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ABSTRACT

Recently, artificial intelligence techniques for education have been received in-
creasing attentions, while it still remains an open problem to design the effective
music instrument instructing systems. Although key presses can be directly de-
rived from sheet music, the transitional movements among key presses require
more extensive guidance in piano performance. In this work, we construct a piano-
hand motion generation benchmark to guide hand movements and fingerings for
piano playing. To this end, we collect an annotated dataset, PianoMotion10M,
consisting of 116 hours of piano playing videos from a bird’s-eye view with 10
million annotated hand poses. We also introduce a powerful baseline model that
generates hand motions from piano audios through a position predictor and a
position-guided gesture generator. Furthermore, a series of evaluation metrics are
designed to assess the performance of the baseline model, including motion simi-
larity, smoothness, positional accuracy of left and right hands, and overall fidelity
of movement distribution. Despite that piano key presses with respect to mu-
sic scores or audios are already accessible, PianoMotion10M aims to provide
guidance on piano fingering for instruction purposes. The source code can be ac-
cessed at https://github.com/PianoMotion10M/PianoMotion10M
and the dataset will be publicly available.

1 INTRODUCTION

The process of learning has been significantly improved with artificial intelligence techniques, which
enable individuals to enhance their skills under the guidance of an AI coach (Wang et al., 2019;
Zakka et al., 2023; Wang et al., 2024). This can be extended into learning to play the musical
instruments. Particularly, piano performance requires a profound understanding of the underlying
relationship between musical compositions and their corresponding physical motions. As the rigor-
ous practice and training program are necessary for athletes to master a diverse range of expressive
human poses, it entails extensive practices to achieve proficiency in piano fingering and hand move-
ment. To facilitate access to playing guidance, the development of AI piano coach has been spurred.

Large-scale piano-motion datasets are the foundation of a nuanced approach for motion generation,
which offer valuable guidance for physical performance and musical expression. The computational
challenge of motion generation lies in capturing the nonlinear relationship between musical pieces
and the intricate hand motions required for piano playing. The hand poses vary for the same note
across different melodies. Moreover, the dynamic nature of musical expression demands a level
of continuous motion, which is challenging to be learned from small datasets. These limitations
underscore the urgent need for a large-scale piano-motion dataset.

To address the deficiency of the dataset for guiding hand movements and fingerings in playing
piano, we introduce a large-scale 3D piano-motion dataset named PianoMotion10M. As shown
in Fig. 1, PianoMotion10M contains piano audio tracks, Musical Instrument Digital Interface
(MIDI) files, and annotated hand motions with their corresponding videos, meticulously collected
from the Internet. It comprises 1,966 pairs of video and music, with a total duration of 116 hours and
10 million annotated frames. The parametric MANO hand model (Romero et al., 2017) is employed
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Figure 1: Overview of our framework. We collect videos of professional piano performances
from the Internet and process them to construct a large-scale dataset, PianoMotion10M, which
comprises piano music, MIDI files and hand motions. Building upon this dataset, we establish a
benchmark for generating hand motions from piano music.

to represent hand gestures. Our constructed dataset offers a diverse range of music styles and piano
techniques, which addresses the demands of various preferences and skill levels.

Traditional applications like PianoPlayer (PianoPlayer, 2018) are adept at generating static hand
gestures and positions for piano scores, which typically make use of classifiers to predict the proper
fingering combinations. However, they often fail to capture the diversity and continuity inherent of
the piano performance in PianoMotion10M. Both rule-based methods (Balliauw et al., 2017; Lin
& Liu, 2006) and HMM-based approaches (Yonebayashi et al., 2007; Nakamura & Sagayama, 2015)
can estimate fingerings while they primarily focus on the local fingering constraints of continuous
notes. Consequently, they often overlook crucial information like long-range fingering relationships,
while our task aims to estimate the motions of long clips.

To address these limitations, a novel baseline model is presented to show the effectiveness of Pi-
anoMotion10M, which is able to generate realistic hand motions from piano melodies. Given a
piece of piano music, our model can locate the positions of both hands and generate a long sequence
of hand gestures for the performance. It effectively learns the music-position correlation through
an efficient position predictor and produces continuous gestures with a position-guided gesture gen-
erator based on a diffusion probabilistic model. To assess our baseline model, we propose several
evaluation metrics, including Fréchet Gesture Distance and Wasserstein Gesture Distance to mea-
sure the fidelity of each hand motions, Fréchet Inception Distance with a pre-trained auto-encoder
to investigate the motion quality of double hands, and Position Distance to assess the accuracy of
hand positioning, and Smoothness of the generated motions.

In summary, our main contributions are: 1) A large-scale piano-motion dataset PianoMotion10M
comprises 116 hours of music and 10 million annotated frames with hand poses. To the best of
our knowledge, it stands as the first dataset integrating piano music with its corresponding hand
motions, which facilitates the tasks of 3D hand motion generation from piano audio tracks and
piano music generation conditioned on hand motions. 2) Based on PianoMotion10M, we propose
a benchmark with a series of evaluation metrics to investigate the effectiveness on hand motion
generation, including the accuracy of positions and fidelity of gestures. 3) A novel baseline model
bridges piano music with hand motions, which estimates hand location with a position predictor and
generates hand gestures sequences through a position-guided gesture generator.

2 RELATED WORK

Motion-music Datasets. While multi-modal datasets (Schuhmann et al., 2021; Srinivasan et al.,
2021; Miech et al., 2019; Lee et al., 2021) become the key of various learning tasks, there remains a
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significant gap in the availability of repository specially designed for music-conditional motion gen-
eration. Although the existing hand gesture datasets (Moon et al., 2020b;a; Kwon et al., 2021; Gan
et al., 2024; Wu et al., 2023) contain a large number of image-hand gesture pairs, they do not have
audio or other related information. This limitation hinders them from the generative tasks, since they
mainly focus on hand reconstruction and pose estimation. Recently, datasets like AIST++ (Li et al.,
2021) and TikTok (Zhu et al., 2022) are tailored for music-dance learning, which provide limited
music segments, typically less than 5 hours in duration. Moryossef et al. (Moryossef et al., 2023)
manage to automatically detect which fingers pressed the key of the piano and provide a dataset of
piano-fingering. However, it does not provide continuous hand gesture movements. Therefore, there
is a crucial need to build a piano-motion dataset specially tailored for motion generation tasks. To
this end, we introduce the PianoMotion10M dataset, which comprises extensive piano music and
their corresponding hand motion annotations.

Piano Hand Datasets. Yamamoto et al. (Yamamoto et al., 2010) employed a key-frame technique
to generate natural hand motions for piano playing from inputted music scores. Liang et al. (Liang
et al., 2016) used an RGB-D camera to collect 7,200 depth images and designed models to esti-
mate fingertip movements and predict finger tappings. The CMU Panoptic Studio dataset (Joo et al.,
2015; 2017; Simon et al., 2017) provided a multi-view dataset of human-object interactions, in-
cluding annotated hand and face postures. Simon et al. (Simon et al., 2017) introduced a real-time
hand keypoint detector and a markerless 3D hand motion capture system capable of reconstructing
challenging hand-object interactions and musical performances. TwohandsMusic (Seo et al., 2019)
presented two shallow networks to estimate 3D hand poses and tap gestures, along with a dataset of
85,000 images of hand movements while playing the piano. To help beginners improve their playing
techniques, Johnson et al. (Johnson et al., 2020) discussed automatic assessment of pianists’ hand
postures, which categorizes postures as correct posture, low wrists, or flat hands. Kun et al. (Su et al.,
2020) collected piano performance videos to generate the music for videos directly. Moryossef et
al. (Moryossef et al., 2023) managed to automatically detect which fingers pressed the key of the
piano and provided a dataset of piano-fingering. Wu et al. (Wu et al., 2023) proposed a marker-
removal approach for collecting bare-hand data, which included a precise ground truth alongside
a large-scale pianist 3D hand dataset, PianoHand2.5M. This dataset provided advanced annotated
images for estimating hand postures in marked-hand images.

Our dataset and baseline primarily focus on researching the relationships between piano music and
hand postures. More comparisons with other existing hand datasets are shown in the attached pdf
document. Since most of existing piano-hand datasets are not publicly available, our open-source
release of PianoMotion10M will be of substantial importance to advancing research in this field.

3D Human Motion Synthesis. The problem of generating realistic and controllable 3D human
motion sequences has been a subject of long-standing study. By taking advantage of 2D keypoint
detection (Cao et al., 2017), the synthesis of 2D skeletons has been extensively explored (Ren et al.,
2020; Shiratori et al., 2006; Ferreira et al., 2021). Considerable research efforts have been devoted
to 2D speech-driven head generation for facial mouth and lip motion generation (Zakharov et al.,
2019; Chen et al., 2019; Guo et al., 2021; Ji et al., 2021; Hong et al., 2022), which usually employ
either image-driven or voice-driven methods to produce realistic videos of speaking individuals.
However, the expressive capabilities of 2D pose skeletons are limited and they are not applicable to
3D character models. Recent methods for full-body 3D dance generation have utilized LSTM (Tang
et al., 2018; Yalta et al., 2019; Zhuang et al., 2022), GANs (Sun et al., 2020; Ginosar et al., 2019)
or transformer encoders (Li et al., 2021; Huang et al., 2020; Siyao et al., 2022). To generate vivid
talking head videos, extensive research has been conducted in the field of speech-driven 3D facial
animation (Cao et al., 2005; Cudeiro et al., 2019; Tian et al., 2019; Fan et al., 2022; Zhang et al.,
2021). EmoTalk (Peng et al., 2023) animates emotional 3D faces from speech input by generating
controllable personal and emotional styles. Tian et al. (Tian et al., 2024) introduce a speed controller
and a face region controller to enhance stability during the head generation process.

In the domain of hand motion generation, it has been primarily categorized into rule-based
methods (Cassell et al., 2001; Huang & Mutlu, 2012; Starke et al., 2022) and data-driven ap-
proaches (Kopp et al., 2006; Chiu et al., 2015; Liu et al., 2022; Yoon et al., 2020; Bhattacharya
et al., 2021). For instance, Speech2Gesture (Ginosar et al., 2019) utilizes conditional generative
adversarial networks to generate personalized 2D keypoints from audio. Ahuja et al. (Ahuja et al.,
2020) propose a method for personalized motion transfer. Ao et al. (Van Den Oord et al., 2017)
learn the mapping between the speech and gestures from data using a combined network structure
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of the vector quantized variational auto-encoder (VQ-VAE). Beyond 2D keypoints generation, Tri-
Modal (Yoon et al., 2020) extracts different upper body movements from TED talks and designs a
LSTM-based neural network conditioned on audio, text, and identity to generate co-speech gestures.

Recently, diffusion models have achieved promising results in generating human motions. Previous
works such as MDM (Tevet et al., 2022) and MotionDiffuse (Zhang et al., 2024) have produced
realistic motion inspired by denoising diffusion probabilistic models (DDPM) (Ho et al., 2020).
PhysDiff (Yuan et al., 2023) extends MDM by imposing physical constraints. MLD (Chen et al.,
2023) utilizes latent carrier DDPM for forward denoising and reverse diffusion in motion latent
space. MAA (Azadi et al., 2023) enhances the performance of non-distributed data by pre-training
diffusion models. Zhang et al. (Zhang et al., 2023) introduce retrieval-enhanced DDPM, which
improves the text-to-motion functionality in distribution.

3 PIANOMOTION10M DATASET

It is a formidably challenging task to map piano music to hand motions due to the significant influ-
ence of note sequences and positions on hand movements and fingering. Lacking diverse data may
lead to the inferior performance on estimating various hand poses in piano playing. To capture the
variability, we present the first large-scale piano-motion dataset, PianoMotion10M, which com-
prises 1,966 piano performance videos along with 10 million hand poses and their corresponding
MIDI files, resulting in an overall duration of 116 hours. Fig. 2 presents an example of our dataset.
These videos are segmented into 16,739 individual clips with a length of 30 seconds. To ensure com-
prehensive evaluation, we extract 7,519 clips for training, 821 for validation and 8,399 for testing.
The dataset is divided based on the original videos to avoid the overlap in piano performances. The
detailed comparisons with the existing datasets on hands and 3D human motions are summarized
into Tab. 1.

Table 1: Comparison between different hand and motion datasets. The proposed PianoMo-
tion10M dataset consists of piano music with corresponding hand poses for hand motion generation.
For reference, the table is organized as follows: the first five rows list existing hand-image datasets,
the subsequent four rows present music-motion datasets, and the following four rows display various
piano-hand pose datasets. The final row features our dataset.

Dataset Year Pose Size Subject Music MIDI Duration(h) Available
CMU Panoptic 2017 ! 31K 8 % % - !

FreiHAND 2019 ! 134K 32 % % - !

InterHand2.6M 2020b ! 2.6M 27 % % - !

RGB2Hands 2020 ! 1K 2 % % - !

Re:InterHand 2023 ! 1.5M 10 % % - !

GrooveNet 2017 ! - 1 ! % 0.38 !

DanceNet 2022 ! - 2 ! % 0.96 %

EA-MUD 2020 ! - - ! % 0.35 !

AIST++ 2021 ! 10.1M 30 ! % 5.19 !

Barehanded Music 2016 ! 7.2K 2 % % - %

TwohandsMusic 2019 ! 85K 5 ! % - %

Piano-fingering 2023 ! 155K - ! ! - %

PianoHand2.5M 2023 ! 2.5M 21 ! ! 4.3 %

PianoMotion10M 2024 ! 10.5M 14 ! ! 116.16 !

3.1 DATA COLLECTION

There is a wealth of videos and live streams dedicated to musical instrument performances and
tutorials from the Internet. Note that each individual has a unique playing style, we firstly select 14
piano experts from Bilibili1 and collect a total of 3,647 candidate videos. To ensure consistency and

1https://www.bilibili.com, one of the most popular video-sharing platforms in China.
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MIDI

Hand Pose

Video

Audio

Figure 2: Illustration of sample from PianoMotion10M. Each sample in our dataset includes
audio, hand pose annotations, and a MIDI file along with the corresponding Bilibili video ID.

enhance the quality of our dataset, we conduct pre-processing with five pivotal factors, including
resolution, audio quality, camera perspective, presence of multiple individuals, and visibility of
hands. Accurate, noise-free audio is essential to our dataset. We manually select pure piano music to
ensure the audio contains no human vocals or sounds from other instruments, rather than employing
on automated tools Kong et al. (2020). Moreover, videos with a resolution lower than 1080× 1920
are discarded to ensure the quality of our dataset. To enhance the observation of hand movements
and gestures, we choose videos with a bird’s-eye view to minimize hand occlusion. Furthermore,
we remove those videos where hand regions are frequently (more than 20% frames) obstructed or
invisible during performance. Additionally, we do not take consideration of videos with multiple
piano players, which is beyond the scope of this dataset. By addressing these factors, the overall
quality and coherence of the dataset have been substantially enhanced. Following this preprocessing
stage, the result is a collection of 1, 966 high-quality raw videos. Each one showcases the piano
playing by an individual, which is captured from a bird’s-eye view along with pure piano audio.

3.2 DATA ANNOTATIONS

MIDI is a universal digital protocol to store musical data for various musical devices, which is served
as a digital representation of musical notes, volume, tempo, and other performance parameters.
Some creators provide ground-truth MIDI files for their performances. For the remaining piano
performances, automatic piano transcription methods (Kong et al., 2021; Maman & Bermano, 2022;
Gardner et al., 2021; Toyama et al., 2023; Cheuk et al., 2023) are employed to convert them into
MIDI files, while (Kong et al., 2021) demonstrates more stable and robust performance in wild data.
To ensure the accuracy of the conversion results, we replay MIDI files and compare them with the
original music tracks. Files are adjusted if they exceed thresholds such as timing differences over 30
ms, dynamic variations beyond 10%, or noticeable pitch mismatches that alter melody or harmony.

Hand Pose is captured via the parametric hand model MANO (Romero et al., 2017), which serves
as our hand prior model. It effectively maps the pose parameter θ ∈ RJ×3 with J per-bone parts and
the shape parameter ρ ∈ R10 onto a template mesh M̄ with vertices V . The MANO model enables
the simulation of various hand gestures and movements during piano performances, which provides
an effective way to study the relationship between hand gestures in playing piano. Due to the non-
uniformity of hand sizes and positions in the collected videos, we first employ the MediaPipe hand
detection framework (Lugaresi et al., 2019) to obtain bounding box of the hand region. Video frames
are cropped according to the detected hand bounding boxes to enhance the robustness of the results.
To this end, hand poses in collected videos are annotated using HaMeR (Pavlakos et al., 2023).
HaMeR follows a fully transformer-based architecture and reconstructs hand models with increased
accuracy and robustness. All images having hands detected by MediaPipe are annotated with hand
poses by HaMeR, which result in a dataset of 10 million image-pose pairs.
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Table 2: Statistics on the distribution of subjects in the PianoMotion10M dataset, where subject
names denote the identity ID of experts.

Subject Name Videos Clips Time(sec) Frames Subject Name Videos Clips Time(sec) Frames
1467634 337 4,359 103,293 2,237,181 66685747 535 5,136 130,352 3,520,370
37367458 114 859 20,802 571,525 676539782 19 359 11,314 187,917
442401135 275 1,788 52,030 1,209,905 688183660 264 872 19,074 564,699
478315001 285 2,674 62,615 1,792,707 Others 137 692 18,692 442,863

Total Videos: 1,966, Clips: 16,739, Total Duration(hour): 116.16, Annotated Frames: 10,527,167

To enhance the smoothness and continuity of our dataset, the generated hand poses require to be
cleaned and refined. The results of MediaPipe and HaMeR are usually accurate in most cases, while
some inferior results may occur due to rapid motion and image blurring. The Hampel filter (Pearson
et al., 2016) with a window size of 20 is utilized to identify these outliers. The outliers and the
timestamps where hands are undetected are firstly labeled as missing values. Within a small period,
hand movements can be considered as the motion with constant speed. Therefore, the small gap
can be interpolated bilaterally. To address these missing data in the time series, missing segments
with the frame length δ less than 30 frames are filled by linear interpolation with respect to their
surrounding values. The others are considered as periods when the hand is invisible. To ensure the
reliability of detected hands, a similar strategy is employed to label observations with excessively
short duration (δ < 15) as invisible. Finally, to ensure the smoothness of hand motions, we make
use of a Savitzky-Golay filter (Schafer, 2011) with an order of 3 and a window size of 11 for data
smoothing, which delivers better performance in terms of noise separation, artifacts and baseline
drifts. The annotated hand poses are manually checked to ensure their quality.

3.3 DATA STATISTICS

The dataset is made of contributions from several subjects with different experts, and each provides
varying amounts of data in terms of videos, clips, duration, and annotated frames. Tab. 2 presents
the detailed statistics on the distribution of subjects within our PianoMotion10M dataset.

The whole piano-motion dataset, PianoMotion10M, consists of 1,966 videos with approximately
116 total hours of footage. Each piece of music is segmented into 30-second clips at 24-second
intervals, resulting in a total of 16,739 clips. Note that we discard those clips where hand visibility
is below 80%. Our dataset has 14 subjects with different playing styles. This variability ensures a
rich diversity of playing techniques and music styles, which is essential for training robust models
to predict piano hand gestures from musical pieces. All videos in our dataset are publicly accessible
with provided video IDs on the Bilibili website.

4 BASELINES

To tackle the challenging task of generating hand motions synchronized with piano audio tracks, we
introduce a novel motion generation framework upon the PianoMotion10M dataset. As illustrated
in Fig. 3, our framework consists of a position predictor and a gesture generator. The position
predictor extracts the hand positions from piano music and integrates them as contextual input for the
gesture generator. By leveraging a DDPM model (Ho et al., 2020), the gesture generator estimates
hand pose sequence based on the piano audio and the predicted positions. Further details on each
component are elaborated in the following subsections.

Problem Formulation. Given a piano audio piece A with N frames, our objective is to obtain the
hand position sequence P ∈ RN×3 and hand gestures Θ ∈ RN×J×3 for both left and right hands..
The hand position sequence P encompasses the 3D coordinates of the left and right hands. The hand
gestures Θ consist of Euler angle at each joint of both hands.

Due to the highly nonlinear relationship between acoustic signals and hand gestures, it poses a
significant challenge to estimate motions through discriminative models (Peng et al., 2023), which
usually leads to an average pose, as demonstrated in Section 5.2. To address this issue, a hand
position predictor is introduced to estimate the continuous changes in hand positions. Moreover, a
generative model is utilized to reconstruct hand gestures from a piano music piece. Hereby, the task

6
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Figure 3: Illustration of our baseline model. Given a piece of piano music, our baseline model
estimates the hand motions by predicting hand positions and generating hand gestures.

of hand motion generation becomes more concise and comprehensive by disentangling it into hand
position estimation and gesture generation. To extract the audio features fa from the audio A, we
make use of a pre-trained audio feature extractor Φa (Baevski et al., 2020; Hsu et al., 2021), which
is formulated as fa = Φa(A), fa ∈ RN×C . C is the feature dimension of Φa.

4.1 POSITION PREDICTOR

The position predictor is employed to predict the 3D positions of the left and right hands, respec-
tively. Since the audio features fa cannot directly be mapped to the positions, a feature embedding
module is treated as our position decoder Φp to extract the latent features. It projects the sequential
audio features fa onto the latent features fp with more comprehensive temporal information, which
is formulated as fp = Φp(fa), fp ∈ RN×512. Subsequently, a linear mapping is employed to project
the feature fp onto the output positions P .

In our experiments, we can make use of either Transformer (Vaswani et al., 2017) or State-Space
Model (SSM) (Gu & Dao, 2023) as our feature embedding module. Transformer leverages self-
attention mechanisms to effectively capture long-range dependencies and contextual information
in order to learn temporal relationships. Recently, a different representation inspired by classical
SSM (Kalman, 1960) is proposed to replace the attention mechanism, which is built upon a more
contemporary Selective Structured State Space Model (S6) (Gu & Dao, 2023) suitable for deep
learning. By sharing a similar architecture to the classical RNN, it can efficiently capture information
from previous inputs.

4.2 POSITION-GUIDED GESTURE GENERATOR

Leveraging recent achievements (Zhi et al., 2023; Azadi et al., 2023) in motion generation, our
approach incorporates a diffusion probabilistic model (Ho et al., 2020). By mastering denoising, this
model effectively captures the complex distribution of hand motions observed in large-scale piano-
motion datasets, which has the capability to generate motions with different conditions. Starting with
a clean sample Θ0 of motion sequence, the forward diffusion process establishes a Markov chain
that gradually adds noise to Θ0 in T steps, which generates a series of noisy samples Θ1, ...,ΘT as

q(Θt|x0) = N (Θt;
√
ᾱtx0, (1− ᾱt)I), (1)

where N denotes the Gaussian distribution. ᾱt =
∏t

s=1(1−βs) and β represent the variance sched-
uler for the added noise. Therefore, a model parameterized by a deep neural network G is trained
to master the inverse process within another Markov chain, which learns the mapping p(Θt−1|Θt)
to sequentially denoise samples over T steps. Specifically, denoising model G consists of a 4-layer
U-Net (Ronneberger et al., 2015) with 256, 512, 1024, 2048 dimensions for each layer.

7
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To reduce the noise in piano audio, the audio features fa are simultaneously fed into the denoising
neural network G as conditions. Similar to the position decoder Φp, a gesture decoder Φg is utilized
to extract gesture features fg from the audio features fa as fg = Φg(fa). Considering that the finger
movements at different positions for the same pitch are distinct, G requires the guidance of hand
positions P from the position predictor. This will enhance the fidelity of the generation process.
As for the additional conditions, the time step embeddings of time t are concatenated in denoising
process. The denoising process can be formulated as follows

Θ̂0 = G(Θt, t; fg, P ), (2)

where Θ̂0 ∈ RN×J×3 denotes the result of hand motions within N frames.

4.3 IMPLEMENTATION DETAILS

We employ a two-stage scheme to train our proposed network. At the first stage, the position pre-
dictor is trained using position error Lp and velocity loss Lv . The position error Lp computes the
L1 loss between the predicted position P̂ and the ground truth P , expressed as Lp = ||P̂ − P ||1.
Inspired by (Peng et al., 2023), velocity loss is adopted to induce temporal stability for generating
smoothing movements, which is formulated as Lv = ||(P̂n−P̂n−1)−(Pn−Pn−1)||2. n denotes the
n-th frame in a motion sequence. Specifically, our model is trained by subject 1467634 and subject
66685747, which have the similar piano keyboard layout. At the second stage, the parameters of
position predictor are frozen, and the estimated positions are employed as a guidance for the gesture
generator. As in (Salimans & Ho, 2022), the denoising process is modified from noise prediction to
velocity prediction. During the whole training process, the parameters of audio feature extractor Φa

are frozen.

The baseline model is implemented with PyTorch. We normalize the inputs into 30 FPS through
interpolation, where each piece of music lasts 8 seconds. Both stages involve training for 100, 000
iterations with the learning rates of 2 × 10−5 and 5 × 10−5, respectively. We conducted all the
experiments on a PC with single NVIDIA RTX 3090Ti GPU, which has 24GB of GPU RAM.

5 BENCHMARK

5.1 EVALUATION METRICS

To assess the performance of our proposed baseline, we employ several evaluation metrics to exam-
ine the effectiveness of hand poses generated by the input piano music, which are crucial in under-
standing the relationship between piano melody and its corresponding playing motions. Specifically,
to assess the overall motion distribution similarity of the hand, we employ the Fréchet Inception Dis-
tance (FID). In piano performance, the left and right hands execute distinct actions and movements.
For a detailed evaluation of the disparity of single-hand movements, we utilize the Fréchet Gesture
Distance (FGD) and Wasserstein Gesture Distance (WGD). Evaluating positional accuracy is also
crucial, for which we introduce the Positional Distance (PD) as a metric. Smoothness is utilized to
determine the fluidity of the generated motions.

Fréchet Inception Distance (FID). FID is introduced to measure the overall motion similarity by
calculating the Fréchet distance between the feature vectors of prediction and ground truth. We pre-
train an auto-encoder (Yoon et al., 2020) to project motion sequence onto a latent space for double
hands. The FID is adopted to assess the fidelity of the overall motions generated by our baseline
model. The formulation of FID is derived as follows

FID = ||µf
pred − µf

gt||2 + Tr(Cf
pred + Cf

gt − 2 ∗
√
Cf

pred ∗ Cf
gt), (3)

where f represents the latent features obtained by the autoencoder. µ and C denote the mean vector
and covariance matrix, respectively. Tr() is the trace operation of a matrix.

Fréchet Gesture Distance (FGD). On the other hand, FGD is utilized to compute the long-term
disparity between predicted gestures and ground truth of one hand. It calculates the Fréchet distance
over complete sequences of hand motions Θ, offering a metric for the global alignment between
generated and real data. The formula is listed as follows

FGD = ||µΘ
pred − µΘ

gt||2 + Tr(CΘ
pred + CΘ

gt − 2 ∗
√
CΘ

pred ∗ CΘ
gt). (4)
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Table 3: Quantitative evaluation of our proposed hand motion generation baseline and existing
models on the validation set. We present a comparative analysis of various network architectures,
highlighting the performance and efficiency of our baselines in generating hand motion.

Method Decoder Step Left Hand Right Hand FID↓ Params
(M)FGD↓ WGD↓ PD↓ Smooth↓ FGD↓ WGD↓ PD↓ Smooth↓

EmoTalk (2023) TF - 0.445 0.232 0.044 0.353 0.360 0.259 0.033 0.313 4.645 308
LivelySpeaker (2023) TF 1000 0.538 0.220 0.038 0.406 0.535 0.249 0.030 0.334 4.157 321

Our-Base
Wav2vec

SSM 1000 0.425 0.223 0.042 0.412 0.416 0.246 0.034 0.335 3.587 320
TF 1000 0.426 0.219 0.040 0.402 0.424 0.246 0.033 0.334 3.608 323

HuBERT
SSM 1000 0.432 0.218 0.041 0.407 0.402 0.247 0.033 0.336 3.412 320
TF 1000 0.432 0.219 0.041 0.412 0.418 0.247 0.034 0.338 3.529 323

Our-Large
Wav2vec

SSM 1000 0.430 0.219 0.038 0.253 0.421 0.244 0.031 0.208 3.453 539
TF 1000 0.372 0.214 0.038 0.251 0.354 0.244 0.030 0.209 3.376 557

HuBERT
SSM 1000 0.406 0.217 0.037 0.237 0.403 0.244 0.030 0.214 3.395 539
TF 1000 0.372 0.217 0.037 0.248 0.351 0.244 0.030 0.205 3.281 557

Wasserstein Gesture Distance (WGD). WGD (Rubner et al., 2000) is computed between two dis-
tributions, each of which is represented as a Gaussian Mixture Model (GMM) (Kolouri et al., 2018)
as below

W (Ix, Iy) = inf
γ∼Π(Ix,Iy)

E(x,y)∼γ [∥x− y∥] , (5)

where Π(Ix, Iy) indicates the joint distributions that combine the parametric GMM distributions
Ix and Iy . Distributions Ix and Iy are fitted by predicted gestures and ground truth of single
hand. E calculates the expectation of the sample pairs (x, y) with multiple Gaussians, which focuses
on short-term similarity by analyzing mixture distributions, allowing it to capture finer, localized
motion patterns within the sequence. The WGD metric offers a robust measure of dissimilarity
between the generated motion and ground truth.

Position Distance (PD). The PD calculates the L2 distance between estimated positions and the
ground truth, which is formulated as

PD = ||Ppred − Pgt||22, (6)

where P is the hand root position. It is essential to evaluate the precision of predicted hand positions
to ensure the accuracy required for piano fingerings.

Smoothness. Smoothness is measured by computing the acceleration of each joint. However, hands
in a static state exhibit maximum smoothness, which are contrary to the desired outcome. Conse-
quently, we consider the acceleration of ground truth as a reference and utilize relative acceleration
as the evaluation metric for smoothness, which is formulated as Smooth =

∑
i |τ̂i − τi|. τi denotes

the acceleration of the i-th joint. It reflects the continuance and coherence of the estimated gestures.

5.2 EXPERIMENTS

Experimental Setup. Within the network, we compare two transformer-based audio feature extrac-
tors, Wav2Vec2.0 (Baevski et al., 2020) and HuBERT (Hsu et al., 2021), which are popular in the
field of self-supervised speech recognition. Regarding the feature embedding module (Decoder), we
evaluate the performance of SSM-based model (Gu & Dao, 2023) in contrast to the transformer (TF)
approach (Vaswani et al., 2017). We conduct experiments using two different model configurations.
Both of them employ the same diffusion architecture while differing in the feature extractor setup.
The base model incorporates Wav2Vec2.0-base/HuBERT-base as the audio feature extractors, fea-
turing a model dimension of 768 and containing 8-layer TF/SSM decoder. The large model utilizes
Wav2Vec2.0-large/HuBERT-large, with a model dimension of 1,024 and 16-layer TF/SSM decoder.

Quantitative Results. Tab. 3 provides the results of existing methods and our baseline under various
experimental settings on PianoMotion10M dataset. Due to the absence of prior work on gener-
ating gestures for piano music, we refer to the network structures of EmoTalk (Peng et al., 2023)
and LivelySpeaker (Zhi et al., 2023) and re-implement them to account for our task. EmoTalk di-
rectly generates poses from audio, while LivelySpeaker utilizes an MLP-based diffusion backbone
for gesture generation. Our baseline models achieve better fidelity on hand motions by estimat-
ing positions and gestures, separately. In our baseline models, TF-based models outperform the
SSM-based models in processing our time-series information, especially in our large model. For the
audio feature extractor, the performance of the HuBERT model slightly outperforms the Wav2vec2.
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GTOursLiveSpeaker [76]EmoTalk [44] Music

Figure 4: Illustration of the qualitative results. We display the generated gestures across frames
using different methods. Our method stands out due to its greater fidelity, as shown in the examples.

Step FID↓ FGD↓ WGD↓ Smooth↓
5 3.540 0.361 0.237 0.354

10 3.682 0.363 0.236 0.310
100 3.438 0.366 0.232 0.254
300 3.360 0.348 0.233 0.240
1000 3.281 0.362 0.231 0.227

Table 4: Ablation study on denoising steps.

Additionally, we conduct ablation experiments
on different denoising steps and our model also
achieves competitive results with fewer steps,
as shown in Table 4.

Qualitative Results. Fig. 4 demonstrates the
visual results of our baseline and the existing
models. The output of EmoTalk method ex-
hibits a static average gesture. While MLPs af-
ford LivelySpeaker rapid inference speed, they
compromise the fidelity of generated motions.
Conversely, our model demonstrates notably superior performance compared to previous methods
by taking advantage of a two-stage approach, as illustrated in Fig. 4. To attain accurate positional
information, we utilize an end-to-end position predictor rather than making use of an uncontrollable
diffusion model for position generation. Furthermore, we employ a position-guided approach with
a diffusion-based gesture generator for hand motion estimation.

6 CONCLUSION

In this work, we present PianoMotion10M, a new large-scale piano-motion dataset for hands,
which has 116 hours of piano music and 10 million frames annotated with hand poses. We address
the critical issue that the current datasets are insufficient for human-piano interaction. Based on
PianoMotion10M, we develop a benchmark model that maps the piano music pieces to hand mo-
tions. To simplify the learning target, we divide the motion into position and gesture by introducing
a position predictor along with a gesture generator guided by the estimated positions. We suggest
the evaluation metrics to measure the fidelity and smoothness of the hand motions compared to the
ground truth. Our dataset and benchmark will further advance the automation of piano performance
simulation and assist in learning piano playing.
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APPENDIX

In this part, we further provide more details and discussions on our proposed dataset and benchmark:

• §A: More statistics of PianoMotion10M;
• §B: More visual samples of PianoMotion10M dataset;
• §C: More details of our baseline;
• §D: Limitation and future work;
• §E: Ethical considerations;
• §F: Author statement;

A MORE STATISTICS OF PIANOMOTION10M
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Figure A1: Distribution of Note Clicks and Volume Levels in the PianoMotion10M Dataset.
The top figure depicts note click frequency, and the bottom one shows the volume distribution.

Fig. A1 presents a detailed statistical analysis of piano fingerings, which focuses on the frequency
of note clicks and the distribution of volume levels.

Note Click Counts. The top figure in Fig. A1 displays the frequency of each note played, measured
in millions. This distribution spans 128 keys of the piano, which indicates frequent usage of those
keys in performances. It shows higher counts in specific note ranges.

Notes around the middle of the keyboard, particularly from C4 to C6, exhibit significantly higher
click counts, aligning with their common use in melodies and harmonic accompaniments. Con-
versely, notes in the low (A0 to B1) and high (C7 to C8) octaves have markedly fewer clicks, as
these ranges are less frequently used and typically reserved for specific musical effects or embel-
lishments. It is worth noting that, certain notes, particularly those fundamental to common chords
and scales (e.g., A, C, E, and G), exhibit higher frequencies, reflecting their frequent use in various
musical pieces.

Volume Distribution. In addition to note frequency, the figure below presents a comprehensive
distribution of volume levels, spanning various ranges to highlight the dynamics of piano playing.
Volume counts, measured in millions, provide insights into the intensity and expression captured in
our constructed dataset.

There is a higher count of notes played at moderate volume levels. This reflects the natural dynamics
of piano playing, where most notes are neither extremely soft nor loud.

B MORE VISUAL SAMPLES OF PIANOMOTION10M DATASET

We provide more visual samples of PianoMotion10M dataset, as illustrated in Fig. A2.
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Sample 1. BV1ze411T7q6

Sample 2. BV1184y1r789

Sample 3. BV1ED4y1D75s

MIDI

Hand Pose

Audio

MIDI

Hand Pose

Audio

MIDI

Hand Pose

Audio

Sample 4. BV1Su411v7dk

MIDI

Hand Pose

Audio

Sample 5. BV1zo4y1m7qP

MIDI

Hand Pose

Audio

Figure A2: More samples from PianoMotion10M dataset. BV*** denote the corresponding
video iDs.
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C MORE DETAILS OF OUR BASELINE

The audio feature extractor Φa maps the audio A to the feature vector fa. We use pre-trained
Wav2Vec2.0 (Baevski et al., 2020) and HuBERT (Hsu et al., 2021) models developed by Facebook
AI for Φa. Both models leverage extensive unlabeled data for unsupervised pretraining to learn high-
dimensional speech representations. HuBERT extends its semi-supervised learning approach with
pseudo-labels to self-supervised learning. In our experiments, we use wav2vec2-base-960h
and hubert-base-ls960 for the base model, and wav2vec2-large-960h-lv60-self
and hubert-large-ls960-ft for the large model as the audio feature extractor Φa.

D LIMITATION AND FUTURE WORK

Figure A3: Samples of failure in the generated hand motions when dealing with excessively fast
music.

Our dataset is derived from 14 subjects and faces an issue of imbalance, primarily due to the varying
levels of performance provided by authorized creators. In extreme performance scenarios, such
as rapid, multi-hand, or non-human piano audio, our baseline method may yield incorrect hand
transitions due to out-of-distribution challenges, as illustrated in Fig. A3. Additionally, not all videos
meet the required data quality standards. In the future, we plan to engage creators on other platforms,
such as YouTube and TikTok, to further enhance the diversity of our dataset.

Our dataset closely associates piano music with hand movements. Due to data diversity, we have
not yet aligned piano positions in all videos. We plan to engage extra experts to annotate piano key
positions for more precise spatial alignment in the next version. Additionally, the variance in piano
tones across recordings may also affect the baseline model’s performance.

PianoMotion10M provides piano music, corresponding MIDI files, and hand poses, offering re-
searchers a valuable resource for studying human-piano interaction. This dataset enables the analy-
sis of piano music through hand gestures and the generation of hand poses from audio tracks. With
PianoMotion10M, we hope to benefit and facilitate further research in relevant fields.

E ETHICAL CONSIDERATIONS

Piano motion datasets may pose significant privacy challenges, particularly concerning the pianist’s
identifiable aspect, mainly their hands, during piano performance. Our dataset comprises videos
uploaded by users on Bilibili, which are publicly accessible. During the dataset collection process,
we carefully selected the high-quality piano performance videos with a bird’s-eye view on Bilibili
and obtained permissions from the respective creators to use their videos, and accessed the original
content. Those videos from creators who did not grant permission or did not respond have not been
included in the dataset. We informed the creators that we would extract hand poses and audios from
the videos to create a publicly available, non-commercial dataset. We clarified that their personal
likenesses would not be used. The dataset also included metadata, such as the video URL, to trace
the original video. In the camera-ready version, we will acknowledge all the creators’ contribution
in building our dataset.

F AUTHOR STATEMENT

The authors bear all responsibility in case of violation of rights. We confirm that the PianoMo-
tion10M dataset is open-sourced under the CC BY-NC 4.0 International license and the released
code is publicly available under the Apache-2.0 license, ensuring open access and permissive usage
for academic and research purposes.
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