A Novel Efficient and Effective Preprocessing Strategy for Text
Classification

Anonymous ACL submission

Abstract

Text classification is an essential task of natu-
ral language processing. Preprocessing, which
determines the representation of text features,
is one of the key steps of text classification
architecture. This paper proposes a novel effi-
cient and effective preprocessing strategy with
three methods for text classification using OMP
algorithm to complete the classification. The
main idea of our new preprocessing strategy is
that we combine regular filtering and/or stop-
words removal with tokenization and lowcase
convertion, which can effectively reduce the
feature dimension and improve the quality of
text feature matrix to some extent. Simulation
tests on 20Newsgroups dataset show compared
with the existing state-of-the-art method, our
new best method reduces the number of fea-
tures by 19.85%, 34.35%, 26.25%, and 38.67%,
and increase the speed of text classification by
17.38%, 25.64%, 23.76%, and 33.38% with
similar classification accuracy on religion, com-
puter, science and sport data, respectively.

1 Introduction

Text classification (TC), which is the task of assign-
ing one or more categories from a set of known cate-
gories to a centralized document, is one of the most
fundamental tasks in Natural Language Processing
(NLP) (Joachims, 1998). It has been successfully
applied in spam filtering (Guzella and Caminhas,
2009), sentiment analysis (Medhat et al., 2014) and
other NLP tasks.

Text classifications are highly useful for infor-
mation discovery and opinion mining. However,
with more and more electronic documents gener-
ated, many challenges are faced by TC due to or-
ganize and classify a large number of documents
which cases high-dimensional data. While, text cat-
egorization is essentially high-dimensional where
medium-sized datasets can contain tens of thou-
sands of unique words (Joachims, 2002). Addition-
ally, text high-dimensional data significantly affect

the training time and classification accuracy of the
classifier (Wang et al., 2016), which may influence
the effectiveness and efficiency of classification.
It is easy to increase the likelihood of overfitting
since there are a great many text features in text
data (Skianis et al., 2016; Abbasi et al., 2010).

Although some models achieve good perfor-
mance, the problem of hight dimension of text still
remains. However, text classification remains an
outstanding research area using various techniques
and their combinations to solve these problems
(Mironczuk and Protasiewicz, 2018). In addition,
preprocessing, which is a fundamental text process-
ing technology of TC, can effectively alleviate text
data explosion problem and provide a sufficient
guarantee. It has been claimed in (Uysal and Gu-
nal, 2014) that preprocessing methods in TC are
as important as the feature extraction, feature se-
lection and classification steps, and a proper com-
bination of preprocessing tasks can significantly
improve the classification performance. Further-
more, (HaCohen-Kerner et al., 2020) explored the
impacts of different preprocessing combinations
on classification, and proved that the combination
of multiple preprocessing strategies can improve
TC’s accuracy.

Inspired by (Uysal and Gunal, 2014; HaCohen-
Kerner et al., 2020; Haddi et al., 2013), in this pa-
per, we propose a novel strategy with three methods
by combing some popular preprocessing strategies
to reduce the general text feature dimension and
unnecessary feature items. Simulation tests show
that our new preprocessing strategy has an essential
impact on classification efficiency in TC.

The rest of the paper is structured as follows.
Section 2 briefly describes the process of text clas-
sification. Section 3 presents the work of this paper
in detail, including the proposed efficient and effec-
tive strategy. The experiments and results analysis
are discussed in Section 4. Section 5 gives a few
conclusions and future proposals.

2 Text classification process

In this section, we briefly introduce the architecture
and related work of TC.

2.1 Text classification architecture

TC architecture is generally consisted of prepro-
cessing, feature extraction, feature selection and
classification in shallow learning model.

There are many text document datasets, such
as long and short text. Based on text document,
the first step of TC is preprocessing, which filters
out words that have no effect on text data and other
useless symbols. Preprocessing is essential as it not
only removes noise/useless data, but alleviates the
adverse effects caused by the excessive dimension
of text data. There are numerous preprocessing
methods, such as tokenization, stopwords removal,
lowercase conversion and lemmatisation, etc.

Feature extraction is the second step of TC.
Its task is the process of transforming text data
from unstructured to structured. While, the qual-
ity of this transformation process will directly af-
fect the final classification result. Currently com-
monly used feature extraction methods are: Bag-of-
words (BOW) (Joulin et al., 2016), word frequency-
inverse document frequency (TF-IDF) (Joachims,
1996), word2vec (Goldberg et al., 2014).

Feature selection, which selects the relevant and
essential features, and removes irrelevant and re-
dundant features (Zebari et al., 2020; Rehman et al.,
2017), is the third step of TC. Its main goal is to
construct a feature subset as small as possible but
represents the whole input data (Velliangiri et al.,
2019). A wide range of feature selection methods
include mutual information, information gain and
Chi-square (Uysal and Gunal, 2012).

The last step of TC is to train a classifier using
the previously created features, and define the class
for each input text. Widely used classifiers include
Support Vector Machine (SVM) algorithm (Cortes
and Vapnik, 1995), Naive Bayes (NB) (Heckerman,
2004), Linear Regression (LR) (Christensen, 2006)
and neural network classification algorithm (Kim,
2014; Lai et al., 2015; Devlin et al., 2018).

2.2 Related work

Preprocessing is referred to as data cleaning, data
reduction and discretion (Chandrasekar and Qian,
2016). It is as important as the feature extrac-
tion, feature selection and classification steps in
TC (Uysal and Gunal, 2014). Many studies tend to

use tokenization and lowercase conversion as the
main and usual preprocessing methods.

(Skianis et al., 2018) used a ¢-regularization
method to handle the overfitting problem caused
by high dimensional text and devloped a
method called logistic-Orthogonal Matching Pur-
suit (OMP) for TC. Note that OMP is a classic
method for finding the "best matching" of multi-
dimensional data with sparse approximation from
a large dictionary. Simulation test results in this
paper show that logistic-OMP can improve the ac-
curacy of TC.

3 Proposed preprocessing strategy

The conventional methods for improving the accu-
racy of TC mainly consider how to use a better clas-
sification algorithm, while it is rare to improve it
by utilizing a better preprocessing method. Hence,
in this section we propose three novel efficient and
effective preprocessing strategies of TC.

Tokenization, lowercase conversion, stopwords
removal and regular filtering are four widely used
preprocessing strategies. More exactly, tokeniza-
tion is the process of dividing a sentence into words
or phrases using a word segmentation algorithm.
Lowercase conversion refers to the process of con-
verting all uppercase letters to lowercase letters.
They are fundamental methods, and we use them as
our basic preprocessing method. Regular filtering
primarily filters many useless non-alphanumeric
characters. It removes punctuation marks, spe-
cial characters, and blank characters before and
after words. Stopwords removal is to remove these
words that do not contribute to text features and
reduce the features that contribute more to the re-
tention of useless features.

Although tokenization, lowercase conversion,
stopwords removal and regular filtering are four
popular preprocessing strategies, as far as we know,
there is rare preprocessing method which is a com-
bination of some or all of them. Hence, we propose
three preprocessing methods which are combina-
tions of some or all of them. More exactly, Table 1
summarizes our three preprocessing methods (NP1,
NP5, NP3) which are the combinations of the exist-
ing four methods, where T, L, R and S denote tok-
enization, lowercase conversion, regular filtering,
and stopwords removal, respectively. 1 means exe-
cution and 0 is no execution, "EP" means existing
preprocessing methods and "NP" denotes proposed
preprocessing methods. Note that NPy, which was

proposed in (Skianis et al., 2018), is a baseline
method for comparison. For brevity, these four pre-
processing methods are represented by NPy=1100,
NP;=1101, NP»=1110, and NP3=1111. From Ta-
ble 1, we can see that NPy, NP1, NP5 and NP3 are
the combination of T and L, the combination of T,
L and S, the combination of T, L and R, and the
combination of T, L, R and S, respectively.

EP
NP T L R S
0 1 1 0 0
1 1 1 0 1
2 1 1 1 0
3 1 1 1 1

Table 1: Three proposed preprocessing methods (NP,
NP3, NP3)

In the following, we utilize a text from 20news-
groups! dataset, which is an international standard
dataset for TC, to illustrate the three proposed pre-
processing methods. More exactly, Table 2 displays
the texts after performing the four preprocessing
methods. The sentence before preprocessing is
"Answer: an especial witness-one who is suppose
to be apersonal witness. That means to be a true
apostle, one must have Christ appear to them.". It
is a religion review data from 20newsgroups.

preprocessing methods are significant in reducing
the number of features, which helps to improve the
accuracy and efficiency of TC (more details on this
will be presented in the next section).

4 Experiments and analysis

In this section, we conduct numerical tests on the
20newsgroups which is an international standard
dataset, to illustrate the effects of the three pro-
posed preprocessing methods on reducing the num-
ber of features and improving the efficiency and
accuracy of TC. We perform data preprocessing
in Pycharm2021 and implement TC’s model on
matlab based on extensive experiments.

4.1 The effect of the new preprocessing
strategies on reducing the number of
features

In the subsection, we use 20newgroups to illustrate
the three proposed preprocessing methods.

Table 3 shows the numbers of features after per-
forming the four preprocessing methods on reli-
gion, computer, science and sport data from the
20newsgroups dataset, where the numbers of fea-
tures before the preprocessing are 31727, 26568,
39186 and 35199 respectively. From Table 3, we
can see that the proposed three methods have sig-
nificant effects on reducing the number of features.
In particular, NP3 method reduces the numbers of

NP After features to 14994, 11552, 17994 and 12837 for
answer,especial,who,suppose, the four data, respectively, and compared with the
NPg (14) | personal,that,means,true,apostle, baseline method NP, (Skianis et al., 2018), the
one,must,have,christ,appear improvements are respectively 19.85%, 34.35%,
answer,especial,witness,one, 26.25% and 38.67%.
NP, (10) suppose,personal,witness,true, Note that reducing the number of features can im-
christ,them prove the efficiency of TC, for more details, please
answer,especial,witness,one,who, see the next subsection.
NP5 (15) | suppose,personal,that,means,true, NP
IIfust,hrz)we,christ,appealr,them Data NPo NPy NP NPs
NP; (7) answer,eSPecial,witness? religion 18707 18403 15667 14994
suppose,personal,true,christ computer | 17128 16761 12179 11552
)) science 24398 24075 18660 17994
lr;?ifojs Text after performing the four preprocessing sport 20932 20608 13477 12837

The original sentence has 31 features, however,
from Table 2, we can see that, after performing the
NPy, NP, NP> and NP3 methods, there are 14, 10,
15 and 7 features, respectively. Hence, it shows
that compared with NPy-NP5, NP3 reduces more
number of features. Furtherfore, the three proposed

"http://qwone.com/ jason/20Newsgroups/

Table 3: Number of features after performing the four
preprocessing methods

4.2 Time analysis

In this subsection, we compare the training time
by applying OMP algorithm (Miroriczuk and Pro-
tasiewicz, 2018) of four preprocessing strategies.

Training time comparison
1200

—0— NPO(Original)
+— NPI
1000 + —s— NP2

w00 ———— \
‘__\‘-‘/

600 4

time(s)

400 1

200 4

0 T T
religion computer science sport
datasets

Figure 1: The comparison of training time

Figure 1 shows that the training time, which is
almost the running time of text classification al-
gorithm, of the four preprocessing strategies for
preprocessing religion, computer, science and sport
data from 20newsgroups dataset over 50 indepen-
dent running experiments, and Table 4 shows the
relative training time of NP; -NPj3 to NPy.

From Figure 1, we can see that the training time
of all the four preprocessing strategies depends on
the quantity and quality of data. More importantly,
Figure 1 and Table 4 show that the training time of
NP, -NP3 are much shorter than that of NP ex-
cept that the training time of NPy is 0.13% longer
than that of NP for preprocessing the religion data.
This is because, the new preprocessing strategies
can significantly reduce the number of features,
thereby reducing the computational cost of OMP
algorithm as our classification algorithm.

Table 4 also shows that NP3 has the significant
improvement in reducing the training time, which
are 17.38%, 25.64%, 23.76% and 33.38% for pre-
processing religion, computer, science and sport
data, respectively.

datasets NP, NP, NP3
religion | —0.13% 14.09% 17.38%
computer | 2.60% 24.23% 25.64%
science 1.08% 21.73% 23.76%
sport 0.30% 30.007 33.38%

Table 4: The relative training time of NP -NP3 to NP
(Blue represents the best)

4.3 Accuracy analysis

In this subsection, we compare the classification
accuracy by applying OMP algorithm to text classi-
fication (Mironczuk and Protasiewicz, 2018) based
on the four preprocessing methods. Note that accu-

racy is an important evaluation metric in NLP and
is defined as follows:

TP+TN
TP+FP+FN+TN’

accuracy =

where "TP" represents that the actual is a positive
case and the prediction is positive; "FP" represents
that the actual is a negative case and the prediction
is positive; "FN" is opposite with "FP" as well as
"TN" with "TP". Accuracy is the ratio of the num-
ber of correct classifications to the total number of
predictions. The higher the accuracy, the better the
classification model.

Table 5 illustrates the classification accuracy
of the four preprocessing methods for classifying
religion, computer, science and sport data from
20newsgroups dataset. From Table 5 we can see
that NP; has better effect in improving the clas-
sification accuracy for classifying computer and
sport data than NPy, NP2 has better effect in im-
proving the classification accuracy for classifying
science data than NPy and NP3 has better effect in
improving the classification accuracy for classify-
ing religion data than NPy.

Although Table 5 shows that both NP, and NP3
may have slightly worse effect in improving the
classification accuracy for classifying some data
than NP, as shown in the above subsection, NP5
and NP3 are much more efficiency than NPy.

Data M NPg NP; NP, NP3
religion 0.919 0.915 0.926 0.933
computer | 0.889 0.898 0.888 0.883
science 0.961 0.956 0.962 0.946
sport 0.954 0.962 0.930 0.948

Table 5: Classification accuracy (Blue is the best)

5 Conclusion

In this paper, we designed an effective and effi-
cient preprocessing strategy with three methods for
TC. Our experimental results show that the three
proposed preprocessing methods can significantly
reduce the number of features and improving the
training time with more or less the same classifica-
tion accuracy based on the existing preprocessing
methods. We will implement Elmo, BERT and
other methods in DL to enhance TC’s performance
in the future.

References

A. Abbasi, S. France, Z. Zhang, and H. Chen. 2010.
Selecting attributes for sentiment classification using
feature relation networks. [EEE Transactions on
Knowledge and Data Engineering, 23(3):447-462.

P. Chandrasekar and K. Qian. 2016. The impact of
data preprocessing on the performance of a naive
bayes classifier. In 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC),
volume 2, pages 618-619. IEEE.

R. Christensen. 2006. Log-linear models and logistic
regression. Springer Science & Business Media.

C. Cortes and V. Vapnik. 1995. Support-vector net-
works. Machine learning, 20(3):273-297.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
2018. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.

Y. Goldberg et al. 2014. word2vec parameter learning
explained continuous bagof-word model. In Proc.
Int. Conf. Learn. Represent.(ICLR 2013), volume 15.

T. S. Guzella and W. M. Caminhas. 2009. A review of
machine learning approaches to spam filtering. Ex-
pert Systems with Applications, 36(7):10206-10222.

Y. HaCohen-Kerner, D. Miller, and Y. Yigal. 2020.
The influence of preprocessing on text classifica-
tion using a bag-of-words representation. PloS one,
15(5):e0232525.

E. Haddi, X. Liu, and Y. Shi. 2013. The role of text pre-
processing in sentiment analysis. Procedia Computer
Science, 17:26-32.

D. Heckerman. 2004. Bayesian networks for data min-
ing. data mining and knowledge discovery.

T. Joachims. 1996. A probabilistic analysis of the
rocchio algorithm with tfidf for text categorization.
Technical report, Carnegie-mellon univ pittsburgh pa
dept of computer science.

T. Joachims. 1998. Text categorization with support
vector machines: Learning with many relevant fea-
tures. In European conference on machine learning,
pages 137-142. Springer.

T. Joachims. 2002. Learning to classify text using sup-
port vector machines, volume 668. Springer Science
& Business Media.

A. Joulin, E. Grave, P. Bojanowski, and et al. 2016.
Bag of tricks for efficient text classification. arXiv
preprint arXiv:1607.01759.

Y. Kim. 2014. Convolutional neural networks for sen-
tence classification. Eprint Arxiv.

S. Lai, L. Xu, K. Liu, and J. Zhao. 2015. Recurrent
convolutional neural networks for text classification.
In Twenty-ninth AAAI conference on artificial intelli-
gence.

W. Medhat, A. Hassan, and H. Korashy. 2014. Senti-
ment analysis algorithms and applications: A survey.
Ain Shams engineering journal, 5(4):1093—-1113.

M. M. Mironczuk and J. Protasiewicz. 2018. A recent
overview of the state-of-the-art elements of text clas-
sification. Expert Systems with Applications, 106:36—
54.

A. Rehman, K. Javed, and H. A. Babri. 2017. Feature
selection based on a normalized difference measure
for text classification. Information Processing &
Management, 53(2):473-489.

K. Skianis, F. Rousseau, and M. Vazirgiannis. 2016.
Regularizing text categorization with clusters of
words. In Proceedings of the 2016 conference on
empirical methods in natural language processing,
pages 1827-1837.

K. Skianis, N. Tziortziotis, and M. Vazirgiannis. 2018.
Orthogonal matching pursuit for text classification.
In Proceedings of the 2018 EMNLP Workshop W-
NUT: The 4th Workshop on Noisy User-generated
Text, pages 93—103. Association for Computational
Linguistics.

A. K. Uysal and S. Gunal. 2012. A novel probabilis-
tic feature selection method for text classification.
Knowledge-Based Systems, 36:226-235.

A. K. Uysal and S. Gunal. 2014. The impact of prepro-
cessing on text classification. Information processing
& management, 50(1):104-112.

S. Velliangiri, S. Alagumuthukrishnan, and et al. 2019.
A review of dimensionality reduction techniques for
efficient computation. Procedia Computer Science,
165:104-111.

D. Wang, H. Zhang, R. Liu, X. Liu, and J. Wang.
2016. Unsupervised feature selection through gram—
schmidt orthogonalization—a word co-occurrence
perspective. Neurocomputing, 173:845-854.

R. Zebari, A. Abdulazeez, D. Zeebaree, and et al. 2020.
A comprehensive review of dimensionality reduction
techniques for feature selection and feature extraction.

Journal of Applied Science and Technology Trends,
1(2):56-70.

