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Abstract

Personal data collected at scale promises to improve decision-making and accelerate
innovation. However, sharing and using such data raises serious privacy concerns.
A promising solution is to produce synthetic data, artificial records to share instead
of real data. Since synthetic records are not linked to real persons, this intuitively
prevents classical re-identification attacks. However, this is insufficient to protect
privacy. We here present TAPAS, a toolbox of attacks to evaluate synthetic data
privacy under a wide range of scenarios. These attacks include generalizations of
prior works and novel attacks. We also introduce a general framework for reasoning
about privacy threats to synthetic data and showcase TAPAS on several examples.

1 Introduction

Synthetic data generation is a promising technology to enable access to sensitive data and accelerate
machine learning projects while protecting user privacy, and has attracted a lot of attention from
research and industry. The key idea is to produce and share semantically, and possibly statistically,
accurate artificial data sets instead of the real data.
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While this intuitively seems to protect individuals, synthetic records are not automatically private.
Apart from the obvious pitfall that large models can memorize real records, reproducing many
statistics of the original data can enable reconstruction attacks [1, 2]. Further, in some cases, a
motivated attacker can infer sensitive information about real records based only on synthetic ones [3].
Adversarial evaluation of privacy is a promising approach, which has the ability to take into account
a large range of potential attackers, with different knowledge of the real dataset and synthetic data
generation algorithm, and different attack goals. However, existing attacks are limited in scope,
usually applying to one specific threat model.

In this paper, we present TAPAS, a toolbox for evaluating the privacy of synthetic data generators.
We first propose a threat modeling framework to define privacy attacks. This framework models
a wide range of attacker background knowledge and goals, allowing for a context-aware privacy
analysis. Second, we describe the library of attacks implemented in TAPAS. Finally, we showcase the
privacy evaluation of TAPAS, applying our toolbox to several attack scenarios and generators. We also
highlight gaps in current research on empirical privacy evaluation. The toolbox is open source, and its
code is available at https://github.com/alan-turing-institute/privacy-sdg-toolbox.

2 Background

2.1 Synthetic Data Generation

Denote by X a set of potential records, and by D =
⋃

N∈N∪{0} XN the set of finite collections (with
repeats) taken from X . A synthetic data generation model (SDG or generator) is a randomized1

function G : Ω×D → D that takes as input a (real) dataset D(r) ∈ D and produces a synthetic dataset
D(s) = G(D(r)). The goal is for the synthetic data D(s) = G(D(r)) to be a useful replacement for
the real data D(r) for given data science tasks, without revealing sensitive information about D(r).
Generators typically operate in two steps: a training step, where a parameter θ ∈ Θ is adapted to
D(r), and a sampling step, where synthetic records are sampled i.i.d. from a distribution pθ on X .

2.2 Privacy attacks on synthetic data

Adversarial approaches can evaluate the privacy of synthetic data, either as an alternative or comple-
ment to formal guarantees. Stadler et al. [3] proposed a black-box attack against synthetic data that
relies on shadow modeling. Lu et al. [4] and Yale et al. [5] evaluate privacy using the distance between
synthetic and real records. In some settings, attacks against other privacy-enhancing technologies can
apply to synthetic data, including Generative Adversarial Networks [6, 7]. Commonly, generators use
aggregate statistics from real data when generating synthetic data. In this case, attacks developed
against aggregate statistics apply, e.g. [8, 9, 10].

Adversarial approaches have three key advantages: (1) Bug detection: attacks can exploit bugs
in implementations of theoretically secure mechanisms (e.g. leaky categories [3]); (2) Context
awareness: attacks can incorporate assumptions on what the attacker knows, and what they try to
learn; and (3) Comparison across models: generators can be effectively compared without requiring
comparable or tight formal privacy guarantees.

2.3 Differential Privacy

A common approach to privacy is to ensure that the generator satisfies formal guarantees such as
differential privacy (DP), introduced by Dwork et al. [11]. DP applies to randomized mechanisms
M : D × Ω → S and requires that distributions induced by M are close when datasets vary slightly.
More precisely, we define two datasets to be neighbors (denoted “∼=”) if they differ by the addition or
deletion of one record.
Definition 1 (Differential Privacy). A randomized mechanism M : D × Ω → S over datasets
provides (ε, δ)−Differential Privacy if, for all d ∼= d′ ∈ D and all S ⊂ S,

P [M(d) ∈ S] ≤ eε P [M(d′) ∈ S] + δ.

1The set Ω is a probability measure space, and random variables are formally defined as functions of Ω. This
can be viewed as the “seed” of the randomized mechanism. For simplicity of notation, we omit the Ω argument
in function calls: for F : Ω×X → Y , we write Y = F (x), where Y is a random variable.
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The parameter ε is called the privacy budget. Smaller ε implies more privacy, and typically less utility
of the mechanism. A valuable property of differential privacy is post-processing: if M is (ε, δ)−DP
then, for any randomised operation F : Ω × O → O′, the composition F ◦M is also (ε, δ)−DP.
Therefore, no operation performed on the output can “break” the privacy guarantees.

Differential privacy guarantees resistance to membership inference attacks, where an attacker attempts
to infer whether a target record x is in D(r). Indeed, suppose an attacker seeks to distinguish between
the cases D(r) = d and D(r) = d′ = d ∪ {x}, for a target x and dataset d. Kairouz et al. [12] show
a tradeoff between the attacker’s true and false positive rates, which applies even in the worst-case
attack model where the target x and the dataset d = D(r) \ {x} are known.
Theorem 1 ([12]). Let M : Ω × D → O satisfy (ε, δ)−differential privacy and d, d′ ∈ D be
neighboring datasets (d ∼= d′). Then, for any randomized attacker A : Ω×O → {d, d′},

eε ≥ max

(
TPA − δ

FPA
,
1− FPA − δ

1− TPA

)
,

where TPA = P [A(M(d)) = d] and FPA = P [A(M(d′)) = d] are true and false positive rates.

However, this inequality is not generally tight. One can thus define the effective εeff(δ):

εeff(δ; d, d′) = log sup
A:Ω×O→{0,1}

max

(
TPA − δ

FPA
,
1− FPA − δ

1− TPA

)
For any d ∼= d′, Theorem 1 shows ε(δ) ≥ εeff(δ; d, d′) for all δ ≥ 0; however εeff can be used to
prove that a privacy analysis is tight [13, 14]. Further, εeff can measure privacy protection in different
contexts, i.e. under different assumptions about the attacker A. Specifically, for synthetic data,
many SDGs are made differentially private with respect to their parameters θ, usually through noise
addition during model training. As sampling the model is a form of post-processing, D(s) = Gθ(D

(r))
is equally (ε, δ)-DP, but this guarantee is most likely not tight, as sampling introduces additional
randomness. Thus, εeff can help evaluate more realistic quantitative privacy guarantees.

3 Adversarial toolbox

TAPAS is a toolbox for adversarial evaluation of synthetic data. We here introduce our threat modeling
framework, which forms the foundation of the TAPAS analysis. We then detail the library of attacks
implemented within the toolbox. We finally review the reporting options provided by TAPAS.

3.1 Threat Modeling

A threat model (or attack model) defines the setup in which attacks take place, and what an attacker
is assumed to know. This defines what attacks can be performed on a synthetic dataset. The goal of
formally defining a threat model is to evaluate the privacy guarantees of synthetic data contextually,
i.e. under assumptions as to what a realistic attacker might know.

We propose a modular threat modeling framework, defined by three attributes of the attacker that
can be modified independently: (1) their knowledge of the real dataset D(r), (2) their knowledge of
the generator G, and (3) what they are trying to learn. TAPAS implements this modular framework,
enabling users to evaluate the privacy of generators in a wide range of scenarios within the toolbox.

3.1.1 Knowledge of the dataset

The attacker is assumed to have (potentially) uncertain knowledge about the real data D(r). This
is captured by a prior over datasets, D(r) ∼ πD, similarly to the framework of Li et al. [15]. Two
common examples from prior work are Auxiliary and Exact knowledge. In the former, the dataset is a
random subset of a larger (“population”) dataset D(pop). This is a common assumption for attacker
knowledge (see, e.g., [3, 16]). In the latter, the attacker knows that the dataset is one of two datasets
(d and d′) that differ only in one entry. This is typically used to verify DP guarantees [14].

TAPAS optimizes for targeted attacks (i.e. attacks that concern one specific record t) by combining
prior knowledge of the dataset excluding t (so D

(r)
−t ∼ πd′ ) and knowledge of the target t, which are
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assumed to be independent from each other. For instance, if the attacker assumes P(t ∈ D(r)) = 0.8,
and otherwise t is replaced by another record t′, while the remainder D−t is sampled from π′, TAPAS
combines these to give the prior πD : d 7→ 0.8 · I{t∈d}π

′(d \ {t}) + 0.2 · I{t′∈d}π
′(d \ {t′}).

3.1.2 Knowledge of the generator

It is important to model the information that the attacker has about the generator. Typically, there are
three situations:

• No-box, where the attacker has no information about the generator.

• Black-box, where the attacker has exact knowledge of the generator and is able to apply the
function G to arbitrary datasets. This is the most common assumption, as it is consistent
with good security practices.

• White-box, which is an extension of black-box where the attacker additionally has access to
trained parameters of the generators, such as model weights. This additional information
can be used, e.g. to apply tailored attacks to the specific generative model used by G.

TAPAS supports an additional setup, which we call Uncertain-box, where the generator function
is parameterized by “meta-parameters” γ ∈ Γ, so D(s) = GΓ(D

(r), γ). The attacker knows the
generator function GΓ, but has uncertainty on the meta-parameter γ ∼ πG. TAPAS focuses on black-,
uncertain- and no-box threat models, all three of which can be modeled as (GΓ, πG).

3.1.3 Attacker goal

Through their attack, the attacker aims to infer private information about the real dataset. This can be
represented by a function mapping a dataset to a decision g : D → S. Three common categories of
attacks are:

• Targeted Membership Inference (MIA) for a target record t: assess whether the target is in
the real dataset, g : D(r) 7→ I{t∈D(r)}.

• Targeted Attribute Inference (AIA) for an attribute a and incomplete target record t−a:
find the value v of a such that the completed record t−a|v is in the data, g : D(r) 7→
v s.t. t−a|v ∈ D(r). This assumes the datasets are tabular, i.e. X = X1 × · · · × Xk. In this
paper, we focus on categorical sensitive attributes, i.e., where |Xa| is finite.

• Reconstruction: a special case where the attacker aims to reconstruct the entire real dataset
g : D(r) 7→ D(r).

TAPAS currently focuses on the first two classes of attacks, as does most literature on privacy attacks
on synthetic data. Reconstruction attacks are currently an underexplored research area.

3.2 Evaluating attacks

For a given attack goal, an attack is a (potentially randomized) function of a synthetic dataset that
outputs a decision, A : D × Ω → S. The success of an attack is captured by a criterion C :
D(r) × S → R for one specific dataset and decision. This can simply be whether the guess is correct
C : (D(r), s) 7→ I{g(D(r))=s}. The success rate of an attack A, for a specific real dataset D(r)∗ and
generator meta-parameter γ∗ is ED(s)∼GΓ(D(r)∗,γ∗)

[
C
(
D(r)∗,A(D(s))

)]
. In practice, TAPAS uses a

distribution over “real” datasets D(r)∗ ∼ π∗
D in this evaluation, to incorporate uncertainty in g(D(r)).

Base Rate The attacker’s prior πD defines a base rate for a threat model, defined as the
maximum success rate of an attack Abase that does not have access to the synthetic dataset:
maxs∈S ED(r)∼πD

[C(D(r), s)]. In TAPAS, threat models are defined with a known base rate, typically
|S|−1 for categorical decisions.
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Simulation Under a given threat model, the attacker is able to simulate the context, and generate
training samples: {

D
(r)
1 , . . . , D

(r)
k ∼i.i.d. πD, γ1, . . . , γk ∼i.i.d. πG,

D
(s)
i ∼ GΓ

(
D

(r)
i , γi

)
∀i = 1, . . . , k.

These samples can be used to select parameters θ ∈ Θ of the attack Aθ, e.g. to optimize C by taking
θ∗ ∈ argmaxθ∈Θ

∑k
i=1 C

(
D

(r)
i ,Aθ(D

(s)
i )

)
.

3.3 Library of Attacks

TAPAS implements a range of attacks, or more formally, classes of attacks defined by meta-parameters.
We focus on threat models with finite decision sets (|S| = ncat ∈ N), and write without loss of
generality S = {s1, . . . , sncat}. We call these “label-inference attacks”. In this setup, TAPAS defines
attacks as functions mapping a synthetic dataset to a vector of scores2 A : D → Rncat . A decision
is then based on the score, typically argmaxi σi(D), but more complex decisions can also be
considered. If ncat = 2 (“binary attacks”), an attack can be summarized by a score and a threshold3

as: Aσ,τ (D) := I{σ(D)≥τ}.

Some attacks apply specifically to targeted membership (MIA) or attribute (AIA) inference. Targeted
MIAs are binary attacks where the score is proportional to the likelihood of membership. Targeted
AIAs are label-inference attacks where the decision set is the set of possible a values {v1, . . . , vl}.

Shadow-Modeling Attacks In a shadow modeling attack, the attacker first generates a large number
of “real” datasets D(r)

i ∼ πD and synthetic datasets D(s)
i = G(D(r)

i ), then trains a classifier Cθ to
predict g(D(r)

i ) from D
(s)
i . This procedure requires a classifier over sets Cθ : D → S .

Stadler et al. [3] use a two-stage classifier combining a fixed set feature map ϕ : D → Rl, with
a “classical” classifier Cθ : Rl → S as Cθ = Cθ ◦ ϕ. TAPAS implements the three feature sets
of Stadler et al. (basic statistics, histograms, and correlations), as well as additional feature maps.
In particular, we propose and implement the targeted counting queries feature map, Qt,S : D 7→
1

|D|
∑

x∈D I{xs=ts ∀s∈S}, defined for a random subset of attributes S. We show in Section 4 that
using this feature map empirically outperforms the feature maps of Stadler et al.

Local Neighborhood Attacks Given a distance over records d : X ×X → R+, this class of attacks
uses synthetic data near a target record t to make a decision. The intuition is that the neighborhood of
t is most likely to be influenced by the presence of t in D(r).

Distance to closest synthetic record is a common heuristic privacy metric for synthetic data [4,
5]. It corresponds to a targeted membership inference attack with target t and score σ(D) =
−minx∈D d(x, t). This generalizes the direct lookup attack (“is the real record in the data?”).
Note that while this looks like a classical de-identification attack, presence of t in D(s) does not
automatically imply a privacy violation. This attack is an issue if and only if the record t is more
likely to be in D(s) when it is also in D(r).

We extend this attack to targeted attribute inference, where the score for value vi for the sensitive
attribute is σi(D) = −minx∈D d(x, t−a|vi).
Note that the distance d can also be trained. For instance, Zhang et al. [17] propose a no-box attack
against synthetic health records, using representation learning to train a similarity metric.

Inference-on-Synthetic attacks This class of attacks relies on the idea that generators can “overfit”
to D(r). In that case, it is possible to train a model fθ to perform an attack directly on synthetic data.

For membership inference attacks, this involves fitting a density Lθ : X → R+ to D(s). This can be
any statistical model, e.g. a Gaussian mixture. Some generators (e.g. [18, 19]) explicitly fit such a
model, which in white-box scenarios can be used directly. Here, σ(D) = Lθ(t).

2The ith entry of this vector is the score for si, a higher score corresponding to a more likely output decision.
3For many attacks, the score is defined independently of the data; only the threshold (or decision function)

needs to be trained. Given a reasonable threshold value, these can be applied to a no-box scenario.
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For attribute inference, the attacker trains a classifier Cθ : X → Rncat on D(s) to predict the
sensitive attribute a from other attributes (x−a). The score is the prediction score for the target t−a,
so σ(D) = Cθ(t−a). This corresponds to a privacy metric called Correct Attribution Probability
(CAP) [20]. This attack suffers from the base rate problem: correlations between sensitive and
non-sensitive attributes can make this attack successful even if t ̸∈ D(r). Whether this is a privacy
violation is a contentious point in the community. TAPAS addresses this by randomizing the sensitive
attribute of the target records uniformly at random when training the classifier.

3.4 Summarizing results

TAPAS provides several analyses of the outcome of attacks (called reports). These reports aggregate
the result of a range of attacks run on many test pairs (D(r)

i , D
(s)
i ). Three main reports are:

• Classification metrics: accuracy, true/false positive rates, AUROC, as well as privacy gain
metrics from Stadler et al. [3].

• ROC curves: For binary attacks with scores, the true positive rate vs. false positive rates for
a range of thresholds.

• Effective epsilon εeff : This report first greedily selects an attack and threshold on a 10%
subset of testing samples, then performs the procedure of Jagielski et al. [14] to estimate a
statistically significant lower bound on εeff using the 90% remaining samples. This can be
used to empirically verify differential privacy.

4 Examples

In this section, we showcase how TAPAS can be used to evaluate the privacy of several generators.
Our goal is to demonstrate how the toolbox can and should be used, rather than a thorough analysis
of the privacy of synthetic data. Still, we show existing challenges in privacy evaluation.

We demonstrate the toolbox in a setting where privacy is particularly important, working with personal
data. We apply the toolbox to the Office for National Statistics’ 2011 Census Microdata Teaching
File4, which contains an anonymised random sample of 1% of responses from the 2011 Census of
England and Wales, a total of ~570,000 records with 15 categorical attributes. The data is already
recognised as non-disclosive, but our toolbox could be used in the future production of similar
micro-data files. We consider three generators: PrivBayes [18], MST [19], and CT-GAN [21]. The
first two respectively provide ε− and (ε, δ)−DP, while the last one does not.

Experiment 1: we consider an attacker performing an attribute-inference attack with auxiliary
knowledge of the dataset and black-box knowledge of the generator. We split the dataset in two equal
random parts (auxiliary and testing), from which “real” datasets of 5000 records are sampled. As
target, we select an “outlier” record, by choosing the record with lowest log-likelihood (assuming
attributes were independently drawn from their respective empirical distributions) from a random
sample of 1000 records. We attack each generator independently, using ε = 10 and δ = 10−5 for DP
generators. We apply a range of attacks: a local neighborhood attack with Hamming distance, an
inference-on-synthetic attack with a random forest classifier, the Groundhog attack, the Groundhog
attack with logistic regression as a learner, and a shadow-modeling attack with the random-query
feature we propose. We compare the resulting accuracy, privacy gain and AUC of these attacks in
figure 1(a).

Experiment 2: we demonstrate empirical estimation of εeff on MST [19] with ε = 10. We use
the exact knowledge setup, where the attacker knows that the dataset is either D+ = d−t ∪ {t} or
D− = d−t ∪ {t′} for an arbitrary d of size 499 sampled from the full dataset, the same target t and
another arbitrary record t′. We choose this setup to detect violations (since empirical estimates of
DP are computationally intensive [22]). We generate 1000 synthetic “training” datasets D+ and D−

to train the attacks, and 2500 synthetic “testing” datasets to evaluate εeff . In figure 1(b), we show
the ROC curves produced by TAPAS. We find that the shadow-modeling attack with random-query
features outperforms all other attacks (with an AUC of 0.70, whereas the Groundhog attack achieves

4Source: Office for National Statistics licensed under the Open Government Licence v.1.0, https://www.
ons.gov.uk/census/2011census/2011censusdata/censusmicrodata/microdatateachingfile.
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(a) Example of TAPAS summary statistics, in Experiment
1. The metrics are accuracy of prediction, privacy gain
from [3] and AUC.

(b) ROC curve from a range of membership
inference attacks in Experiment 2. The 45◦

line corresponds to a random baseline.

Figure 1: Example of outputs from TAPAS in the two experimental setups of Section 4

an AUC of 0.63), and is used for εeff estimation. Our εeff estimation procedure produces a 95%
confidence interval of εeff ∈ [0.86, 1.39]. Surprisingly, ε = 10 is not in this confidence interval.
Three main factors may be responsible for this gap: (1) the privacy analysis of the method is not tight;
(2) the privacy analysis is not tight to differentiate the specific datasets D− and D+ (which were
sampled randomly, rather than specifically designed worst-case datasets); and (3) the attack used for
εeff estimation is not optimal. Further work is needed to assess which of these factors is the cause.
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