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ABSTRACT

Video Large Language Models (VideoLLMs) have emerged as powerful tools for
understanding videos, supporting tasks such as summarization, captioning, and
question answering. Their performance has been driven by advances in frame
sampling, progressing from uniform-based to semantic-similarity-based and, most
recently, prompt-guided strategies. While vulnerabilities have been identified in
earlier sampling strategies, the safety of prompt-guided sampling remains unex-
plored. We close this gap by presenting POISONVID, the first black-box poi-
soning attack that undermines prompt-guided sampling in VideoLLMs. POISON-
VID compromises the underlying prompt-guided sampling mechanism through a
closed-loop optimization strategy that iteratively optimizes a universal perturba-
tion to suppress harmful frame relevance scores, guided by a depiction set con-
structed from paraphrased harmful descriptions leveraging a shadow VideoLLM
and a lightweight language model, i.e., GPT-4o-mini. Comprehensively evalu-
ated on three prompt-guided sampling strategies and across three advanced Vide-
oLLMs, POISONVID achieves 82% − 99% attack success rate, highlighting the
importance of developing future advanced sampling strategies for VideoLLMs.
This paper contains content that is offensive.

1 INTRODUCTION

Video Large Language Models (VideoLLMs) have been developed to address various video un-
derstanding tasks (Zhao et al., 2023; Tang et al., 2025b; Weng et al., 2024). By extracting visual
representations from video and reasoning over them with textual prompts, VideoLLMs can generate
concise summaries, answer content-related queries, and identify key events, which allow users to ac-
cess the information of a video without watching it in full, a capability particularly valuable for long
or information-dense videos. Practical applications include obtaining summaries of online lectures,
querying specific moments in meeting recordings, and navigating press briefings, underscoring the
role of VideoLLMs as efficient interfaces for human–video interaction (Qian et al., 2024).

Recent advances in VideoLLMs have been driven by improved frame sampling strategies, progress-
ing from uniform-based to semantic-similarity-based and ultimately prompt-guided sampling ones.
Uniform frame sampling (UFS) (Li et al., 2024b; Cheng et al., 2024a) selects frames at fixed intervals
across the video, always including the first and last frames which are often uninformative (Zhang
et al., 2024c). While efficient, UFS may omit informative frames, limiting its ability to capture key
events of the video (Zohar et al., 2025). In contrast, semantic similarity sampling (SSS) (Chen et al.,
2024a) begins with dense sampling to construct a frame set. Each frame in this set is represented by
a feature vector (e.g., the CLS token extracted from a CLIP encoder (Radford et al., 2021)). SSS then
iteratively removes adjacent frames with high semantic similarity, while ensuring the first and the
last frames are retained. Compared with UFS, SSS preserves frames with higher information den-
sity but lacks user prompt alignment, limiting VideoLLMs’ performance (Tang et al., 2025a). Unlike
UFS and SSS strategies, the advanced prompt-guided sampling (PGS) (Huang et al., 2025; Cheng
et al., 2025) integrates the user prompt into the frame sampling process. It begins with a densely
sampled set of video frames, and then each frame is assigned a relevance score that measures how
well it aligns with the user prompt, typically phrased as a guidance query such as “is this frame rele-
vant to answering the prompt?”. These scores are computed by lightweight vision–language models
(VLMs) like BLIP (Li et al., 2023a) or CLIP (Radford et al., 2021). The frames with the highest

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An illustration of the Frame Replacement Attack (FRA) (Cao et al., 2025) under three sam-
pling strategies: uniform frame sampling (UFS), semantic similarity sampling (SSS), and prompt-
guided sampling (PGS). UFS and SSS capture only a single harmful frame, causing the VideoLLM
to miss violence, whereas PGS retains multiple harmful frames, enabling correct detection. This
underscores the necessity of novel attacks against PGS. Dashed red boxes denote harmful frames.

scores are finally selected as input to the VideoLLM. This design prioritizes prompt-relevant frames,
enhancing overall performance on video understanding tasks (Hu et al., 2025).

To the best of our knowledge, (Cao et al., 2025) is the only work to study poisoning attacks that ex-
ploit frame sampling in VideoLLMs. It demonstrates that sampling strategies such as UFS and SSS
can omit harmful segments, and proposes the Frame Replacement Attack (FRA), as illustrated in
Figure 1, which simply swaps a short portion of the video with harmful content to exploit this blind
spot. However, UFS and SSS are no longer the dominant designs: the former samples frames at
fixed intervals, missing critical moments, while the latter ignores prompt alignment despite preserv-
ing information density. To address these limitations, VideoLLMs have increasingly adopted PGS,
which assigns prompt-conditioned relevance scores to frames and selects the top ones for encoding,
making the simple FRA ineffective against PGS-based models.

In this paper, we introduce POISONVID, a black-box poisoning attack framework that exposes the
vulnerabilities in the PGS processes of VideoLLMs. Unlike (Cao et al., 2025), which introduces
harmful clips to exploit the blind spots of UFS and SSS, POISONVID directly targets PGS, ma-
nipulating relevance scores to suppress the selection of harmful frames. POISONVID employs a
closed-loop optimization strategy. In each iteration, a universal perturbation is optimized to sup-
press the relevance scores of harmful frames as computed by a lightweight VLM, thereby reducing
their likelihood of being selected. To provide semantic guidance for this optimization, we further
construct a depictions set by prompting a shadow VideoLLM to generate harmful depictions and
paraphrasing them with a lightweight language model, i.e., GPT-4o-mini. This integration of pertur-
bation optimization with semantically guided depictions allows POISONVID to function in a fully
black-box setting, effectively compromising prompt-guided sampling mechanisms in VideoLLMs.

We extensively test three open-source prompt-guided sampling (PGS) strategies (Differential
Keyframe Selection (DKS) (Cheng et al., 2025), Adaptive Keyframe Sampling (AKS) (Tang et al.,
2025a) and Frame Selection Augmented Generation (FRAG) (Huang et al., 2025)) across three rep-
resentative VideoLLMs, where POISONVID achieves 82%− 99% attack success rate, highlighting
that future sampling strategies must account for safety implications for VideoLLMs.

In summary, this paper makes three major contributions:

• We introduce POISONVID, the first black-box video poisoning attack framework that exposes
vulnerabilities in prompt-guided sampling of VideoLLMs.

• We design a closed-loop optimization strategy that suppresses harmful frame relevance scores
through universal perturbation refinement, limiting their selection in sampling.
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• We conduct extensive evaluations of POISONVID across three representative VideoLLMs with
diverse prompt-guided sampling strategies, showing that it consistently achieves strong attack
success and uncovers the vulnerabilities in current PGS-based designs.

2 RELATED WORK

Video Large Language Models. VideoLLMs extend the capability of language models to handle
video inputs by generating outputs conditioned on both video content and user prompts (Liu et al.,
2025; Chen et al., 2024b; Jin et al., 2024). VideoLLMs have been widely applied to a variety of
downstream tasks, including video summarization (Li et al., 2023b; Zhang et al., 2025; Lin et al.,
2024), captioning (Yang et al., 2023; Chen et al., 2024a), question answering (Zhang et al., 2024a;
Liu et al., 2025), video grounding (Wang et al., 2025a; Qian et al., 2024; Yu et al., 2023), and long
video understanding (Weng et al., 2024; Cheng et al., 2024b; Wang et al., 2025b). Given a video and
a textual query, the model aims to provide answers that are grounded in the video (Li et al., 2024a). A
typical VideoLLM pipeline consists of three stages: frame selection, feature extraction, and modality
fusion. First, frames are sampled from the input video. These frames are then processed by a
visual encoder to obtain visual embeddings, which are projected into the text embedding space
through a projector layer. Finally, the visual and textual embeddings are fused and passed into
a large language model (LLM) to generate the response. Representative VideoLLMs include the
LLaVA-based (Zhang et al., 2024b;c;d; Lin et al., 2024) and LLaMA-based (Li et al., 2024b; Cheng
et al., 2024a; Zhang et al., 2025) families.

Frame Sampling Strategies. There are three major frame sampling strategies, including uniform
frame sampling (UFS), semantic similarity sampling (SSS), and prompt-guided sampling (PGS).

Uniform Frame Sampling (UFS). This frame sampling strategy selects frames at fixed intervals
across the video, always including the first and last frames (Zhang et al., 2024c). It is widely adopted
by Apollo (Zohar et al., 2025) and the families of LLaVA (Zhang et al., 2024c; Lin et al., 2024) and
LLaMA (Cheng et al., 2024a). While simple and efficient, this approach fixes the positions of
selected frames and tends to miss large amounts of meaningful content, particularly in minute-long
videos (Zohar et al., 2025; Hu et al., 2025).

Semantic Similarity Sampling (SSS). To address UFS’s shortcomings, the semantic similarity frame
sampling strategy, like Semantic-aware Key-frame Extraction (SKE) (Chen et al., 2024a) is intro-
duced. It first performs a denser sampling and then maximizes the semantic diversity between
adjacent selected frames to retain more informative content. The semantic diversity is often mea-
sured by extracting frame-level feature vectors from a visual encoder (e.g., CLIP (Radford et al.,
2021)), and computing their pairwise cosine similarity. Frames with high similarity are considered
redundant and thus removed. However, this strategy remains independent of the input prompt and
may still select frames irrelevant to the user query. For example, if the prompt asks about the first
two minutes of a video, frames beyond that time span provide no value. Moreover, the first and last
frames are always included for UFS and SSS, yet these frames are frequently uninformative, such as
blank or static color screens at the beginning or end of movies and animations (Tang et al., 2025a).

Prompt-Guided Sampling (PGS). To advance UFS and SSS, researchers recently introduce prompt-
guided sampling. This strategy first performs a denser sampling and then uses a lightweight VLM
(e.g., BLIP (Li et al., 2023a)) to compute the relevance score of each frame with respect to the
prompt. The frames with the highest scores are then passed into the visual encoder of the VideoLLM,
greatly improving localization accuracy and model performance. Representative open-source meth-
ods include Differential Keyframe Selection (DKS) (Cheng et al., 2025), Adaptive Keyframe Sam-
pling (AKS) (Tang et al., 2025a) and Frame Selection Augmented Generation (FRAG) (Huang et al.,
2025). Beyond relevance scoring, DKS considers the feature similarity between each frame and its
neighboring frames when selecting the final set in order to reduce redundancy. AKS introduces a
coverage term to encourage diversity among the selected frames. FRAG, in contrast, relies exclu-
sively on frame relevance ranking. As a result, once frames strongly correlated with the prompt are
identified, all other less relevant frames are disregarded. Although the selected frames may exhibit
high inter-frame similarity, this design substantially enhances model performance by ensuring that
the most prompt-relevant content is preserved. However, FRAG requires a full-fledged VideoLLM
rather than a lightweight VLM for relevance scoring, which substantially increases the computa-
tional cost. Other related approaches include lightweight M-LLM-based frame selection (Hu et al.,
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2025) and FocusChat (Cheng et al., 2024b), the latter additionally employing a spatial–temporal fil-
tering module to discard prompt-irrelevant frames. Besides, Frame-Voyager (YU et al., 2025) learns
a query-aware frame scoring module that models query–frame interactions and ranks frame subsets
to select informative frames, but it relies on supervision from a single specific Video-LLM and is
limited to short videos.

Poisoning Attacks. Research on VideoLLMs has so far emphasized performance improvements,
leaving poisoning risks underexplored. (Cao et al., 2025) revealed three design flaws, sparse uniform
sampling, token under-sampling, and modality fusion imbalance that cause UFS- and SSS-based
VideoLLMs to overlook harmful content even when it is explicitly embedded in manipulated videos.
In contrast, we shift the focus to the safety implications of frame selection, examining whether the
advanced prompt-guided sampling methods, such as DKS (Cheng et al., 2025), AKS (Tang et al.,
2025a), and FRAG (Huang et al., 2025), remain vulnerable to poisoning attacks.

3 METHOD

3.1 PROMPT-GUIDED SAMPLING IN VIDEOLLMS

Formally, a video is denoted as V = {f1, f2, . . . , fT }, a sequence of T frames. Since processing
all frames is computational prohibitive (Chen et al., 2024a; Cheng et al., 2024a; Liu et al., 2025), a
frame selection strategy S(V,N) is applied to select a subset of N ≪ T frames from V :

S(V,N) = {fi1 , fi2 , . . . , fiN }. (1)

Each selected frame fij is then encoded into a visual embedding through a visual encoder E :
vj = E(fij ), j = 1, . . . , N. The resulting embeddings {v1, . . . ,vN} are projected into the text
embedding space through a projector P , yielding {z1, . . . , zN}. Given a text prompt q, its embed-
ding is obtained by a tokenizer T as t = T (q). The underlying LLM finally receives both the
projected visual embeddings and the textual embedding, and produces a response:

y = LLM({z1, . . . , zN}, t). (2)

Prompt-guided sampling (PGS) has become the standard in recent VideoLLMs (Cheng et al., 2025;
Huang et al., 2025), where each frame is scored by its relevance to the user prompt and the top-
ranked ones are selected for encoding. Starting from a densely sampled set VM (M > N ), each
frame fk ∈ VM is assigned a relevance score r(fk, q

′) quantifying its semantic alignment guided
by a user prompt (q)-derived query q′ (e.g., “whether the frame is relevant to answering q”) (Tang
et al., 2025a), which is typically estimated by a lightweight VLM such as BLIP or CLIP. Finally,
the top-N frames with the highest relevance scores are selected, and the selection frames of PGS is
formally defined as:

SPGS(V,N, q′) = argTop-N
fk∈VM

r(fk, q
′). (3)

Unlike other frame sampling strategies, PGS filters out less informative frames while retaining those
most relevant to the prompt, leading to stronger comprehension and reasoning over video content.

3.2 ATTACK FRAMEWORK

Attack Overview. Figure 2 illustrates the design of our proposed attack framework, POISONVID.
We optimize a universal perturbation that is applied to harmful clips guided by a depiction set
constructed from paraphrased harmful descriptions using a shadow VideoLLM and a lightweight
language model, i.e., GPT-4o-mini. The optimization primarily minimizes the semantic similarity
between the perturbed clip and the depiction set, ensuring that the harmful frames, once perturbed,
are pushed away from the semantic space that would otherwise increase its relevance to the user
prompt. The perturbed harmful clip is then randomly embedded into target benign videos.

Threat Model. We assume that the adversary has no access to the internal architecture, weights,
or gradients of the target VideoLLM, and cannot repeatedly query the model for optimization. The
adversary only knows the general principle of PGS, i.e., selection mainly based on relevance scoring
but not the exact implementation details or parameters. The adversary is allowed to make small
modifications to the harmful clip, while ensuring that the harmful content remains visually natural
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Figure 2: Overview of the POISONVID framework. Left (attack scenario): The adversary manipu-
lates a harmful clip and embeds it into a benign video to generate a poisoned video, with the goal
of inducing the VideoLLM to deny the presence of harmful content. Right (optimization strategy):
The adversary constructs a harmful depiction set to obtain textual descriptions of the harmful clip,
then leverages a lightweight VLM to compute relevance scores. Finally, a universal perturbation is
iteratively optimized so that the perturbed harmful clip is less likely to be sampled by PGS.

and clearly recognizable to human observers. As illustrated in the left side of Figure 2, the adversary
inserts the harmful clip into a target benign video, forming a poisoned video. Given a prompt
asking whether there exists harmful content in the video, the goal of the adversary is to induce the
VideoLLM into producing a denial response regarding its presence. Such an output indicates that
the harmful content has been omitted, and the attack is considered successful.

Attack Formulation. We seek to prevent harmful video clips from being surfaced by PGS. To this
end, our attack optimizes a universal perturbation δ such that, when short harmful clips are randomly
embedded into benign videos, PGS downweights these segments and the VideoLLM consequently
overlooks the harmful content. Instead of learning an individual perturbation for each harmful frame,
which would be computationally prohibitive and unnecessary, we adopt a universal perturbation
shared across all frames. Given a harmful clip H = {f1, f2, . . . , fh}, we apply the perturbation
δ uniformly to each frame: f̃j = fj + δ. In parallel, we obtain a description d̂ of the original
harmful clip through a shadow VideoLLM and construct a depiction set D = {d1, d2, . . . , dl} by
paraphrasing it with a lightweight language model. For each description dk, we further derive a
corresponding query q′k (Section 3.1), and collect them into the query set Q′ = {q′1, q′2, . . . , q′l}.
The optimization objective is to semantically push the perturbed harmful frames away from the
depiction set, thereby reducing their relevance to the corresponding queries Q′. This is measured by
computing the relevance score r(f̃j , q

′
k) (Equation (3)) between each perturbed frame f̃j and each

query q′k, using a lightweight VLM such as BLIP (Li et al., 2023a). Based on this, we define the
relevance suppression loss (RSL) as:

LRSL(δ;H,Q′) =
1

hl

h∑
j=1

l∑
k=1

r(f̃j , q
′
k). (4)

The perturbation δ is optimized through iterative projected gradient updates (Madry et al., 2018). At
each iteration t, the update rule is defined as:

δ(t+1) = Π∥·∥∞≤ϵ

(
δ(t) − η∇δLRSL(δ

(t);H,Q′)
)
, (5)

where η is the learning rate, Π∥·∥∞≤ϵ(·) denotes the projection operator that enforces the ℓ∞-norm
constraint, and ϵ controls the imperceptibility of the perturbation. By minimizing LRSL, the rele-
vance of harmful frames to the derived queries is reduced, thus decreasing their probability of being
selected by PGS. The optimization workflow is shown in the right side of Figure 2.

4 EXPERIMENT

Experiment Setup. We introduce the video datasets, VideoLLMs, PGS methods, baseline, and
metrics that are used for evaluating the attack effectiveness of the proposed POISONVID.

Video Datasets. Following (Cao et al., 2025), we randomly select 100 benign videos from the
LLaVA-Video-178K (Zhang et al., 2024d) as test inputs, and we collect 15 harmful clips from three
categories: violence, crime, and pornography, using the same sources as in (Cao et al., 2025).
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VideoLLMs. We evaluate three mainstream VideoLLMs: LLaVA-Video-7B-Qwen2 (L-
7B) (Zhang et al., 2024d), VideoLLaMA2 (VL2) (Cheng et al., 2024a), and ShareGPT4Video
(SG4V) (Chen et al., 2024a).

PGS Methods. We consider three recent open-source PGS methods: Differential Keyframe Selection
(DKS) (Cheng et al., 2025), Adaptive Keyframe Sampling (AKS) (Tang et al., 2025a) and Frame
Selection Augmented Generation (FRAG) (Huang et al., 2025).

Baseline. Since frame replacement attack (FRA) (Cao et al., 2025) is the only one poisoning attack
proposed to induce the omission of harmful content, we adopt it as our baseline. All parameter
configurations are aligned with those used in (Cao et al., 2025).

Evaluation Metric. We adopt the Attack Success Rate (ASR) as our evaluation metric, which mea-
sures the proportion of videos with inserted harmful content that the VideoLLM fails to recognize.
Note that we verify that all selected benign videos are consistently judged as non-harmful by the
VideoLLMs, and all harmful clips are recognized as harmful prior to attacks.

Implementation Details. Following (Cao et al., 2025), we replace a contiguous 4-second segment
in each benign video with a harmful clip, as this duration has been shown to reliably expose omis-
sion failures in minute-long videos. For harmful depiction set construction, we adopt L-7B as the
shadow VideoLLM to generate textual descriptions of harmful clips, and employ GPT-4o-mini for
paraphrasing to ensure lexical diversity while preserving semantic fidelity. We use BLIP as the
lightweight VLM to compute relevance scores during attack optimization. The impact of alternative
VLM choices and harmful clip length is further analyzed in the ablation study.

Following mainstream VideoLLMs (Li et al., 2024a; Zhang et al., 2024c), we set the selected frame
number N as 32 for all sampling strategies. Note that this study focuses on frame selection strate-
gies; consequently, we modify only the sampling component of the evaluated VideoLLMs, with all
other parts left unchanged. Following adversarial image attack practices (Madry et al., 2018; Wong
et al., 2020), we constrain the perturbation under the ℓ∞ norm with ϵ = 8/255 to ensure impercep-
tibility. We initialize the perturbation with uniform random noise in [−ϵ, ϵ]. The optimization runs
for 1,000 steps with an exponential learning rate decay (initial rate 10, decay factor 0.999). The
depiction set size is fixed at 5. Since a harmful clip may be embedded at arbitrary positions within a
benign video, every frame can potentially be sampled by PGS. To make the optimization tractable,
we approximate the loss (Equation (4)) by computing relevance scores on a randomly drawn subset
of 8 frames from the harmful clip in each iteration.

Attack Effectiveness. Table 1 reports the ASR (%) of FRA (Cao et al., 2025) and our proposed
POISONVID under three PGS methods across three representative VideoLLMs. In all cases, POI-
SONVID achieves substantially higher attack success rates than FRA, with average rates ranging
from 82% to 99%, indicating that even state-of-the-art sampling strategies fail to detect harmful
signals within the input videos under our attack.

Evaluation on FRA. Although FRA has been shown to achieve around 90% ASR under UFS and
SSS (Cao et al., 2025), it fails against advanced PGS methods. The reason is that PGS leverages
the prompt as a strong guidance signal, thereby increasing the proportion of harmful frames among
the selected ones and improving the likelihood that the model detects harmful content. In contrast,
UFS and SSS, which lack prompt guidance, often select only a single harmful frame or even none.
Among the three PGS methods, FRA is most effective against DKS, less effective against AKS,
and least effective against FRAG. This difference stems from their additional design choices beyond
relevance scoring. DKS disregards frames that exhibit high similarity with their neighbor frames,
thereby suppressing redundancy but retaining only a few frames from the harmful clip, which re-
duces the model’s ability to detect harmful content. AKS introduces a temporal coverage constraint,
which forces sampling across the entire video. Consequently, even when harmful frames are de-
tected within a certain interval, only a small fraction can be retained due to the coverage constraint.
FRAG, by contrast, considers only the frame–prompt relevance score. While this design is simple, it
strongly suppresses FRA: once harmful frames are correctly identified, they are assigned very high
scores (e.g., 0.99) and are consistently selected, regardless of inter-frame redundancy.

Evaluation on POISONVID. The above analysis indicates that the degradation of FRA under PGS
primarily arises from the selection of harmful frames. In contrast, POISONVID effectively sup-
presses this issue by optimizing the imperceptible universal perturbation that significantly reduces
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Table 1: Attack Success Rate (%) of FRA (Cao et al., 2025) and POISONVID under three PGS
methods, DKS (Cheng et al., 2025), AKS (Tang et al., 2025a), and FRAG (Huang et al., 2025) with
three representative VideoLLMs, LLaVA-Video-7B-Qwen2 (L-7B) (Zhang et al., 2024d), VideoL-
LaMA2 (VL2) (Cheng et al., 2024a), and ShareGPT4Video (SG4V) (Chen et al., 2024a).

Category Attack DKS AKS FRAG
L-7B VL2 SG4V L-7B VL2 SG4V L-7B VL2 SG4V

Violence FRA 57 24 43 41 19 33 4 10 20
POISONVID 94 80 98 100 88 80 98 82 98

Crime FRA 70 21 63 55 16 46 18 27 33
POISONVID 92 86 98 76 82 90 93 92 98

Pornography FRA 71 43 55 35 37 51 12 18 43
POISONVID 91 80 100 94 92 100 73 78 100

Average FRA 66 29 54 44 24 43 11 18 31
POISONVID 92 82 99 90 87 90 88 84 99

the relevance scores of harmful frames (often by several orders of magnitude), thereby lowering their
probability of being selected. Experimental results show that POISONVID achieves an average ASR
of over 82% across all evaluated VideoLLMs and PGS methods. They also demonstrate the strong
transferability of POISONVID along two dimensions. First, although L-7B is used as the shadow
VideoLLM to obtain harmful depictions, POISONVID achieves even higher effectiveness on SG4V.
Second, while BLIP serves as the lightweight VLM for relevance scoring in the optimization, the
optimized perturbation remains highly effective against PGS sampling that rely on different VLMs
for score computation (e.g., DKS (Cheng et al., 2025) and FRAG (Huang et al., 2025)).

Additionally, we provide some examples of poisoned videos under our POISONVID framework in
Figure 3. Since the depiction set is specifically tailored to the harmful clip, the relevance scores of
benign frames are extremely low, often below 0.1. As a result, when the top-32 frames are selected,
the inclusion of harmful frames becomes almost unavoidable (we observed only a few rare cases
in which no harmful frame is selected). However, by adding perturbations to the harmful clip, our
method significantly reduces the number of selected harmful frames (typically only 1–2 out of 32),
thereby preventing the VideoLLMs from recognizing the harmful content.

Ablation Study. We conduct ablation experiments on two factors: the choice of the lightweight
VLM used for relevance scoring during optimization and the length of the harmful clip. We select
L-7B as the evaluation VideoLLM. The goal is to examine whether POISONVID can consistently
maintain strong performance under these variations.

Lightweight VLMs. Considering the widespread use of BLIP and CLIP for assessing image–text
similarity, we adopt them as the VLMs for computing relevance scores. In addition, we evaluate a
Combined strategy, which averages the scores from BLIP and CLIP. Table 2 reports the correspond-
ing attack performance. Results show that BLIP consistently performs best on AKS and FRAG,
while CLIP and Combined achieve better results on DKS. A key reason is that DKS itself employs
CLIP for frame selection. Nevertheless, the performance that BLIP achieves remain very close to
CLIP on DKS, demonstrating stronger transferability of BLIP. In contrast, when CLIP is used as the
VLM, its transferability to AKS (which uses BLIP) and FRAG (which uses a VideoLLM) is weaker,
thereby also reducing the effectiveness of the Combined strategy. This analysis explains why BLIP
is ultimately chosen as the default VLM in our method.

Harmful Clip Length. We further investigate the effect of harmful clip length. The motivation is that
longer harmful clips occupy a larger portion of the video and thus become more salient to human
viewers. While (Cao et al., 2025) has shown that a 4-second segment is sufficient to draw attention,
it remains unclear how longer clips influence attack effectiveness and whether VideoLLMs are truly
capable of detecting harmful signals when such content constitutes a significant fraction of the video.

Figure 4 shows the results across different harmful clip lengths. As the length increases, ASR
decreases under all three PGS methods, which aligns with intuition. Although our optimization sup-
presses relevance scores as much as possible, more harmful frames inevitably increase the chance of
being selected. Notably, FRAG and AKS exhibit a steeper decline in ASR, reflecting their stronger
sampling capability compared with DKS. This also highlights a weakness of DKS: its reliance on
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Figure 3: Examples of poisoned videos that are successfully attacked under POISONVID frame-
work. Dashed red boxes denote harmful frames.

Table 2: Attack success rate (%) of POISONVID under three prompt-guided sampling strategies
(DKS (Cheng et al., 2025), AKS (Tang et al., 2025a), FRAG (Huang et al., 2025)) when using
different VLMs (BLIP, CLIP, Combined) for relevance scoring during the attack optimization.

VLM DKS AKS FRAG

Violence Crime Pornography Avg Violence Crime Pornography Avg Violence Crime Pornography Avg

BLIP 94 92 91 92 100 76 94 90 98 93 73 88
CLIP 86 98 94 93 85 63 65 71 76 86 73 78

Combined 92 96 93 94 61 73 78 71 82 91 75 83

neighbor-frame similarity makes it less sensitive to long harmful clips. Even at a clip length of 36
seconds, DKS still achieves an average ASR of 68%, demonstrating that our attack remains effec-
tive. Another interesting observation is that all three PGS methods are generally more sensitive to
pornography content. In particular, FRAG drops below 10% ASR when the harmful clip length
reaches 24 seconds. This suggests that VLMs and VideoLLMs may possess a stronger capability
to recognize pornographic content, though this requires further validation in future work. Overall,
POISONVID remains highly effective across clip lengths: even with 10-second harmful segments, it
achieves over 60% average ASR. This indicates that widely adopted PGS methods are still far from
safe. While performance degrades with longer clips, it remains well above the level expected of a
truly safe system.

5 DISCUSSION

POISONVID’s Effectiveness Against UFS and SSS. Although POISONVID is tailored to exploit
the relevance-based mechanisms of PGS, our design naturally generalizes to earlier strategies such as
UFS and SSS. Table 3 reports POISONVID’s ASR under five sampling strategies, where Semantic-
aware Key-frame Extraction (SKE) (Chen et al., 2024a) serves as the representative of SSS. POI-
SONVID attains consistently high ASR not only on PGS but also on UFS and SSS. These results
demonstrate that our attack generalizes across all mainstream sampling strategies, and further high-
light the inherent vulnerability of earlier designs such as UFS and SSS in detecting harmful content.
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Figure 4: Attack performance on different harmful clip lengths.

Table 3: Attack success rate (%) of POI-
SONVID under different sampling strate-
gies. While originally designed to target
prompt-guided sampling (PGS), POISON-
VID also achieves consistently high per-
formance against UFS and SSS.

Strategy
Model L-7B VL2 SG4V

UFS 96 96 99

SSS-SKE 95 89 99

PGS-DKS 92 82 99
PGS-AKS 90 87 90
PGS-FRAG 88 84 99

Impact of Benign Video Length. The length of the
benign video also affects attack performance. With a
fixed harmful clip, longer benign videos reduce the
relative proportion of harmful content, lowering its
chance of being sampled and thereby strengthening the
attack. Conversely, at the same proportion, longer be-
nign videos (e.g., hour-long) permit inserting longer
harmful clips (e.g., minute-long), which greatly in-
creases their visibility to human viewers. Yet, even
under these conditions, VideoLLMs remain strikingly
weak at detecting harmful signals.

Potential Mitigations. We demonstrate that adver-
sarial perturbations can effectively bias frame selec-
tion on current PGS methods in VideoLLMs. To mit-
igate POISONVID, one possibility is to adopt ensem-
ble relevance scoring, where predictions from multiple
lightweight VLMs are aggregated via majority voting. This reduces the influence of adversarial per-
turbations that exploit the inductive biases of a single model. Another promising direction is to
incorporate temporal consistency constraints, ensuring that relevance scores across adjacent frames
follow plausible trajectories rather than fluctuating under perturbations. Beyond strengthening scor-
ing, a complementary strategy is to increase redundancy in frame selection: instead of relying solely
on the Top-N frames, diverse subsets of frames can be jointly sampled and cross-validated to reduce
single-point failures. These approaches, however, come with trade-offs in computational cost and
may reduce the efficiency gains that motivate PGS. Designing frame selection strategies that simul-
taneously preserve efficiency, accuracy, and robustness therefore remains a key open challenge.

Limitations & Future Work. POISONVID addresses video poisoning attacks on PGS in
VideoLLMs under a black-box setting. Although the attack is shown to be highly effective across
diverse models and harmful content categories, it depends on a shadow VideoLLM for generating
depictions, which may not fully capture the diversity of real-world harmful semantics. Moreover, the
attack is limited to perturbations on short harmful clips, leaving other poisoning strategies, such as
temporal reordering or multi-modal manipulations, unexplored. Future research will aim to broaden
the threat landscape by considering adaptive adversaries and alternative poisoning strategies, in-
cluding multi-modal or cross-frame manipulations that could degrade VideoLLM safety. Another
promising direction is to investigate scalable defenses that detect or mitigate poisoning in frame se-
lection, such as through ensemble scoring, temporal consistency, or redundancy, as discussed above.

6 CONCLUSION

We investigate the safety of prompt-guided sampling (PGS), the dominant frame selection strategy in
recent VideoLLMs. While prior research has shown that uniform and semantic similarity sampling
suffer from vulnerabilities, PGS remains unexplored. We fill this gap by introducing POISONVID,
the first black-box poisoning attack that targets PGS. By constructing a depiction set of harmful de-
scriptions and optimizing a universal perturbation on harmful clips, POISONVID effectively reduces
their relevance scores and suppresses their selection. Experiments across mainstream VideoLLMs
and diverse harmful clips demonstrate that POISONVID reliably causes harmful segments to be
overlooked, highlighting the need to reconsider the safety of advanced sampling mechanisms and
call for the development of defenses that address poisoning risks for VideoLLMs.
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Ethics Statement. This work investigates the safety vulnerabilities of VideoLLMs with respect
to harmful content omission. Although our study involves videos containing violence, crime, and
pornography, we do not release any harmful video data to avoid the dissemination of unsafe ma-
terial. Instead, we provide detailed experimental protocols, anonymized code, and representative
benign examples and poisoned examples to ensure reproducibility. Our attacks are designed solely
for research purposes to expose safety risks, not for malicious use. We emphasize that the pro-
posed method should be interpreted as a diagnostic tool to highlight design flaws in frame selection
strategies, thereby informing the development of more robust and trustworthy VideoLLMs.

Reproducibility Statement. We have made extensive efforts to ensure the reproducibility of our
work. The formulation of frame sampling strategies and the proposed attack is presented in Sec-
tion 3, with complete mathematical definitions of frame selection and attack procedures. Exper-
imental settings, including datasets, VideoLLMs, sampling strategies, hyperparameters and other
implementation details, are provided in Section 4. The pseudo code of the optimization procedure
of POISONVID is also provided in the appendix. To further facilitate reproducibility, we provide
our source code anonymously in https://anonymous.4open.science/r/PoisonVID.
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A APPENDIX

Attack Algorithm. Algorithm 1 presents the pseudo code of the optimization procedure of POISON-
VID. It starts with perturbation initialization, followed by deriving the query set from the depiction
set. Afterwards, the perturbation is optimized iteratively to suppress the relevance score.

Algorithm 1: Optimization procedure of POISONVID
Input: Harmful clipH = {f1, . . . , fh}, depiction set D = {d1, . . . , dl}, initial perturbation δ0,

learning rate η, perturbation constraint ϵ, epochs Z.
Output: Universal perturbation δ.

1 δ ← δ0;
2 Derive query setQ′ = {q′1, q′2, . . . , q′l} from D;
3 for epoch = 1 to Z do
4 Apply perturbation: f̃j ← fj + δ for j = 1, . . . , h;
5 Compute relevance suppression loss: LRSL(δ;H,Q′) = 1

hl

∑h
j=1

∑l
k=1 r(f̃j , q

′
k);

6 Update perturbation: δ ← δ − η∇δLRSL;
7 Project: δ ← Π∥·∥∞≤ϵ(δ);

8 return δ.
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