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Abstract

We introduce Adaptive Resolution Residual Networks (ARRNs), a form of neu-
ral operator that enables the creation of networks for signal-based tasks that can
be rediscretized to suit any signal resolution. ARRNs are composed of a chain
of Laplacian residuals that each contain ordinary layers, which do not need to
be rediscretizable for the whole network to be rediscretizable. ARRNs have the
property of requiring a lower number of Laplacian residuals for exact evaluation
on lower-resolution signals, which greatly reduces computational cost. ARRNs
also implement Laplacian dropout, which encourages networks to become robust
to low-bandwidth signals. ARRNs can thus be trained once at high-resolution and
then be rediscretized on the fly at a suitable resolution with great robustness.

1 Introduction

The majority of deep learning methods for signals assume a fixed resolution during training and
inference, making it impractical to apply a single network at various resolutions. We address this
shortcoming by introducing Adaptive Resolution Residual Networks (ARRNs), which are neural
operators that can be rediscretized easily and robustly thanks to two components: Laplacian residu-
als, which define the structure of ARRNs and allow rediscretization, and Laplacian dropout, which
improves the robustness of rediscretized ARRNs through a training augmentation.

We formulate Laplacian residuals by combining the properties of standard residuals (He et al.,
2016a,b) and Laplacian pyramids (Burt and Adelson, 1987). Thanks to this structure, rediscretizing
an ARRN to a lower resolution simply means evaluating a lower number of Laplacian residuals.
This form of rediscretization has many benefits: it improves computational efficiency at lower reso-
lutions; it can be applied instantaneously at inference suit the given resolution; it imposes very few
design constraints on the layers nested within Laplacian residuals, unlike neural operators that allow
rediscretization (Kovachki et al., 2021; Li et al., 2020). We find that Lai et al. (2017); Singh et al.
(2021) formulate residual connections with similar filtering operations, however we are the first to
propose an architecture that leverages this for adaptive input resolution.

We formulate Laplacian dropout through the converse idea that randomly lowering the number of
Laplacian residuals is equivalent to randomly rediscretizing an ARRN to a lower resolution. We
leverage this as a training augmentation that has the effect of improving the robustness of the many
low-resolution ARRNs that can be derived from a single high-resolution ARRN. We find that Huang
et al. (2016) applies dropout similarly to residuals, however Laplacian dropout has an interpretation
as a bandwidth augmentation that this prior work lacks.

We provide theoretical analysis for the advantageous properties of ARRNs in section 2, along with
a set of experiments that demonstrate these properties in practice in section 3, where we train ARRN
and competing methods at a single resolution, then evaluate them at various resolutions.
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2 Method

In this section, we formulate the two main components of ARRNs: Laplacian residuals (subsec-
tion 2.1) and Laplacian dropout (subsection 2.2). We assume some familiarity with the theory of
signals from the reader (Fourier, 1888; Whittaker, 1915, 1927; Shannon, 1949; Petersen and Mid-
dleton, 1962). We provide illustrations and complementary background on Laplacian pyramids in
section 5 to help better understand the structure of ARRNs. As in most neural operators methods, we
follow the perspective of continuous signals rather than discrete signals. We conceptualize signals
as functions s : X → Rf mapping from a spatial domain X ⊂ Rd to a feature domain Rf .

2.1 Laplacian residuals

Definition. Laplacian residuals rn : (X → Rfn) → (X → Rfn+1) are composed together in a
chain of m residuals. Each residual contains some architectural block bn : (X → Rfn) → (X →
Rfn) that can perform any operation as long as its output signal is a constant whenever its input
signal is zero (Equation 1, where a is a constant signal); bn does not need to be conceptualized
in the framework of neural operators; bn does not need the ability to be rediscretized because its
discretization is fixed; bn can be a convolution, vision transformer, normalization, or composition of
multiple layers.

bn(0) = a (1)

The filter kernels of Laplacian residuals are ideal, and are nested into each other such that deeper
filter kernels correspond to lower bandwidth. The base case takes the original signal and performs a
linear projection through A0 to allow a change in feature dimensionality from f0 to f1:

r0 = A0s (2)

The recursive case takes the preceding residual rn−1, forms a lower bandwidth signal rlow
n (Equa-

tion 3), and forms a difference signal rdiff
n (Equation 4):

rlow
n = rn−1 ∗ ϕlow

n (3)

rdiff
n = rn−1 − rlow

n (4)

The difference signal rdiff
n is given to the architectural block bn contained in the residual. Like

in the Laplacian pyramid (Burt and Adelson, 1987), the difference signal rdiff
n explains the gap

between two representations of the same signal at different resolutions, one higher, and one lower.
We are especially interested in what happens when a signal can be fully captured at either the higher
resolution or the lower resolution, meaning a higher resolution representation would be wasteful.
We can see that in that case, the difference signal rdiff

n is zero. We want to leverage this by causing
a chain of zero terms that we can use for simplifying rediscretization. We do this by using a zero-
blocking filter which subtracts the mean:

bn(0) ∗ ϕzero = 0 (5)

We also must perform further filtering with ϕlow
n so that the output conforms to the lower bandwidth

signal that the next residual expects as an input. We then apply a skip connection by adding rlow
n to

the output, as in standard residuals (He et al., 2016a,b), and apply a linear projection through An to
allow a change in feature dimensionality from fn to fn+1 before processing the next residual:

rn = An

(
bn(r

diff
n ) ∗ ϕlow

n ∗ ϕzero + rlow
n

)
(6)

Rediscretization. If the spectrum of the signal s is entirely confined within the spectrum of the first
filter kernel ϕlow

1 , then the value of the lower bandwidth residual rlow
1 is given by a linear projection

of s (Equation 8), and the difference signal rdiff
1 is zero (Equation 9). Because the input to the

inner architectural block b1 is zero, its output is a constant (Equation 1). Because we then perform
filtering with ϕzero, the output of the inner architectural block b1 contributes zero to the residual r1
(Equation 5). The value of the residual r1 is therefore entirely defined by a linear projection of s; its
exact computation does not need to involve the inner architectural block b1 (Equation 10). We see
that this cascade of zeros persists as long as the spectrum of the input signal s is entirely confined
within the spectrum of all the lowpass filters ϕlow

n′ it encounters, with n′ ∈ [1, n]:

s ∗ ϕlow
n′ = s ∀ n′ ∈ [1, n] (7)
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=⇒ rlow
1 =A0s ∗ ϕlow

1 = A0s (8)

=⇒ rdiff
1 =A0s−A0s = 0 (9)

=⇒ r1 =A1

(
b1(0) ∗ ϕlow

1 ∗ ϕzero +A0s
)
= A1A0s (10)

...

=⇒ rlow
n =An−1 · · ·A0s ∗ ϕlow

n = An−1 · · ·A0s (11)

=⇒ rdiff
n =An−1 · · ·A0s−An−1 · · ·A0s = 0 (12)

=⇒ rn =An

(
bn(0) ∗ ϕlow

n ∗ ϕzero +An−1 · · ·A0s
)
= An · · ·A0s (13)

We can therefore exactly evaluate rn by skipping all filters ϕlow
n′ and all inner architectural blocks

bn′ with n′ ∈ [1, n], by instead applying a single linear projection with a precomputed matrix
Achain

n = An · · ·A0. This allows us to rediscretize high-resolution ARRNs into low-resolution AR-
RNs with greater computational efficiency, without performance degradation, and without difficult
design constraints.

Implementation. We implement all filtering and rediscretization operations using approximate
Whittaker-Shannon interpolation (Whittaker, 1915) based on separable polyphase convolutions that
effectively extend Smith (2002); Yang et al. (2021) to higher dimensionality. In Laplacian residuals,
the rdiff

n terms of Equation 9 are computed while preserving the original resolution, while the rlow
n

and bn(rn) ∗ ϕlow
n terms of Equation 6 are computed while resampling to a lower resolution. By

following this process, we always use the lowest resolution that allows appropriate representation of
the signals. In the experimental setup, all rediscretization is done through this interpolation method.

2.2 Laplacian dropout

When we show a low-bandwidth signal to a high-resolution ARRN, a set of consecutive early Lapla-
cian residuals may be zero. Conversely, if we show a high-resolution signal to a high-resolution
ARRN but randomly zero out a set of consecutive early residuals, this will be equivalent to showing
a randomly lowered bandwidth signal to the ARRN. Laplacian dropout simply implements this dur-
ing training to encourage robustness to low-bandwidth signals. Unlike Huang et al. (2016), we gate
the difference signal rdiff

n with a Bernoulli random variable chained through the logical or operator
(Equation 15) to implement the consecutiveness constraint.

dindep
n ∼ B(1− pn) (14)

dchain
n = dindep

n ⊕ dchain
n−1 (15)

rdiff
n = dchain

n (rn−1 − rlow
n ) (16)

3 Experiments

Our experiments demonstrate that rediscretized ARRNs have identical performance to non-
rediscretized ARRNs; that rediscretized ARRNs have vastly lower inference time than non-
rediscretized ARRNs ; and that ARRNs are robust to low bandwidth signals.

We construct a pair of experimental setups each evaluated on the CIFAR10 and CIFAR100
(Krizhevsky et al., 2009) image classification datasets. All models are trained once for 100 epochs
at the standard 32× 32 resolution. All models are then evaluated at various lower resolutions. Since
the methods we compare do not have the ability to adapt to lower resolutions, the images are redis-
cretized to the lower resolutions, then rediscretized back to the original 32 × 32 resolution during
evaluation (see subsection 5.3 for an illustrated explanation). Thus, all methods have access to the
same information in a fair manner.

We compare our ARRN (subsection 5.3 explains the architecture design in detail; 5.33M-8.09M for
CIFAR10 and 9.59M-14.5M for CIFAR100 depending on rediscretization) against a wide range of
convolutional network families that are well-suited for the classification task we test: MobileNetV3
(1.52M-4.21M) Howard et al. (2019), WideResNetV2 (66.8M-124M) (Zagoruyko and Komodakis,
2016), ResNet (11.1M-42.5M) He et al. (2016a), ConvNeXt (27.8M-196M) Liu et al. (2022), and
EfficientNetV2 (20.2M-117.2M).
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Figure 1: Robustness of all methods to changing resolution. Each model is trained on 32 × 32
resolution images and tested at various resolutions. Our method ARRN maintains its accuracy at
lower resolutions much better than prior methods.
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Figure 2: Inference time of ARRN at various resolutions. Our method ARRN lowers its inference
time at lower resolutions thanks to rediscretization.

Rediscretization: correctness. We confirm that ARRNs can be rediscretized without degrading
performance. Figure 1 shows the performance of ARRNs evaluated with rediscretization (full lines),
meaning they discard certain Laplacian residuals, and without rediscretization (dashed lines), mean-
ing they always use all Laplacian residuals. For models with Laplacian dropout (red lines), the per-
formance is identical or better. For models without Laplacian dropout (pink lines), the performance
is sometimes worse. This is likely a result of the approximate filters used by the implementation,
which allow a small quantity of information to bleed through filters, which ARRNs can learn to
depend on. This bleed-through is zeroed out by Laplacian dropout, which is consistent with the
observation that ARRNs learn to correct for this error when Laplacian dropout is used.

Rediscretization: inference time. We confirm the computational savings granted by rediscretiza-
tion, reusing the previous experimental setup. Figure 2 shows the inference time of ARRNs with
rediscretization (full lines) and without rediscretization (dashed lines). As expected, rediscretization
reduces inference time at lower resolutions, as a lower number of Laplacian residuals need to be
evaluated.

Robustness. We validate the ability of Laplacian dropout to increase the robustness of networks
to low-resolution signals. Figure 1 shows that ARRNs with Laplacian dropout (red lines) are vastly
superior to ARRNs without Laplacian dropout (pink lines), and stronger than all baseline methods.

4 Discussion

We have introduced ARRN, an architecture for deep learning tasks that apply to multidimensional
signals which addresses the problem of variation in signal resolution. ARRNs substitute standard
residual connections with Laplacian residual connections, which allow incorporating a wide vari-
ety of architectural blocks into networks that instantly adapt to signal resolution, and that have a
drastically lower computational cost at lower signal resolution. ARRNs also implement Laplacian
dropout, which greatly promotes robustness to low signal bandwidth. These two components al-
low training high-resolution ARRNs that can then be adapted into low-resolution ARRNs which are
robust and computationally efficient.
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5 Supplementary Material

We provide a short discussion of Laplacian pyramids (subsection 5.1) that helps interpret the formu-
lation of our Laplacian residuals; we also include block diagrams (Figure 3, Figure 5) and example
images (Figure 4, Figure 6) that highlight the parallel between Laplacian pyramids and Laplacian
residuals. We also provide more details on our experimental setup in subsection 5.3.

5.1 Laplacian pyramids

Laplacian pyramids (Burt and Adelson, 1987) are a useful tool for decomposing signals s into m
parts according to their frequency content. They are formulated through a recurrence relation that
usually relies on Gaussian lowpass filter kernels, but that we may substitute with sine cardinal (Whit-
taker, 1927) filter kernels ϕlow

n , which are ideal (meaning they act as binary masks in the frequency
domain). These filter kernels are also assumed to nest into each other such that deeper filter kernels
select for lower bandwidth (the bandwidth of continuous signals is analogous to the resolution of
discrete signals). The base case (Equation 17) takes the original signal s as the starting point of
recurrence plow

0 :

plow
0 = s (17)

The recursive case takes the preceding lower bandwidth signal plow
n−1, forms the next lower bandwidth

signal plow
n (Equation 18), and forms a difference signal pdiff

n (Equation 19) such that both parts sum
to the preceding lower bandwidth signal:

plow
n = plow

n−1 ∗ ϕlow
n (18)

pdiff
n = plow

n−1 − plow
n (19)

The conditional part (Equation 20) sets what we refer to as the level of the pyramid pn to the
difference signal pdiff

n for all levels except the last one, which is instead set to the lower bandwidth
signal plow

n . This ensures all pyramid levels sum to the original signal:

pn =

{
pdiff
n if n ̸= m

plow
m otherwise

(20)

The Laplacian pyramid can be seen as a form of signal decomposition that allows us to reconstruct
the signal with progressively more bandwidth, as we add more difference signals (indexing back-
wards from the last level of the pyramid):

s ∗ ϕlow
n = pm + pm−1 + · · ·+ pn+1 + pn (21)
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In Figure 3, we summarize this recursive formulation into a simple diagram that shows one step of
recursion; this is intended to allow an easy comparison with the Laplacian residuals we illustrate
in subsection 5.2. In Figure 4, we show an example where we decompose a pair of images using a
shallow Laplacian pyramid.

× +

-1

Lowpass

Laplacian Pyramid Block

plow
n plow

npdiff
nplow

n - 1

Figure 3: High-level diagram of a single recurrence step of a Laplacian pyramid.

plow
0

pdiff
1

plow
1

pdiff
2

plow
3

plow
2

pdiff
3

Laplacian Pyramid Block

Laplacian Pyramid Block

Laplacian Pyramid Block

Figure 4: Images decomposed through a Laplacian pyramid. The recursive process starts in the
top left with the source image plow

0 and progressively creates lower bandwidth signals plow
n+1 moving

right, and difference signals pdiff
n+1 moving down. Together, pdiff

1 , pdiff
2 , pdiff

3 and plow
3 sum to the

original signal plow
0 ; they are a form of linear decomposition.
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5.2 Laplacian residuals

In Figure 5, we illustrate the recursive formulation of Laplacian residuals in a simple block diagram.
We can see on the left the same elements that compose the Laplacian pyramid shown in Figure 3. In
Figure 4, we show a visualization of a small ARRN by tapping into rlow

n , the input to every Laplacian
residual, and rdiff

n , the input to every architectural block wrapped within a Laplacian residual.

× +

+

-1

×

~Bernoulli(1 - Dropout)

+Inner Architectural
Block 0 BlockingLowpassLowpass

Laplacian Residual Block

Linear

r low
n r diff

nr n - 1

d n - 1
chain d n

indep d n
chain

r n

Figure 5: High-level diagram of a Laplacian residual which implements Laplacian dropout.

r low
0

r diff
1

r low
1

r diff
2

r low
2

r diff
3

Laplacian Residual Block

Laplacian Residual Block

Laplacian Residual Block

r low
3

Figure 6: Images of PCA analysis of feature maps created by an ARRN’s Laplacian residuals. The
process starts in the top left with the source image r0 that has been mapped through A0. Moving
downwards, we see the difference signal rdiff

n+1 that is later given to the architectural block bn, which
is formed in the same way as with Laplacian pyramids. Moving right, we get a lower bandwidth
signal rlow

n+1 based on the output of the last Laplacian residual.

5.3 Experiments

Model evaluation. In Figure 7, we illustrate how we evaluate networks at various resolutions in
our experimental setup, after having trained them at a fixed resolution. With standard networks,
inference must always take place at the training resolution; lower-resolution input signals must be
rediscretized to a higher resolution first to be compatible. With ARRNs evaluated with rediscretiza-
tion, lower-resolution input signals skip resizing and higher-resolution residuals, and go directly to
corresponding lower-resolution residuals, which reduces computational cost. The grey parts of the
illustration are skipped. With ARRNs evaluated without rediscretization, we follow the process we
usually apply with standard networks, meaning we use all residuals. The grey parts of the illustration
are not skipped.
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Standard Networks

Adaptive Resolution Residual Networks

Input
Signal

Output
Signal

Rediscretized
Signal Required

Unproductive
Layer Required

Input
Signal

Output
Signal

Rediscretized
Signal Skipped

Unproductive
Layer Skipped

Figure 7: Schematized view showing how standard networks and ARRNs perform inference on
lower resolution signals. Each grid shows the discretization of an intermediate signal at some stage
in the forward pass of either network; black arrows show the relationship between each intermediate
signal in the forward pass; black lines highlight changes in signal resolution. In ARRNs with redis-
cretization enabled, the intermediate signals faded to grey are skipped.

Model design. The method we propose leaves much freedom for the design of ARRNs; the num-
ber of Laplacian residuals, their sizes, their number of features, and their inner architectural block
can all be freely picked. The architectural hyperparameters we used in our experiments were found
using a series of hand searches and block coordinate searches, maximizing the average accuracy
over evaluated resolutions.

We use inner architectural blocks that take inspiration from the parameter-efficient convolutional
layers that are used within MobileNetV2 (Sandler et al., 2018) and EfficientNetV2 (Tan and Le,
2021), illustrated in Figure 8 and Figure 9. We use a string of 2 or 3 depthwise 3 × 3 convolutions
for CIFAR10 and CIFAR100 respectively, each separated with pointwise (1 × 1) convolutions. All
depthwise convolutions use edge replication padding in order to satisfy Equation 1. The whole string
is preceded by a pointwise convolution that expands the feature channel count by a factor of 8, and
is terminated by a pointwise convolution that contracts it inversely by a factor of 8 to restore the
original feature count. Each convolution is separated by a batch normalization (Ioffe and Szegedy,
2015) and a SiLU activation function (Elfwing et al., 2018), chosen for its tendency to produce fewer
aliasing artifacts.
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Inner Architectural Block (CIFAR10)

Pointwise
Expand by 8

Pointwise
Contract by 8

SiLUBN SiLUBNDepthwise

SiLUBN SiLUBNDepthwisePointwise

Figure 8: High-level diagram of an inner architectural block nested within a Laplacian residual, in
the CIFAR10 ARRN.

Inner Architectural Block (CIFAR100)

Pointwise
Expand by 8

Pointwise
Contract by 8

SiLUBN SiLUBNDepthwise

SiLUBN SiLUBNDepthwisePointwise

SiLUBN SiLUBNDepthwisePointwise

Figure 9: High-level diagram of an inner architectural block nested within a Laplacian residual, in
the CIFAR100 ARRN.

We settled on an ARRN with 6 Laplacian residual blocks of size 32 × 32, 24 × 24, 16 × 16, 12 ×
12, 8 × 8, 4 × 4, with feature channel counts of 32, 48, 64, 96, 128, 256. When enabled, we use a
Laplacian dropout rate of 0.6 and 0.3 on CIFAR10 and CIFAR100 respectively.

Model training. For training all methods, we use AdamW (Loshchilov and Hutter, 2017) with a
learning rate of 10−3 and (β1, β2) = (0.9, 0.999), cosine annealing (Loshchilov and Hutter, 2016) to
a minimum learning rate of 10−5 in 100 epochs, weight decay of 10−3, and a batch size of 128. We
use a basic data augmentation consisting of normalization, random horizontal flipping with p = 0.5,
and randomized cropping that applies zero-padding by 4 along each edge to raise the resolution,
then crops back to the original resolution.
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