mainly focus on Assumption A.3, while our result can also be generalized to cover the231

setting in [9, 13].232

2The factor m1{2 is introduced here since }∇Wp0qfpxiq}F is typically of order Opm1{2
q.
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In order to make a fair comparison, we reduce our results for multilayer networks to the two-layer233

setting. In this case, the neural network function takes form234

fWpxq “ m1{2W2σpW1xq.

Then we provide the following proposition, which states that Assumption A.3 implies a certain choice235

of R “ rOp1q such the the minimum training loss achieved by the function in the NTRF function236

class FpWp0q, Rq satisfies εNTRF “ Opεq, where ε is the target error.237

Proposition A.4. Suppose the training data satisfies Assumption A.3. For any ε, δ ą 0, let R “238

C
“

logpn{δq ` logp1{εq
‰

{γ for some large enough absolute constant C. If the neural network width239

satisfies m “ Ω
`

logpn{δq{γ2
˘

, then with probability at least 1 ´ δ, there exist FWp0q,Wpxiq P240

FpWp0q, Rq such that `
`

yi ¨ FWp0q,Wpxiq
˘

ď ε,@i P rns.241

Proposition A.4 shows that under Assumption A.3, there exists FWp0q,Wp¨q P FpWp0q, Rq with242

R “ rOp1q such that the cross-entropy loss of FWp0q,Wp¨q at each training data point is bounded by ε.243

This implies that εNTRF ď ε. Moreover, by applying Theorem 3.3 with L “ 2, the condition on the244

neural network width becomes m “ Ω
`

polyplogpn{δq, logp1{εqq
˘

3, which matches the condition245

proved in Ji and Telgarsky [15].246

A.3 Class-dependent Data Nondegeneration247

In previous subsections, we have shown that under certain data separation conditions εNTRF can be248

sufficiently small while the corresponding NTRF function class has R of order rOp1q. Thus neural249

networks with polylogarithmic width enjoy nice optimization and generalization guarantees. In this250

part, we consider the following much milder data separability assumption made in Zou et al. [23].251

Assumption A.5. For all i ‰ i1 if yi ‰ yi1 , then }xi ´ xj}2 ě φ for some absolute constant φ.252

In contrast to the conventional data nondegeneration assumption (i.e., no duplicate data points)253

made in Allen-Zhu et al. [2], Du et al. [12, 11], Zou and Gu [24]4, Assumption A.5 only requires254

that the data points from different classes are nondegenerate, thus we call it class-dependent data255

nondegeneration.256

We have the following proposition which shows that Assumption A.5 also implies the existence of a257

good function that achieves ε training error, in the NTRF function class with a certain choice of R.258

Proposition A.6. Under Assumption A.5, if259

R “ Ω
`

n3{2φ´1{2 logpnδ´1ε´1q
˘

, m “ rΩ
`

L22n12φ´4
˘

,

we have εNTRF ď ε with probability at least 1´ δ.260

Proposition A.6 suggests that under Assumption A.5, in order to guarantee εNTRF ď ε, the size of261

NTRF function class needs to be Ωpn3{2q. Plugging this into Theorems 3.4 and 3.5 leads to vacuous262

bounds on the test error. This makes sense since Assumption A.5 basically covers the “random label”263

setting, which is impossible to be learned with small generalization error. Moreover, we would like264

to point out our theoretical analysis leads to a sharper over-parameterization condition than that265

proved in Zou et al. [23], i.e., m “ rΩ
`

n14L16φ´4 ` n12L16φ´4ε´1
˘

, if the network depth satisfies266

L ď rOpn1{3 _ ε´1{6q.267

3Similar to Ji and Telgarsky [15], the margin parameter is considered as a constant and thus does not appear
in the condition on m.

4Specifically, Allen-Zhu et al. [2], Zou and Gu [24] require that any two data points (rather than data points
from different classes) are separated by a positive distance. Zou and Gu [24] shows that this assumption is
equivalent to those made in Du et al. [12, 11], which require that the composite kernel matrix is strictly positive
definite.
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B Proof of Main Theorems268

In this section we provide the full proof of Theorems 3.3, 3.4 and 3.5.269

B.1 Proof of Theorem 3.3270

Here we introduce a key technical lemma used in the proof of Theorem 3.3.271

Our proof is based on the key observation that near initialization, the neural network function can be272

approximated by its first-order Taylor expansion. In the following, we first give the definition of the273

linear approximation error in a τ -neighborhood around initialization.274

εapppτq :“ sup
i“1,...,n

sup
W1,WPBpWp0q,τq

ˇ

ˇfW1pxiq ´ fWpxiq ´ x∇fWpxiq,W1 ´Wy
ˇ

ˇ.

If all the iterates of GD stay inside a neighborhood around initialization with small linear approxima-275

tion error, then we may expect that the training of neural networks should be similar to the training of276

the corresponding linear model, where standard optimization techniques can be applied. Motivated277

by this, we also give the following definition on the gradient upper bound of neural networks around278

initialization, which is related to the Lipschitz constant of the optimization objective function.279

Mpτq :“ sup
i“1,...,n

sup
l“1,...,L

sup
WPBpWp0q,τq

}∇Wl
fWpxiq}F .

By definition, we can choose W˚ P BpWp0q, Rm´1{2q such that n´1
řn
i“1 `

`

yiFWp0q,W˚pxiq
˘

“280

εNTRF. Then we have the following lemma.281

Lemma B.1. Set η “ OpL´1Mpτq´2q. Suppose that W˚ P BpWp0q, τq and Wptq P BpWp0q, τq282

for all 0 ď t ď t1 ´ 1. Then it holds that283

1

t1

t1´1
ÿ

t“0

LSpW
ptqq ď

}Wp0q ´W˚}2F ´ }W
pt1q ´W˚}2F ` 2t1ηεNTRF

t1η
`

3
2 ´ 4εapppτq

˘ .

Lemma B.1 plays a central role in our proof. In specific, if Wptq P BpWp0q, τq for all t ď t1, then284

Lemma B.1 implies that the average training loss is in the same order of εNTRF as long as the linear285

approximation error εapppτq is bounded by a positive constant. This is in contrast to the proof in286

Cao and Gu [8], where εapppτq appears as an additive term in the upper bound of the training loss,287

thus requiring εapppτq “ OpεNTRFq to achieve the same error bound as in Lemma B.1. Since we can288

show that εapp “ rOpm´1{6q (See Section B.1), this suggests that m “ rΩp1q is sufficient to make the289

average training loss in the same order of εNTRF.290

Compared with the recent results for two-layer networks by [15], Lemma B.1 is proved with different291

techniques. In specific, the proof by [15] relies on the 1-homogeneous property of the ReLU activation292

function, which limits their analysis to two-layer networks with fixed second layer weights. In293

comparison, our proof does not rely on homogeneity, and is purely based on the linear approximation294

property of neural networks and some specific properties of the loss function. Therefore, our proof295

technique can handle deep networks, and is potentially applicable to non-ReLU activation functions296

and other network architectures (e.g, Convolutional neural networks and Residual networks).297

We provide the following lemma which is useful in the subsequent proof.298

Lemma B.2 (Lemmas 4.1 and B.3 in Cao and Gu [8]). There exists an absolute constant κ such that,299

with probability at least 1´OpnL2q expr´Ωpmτ2{3Lqs, for any τ ď κL´6rlogpmqs´3{2, it holds300

that301

εapppτq ď rO
`

τ4{3L3m1{2
˘

, Mpτq ď rOp
?
mq.

Now we provide the detailed proof which consists of two steps: (i) showing that all T iterates stay302

close to initialization, and (ii) bounding the empirical loss achieved by gradient descent. Both of303

these steps are proved based on Lemma B.1.304
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Proof of Theorem 3.3. Recall that W˚ is chosen such that305

1

n

n
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

“ εNTRF

and W˚ P BpWp0q, Rm´1{2q. Note that to apply Lemma B.1, we need the region BpWp0q, τq to in-306

clude both W˚ and tWptqut“0,...,t1 . This motivates us to set τ “ rOpL1{2m´1{2Rq, which is slightly307

larger than m´1{2R. With this choice of τ , by Lemma B.2 we have εapppτq “ rOpτ4{3m1{2L3q “308

rOpR4{3L11{3m´1{6q. Therefore, we can set309

m “ rΩpR8L22q (B.1)

to ensure that εapppτq ď 1{8, where rΩp¨q hides polylogarithmic dependencies on network depth L,310

NTRF function class size R, and failure probability parameter δ. Then by Lemma B.1, we have with311

probability at least 1´ δ, we have312

}Wp0q ´W˚}2F ´ }W
pt1q ´W˚}2F ě η

t1´1
ÿ

t“0

LSpW
ptqq ´ 2t1ηεNTRF (B.2)

as long as Wp0q, . . . ,Wpt1´1q P BpWp0q, τq. In the following proof we choose η “ ΘpL´1m´1q313

and T “ rLR2m´1η´1ε´1
NTRFs.314

We prove the theorem by two steps: 1) we show that all iterates tWp0q, ¨ ¨ ¨ ,WpT qu will stay inside315

the region BpWp0q, τq; and 2) we show that GD can find a neural network with at most 3εNTRF316

training loss within T iterations.317

All iterates stay inside BpWp0q, τq. We prove this part by induction. Specifically, given t1 ď T , we318

assume the hypothesis Wptq P BpWp0q, τq holds for all t ă t1 and prove that Wpt1q P BpWp0q, τq.319

First, it is clear that Wp0q P BpWp0q, τq. Then by (B.2) and the fact that LSpWq ě 0, we have320

}Wpt1q ´W˚}2F ď }W
p0q ´W˚}2F ` 2ηt1εNTRF

Note that T “ rLR2m´1η´1ε´1
NTRFs and W˚ P BpWp0q, R ¨m´1{2q, we have321

L
ÿ

l“1

}W
pt1q
l ´W˚

l }
2
F “ }W

pt1q ´W˚}2F ď CLR2m´1,

where C ě 4 is an absolute constant. Therefore, by triangle inequality, we further have the following322

for all l P rLs,323

}W
pt1q
l ´W

p0q
l }F ď }W

pt1q
l ´W˚

l }F ` }W
p0q
l ´W˚

l }F

ď
?
CLRm´1{2 `Rm´1{2

ď 2
?
CLRm´1{2. (B.3)

Therefore, it is clear that }Wpt1q
l ´W

p0q
l }F ď 2

?
CLRm´1{2 ď τ based on our choice of τ324

previously. This completes the proof of the first part.325

Convergence of gradient descent. (B.2) implies326

}Wp0q ´W˚}2F ´ }W
pT q ´W˚}2F ě η

ˆ T´1
ÿ

t“0

LSpW
ptqq ´ 2TεNTRF

˙

.

Dividing by ηT on the both sides, we get327

1

T

T´1
ÿ

t“0

LSpW
ptqq ď

}Wp0q ´W˚}2F

ηT
` 2εNTRF ď

LR2m´1

ηT
` 2εNTRF ď 3εNTRF,

where the second inequality is by the fact that W˚ P BpWp0q, R ¨ m´1{2q and the last in-328

equality is by our choices of T and η which ensure that Tη ě LR2m´1ε´1
NTRF. Notice that329

T “ rLR2m´1η´1ε´1
NTRFs “ OpL2R2ε´1

NTRFq. This completes the proof of the second part, and330

we are able to complete the proof.331
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B.2 Proof of Theorem 3.4332

Following Cao and Gu [9], we first introduce the definition of surrogate loss of the network, which is333

defined by the derivative of the loss function.334

Definition B.3. We define the empirical surrogate error ESpWq and population surrogate error335

EDpWq as follows:336

ESpWq :“ ´
1

n

n
ÿ

i“1

`1
“

yi ¨ fWpxiq
‰

, EDpWq :“ Epx,yq„D
 

´ `1
“

y ¨ fWpxq
‰(

.

The following lemma gives uniform-convergence type of results for ESpWq utilizing the fact that337

´`1p¨q is bounded and Lipschitz continuous.338

Lemma B.4. For any rR, δ ą 0, suppose that m “ rΩpL12
rR2q ¨ rlogp1{δqs3{2. Then with probability339

at least 1´ δ, it holds that340

|EDpWq ´ ESpWq| ď rO

˜

min

#

4LL3{2
rR

c

m

n
,
L rR
?
n
`
L3

rR4{3

m1{6

+¸

`O

˜

c

logp1{δq

n

¸

for all W P BpWp0q, rR ¨m´1{2q341

We are now ready to prove Theorem 3.4, which combines the trajectory distance analysis in the proof342

of Theorem 3.3 with Lemma B.4.343

Proof of Theorem 3.4. With exactly the same proof as Theorem 3.3, by (B.3) and induction we have344

Wp0q,Wp1q, . . . ,WpT q P BpWp0q, rRm´1{2q with rR “ Op
?
LRq. Therefore by Lemma B.4, we345

have346

|EDpWptqq ´ ESpWptqq| ď rO

˜

min

#

4LL2R

c

m

n
,
L3{2R
?
n
`
L11{3R4{3

m1{6

+¸

`O

˜

c

logp1{δq

n

¸

for all t “ 0, 1, . . . , T . Note that we have 1tz ă 0u ď ´2`1pzq. Therefore,347

EL0´1
D pWptqq ď 2EDpWptqq

ď 2LSpW
ptqq ` rO

˜

min

#

4LL2R

c

m

n
,
L3{2R
?
n
`
L11{3R4{3

m1{6

+¸

`O

˜

c

logp1{δq

n

¸

t “ 0, 1, . . . , T . This finishes the proof.348

B.3 Proof of Theorem 3.5349

In this section we provide the full proof of Theorem 3.5. We first give the following result, which is350

the counterpart of Lemma B.1 for SGD. Again we pick W˚ P BpWp0q, Rm´1{2q such that the loss351

of the corresponding NTRF model FWp0q,W˚pxq achieves εNTRF.352

Lemma B.5. Set η “ OpL´1Mpτq´2q. Suppose that W˚ P BpWp0q, τq and Wpn1q P BpWp0q, τq353

for all 0 ď n1 ď n´ 1. Then it holds that354

}Wp0q ´W˚}2F ´ }W
pn1q ´W˚}2F ě

´3

2
´ 4εapppτq

¯

η
n1
ÿ

i“1

LipW
pi´1qq ´ 2nηεNTRF.

We introduce a surrogate loss EipWq “ ´`1ryi ¨ fWpxiqs and its population version EDpWq “355

Epx,yq„Dr´`
1ry ¨fWpxqss, which have been used in [14, 8, 15]. Our proof is based on the application356

of Lemma B.5 and an online-to-batch conversion argument [10, 8, 15]. We introduce a surrogate357

loss EipWq “ ´`1ryi ¨ fWpxiqs and its population version EDpWq “ Epx,yq„Dr´`
1py ¨ fWpxqqs,358

which have been used in [14, 8, 19, 15].359
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Proof of Theorem 3.5. Recall that W˚ is chosen such that360

1

n

n
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

“ εNTRF

and W˚ P BpWp0q, Rm´1{2q. To apply Lemma B.5, we need the region BpWp0q, τq to include361

both W˚ and tWptqut“0,...,t1 . This motivates us to set τ “ rOpL1{2m´1{2Rq, which is slightly362

larger than m´1{2R. With this choice of τ , by Lemma B.2 we have εapppτq “ rOpτ4{3m1{2L3q “363

rOpR4{3L11{3m´1{6q. Therefore, we can set364

m “ rΩpR8L22q

to ensure that εapppτq ď 1{8, where rΩp¨q hides polylogarithmic dependencies on network depth L,365

NTRF function class size R, and failure probability parameter δ.366

Then by Lemma B.5, we have with probability at least 1´ δ,367

}Wp0q ´W˚}2F ´ }W
pn1q ´W˚}2F ě η

n1
ÿ

i“1

LipW
pi´1qq ´ 2nηεNTRF (B.4)

as long as Wp0q, . . . ,Wpn1´1q P BpWp0q, τq.368

We then prove Theorem 3.5 in two steps: 1) all iterates stay inside BpWp0q, τq; and 2) convergence369

of online SGD.370

All iterates stay inside BpWp0q, τq. Similar to the proof of Theorem 3.3, we prove this part by371

induction. Assuming Wpiq satisfies Wpiq P BpWp0q, τq for all i ď n1 ´ 1, by (B.4), we have372

}Wpn1q ´W˚}2F ď }W
p0q ´W˚}2F ` 2nηεNTRF

ď LR2 ¨m´1 ` 2nηεNTRF,

where the last inequality is by W˚ P BpWp0q, Rm´1{2q. Then by triangle inequality, we further get373

}W
pn1q
l ´W

p0q
l }F ď }W

pn1q
l ´W˚

l }F ` }W
˚
l ´W

p0q
l }F

ď }Wpn1q ´W˚}F ` }W
˚
l ´W

p0q
l }F

ď Op
?
LRm´1{2 `

?
nηεNTRFq.

Then by our choices of η “ Θ
`

m´1 ¨ pLR2n´1ε´1
NTRF ^ L´1q

˘

, we have }Wpn1q ´Wp0q}F ď374

2
?
LRm´1{2 ď τ . This completes the proof of the first part.375

Convergence of online SGD. By (B.4), we have376

}Wp0q ´W˚}2F ´ }W
pnq ´W˚}2F ě η

ˆ n
ÿ

i“1

LipW
pi´1qq ´ 2nεNTRF

˙

.

Dividing by ηn on the both sides and rearranging terms, we get377

1

n

n
ÿ

i“1

LipW
pi´1qq ď

}Wp0q ´W˚}2F ´ }W
pnq ´W˚}2F

ηn
` 2εNTRF ď

L2R2

n
` 3εNTRF,

where the second inequality follows from facts that W˚ P BpWp0q, R ¨m´1{2q and η “ Θ
`

m´1 ¨378

pLR2n´1ε´1
NTRF ^ L´1q

˘

. By Lemma 4.3 in [15] and the fact that EipWpi´1qq ď LipW
pi´1qq, we379

have380

1

n

n
ÿ

i“1

L0´1
D pWpi´1qq ď

2

n

n
ÿ

i“1

EDpWpi´1qq

ď
8

n

n
ÿ

i“1

EipWpi´1qq `
8 logp1{δq

n

ď
8L2R2

n
`

8 logp1{δq

n
` 24εNTRF.

This completes the proof of the second part.381
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C Proof of Results in Section A382

C.1 Proof of Proposition A.2383

We first provide the following lemma which gives an upper bound of the neural network output at the384

initialization.385

Lemma C.1 (Lemma 4.4 in Cao and Gu [8]). Under Assumptions 3.1, if m ě C̄L logpnL{δq with386

some absolute constant C̄, with probability at least 1´ δ, we have387

|fWp0qpxiq| ď C
a

logpn{δq

for some absolute constant C.388

Proof of Proposition A.2. Under assumption A.1, we can find a collection of matrices U˚ “389

tU˚1 , ¨ ¨ ¨ ,U
˚
Lu with

řL
l“1 }U

˚
l }

2
F “ 1 such that yix∇fWp0qpxiq,U

˚y ě m1{2γ for at least 1 ´ σ390

fraction of training data. By Lemma C.1, for all i P rns we have |fWp0qpxiq| ď C
a

logpn{δq for391

some absolute constant C. Then for any positive constant λ, we have for at least 1´ σ portion of392

data,393

yi
`

fWp0qpxiq ` x∇fWp0q , λU˚y
˘

ě m1{2λγ ´ C
a

logpn{δq.

For this fraction of data, we can set394

λ “
C 1

“

log1{2
pn{δq ` logp1{εq

‰

m1{2γ
,

where C 1 is an absolute constant, and get395

m1{2λγ ´ C
a

logpn{δq ě logp1{εq.

Now we let W˚ “ Wp0q ` λU˚. By the choice of R in Proposition A.2, we have W˚ P396

BpWp0q, R ¨ m´1{2q. The above inequality implies that for this at least 1 ´ σ fraction of data,397

we have `
`

yiFWp0q,W˚pxiq
˘

ď ε. For the rest data, we have398

yi
`

fWp0qpxiq ` x∇fWp0q , λU˚y
˘

ě ´C
a

logpn{δq ´ λ}∇fWp0q}
2
2 ě ´C1R

for some absolute positive constant C1, where the last inequality follows from fact that }∇fWp0q}2 “399

rOpm1{2q (see Lemma B.2 for detail). Then note that we use cross-entropy loss, it follows that for this400

fraction of training data, we have `
`

yiFWp0q,W˚pxiq
˘

ď C2R for some constant C2. Combining the401

results of these two fractions of training data, we can conclude402

εNTRF ď n´1
n
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

ď p1´ σqε` ρ ¨OpRq

This completes the proof.403

404

C.2 Proof of Proposition A.4405

Proof of Proposition A.4. We are going to prove that Assumption A.3 implies the existence of a good406

function in the NTRF function class.407

By Definition 3.2 and the definition of cross-entropy loss, our goal is to prove that there exists408

a collection of matrices W “ tW1,W2u satisfying maxt}W1 ´W
p0q
1 }F , }W2 ´W

p0q
2 }2u ď409

R ¨m´1{2 such that410

yi ¨
“

fWp0qpxiq ` x∇W1
fWp0q ,W1 ´W

p0q
1 y ` x∇W2

fWp0q ,W2 ´W
p0q
2 y

‰

ě logp2{εq.

We first consider∇W1fWp0qpxiq, which has the form411

p∇W1
fWp0qpxiq

˘

j
“ m1{2 ¨ w

p0q
2,j ¨ σ

1pxw
p0q
1,j ,xiyq ¨ xi.
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Note that wp0q2,j and w
p0q
1,j are independently generated from N p0, 1{mq and N p0, 2I{mq respectively,412

thus we have Pp|wp0q2,j | ě 0.47m´1{2q ě 1{2. By Hoeffeding’s inequality, we know that with413

probability at least 1 ´ expp´m{8q, there are at least m{4 nodes, whose union is denoted by S,414

satisfying |wp0q2,j | ě 0.47m´1{2. Then we only focus on the nodes in the set S. Note that Wp0q
1 and415

W
p0q
2 are independently generated. Then by Assumption A.3 and Hoeffeding’s inequality, there exists416

a function up¨q : Rd Ñ Rd such that with probability at least 1´ δ1,417

1

|S|
ÿ

jPS
yi ¨ xupw

p0q
1,j q,xiy ¨ σ

1pxw
p0q
1,j ,xiyq ě γ ´

d

2 logp1{δ1q

|S|
.

Define vj “ upw
p0q
1,j q{w2,j if |w2,j | ě 0.47m´1{2 and vj “ 0 otherwise. Then we have418

m
ÿ

j“1

yi ¨ w
p0q
2,j ¨ xvj ,xiy ¨ σ

1pxw
p0q
1,j ,xiyq “

ÿ

jPS
yi ¨ xupw

p0q
1,j q,xiy ¨ σ

1pxw
p0q
1,j ,xiyq

ě |S|γ ´
a

2|S| logp1{δ1q.

Set δ “ 2nδ1 and apply union bound, we have with probability at least 1´ δ{2,419

m
ÿ

j“1

yi ¨ w
p0q
2,j ¨ xvj ,xiy ¨ σ

1pxw
p0q
1,j ,xiyq ě |S|γ ´

a

2|S| logp2n{δq.

Therefore, note that with probability at least 1 ´ expp´m{8q, we have |S| ě m{4. Moreover, in420

Assumption A.3, by yi P t˘1u and |σ1p¨q|, }up¨q}2, }xi}2 ď 1 for i “ 1, . . . , n, we see that γ ď 1.421

Then if m ě 32 logpn{δq{γ2, with probability at least 1´ δ{2´ exp
`

´ 4 logpn{δq{γ2
˘

ě 1´ δ,422

m
ÿ

j“1

yi ¨ w
p0q
2,j ¨ xvj ,xiy ¨ σ

1pxw
p0q
1,j ,xiyq ě |S|γ{2.

Let U “ pv1,v2, ¨ ¨ ¨ ,vmq
J{

a

m|S|, we have423

yix∇W1fWp0qpxiq,Uy “
1

a

|S|

m
ÿ

j“1

yi ¨ w
p0q
2,j ¨ xvj ,xiy ¨ σ

1pxw
p0q
1,j ,xiyq ě

a

|S|γ
2

ě
m1{2γ

4
,

where the last inequality is by the fact that |S| ě m{4. Besides, note that by concentration and424

Gaussian tail bound, we have |fWp0qpxiq| ď C logpn{δq for some absolute constant C. Therefore,425

let W1 “W
p0q
1 ` 4

`

logp2{εq ` C logpn{δq
˘

m´1{2U{γ and W2 “W
p0q
2 , we have426

yi ¨
“

fWp0qpxiq ` x∇W1
fWp0q ,W1 ´W

p0q
1 y ` x∇W2

fWp0q ,W2 ´W
p0q
2 y

‰

ě logp2{εq. (C.1)

Note that }up¨q}2 ď 1, we have }U}F ď 1{0.47 ď 2.2. Therefore, we further have }W1 ´427

W
p0q
1 }F ď 8.8γ´1

`

logp2{εq ` C logpn{δq
˘

¨ m´1{2. This implies that W P BpWp0q, Rq with428

R “ O
`

log
`

n{pδεq
˘

{γ
˘

. Applying the inequality `plogp2{εqq ď ε on (C.1) gives429

`pyi ¨ FWp0q,Wpxiqq ď ε

for all i “ 1, . . . , n. This completes the proof.430

C.3 Proof of Proposition A.6431

Based on our theoretical analysis, the major goal is to show that there exist certain choices of R432

and m such that the best NTRF model in the function class FpWp0q, Rq can achieve ε training433

error. In this proof, we will prove a stronger results by showing that given the quantities of R434

and m specificed in Proposition A.6, there exists a NTRF model with parameter W˚ that satisfies435

n´1
řn
i“1 `

`

yiFWp0q,W˚pxiq
˘

ď ε.436

In order to do so, we consider training the NTRF model via a different surrogate loss function.437

Specifically, we consider squared hinge loss r`pxq “
`

maxtλ´ x, 0u
˘2

, where λ denotes the target438
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margin. In the later proof, we choose λ “ logp1{εq ` 1 such that the condition r`pxq ď 1 can439

guarantee that x ě logpεq. Moreover, we consider using gradient flow, i.e., gradient descent with440

infinitesimal step size, to train the NTRF model. Therefore, in the remaining part of the proof, we441

consider optimizing the NTRF parameter W with the loss function442

rLSpWq “
1

n

n
ÿ

i“1

r`
`

yiFWp0q,Wpxiq
˘

.

Moreover, for simplicity, we only consider optimizing parameter in the last hidden layer (i.e., WL´1).443

Then the gradient flow can be formulated as444

dWL´1ptq

dt
“ ´∇WL´1

rLSpWptqq,
dWlptq

dt
“ 0 for any l ‰ L´ 1.

Note that the NTRF model is a linear model, thus by Definition 3.2, we have445

∇WL´1
rLSpWptqq “ yir`

1
`

yiFWp0q,Wptqpxiq
˘

¨∇WL´1
FWp0q,Wptqpxiq

“ yir`
1
`

yiFWp0q,Wptqpxiq
˘

¨∇
W
p0q
L´1

fWp0qpxiq. (C.2)

Then it is clear that∇WL´1
rLSpWptqq has fixed direction throughout the optimization.446

In order to prove the convergence of gradient flow and characterize the quantity of R, We first provide447

the following lemma which gives an upper bound of the NTRF model output at the initialization.448

Then we provide the following lemma which characterizes a lower bound of the Frobenius norm of449

the partial gradient∇WL´1
rLSpWq.450

Lemma C.2 (Lemma B.5 in Zou et al. [23]). Under Assumptions 3.1 and A.5, if m “ rΩpn2φ´1q,451

then for all t ě 0, with probability at least 1´ exp
`

´Opmφ{nq
˘

, there exist a positive constant C452

such that453

}∇WL´1
rLSpWptqq}2F ě

Cmφ

n5

„ n
ÿ

i“1

r`1
`

yiFWp0q,Wptqpxiq
˘

2

.

We slightly modified the original version of this lemma since we use different models (we consider454

NTRF model while Zou et al. [23] considers neural network model). However, by (C.2), it is clear455

that the gradient ∇rLSpWq can be regarded as a type of the gradient for neural network model at the456

initialization (i.e.,∇WL´1
LSpW

p0qq) is valid. Now we are ready to present the proof.457

Proof of Proposition A.6. Recall that we only consider training the last hidden weights, i.e., WL´1,458

via gradient flow with squared hinge loss, and our goal is to prove that gradient flow is able to459

find a NTRF model within the function class FpWp0q, Rq around the initialization, i.e., achieving460

n´1
řn
i“1 `

`

yiFWp0q,W˚pxiq
˘

ď ε. Let Wptq be the weights at time t, gradient flow implies that461

drLSpWptqq

dt
“ ´}∇WL´1

rLSpWptqq}2F ď ´
Cmφ

n5

ˆ n
ÿ

i“1

r`1
`

yiFWp0q,Wptqpxiq
˘

˙2

“
4CmφrLSpWptqq

n3
,

where the first equality is due to the fact that we only train the last hidden layer, the first inequality462

is by Lemma C.2 and the second equality follows from the fact that r`1p¨q “ ´2

b

r`p¨q. Solving the463

above inequality gives464

rLSpWptqq ď rLSpWp0qq ¨ exp

ˆ

´
4Cmφt

n3

˙

. (C.3)

Then, set T “ O
`

n3m´1φ´1 ¨ logprLSpWp0qq{ε1q
˘

and ε1 “ 1{n, we have rLSpWptqq ď ε1. Then465

it follows that r`
`

yiFWp0q,Wptqpxiq
˘

ď 1, which implies that yiFWp0q,Wptqpxiq ě logpεq and thus466

n´1
řn
i“1 `

`

yiFWp0q,W˚pxiq
˘

ď ε. Therefore, WpT q is exactly the NTRF model we are looking467

for.468
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The next step is to characterize the distance between WpT q and Wp0q in order to characterize the469

quantity of R. Note that }∇WL´1
rLSpWptqq}2F ě 4CmφrLSpWptqq{n3, we have470

d

b

rLSpWptqq

dt
“ ´

}∇WL´1
rLSpWptqq}2F

2

b

rLSpWptqq
ď ´}∇WL´1

rLSpWptqq}F ¨
C1{2m1{2φ1{2

n3{2
.

Taking integral on both sides and rearranging terms, we have471

ż T

t“0

}∇WL´1
rLSpWptqq}Fdt ď

n3{2

C1{2m1{2φ1{2
¨

ˆ

b

rLSpWp0qq ´

b

rLSpWptqq

˙

.

Note that the L.H.S. of the above inequality is an upper bound of }Wptq ´Wp0q}F , we have for any472

t ě 0,473

}Wptq ´Wp0q}F ď
n3{2

C1{2m1{2φ1{2
¨

b

rLSpWp0qq “ O
ˆ

n3{2 log
`

n{pδεq
˘

m1{2φ1{2

˙

,

where the second inequality is by Lemma C.1 and our choice of λ “ logp1{εq ` 1. This implies that474

there exists a point W˚ within the class FpWp0q, Rq with475

R “ O
ˆ

n3{2 log
`

n{pδεq
˘

φ1{2

˙

such that476

εNTRF :“ n´1
n
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

ď ε.

Then by Theorem 3.3, and, more specifically, (B.1), we can compute the minimal required neural477

network width as follows,478

m “ rΩpR8L22q “ rΩ

˜

L22n12

φ4

¸

.

This completes the proof.479

D Proof of Technical Lemmas480

Here we provide the proof of Lemmas B.1, B.4 and B.5.481

D.1 Proof of Lemma B.1482

The detailed proof of Lemma B.1 is given as follows.483

Proof of Lemma B.1. Based on the update rule of gradient descent, i.e., Wpt`1q “ Wptq ´484

η∇WLSpW
ptqq, we have the following calculation.485

}Wptq ´W˚}2F ´ }W
pt`1q ´W˚}2F

“
2η

n

n
ÿ

i“1

xWptq ´W˚,∇WLipW
ptqqy

loooooooooooooooooooooomoooooooooooooooooooooon

I1

´ η2
L
ÿ

l“1

}∇Wl
LSpW

ptqq}2F

loooooooooooooomoooooooooooooon

I2

, (D.1)

where the equation follows from the fact that LSpWptqq “ n´1
řn
i“1 LipW

p0qq. In what follows,486

we first bound the term I1 on the R.H.S. of (D.1) by approximating the neural network functions with487

linear models. By assumption, for t “ 0, . . . , t1 ´ 1, Wptq,W˚ P BpWp0q, τq. Therefore by the488

definition of εapppτq,489

yi ¨ x∇fWptqpxiq,W
ptq ´W˚y ď yi ¨

`

fWptqpxiq ´ fW˚pxiq
˘

` εapppτq (D.2)
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Moreover, we also have490

0 ď yi ¨
`

fW˚pxiq ´ fWp0qpxiq ´ x∇fWp0qpxiq,W
˚ ´Wp0qy

˘

` εapppτq

“ yi ¨
`

fW˚pxiq ´ FWp0q,W˚pxiq
˘

` εapppτq, (D.3)

where the equation follows by the definition of FWp0q,W˚pxq. Adding (D.3) to (D.2) and canceling491

the terms yi ¨ fW˚pxiq, we obtain that492

yi ¨ x∇fWptqpxiq,W
ptq ´W˚y ď yi ¨

`

fWptqpxiq ´ FWp0q,W˚pxiq
˘

` 2εapppτq. (D.4)

We can now give a lower bound on first term on the R.H.S. of (D.1). For i “ 1, . . . , n, applying the493

chain rule on the loss function gradients and utilizing (D.4), we have494

xWptq ´W˚,∇WLipW
ptqqy “ `1

`

yifWptqpxiq
˘

¨ yi ¨ xW
ptq ´W˚,∇WfWptqpxiqy

ě `1
`

yifWptqpxiq
˘

¨
`

yifWptqpxiq ´ yifW˚pxiq ` 2εapppτq
˘

ě p1´ 2εapppτqq`
`

yifWptqpxiq
˘

´ `
`

yiFWp0q,W˚pxiq
˘

, (D.5)

where the first inequality is by the fact that `1
`

yifWptqpxiq
˘

ă 0, the second inequality is by convexity495

of `p¨q and the fact that ´`1
`

yifWptqpxiq
˘

ď `
`

yifWptqpxiq
˘

.496

We now proceed to bound the term I2 on the R.H.S. of (D.1). Note that we have `1p¨q ă 0, and497

therefore the Frobenius norm of the gradient∇Wl
LSpW

ptqq can be upper bounded as follows,498

}∇Wl
LSpW

ptqq}F “

›

›

›

›

1

n

n
ÿ

i“1

`1
`

yifWptqpxiq
˘

∇Wl
fWptqpxiq

›

›

›

›

F

ď
1

n

n
ÿ

i“1

´`1
`

yifWptqpxiq
˘

¨ }∇Wl
fWptqpxiq}F ,

where the inequality follows by triangle inequality. We now utilize the fact that cross-entropy loss499

satisfies the inequalities ´`1p¨q ď `p¨q and ´`1p¨q ď 1. Therefore by definition of Mpτq, we have500

L
ÿ

l“1

}∇Wl
LSpW

ptqq}2F ď O
`

LMpτq2
˘

¨

ˆ

1

n

n
ÿ

i“1

´`1
`

yifWptqpxiq
˘

˙2

ď O
`

LMpτq2
˘

¨ LSpW
ptqq. (D.6)

Then we can plug (D.5) and (D.6) into (D.1) and obtain501

}Wptq ´W˚}2F ´ }W
pt`1q ´W˚}2F

ě
2η

n

n
ÿ

i“1

”

p1´ 2εapppτqq`
`

yifWptqpxiq
˘

´ `
`

yiFWp0q,W˚pxiq
˘

ı

´O
`

η2LMpτq2
˘

¨ LSpW
ptqq

ě

„

3

2
´ 4εapppτq



ηLSpW
ptqq ´

2η

n

n
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

,

where the last inequality is by η “ OpL´1Mpτq´2q and merging the third term on the second line502

into the first term. Taking telescope sum from t “ 0 to t “ t1 ´ 1 and plugging in the definition503
1
n

řn
i“1 `

`

yiFWp0q,W˚pxiq
˘

“ εNTRF completes the proof.504

D.2 Proof of Lemma B.4505

Proof of Lemma B.4. We first denote W “ BpWp0q, rR ¨ m´1{2q, and define the corresponding506

neural network function class and surrogate loss function class as F “ tfWpxq : W P Wu and507

G “ t´`ry ¨ fWpxqs : W PWu respectively.508

By standard uniform convergence results in terms of empirical Rademacher complexity [7, 18, 20],509

with probability at least 1´ δ we have510

sup
WPW

|ESpWq ´ EDpWq| “ sup
WPW

ˇ

ˇ

ˇ

ˇ

ˇ

´
1

n

n
ÿ

i“1

`1
“

yi ¨ fWpxiq
‰

` Epx,yq„D`
1
“

y ¨ fWpxq
‰

ˇ

ˇ

ˇ

ˇ

ˇ
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ď 2pRnpGq ` C1

c

logp1{δq

n
,

where C1 is an absolute constant, and511

pRnpGq “ Eξi„Unifpt˘1uq

#

sup
WPW

1

n

n
ÿ

i“1

ξi`
1
“

yi ¨ fWpxiq
‰

+

is the empirical Rademacher complexity of the function class G. We now provide two bounds on512

pRnpGq, whose combination gives the final result of Lemma B.4. First, by Corollary 5.35 in [22], with513

probability at least 1´L ¨ expp´Ωpmqq, }Wp0q
l }2 ď 3 for all l P rLs. Therefore for all W PW , we514

have }Wl}2 ď 4. Moreover, standard concentration inequalities on the norm of the first row of Wp0q
l515

also implies that }Wl}2 ě 0.5 for all W PW and l P rLs. Therefore, an adaptation of the bound in516

[6]5 gives517

pRnpFq ď rO

˜

sup
WPW

#

m1{2

?
n
¨

L
ź

l“1

}Wl}2 ¨

«

L
ÿ

l“1

}WJ
l ´W

p0qJ
l }

2{3
2,1

}Wl}
2{3
2

ff3{2+¸

ď rO

˜

sup
WPW

#

4Lm1{2

?
n

¨

«

L
ÿ

l“1

p
?
m ¨ }WJ

l ´W
p0qJ
l }F q

2{3

ff3{2+¸

ď rO

˜

4LL3{2
rR ¨

c

m

n

¸

. (D.7)

We now derive the second bound on pRnpGq, which is inspired by the proof provided in [9]. Since518

y P t`1, 1u, |`1pzq| ď 1 and `1pzq is 1-Lipschitz continuous, by standard empirical Rademacher519

complexity bounds [7, 18, 20], we have520

pRnpGq ď pRnpFq “ Eξi„Unifpt˘1uq

«

sup
WPW

1

n

n
ÿ

i“1

ξifWpxiq

ff

,

where pRnpFq is the empirical Rademacher complexity of the function class F . We have521

pRnrFs ď Eξ

#

sup
WPW

1

n

n
ÿ

i“1

ξi
“

fWpxiq ´ FWp0q,Wpxiq
‰

+

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

I1

`Eξ

#

sup
WPW

1

n

n
ÿ

i“1

ξiFWp0q,Wpxiq

+

loooooooooooooooooooomoooooooooooooooooooon

I2

,

(D.8)

where FWp0q,Wpxq “ fWp0qpxq `
@

∇WfWp0qpxq,W´Wp0q
D

. For I1, by Lemma 4.1 in [8], with522

probability at least 1´ δ{2 we have523

I1 ď max
iPrns

ˇ

ˇfWpxiq ´ FWp0q,Wpxiq
ˇ

ˇ ď O
`

L3
rR4{3m´1{6

a

logpmq
˘

,

For I2, note that Eξ
“

supWPW
řn
i“1 ξifWp0qpxiq

‰

“ 0. By Cauchy-Schwarz inequality we have524

I2 “
1

n

L
ÿ

l“1

Eξ

#

sup
}ĂWl}Fď rRm´1{2

Tr

«

ĂWJ
l

n
ÿ

i“1

ξi∇Wl
fWp0qpxiq

ff+

ď
rRm´1{2

n

L
ÿ

l“1

Eξ

«
›

›

›

›

›

n
ÿ

i“1

ξi∇Wl
fWp0qpxiq

›

›

›

›

›

F

ff

.

Therefore525

I2 ď
rRm´1{2

n

L
ÿ

l“1

g

f

f

eEξ

«
›

›

›

›

›

n
ÿ

i“1

ξi∇Wl
fWp0qpxiq

›

›

›

›

›

2

F

ff

“
rRm´1{2

n

L
ÿ

l“1

g

f

f

e

n
ÿ

i“1

›

›∇Wl
fWp0qpxiq

›

›

2

F
ď O

ˆ

L ¨ rR
?
n

˙

,

5Bartlett et al. [6] only proved the Rademacher complexity bound for the composition of the ramp loss and
the neural network function. In our setting essentially the ramp loss is replaced with the ´`1

p¨q function, which
is bounded and 1-Lipschitz continuous. The proof in our setting is therefore exactly the same as the proof given
in [6], and we can apply Theorem 3.3 and Lemma A.5 in [6] to obtain the desired bound we present here.
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where we apply Jensen’s inequality to obtain the first inequality, and the last inequality follows by526

Lemma B.3 in [8]. Combining the bounds of I1 and I2 gives527

pRnrFs ď rO
ˆ

L rR
?
n
`
L3

rR4{3

m1{6

˙

.

Further combining this bound with (D.7) and recaling δ completes the proof.528

D.3 Proof of Lemma B.5529

Proof of Lemma B.5. Different from the proof of Lemma B.1, online SGD only queries one data to530

update the model parameters in each iteration, i.e., Wi`1 “Wi ´ η∇Li`1pW
piqq. By this update531

rule, we have532

}Wpiq ´W˚}2F ´ }W
pi`1q ´W˚}2F

“ 2ηxWpiq ´W˚,∇WLi`1pW
piqqy ´ η2

L
ÿ

l“1

}∇Wl
Li`1pW

piqq}2F . (D.9)

With exactly the same proof as (D.5) in the proof of Lemma B.1, we have533

xWptq ´W˚,∇WLipW
ptqqy ě p1´ 2εapppτqq`

`

yifWptqpxiq
˘

´ `
`

yiFWp0q,W˚pxiq
˘

, (D.10)

for all i “ 0, . . . , n1 ´ 1. By the fact that ´`1p¨q ď `p¨q and ´`1p¨q ď 1, we have534

L
ÿ

l“1

}∇Wl
Li`1pW

piqq}2F ď

L
ÿ

l“1

`
`

yi`1fWt
pxi`1q

˘

¨ }∇Wl
fWpiqpxi`1q}

2
F

ď O
`

LMpτq2
˘

¨ Li`1pW
piqq. (D.11)

Then plugging (D.10) and (D.11) into (D.9) gives535

}Wpiq ´W˚}2F ´ }W
pi`1q ´W˚}2F

ě p2´ 4εapppτqqηLi`1pW
piqq ´ 2η`

`

yiFWp0q,W˚pxiq
˘

´O
`

η2LMpτq2
˘

Li`1pW
piqq

ě p
3

2
´ 4εapppτqqηLi`1pW

piqq ´ 2η`
`

yiFWp0q,W˚pxiq
˘

,

where the last inequality is by η “ OpL´1Mpτq´2q and merging the third term on the second line536

into the first term. Taking telescope sum over i “ 0, . . . , n1 ´ 1, we obtain537

}Wp0q ´W˚}2F ´ }W
pn1q ´W˚}2F

ě

´3

2
´ 4εapppτq

¯

η
n1
ÿ

i“1

LipW
pi´1qq ´ 2η

n1
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

.

ě

´3

2
´ 4εapppτq

¯

η
n1
ÿ

i“1

LipW
pi´1qq ´ 2η

n
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

.

ě

´3

2
´ 4εapppτq

¯

η
n1
ÿ

i“1

LipW
pi´1qq ´ 2nηεNTRF.

This finishes the proof.538

E Experiments539

In this section, we conduct some simple experiments to validate our theory. Since our paper mainly540

focuses on binary classification, we use a subset of the original CIFAR10 dataset [16], which only has541

two classes of images. We train a 5-layer fully-connected ReLU network on this binary classification542
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dataset with different sample sizes (n P t100, 200, 500, 1000, 2000, 5000, 10000u), and plot the543

minimal neural network width that is required to achieve zero training error in Figure 1 (solid line).544

We also plotOpnq,Oplog3
pnqq,Oplog2

pnqq andOplogpnqq in dashed line for reference. It is evident545

that the required network width to achieve zero training error is polylogarithmic on the sample size n,546

which is consistent with our theory.547
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Figure 1: Minimum network width that is required to achieve zero training error with respect to
the training sample size (blue solid line). The hidden constants in all Op¨q notations are adjusted to
ensure their plots (dashed lines) start from the same point.
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