
Under review as submission to TMLR

Principal Graph Encoder Embedding and Principal Commu-
nity Detection

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we introduce the concept of principal communities and propose a principal
graph encoder embedding method that concurrently detects these communities and achieves
vertex embedding. Given a graph adjacency matrix with vertex labels, the method com-
putes a sample community score for each community, ranking them to measure community
importance and estimate a set of principal communities. The method then produces a vertex
embedding by retaining only the dimensions corresponding to these principal communities.
Theoretically, we define the population version of the encoder embedding and the commu-
nity score based on a random Bernoulli graph distribution. We prove that the population
principal graph encoder embedding preserves the conditional density of the vertex labels
and that the population community score successfully distinguishes the principal commu-
nities. We conduct a variety of simulations to demonstrate the finite-sample accuracy in
detecting ground-truth principal communities, as well as the advantages in embedding vi-
sualization and subsequent vertex classification. The method is further applied to a set of
real-world graphs, showcasing its numerical advantages, including robustness to label noise
and computational scalability.

1 Introduction

Graph data has become increasingly popular over the past two decades. It plays a pivotal role in modeling
relationships between entities across a wide array of domains, including social networks, communication
networks, webpage hyperlinks, and biological systems (Girvan & Newman, 2002; Newman, 2003; Barabási
& Oltvai, 2004; Boccaletti et al., 2006; Varshney et al., 2011; Ugander et al., 2011). Given n vertices and s
edges, a binary graph can be represented by an adjacency matrix A ∈ {0, 1}n×n, where A(i, j) = 1 means
there exists an edge between vertex i and vertex j, and 0 otherwise. The high dimensionality of graph
data, dictated by the number of vertices, often necessitates dimension reduction techniques for subsequent
inferences.

Dimension reduction techniques applied to graph data are commonly referred to as graph embedding. Specifi-
cally, graph embedding transforms the adjacency matrix into a low-dimensional Euclidean representation per
vertex. While many such techniques exist, two popular and theoretically sound methods are spectral embed-
ding (Priebe et al., 2019) and node2vec (Grover & Leskovec, 2016), with asymptotic theoretical guarantees
such as convergence to the latent position (Sussman et al., 2012) and consistency in community recovery
(Zhang & Tang, 2024), under popular random graph models such as the stochastic block model and random
dot graph model (Karrer & Newman, 2011; Zhao et al., 2012; Athreya et al., 2018). The resulting vertex
embeddings facilitate a wide range of downstream inference tasks, such as community detection (Rohe et al.,
2011; Gallagher et al., 2023), vertex classification (Tang et al., 2013; Mehta et al., 2021), and the analysis of
multiple graphs and time-series data (Arroyo et al., 2021; Gallagher et al., 2021).

The scalability of spectral embedding is often a bottleneck due to its use of singular value decomposition,
which can be time-consuming for moderate to large graphs. When vertex labels are available for at least part
of the vertex set, a recent method called one-hot graph encoder embedding (Shen et al., 2023b), which can
be viewed as a supervised version of spectral embedding, is significantly faster yet shares similar theoretical

1

Under review as submission to TMLR

properties, such as convergence to the latent positions. It also has several applications to weighted, multiple,
and dynamic graphs (Shen et al., 2024b;a; Shen, 2024; Shen et al., 2024c), often exhibiting significantly
better finite-sample performance over spectral embedding with a fraction of the time required.

Building upon the one-hot graph encoder embedding, this paper proposes a principal graph encoder embed-
ding algorithm. The key addition is the introduction of a sample community score that ranks the importance
of each community. The community score is then used to estimate a set of principal communities that con-
tribute to the decision boundary for separating vertices of different communities. Due to the duality of
community and dimensionality in the encoder embedding, the principal graph encoder embedding achieves
further dimension reduction by restricting the embedding to the dimensions corresponding to the principal
communities. The proposed algorithm maintains the same computational complexity as the original encoder
embedding, making it significantly faster than other graph embedding techniques. Additionally, the reduced
dimensionality enhances both the speed and robustness of subsequent inference, particularly in the presence
of a large number of redundant or noisy communities.

To theoretically justify the sample algorithm, we provide a population characterization of the encoder em-
bedding and principal communities. We prove, under a random Bernoulli graph model, that the principal
graph encoder embedding preserves the conditional density of the label vector, making the proposed method
Bayes optimal for vertex classification. Furthermore, under a regularity condition, we demonstrate that the
proposed sample community score converges to a population community score, which equals zero if and only
if the corresponding community is not a principal community.

Through comprehensive simulations and real-data experiments, we validate the numerical performance and
theoretical findings through embedding visualization, ground-truth principal community detection, and ver-
tex classification. The proposed method demonstrates excellent numerical accuracy, computational scalabil-
ity, and robustness against noisy data. Theorem proofs are provided in the appendix.

2 The Main Method

In this section, we present the principal graph encoder embedding method for a given sample graph, followed
by discussions on several practical issues such as normalization, sample community score threshold, and label
vector availability.

2.1 Principal Graph Encoder Embedding

• Input: The graph adjacency matrix A ∈ {0, 1}n×n and a label vector Y ∈ {0, 1, . . . , K}n, where 1
to K represent known labels, and 0 is a dummy category for vertices with unknown labels.

• Step 1: Compute the number of known observations per class, i.e.,

nk =
n∑

i=1
1(Y(i) = k)

for k = 1, . . . , K.

• Step 2: Compute the matrix W ∈ [0, 1]n×K as follow: for each vertex i = 1, . . . , n, set

W(i, k) = 1/nk

if and only if Y(i) = k, and 0 otherwise. Note that vertices with unknown labels are effectively
assigned zero values, i.e., W(i, :) is a zero vector if Y(i) = 0.

• Step 3: Compute the original graph encoder embedding through matrix multiplication:

Z = AW ∈ [0, 1]n×K .

2

Under review as submission to TMLR

• Step 4 (Normalization): Given Z from step 3, for each i where ∥Z(i, ·)∥ > 0, update the embed-
ding as follows:

Z(i, ·) = Z(i, ·)
∥Z(i, ·)∥ .

• Step 5 (Sample Community Score): Based on Z in step 4, for each k ∈ [1, K], compute the
sample community score as follows:

λ̂(k) = maxl=1,...,K{µ̂(k|l)} − minl=1,...,K{µ̂(k|l)}
maxl=1,...,K{σ̂(Z̃(k|l))}

,

where

µ̂(k|l) =
∑Y(i)=l

i=1,...,n Z(i, k)
nl

, σ̂2(k|l) =
∑Y(i)=l

i=1,...,n Z2(i, k)
nl − 1 − µ̂2(k|l),

then set the estimated principal communities as D̂ = {k ∈ [1, K] and λ̂(k) > ϵ} for a positive
threshold ϵ. The choice of ϵ is discussed in later subsection.

• Step 6 (Principal Encoder): Denote the embedding limited to D̂ in Z as ZD̂. Then re-normalize
each vertex embedding, i.e., for each i, set

ZD̂(i, ·) = Z(i, D̂)
∥Z(i, D̂)∥

,

• Output: The original graph encoder embedding Z, the principal graph encoder embedding ZD̂, the
sample community score {λ̂(k)}, and the estimated set of principal communities D̂.

Note that steps 1 to 3 compute the original graph encoder embedding method as described in Shen et al.
(2023b), while the normalization in step 4 was employed in Shen et al. (2023a; 2024b). Therefore, the main
contributions of this work lie in steps 5 and 6, where we compute the sample community score for each
community, restrict the original embedding to the estimated principal communities, and re-normalize to
yield the proposed principal graph encoder embedding.

It is important to note that ZD̂ does not remove any observations from the embedding; rather, it only
removes the kth dimension when community k is not a principal community, i.e., ZD̂ ∈ Rn×|D̂|. Every
vertex, whether it is from a principal community or not, is always present in the final embedding ZD̂.

2.2 On Normalization

Normalization, a well-known technique in many methods, ensures that all vertex embeddings have the same
norm. In the context of graph encoder embedding, normalization projects the resulting sample embedding
onto a unit sphere, which helps eliminate degree differences and often leads to improved separation among
communities (Shen et al., 2023a). This is particularly beneficial for heterogeneous graphs, which are com-
mon in real-world data. In our case, normalization ensures that the sample community score behaves well
empirically. This is because the sample community score involves the computation of sample expectations
and variances, and normalized embeddings effectively exclude degree variance from these calculations.

2.3 The Community Score

The community score is designed to measure the importance of each community and serves as the basis for
selecting the principal communities. Intuitively, in the original graph encoder embedding, the kth dimension
can be interpreted as the average connectivity of the target vertex to all vertices in community k. Therefore,
the proposed community score checks whether there is significant variability within dimension k, or equiv-
alently, whether the connectivity from other communities to community k is close to a constant or not. If

3

Under review as submission to TMLR

the connectivity is almost the same, the numerator will be relatively small, or in the extreme case, simply
zero, indicating that community k has no information in separating other communities.

A practical question is how large the score should be for a community to qualify as principal. One possible
approach is to rank the community scores and decide a proper cut-off via cross-validation. In the presented
algorithm, we opt for a faster approach using an adaptive threshold ϵ for cut-off. To determine this threshold,
we employ the profile likelihood method from Zhu & Ghodsi (2006), a popular technique for selecting an
elbow threshold given a vector. We choose the third elbow of all sample community scores, denoting it as
ϵA, and then set ϵ = max{ϵA, 0.7}.

Empirically, the third elbow is very effective for large values of n and K. However, for smaller to moderate
values of (n, K), the third elbow may be overly conservative. Through experimentation across various models
and real datasets, it has been observed that principal communities typically have scores around or higher
than 1, while redundant communities tend to have scores of no more than 0.5 for small (n, K). As a result,
we settled on the maximum of the third elbow and 0.7 as an empirical choice for ϵ.

2.4 On Label Vector

Note that the given algorithm assumes knowledge of the label vector Y ∈ {0, 1, . . . , K}n, which is at least
partially known, where 0 denotes the dummy category of unknown labels. However, the method can also
be used without the label vector. One could either use a random initialization and k-means to estimate
the ground-truth labels (Shen et al., 2023a), or employ a direct label estimation algorithm such as Louvain,
Leiden, or label propagation (Blondel et al., 2008; Traag et al., 2019; 2011; Raghavan et al., 2007) to estimate
a label vector directly from the graph. In either scenario, one can compute the community score and principal
encoder accordingly for any estimated label vector. The meaning of principal communities will pertain to the
estimated labels, and the population theories in the next section still apply. Therefore, it suffices to assume
a given label vector for the purpose of this paper, regardless of whether the label vector is ground-truth or
estimated from some algorithms.

2.5 Computational Complexity

The computational complexity of the principal graph encoder embedding (P-GEE) is the same as the original
graph encoder embedding (GEE), which is O(nK + s), where s represents the number of edges Shen et al.
(2023b; 2024a). This is because neither the normalization nor the community score computation increases
the overall complexity.

For instance, the method is capable of embedding a graph with 100, 000 vertices, 40 classes, and 10 million
edges in under 10 seconds on a standard computer using MATLAB code. While the additional steps 5-6 in
P-GEE may make it marginally slower than GEE, the reduced dimensionality of ZD̂ can actually enhance
its speed and scalability for subsequent tasks such as vertex classification. This is demonstrated in our real
data experiments.

3 Population Definition and Supporting Theory

In this section, we characterize the population behavior of the method on random graph models. We begin
by reviewing several popular random graph models, followed by the introduction of a random graph variable.
We then define the population version of the principal community and the graph encoder embedding for this
graph variable. This framework allows us to prove that the principal graph encoder embedding preserves
the conditional density of the label vector. Additionally, we demonstrate that the sample community score
converges to a population community score, which, under a regularity condition, equals zero if and only if
the corresponding community is not a principal community. It is important to note that while the other
sections focus on the sample method applied to sample graphs, everything in this section pertains to the
population version of the method.

4

Under review as submission to TMLR

3.1 Existing Random Graph Models

The Stochastic Block Model

The standard stochastic block model (SBM) is a widely used graph model known for its simplicity and
ability to capture community structures (Holland et al., 1983; Snijders & Nowicki, 1997; Karrer & Newman,
2011). Under SBM, each vertex i is first assigned a class label Y(i) ∈ {1, . . . , K}. This label can either be
predetermined or assumed to follow a categorical distribution with prior probabilities {πk ∈ (0, 1],

∑K
k=1 πk =

1}.

Given the vertex labels, the model independently generates each edge between vertex i and another vertex
j ̸= i using a Bernoulli random variable:

A(i, j) ∼ Bernoulli(B(Y(i), Y(j))).

Here, B = [B(k, l)] ∈ [0, 1]K×K represents the block probability matrix, which serves as the parameters of
the model. In a directed graph, the lower diagonal of the adjacency matrix is generated using the same
distribution, while in an undirected graph, the lower diagonals are set to be equal to the upper diagonals.
Note that the model does not have self-loops, meaning that A(i, i) = 0. Additionally, whether the graph is
directed or undirected does not affect the results discussed in this paper.

The Degree-Corrected Stochastic Block Model

The standard stochastic block model (SBM) generates dense graphs where all vertices within the same class
have the same expected degrees. However, many real-world graphs are heterogeneous, with different vertices
having varying degrees, and the graph can be very sparse. To accommodate this, the degree-corrected
stochastic block model (DC-SBM) was introduced as an extension of SBM (Zhao et al., 2012).

In addition to the existing parameters of SBM, DC-SBM assigns a non-negative and bounded degree pa-
rameter θi to each vertex i. Given these degrees, the edge between vertex i and another vertex j ̸= i is
independently generated by:

A(i, j) ∼ Bernoulli(θiθjB(Y(i), Y(j))).

When all degrees are set to 1, DC-SBM reduces to the standard SBM. Typically, degrees may be assumed
to be fixed a priori or independently and identically distributed within each community. These degree
parameters allow DC-SBM to better approximate real-world graphs.

The Random Dot Product Graph

Under the random dot product graph (RDPG), each vertex i is associated with a hidden latent variable
Ui

i.i.d.∼ fU ∈ Rm (Young & Scheinerman, 2007; Athreya et al., 2018). Then each edge is independently
generated as follows:

A(i, j) ∼ Bernoulli(< Ui, Uj >),

where < ·, · > denotes the inner product. To enable communities under RDPG, it suffices to assume the
latent variable follows a K-component mixture distribution. In other words, each vertex is associated with
a class label Y(i) such that

Ui|(Y(i) = k) i.i.d.∼ fU |k.

3.2 Defining a Graph Variable

To characterize the graph embedding using a framework similar to the conventional setup of predictor and
response variables, we formulate the above graph models into the following graph variable, called the random
Bernoulli graph distribution.

5

Under review as submission to TMLR

Definition 1. Given a vertex, we assume Y is the underlying label that follows a categorical distribution
with prior probabilities {πk ∈ (0, 1],

∑K
k=1 πk = 1}. Additionally, X ∈ Rp is the latent variable with a

K-component mixture distribution, denoted as

X ∼
K∑

k=1
πkfX|Y =k,

where fX|Y =k represents the conditional density.

Moreover, we assume a known label vector V⃗ = {v1, v2, . . . , vm} ∈ [1, K]m, where each k ∈ [1, K] is present
in V⃗. Additionally, there exists a corresponding random matrix

U⃗ = [U1; U2; · · · ; Um] ∈ Rm×p,

where each Uj is independently distributed with density fX|Y =vj
.

We then define an m-dimensional random variable A following the random Bernoulli graph distribution as

A ∼ RBG(X, V⃗, δ) ∈ {0, 1}m,

if and only if each dimension Aj is distributed as

Aj ∼ Bernoulli(δ(X, Uj)), j = 1, . . . , m.

Here, δ(·, ·) : Rp × Rp → [0, 1] can be any deterministic function, such as weighted inner product or kernel
function.

Note that V⃗ is a known vector. Alternatively, one could view it as independent sample realizations using
the same categorical distribution of Y . As we have required each integer from 1 to K to be present in V⃗, it
necessarily implies m ≥ K.

In essence, the random Bernoulli graph distribution is a multivariate concatenation of mixture Bernoulli
distributions. In this distribution, the probability of each Bernoulli trial is determined by a function involving
the latent variable X and an independent copy Uj with a known label vj . The random Bernoulli graph
distribution is a versatile framework encompassing SBM, DC-SBM, RDPG, and more general cases, due to
its flexibility in allowing any δ(·, ·) and any particular distribution for X.

Consider the sample adjacency matrix and the labels (A, Y) ∈ {0, 1}n×n × {1, 2, . . . , K}n as an example,
where the graph has no self-loop. Then, for each i = 1, . . . , n, the ith row of A is distributed as

A(i, :) ∼ RBG(X, V⃗, δ),

where X is the underlying latent variable for vertex i, and V⃗ is the known sample labels of all other vertices.
Note that the dimension m = n − 1 because A(i, i) = 0, and it suffices to consider the edges between vertex
i and all other vertices.

3.3 The Principal Graph Encoder Embedding for the Graph Variable

In this section, we characterize the population version of the original graph encoder embedding, the principal
community, and the principal graph encoder embedding on the graph variable. Note that their sample
notations are Z, D̂, and ZD̂ respectively in Section 2, and the corresponding population notations are Z, D,
and ZD respectively in this section.
Definition 2. Given a random graph variable A ∼ RBG(X, V⃗, δ). For each k = 1, . . . , K, calculate

mk =
m∑

j=1
1(vj = k),

6

Under review as submission to TMLR

where 1(vj = k) equals 1 if vj = k, and 0 otherwise.

We then compute the matrix W ∈ Rm×K as follows:

W (i, j) =
{

1/mk when vj = k,

0 otherwise.

The population graph encoder embedding is then defined as Z = AW ∈ [0, 1]K .

Note that the W matrix is conceptually similar to the one-hot encoding scheme, except the entries are
normalized rather than binary. Next, we introduce the concepts of principal and redundant communities for
the graph variable:
Definition 3. Given A ∼ RBG(X, V⃗, δ), and Uk as an independent variable distributed as fX|Y =k. A
community k is defined as a principal community if and only if

V ar
(
E(δ(X, Uk) | X)

)
> 0.

On the other hand, any community for which the above variance equals 0 is referred to as a redundant
community.

For example, in the stochastic block model, the condition V ar(E(δ(X, Uk) | X)) = 0 is equivalent to
the kth column of the block probability matrix B(:, k) being a constant vector, which does not provide any
information about Y via the edge probability. Finally, the principal graph encoder embedding can be defined
as follows:
Definition 4. Define D as the set of principal communities, and ZD as the graph encoder embedding whose
dimensions are restricted to the indices in D. We call ZD the principal graph encoder embedding.

For example, if K = 5 and D = {1, 2}, then Z spans five dimensions while ZD only keeps the first two
dimensions from Z. The principal graph encoder embedding achieves additional dimension reduction com-
pared to the original graph encoder embedding. Given the population definitions, the sample versions Z, D̂,
and ZD̂ in Section 2 can be viewed as sample estimates for the population counterparts Z, D, and ZD.

3.4 Conditional Density Preserving Property

Based on the population setting, we can prove the principal graph encoder embedding preserves the con-
ditional density, and as a result, preserves the Bayes optimal classification error via the classical pattern
recognition framework (Devroye et al., 1996).
Theorem 1. Given A ∼ RBG(X, V⃗, δ), the principal graph encoder embedding preserves the following
conditional density:

Y |A dist= Y |Z dist= Y |ZD.

Denote L∗(Y, A) as the Bayes optimal error to classify Y using A, we have

L∗(Y, A) = L∗(Y, Z) = L∗(Y, ZD).

Intuitively, the graph variable A is an m-dimensional multivariate concatenation of mixture Bernoulli distri-
butions, the original graph encoder embedding Z is a K-dimensional multivariate concatenation of mixture
Binomial distributions, and the principal graph encoder embedding ZD discards every dimension in Z whose
Binomial mixture component is equivalent to a single Binomial.

Note that this property is on the population level. For the sample version, we expect the property to hold
for sufficiently large vertex size, rather than at any n, due to sample estimation variance. Moreover, the
property does not imply that any classifier can be asymptotically optimal for the sample embedding. Only

7

Under review as submission to TMLR

when using the theoretical optimal Bayes classifier on the embedding ZD will the resulting optimal error be
the same as the theoretical optimal error using the original graph variable A.

This theorem shows that the principal communities are well-defined, and retaining the dimensions corre-
sponding to the principal communities is sufficient for subsequent vertex classification. While both the
original graph encoder embedding and the principal graph encoder embedding are equivalent in population,
the principal graph encoder embedding has fewer dimensions and therefore usually provides a finite-sample
advantage in subsequent inference.

3.5 Population Community Score

While Theorem 1 establishes that the principal community is well-defined and preserves the conditional
density, it remains to demonstrate that the proposed community score can effectively detect such principal
communities. To this end, we first introduce the population community score:
Definition 5. Define

λ(k) = maxl=1,...,K{E(Zk|Y = l)} − minl=1,...,K{E(Zk|Y = l)}
maxl=1,...,K{

√
V ar(Zk|Y = l)}

∈ [0, +∞)

as the population community score for each community k ∈ [1, K].

Since the sample community score used in Step 5 of Section 2.1 relies on the sample expectation and variance,
which converge to their respective population counterparts, it follows immediately that

λ̂(k) n→∞→ λ(k).

In other words, the sample community score converges to the population community score.

The following theorem proves that, under a regularity condition, the population community score perfectly
separates principal communities from redundant communities.
Theorem 2. Assume A ∼ RBG(X, V⃗), and δ(X, Uk)|Y is independent of X|Y , which is satisfied under
the stochastic block model. Then the population community score λ(k) = 0 if and only if community k is a
redundant community.

Note that the condition δ(X, Uk)|Y is independent of X|Y can also hold for the degree-corrected stochastic
block model, as shown in the proof. Since DC-SBM is often a realistic model for many real-world graphs, we
can expect the designed community score to perform well in practice. It is important to emphasize that this
property holds at the population level, meaning it is expected to perform well for sufficiently large vertex
sizes rather than any finite n, due to sample estimation variance.

Finally, there exist other alternative statistics that can consistently detect principal communities. For
example, as shown in the proof, one could use the numerator of the community score or the variance of
E(Zk|Y = l), both of which also equal zero under the same condition. Nevertheless, the numerator based
on order statistics makes it more robust, and the denominator provides effective normalization for ranking
and thresholding purposes, making the proposed community score well-behaved and robust in empirical
assessments.

4 Simulations

We consider three simulated models with K = 20 and increasing n. In each model, vertex label assignment
is randomly determined based on prior probabilities: πk = 0.25 for k = {1, 2, 3}, then equally likely to
be 0.25/(K − 3) for the remaining classes. Given these labels, edge probabilities are generated under each
model. Here are the details of the model parameters for each:

• SBM: Block probability matrix: B(k, k) = 0.2 for k = {1, 2, 3}, and B(k, l) = 0.1 otherwise.

8

Under review as submission to TMLR

• DC-SBM: Vertex degree generation:

θi|(Y(i) = y) ∼ Beta(1, 5 + y/5).

Block probability matrix: B(1, 1) = 0.9, B(2, 2) = 0.7, B(3, 3) = 0.5, and B(k, l) = 0.1 otherwise.

• RDPG: Latent variable U ∈ R4. For k = {1, 2, 3},

U(:, k)|(Y = k) ∼ Uniform(0.2, 0.3).

For k > 3,

U(:, k)|(Y > 3) ∼ Uniform(0.1, 0.2).

For all dimensions l ̸= k.

U(:, l)|(Y = k) ∼ Uniform(0, 0.1).

In all three models, the parameter settings are designed such that vertices from the top three communities can
be perfectly separated on a population level, and these communities are considered the principal communities,
represented as D = {1, 2, 3}. On the other hand, vertices from the remaining communities are intentionally
designed to be indistinguishable from each other, constituting redundant communities. As a result, 75% of
the vertices belong to the principal communities and can be perfectly separated with a large sample size,
while the remaining 25% of the vertices cannot be distinguished from each other.

4.1 Embedding Visualization and Sample Community Score

Figure 1 shows the adjacency matrix heatmap for one sample realization, the visualization of the resulting
principal graph encoder embedding, and the sample community score for each dimension. The first column
shows the heatmap of the generated adjacency matrix A. The sample indices are sorted by class to highlight
the block structure. All three graphs exhibit a similar block structure, with higher within-class probabilities
for the top three communities. The SBM graph is the most dense graph, followed by RDPG, and the
DC-SBM graph is the most sparse by design.

The second column presents the sample community scores λ̂(k) based on the proposed sample method.
Clearly, the sample scores for the first three communities / dimensions stand out and are significantly higher
than the others. As a result, the proposed method successfully identifies and reveals the ground-truth
dimension, setting D̂ = D = {1, 2, 3}.

The third column visualizes the principal graph encoder embedding ZD̂. Each dot represents the embedding
for a vertex, and different colors indicate the class membership of each vertex, particularly those from
the principal communities. Since D̂ = D = {1, 2, 3}, the embedding is in 3D and occupies the top three
dimensions. We observe that the encoder embedding effectively separates the top three communities, while
all redundant communities are mixed together and cannot be distinguished, which aligns with the given
models.

4.2 Detection Accuracy and Vertex Classification

Using the same simulation models, we further assess the capability of the proposed method to identify the
ground-truth dimensions and evaluate the quality of the embedding through a classification task on the vertex
embedding. For each model, we generate sample graphs with increasing n, compute the sample community
score, report accuracy in detecting the ground-truth principal communities, compute the principal graph
encoder embedding (using training labels only via 5-fold evaluation), apply linear discriminant analysis as
the classifier, and report the testing error on the testing vertices. This process is repeated for 100 Monte-
Carlo replicates for each n, ensuring that all standard deviations fall within a margin of 1%. The average
results are reported in Figure 2.

9

Under review as submission to TMLR

Adjacency Matrix
S

B
M

0

0.5

1

1 10 20
Dimension

0

2

4

6

8
Community Score

1

0.5

1

Sample Embedding

1

0.5 0.5

Community 1
Community 2
Community 3

D
C

-S
B

M

0

0.5

1

1 10 20
Dimension

0

1

2

0
1

0.5

10.5

1

0.5
0 0

R
D

P
G

0

0.5

1

1 10 20
Dimension

0

2

4

0
1

0.5

10.5

1

0.5
0 0

Figure 1: This figure visualizes the sample adjacency matrix for each model at n = 5000 and K = 20, the
sample community scores for k ∈ [1, 20], and the principal graph encoder embedding.

The first column of Figure 2 shows the sample community scores as n increases. The red line represents
the average sample community score among the principal communities, while the blue line represents the
average sample community score among the redundant communities. For all three models, as n increases, the
principal communities and the redundant communities become increasingly separated in the sample scores.

This separation translates well to the second column of Figure 2, which shows that the sample algorithm
quickly achieves a true positive rate of 1 and a false positive rate of 0 in detecting the true principal
communities. In other words, Prob(D̂ = D) → 1 for sufficiently large n. This implies that our method is
consistent in detecting the ground-truth principal communities.

10

Under review as submission to TMLR

The third column of Figure 2 evaluates the quality of the graph embedding by conducting a 5-fold vertex
classification task on the sample embedding. Specifically, we divide the vertices into 5 folds and test each
fold individually. In each instance, we compute the sample embedding by setting all testing labels to 0,
apply linear discriminant analysis to the embedding and labels of the training vertices, predict the testing
labels using the embedding of the testing vertices, and then calculate the error by comparing the predicted
label to the true testing label. According to the population model, we can compute that the optimal Bayes
error is approximately 0.235 across all three models.

As the sample size increases, we observe that the classification error using the principal graph encoder em-
bedding converges to the Bayes optimal error, as does the encoder embedding without principal community
detection. This phenomenon supports the theorem that the encoder embedding indeed preserve the condi-
tional density. While both the original embedding and the principal version converge to the optimal error,
the principal version appears to perform slightly better across all settings. This improvement is due to
reduced dimension while preserving the label information, which benefits the sample classification.

5 Real Data

5.1 Setting

We collected a diverse set of real graphs with associated labels from various sources, including the Network
Repository1 (Rossi & Ahmed, 2015), Stanford Network Data2, and internally collected graph data.

Since the ground-truth principal communities are unknown in real graphs, we primarily use vertex classifi-
cation on embedding as a proxy to evaluate the embedding quality. We compare this to the original graph
encoder embedding to assess the quality of the principal community detection. We use 5-fold cross-validation
and linear discriminant analysis, and compare the graph encoder embedding (GEE), the principal graph en-
coder embedding (P-GEE), the adjacency spectral embedding (ASE), and node2vec (N2V). ASE requires
an explicit dimension choice, which is set to d = 30. For node2vec, we use the graspy package (Chung et al.,
2019) with default parameters and 128 dimensions. Any directed graph was transformed to undirected, and
any singleton vertex was removed.

5.2 Using Original Data

Table 1 summarizes the average error and standard deviation after conducting 100 Monte Carlo replicates for
each given graph. It also provides basic dataset details, including n, K, and the median dimension choice |D̂|
for P-GEE. The numerical results clearly indicate that both GEE and P-GEE deliver excellent performance
across all datasets, outperforming spectral embedding in all cases and node2vec in most cases. We also
observe that the proposed principal graph encoder embedding is generally very close to the original graph
encoder embedding in classification error: by detecting and only retaining the dimensions corresponding to
the principal communities, the principal GEE either maintains or slightly improves the classification error
compared to the original GEE throughout all real data (except the IIP data with K being only 3).

This implies that as long as K is not too small, the principal GEE successfully extracts important com-
munities that preserve sufficient label information and improves the classification error, consistent with the
numerical behavior observed in the simulations. Another observation is that the encoder embedding pro-
duces the best error in most cases, and in the two cases where node2vec yields better error than GEE, GEE
is also very close in error, suggesting its overall satisfactory performance.

5.3 Using Noisy Data

To further demonstrate the advantage and robustness of P-GEE, we conducted a noisy data experiment. We
used the same real data and evaluation as above, with the exception that the vertex labels were partially
polluted. Specifically, for each replicate, we randomly assigned 10% of the ground-truth vertex labels to one

1http://networkrepository.com/
2https://snap.stanford.edu/

11

http://networkrepository.com/
https://snap.stanford.edu/

Under review as submission to TMLR

250 2500 5000
Sample Size

0

2

4

6

8
S

B
M

Community Score

Principal
Redundant

250 2500 5000
0

0.5

1

Detection Accuracy

True Positive
False Positive

250 2500 5000
0.2

0.4

0.6

0.8
Classification Error

P-GEE
GEE
Bayes

250 2500 5000
Sample Size

0

0.5

1

1.5

2

2.5

D
C

-S
B

M

250 2500 5000
0

0.5

1

250 2500 5000
0.2

0.3

0.4

0.5

0.6

250 2500 5000
Sample Size

0

1

2

3

4

5

R
D

P
G

250 2500 5000
0

0.5

1

250 2500 5000
0.2

0.3

0.4

0.5

0.6

Figure 2: This figure displays the average sample community score, the average principal community detec-
tion accuracy, and the average vertex classification error using the embedding, based on 100 Monte-Carlo
replicates with increasing n. P-GEE denotes the principal graph encoder embedding, and GEE denotes the
original graph encoder embedding.

of 30 additional noise classes. For example, suppose K = 3 and vertex 1 belongs to class 2, so Y(1) = 2.
If vertex 1 is not polluted, we have Ynoise(1) = Y(1) = 2; otherwise, Ynoise(1) ∈ [4, 5, . . . , 33] with equal
probability.

We then used the given graph and noisy labels Ynoise to perform vertex embedding and classification for
GEE, P-GEE, and ASE, and reported the results in Table 2. Comparing vertex classification accuracy,
we observed that P-GEE consistently outperforms GEE and ASE in most cases. In fact, P-GEE is nearly
insusceptible to label noise, achieving ideal error rates on the noisy data in most cases. Here, "ideal error"

12

Under review as submission to TMLR

(n, K) GEE (%) P-GEE (%) |D̂| ASE (%) N2V (%)
Citeseer (3312, 6) 32.8 ± 0.6 32.3 ± 0.6 4 60.3 ± 0.5 77.5 ± 0.5

Cora (2708, 7) 20.9 ± 1.5 20.9 ± 1.5 5 31.8 ± 0.6 75.1 ± 0.5
Email (1005, 42) 34.1 ± 0.8 34.2 ± 0.8 39 43.6 ± 0.4 29.2 ± 0.5

IIP (219, 3) 31.7 ± 1.9 32.7 ± 1.7 2 35.6 ± 0.4 48.9 ± 3.2
IMDB (19503, 3) 1.4 ± 2.9 1.4 ± 2.9 3 60.1 ± 0.4 44.8 ± 0.1

LastFM (7624, 18) 20.3 ± 0.3 20.3 ± 0.3 17 43.3 ± 0.4 14.7 ± 0.1
Letter (10507, 15) 7.4 ± 0.3 7.4 ± 0.3 4 89.2 ± 0.3 74.9 ± 0.3
Phone (1703, 71) 30.1 ± 0.8 28.6 ± 0.8 53 55.9 ± 0.2 83.7 ± 0.5
Protein (43471, 3) 30.8 ± 0.2 30.8 ± 0.2 3 51.0 ± 0.7 45.8 ± 0.1
Pubmed (19717, 3) 22.6 ± 0.2 22.6 ± 0.2 3 35.5 ± 0.7 58.9 ± 0.2

Table 1: Vertex classification error using 5-fold linear discriminant analysis on each graph embedding. The
table reports the average error and standard deviation after 100 Monte Carlo replicates, highlighting the
best error within each dataset. All accuracy are in percentile.

can be defined as the best error on the original data in the corresponding row of Table 1, plus approximately
10%. For example, on the IMDB data, the best error on the original data is 1%, while P-GEE achieves an
error of 10.2% on the noisy data, compared to a much worse error of 28.3% for GEE on the noisy data.
Similarly, on the PubMed data, the best error on the original data is 22.6%, with P-GEE achieving an error
of 32.3% on the noisy data, while GEE on the noisy data has a higher error of 39.0%.

We also observed that the estimated number of principal communities |D̂| accurately matches the true K of
the original data in most cases, indicating that the sample community score remains robust and well-behaved
in the presence of noisy data.

Finally, we compared the running times of GEE, P-GEE, and ASE, including both embedding and classifi-
cation time. While the running times for P-GEE and GEE are mostly similar, the reduced dimensionality
in P-GEE speeds up subsequent classification, leading to noticeable improvements in running time. Both
GEE and P-GEE are significantly faster than spectral embedding for moderate to large graph sizes. For
example, for relatively larger graphs, such as LastFM, letter, and protein data, which have tens of thousands
of vertices, spectral embedding requires several seconds, whereas GEE only takes a fraction of a second.

GEE (%) Time (s) P-GEE (%) Time (s) (K, |D̂|) ASE (%) Time (s)
Citeseer 49.9 ± 0.6 0.11 41.5 ± 0.5 0.09 (6, 6) 72.9 ± 0.3 0.16

Cora 42.6 ± 0.6 0.12 29.4 ± 0.5 0.11 (7, 7) 61.8 ± 0.4 0.15
Email 50.5 ± 0.8 0.38 51.2 ± 0.9 0.37 (42, 60) 50.8 ± 0.5 0.42

IIP 42.8 ± 2.0 0.02 39.2 ± 2.0 0.02 (3, 2) 52.3 ± 2.2 0.03
IMDB 28.3 ± 0.4 0.17 10.2 ± 0.05 0.13 (3, 3) 69.0 ± 0.06 0.75

LastFM 42.1 ± 0.4 0.22 30.4 ± 0.3 0.19 (18, 17) 53.0 ± 0.2 5.9
Letter 29.7 ± 0.3 0.20 21.1 ± 0.3 0.18 (15, 15) 90.8 ± 0.03 1.1
Phone 48.8 ± 1.0 0.75 41.3 ± 0.9 0.67 (71, 53) 64.1 ± 0.3 0.70
Protein 42.5 ± 0.2 0.30 38.3 ± 0.2 0.17 (3, 3) 56.6 ± 0.02 2.4
Pubmed 39.0 ± 0.3 0.16 32.3 ± 0.2 0.12 (3, 3) 44.9 ± 0.5 0.48

Table 2: The evaluation is the same as in Table 1, except that 10% of the given labels are randomized into
one of 30 noise groups. We also report the average running time. The best error within the noise columns
is highlighted. All accuracy are presented as percentages, and all running times are in seconds.

13

Under review as submission to TMLR

References
Jesús Arroyo, Avanti Athreya, Joshua Cape, Guodong Chen, Carey E. Priebe, and Joshua T. Vogelstein.

Inference for multiple heterogeneous networks with a common invariant subspace. Journal of Machine
Learning Research, 22(142):1–49, 2021.

Avanti Athreya, Donniell E. Fishkind, Minh Tang, Carey E. Priebe, Youngser Park, Joshua T. Vogelstein,
Keith Levin, Vince Lyzinski, Yichen Qin, and Daniel L Sussman. Statistical inference on random dot
product graphs: a survey. Journal of Machine Learning Research, 18(226):1–92, 2018.

Albert-László Barabási and Zoltán N. Oltvai. Network biology: Understanding the cell’s functional organi-
zation. Nature Reviews Genetics, 5(2):101–113, 2004.

V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and Experiment, 10008:6, 2008.

Stefano Boccaletti, Vito Latora, Yamir Moreno, Mart’ın Chavez, and D-U Hwang. Complex networks:
Structure and dynamics. Physics Reports, 424(4-5):175–308, 2006.

J. Chung, Pedigo B. D., E. W. Bridgeford, B. K. Varjavand, H. S. Helm, and J. T. Vogelstein. Graspy:
Graph statistics in python. Journal of Machine Learning Research, 20(158):1–7, 2019.

L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996.

I. Gallagher, A. Jones, and P. Rubin-Delanchy. Spectral embedding for dynamic networks with stability
guarantees. In Advances in Neural Information Processing Systems, pp. 10158–10170, 2021.

Ian Gallagher, Andrew Jones, Anna Bertiger, Carey E Priebe, and Patrick Rubin-Delanchy. Spectral clus-
tering of weighted graphs. Journal of the American Statistical Association, 2023.

M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proceedings of
National Academy of Science, 99(12):7821–7826, 2002.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864, 2016.

P. Holland, K. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social Networks, 5(2):109–137,
1983.

B. Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in networks. Physical
Review E, 83:016107, 2011.

Ketan Mehta, Rebecca F Goldin, David Marchette, Joshua T Vogelstein, Carey E Priebe, and Giorgio A
Ascoli. Neuronal classification from network connectivity via adjacency spectral embedding. Network
Neuroscience, 5(3):689–710, 2021.

M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256, 2003.

C. Priebe, Y. Parker, J. Vogelstein, J. Conroy, V. Lyzinskic, M. Tang, A. Athreya, J. Cape, and E. Bridgeford.
On a ’two truths’ phenomenon in spectral graph clustering. Proceedings of the National Academy of
Sciences, 116(13):5995–5600, 2019.

Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to detect community
structures in large-scale networks. Physical Review E, 76(3):036106, 2007.

K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional stochastic blockmodel.
Annals of Statistics, 39(4):1878–1915, 2011.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics and
visualization. In AAAI, 2015. URL https://networkrepository.com.

14

https://networkrepository.com

Under review as submission to TMLR

C. Shen. Encoder embedding for general graph and node classification. arXiv preprint arXiv:2405.15473,
2024.

C. Shen, Y. Park, and C. E. Priebe. Graph encoder ensemble for simultaneous vertex embedding and
community detection. In 2023 2nd International Conference on Algorithms, Data Mining, and Information
Technology. ACM, 2023a.

C. Shen, Q. Wang, and C. E. Priebe. One-hot graph encoder embedding. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(6):7933 – 7938, 2023b.

C. Shen, J. Larson, H. Trinh, X. Qin, Y. Park, and C. E. Priebe. Discovering communication pattern shifts
in large-scale labeled networks using encoder embedding and vertex dynamics. IEEE Transactions on
Network Science and Engineering, 11(2):2100 – 2109, 2024a.

C. Shen, C. E. Priebe, J. Larson, and H. Trinh. Synergistic graph fusion via encoder embedding. Information
Sciences, 678:120912, 2024b.

Cencheng Shen, Jesús Arroyo, Junhao Xiong, and Joshua T. Vogelstein. Community correlations and testing
independence between binary graphs. arXiv preprint arXiv:1906.03661, 2024c.

T. Snijders and K. Nowicki. Estimation and prediction for stochastic blockmodels for graphs with latent
block structure. Journal of Classification, 14(1):75–100, 1997.

D. Sussman, M. Tang, D. Fishkind, and C. Priebe. A consistent adjacency spectral embedding for stochastic
blockmodel graphs. Journal of the American Statistical Association, 107(499):1119–1128, 2012.

M. Tang, D. L. Sussman, and C. E. Priebe. Universally consistent vertex classification for latent positions
graphs. Annals of Statistics, 41(3):1406–1430, 2013.

V. A. Traag, L. Waltman, and N. J. van Eck. From louvain to leiden: guaranteeing well-connected commu-
nities. Scientific Reports, 9:5233, 2019.

Vincent A Traag, Paul Van Dooren, and Yuri Nesterov. Narrow scope for resolution-limit-free community
detection. Physical Review E, 84(1):016114, 2011.

Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The anatomy of the facebook social
graph. arXiv preprint arXiv:1111.4503, 2011.

L. Varshney, B. Chen, E. Paniagua, D. Hall, and D. Chklovskii. Structural properties of the caenorhabditis
elegans neuronal network. PLoS Computational Biology, 7(2):e1001066, 2011.

S. Young and E. Scheinerman. Random dot product graph models for social networks. In Algorithms and
Models for the Web-Graph, pp. 138–149. Springer Berlin Heidelberg, 2007.

Yichi Zhang and Minh Tang. A theoretical analysis of deepwalk and node2vec for exact recovery of community
structures in stochastic blockmodels. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(2):1065–1078, February 2024.

Y. Zhao, E. Levina, and J. Zhu. Consistency of community detection in networks under degree-corrected
stochastic block models. Annals of Statistics, 40(4):2266–2292, 2012.

M. Zhu and A. Ghodsi. Automatic dimensionality selection from the scree plot via the use of profile likelihood.
Computational Statistics and Data Analysis, 51:918–930, 2006.

15

Under review as submission to TMLR

APPENDIX

To facilitate the proof, we introduce the following notations for conditioning and density arguments:

• We use ·|U⃗ to denote the conditioning on all the independent variables Uj , i.e., for j = 1, 2, . . . , m,
we fix Uj = uj .

• When conditioning on (X, Y) = (x, y), we simply use ·|(X, Y).

• We assume (U, V) is an independent copy of (X, Y). Moreover, when conditioning on (U, V) = (u, v),
we simply use ·|(U, V).

• (a1, a2, . . . , am) denotes the density argument for each dimension of A, and (z1, z2, . . . , zK) denotes
the density argument for each dimension of Z.

Theorem 1. Given A ∼ RBG(X, V⃗, δ), the principal graph encoder embedding preserves the following
conditional density:

Y |A dist= Y |Z dist= Y |ZD.

Denote L∗(Y, A) as the Bayes optimal error to classify Y using A, we have

L∗(Y, A) = L∗(Y, Z) = L∗(Y, ZD).

Proof. The proof is decomposed into three parts:

• (i) establish Y |A dist= Y |Z;

• (ii) establish Y |Z dist= Y |ZD;

• (iii) establish the Bayes error equivalence.

(i) It suffices to show the following always holds:

Prob(Y |A) = Prob(Y |Z)

where Z = AW is the encoder embedding. Given that Y is a categorical variable with prior probabilities
{πk, k = 1, . . . , K}, each conditional probability satisfies

Prob(Y = y|A) =
πyfA|Y =y(a1, a2, . . . , am)∑K
l=1 πlfA|Y =l(a1, a2, . . . , am)

,

Prob(Y = y|Z) =
πyfZ|Y =y(z1, z2, . . . , zK)∑K
l=1 πlfZ|Y =l(z1, z2, . . . , zK)

.

Therefore, it suffices to prove that the two numerators are proportional, i.e.,

c × fA|Y (a1, a2, . . . , am) = fZ|Y (z1, z2, . . . , zK)

for some positive constant c that is unrelated to Y .

We begin by examining the conditional density of A:

fA|(Y,X,U⃗)(a1, a2, . . . , am) =
m∏

j=1
δ(x, uj)aj (1 − δ(x, uj))1−aj

=
K∏

k=1

vj=k∏
j=1,...,m

δ(x, uj)aj (1 − δ(x, uj))1−aj .

1

Under review as submission to TMLR

The first line follows because each dimension of A, under all the conditioning, is independently distributed
as a Bernoulli random variable with probability δ(x, uj) for j = 1, . . . , m. Then the second line rearranges
the product based on the class membership of each vj .

We proceed by un-conditioning with respect to U⃗ , resulting in the following expression:

fA|(Y,X)(a1, a2, . . . , am) =
∫

U⃗
fA|(Y,X,U⃗)(a1, . . . , am)fU⃗ (u1, . . . , um)

=
∫

u1,...,um

fA|(Y,X,U⃗)(a1, . . . , am)fU1(u1) · · · fUm(um)

=
∫

u1,··· ,um

K∏
k=1

vj=k∏
j=1,...,m

δ(x, uj)aj (1 − δ(x, uj))1−aj fU |V =v1(u1) · · · fU |V =vm
(um)

=
K∏

k=1

vj=k∏
j=1,...,m

E(δ(x, U)|V = k)aj (1 − E(δ(x, U)|V = k))1−aj

=
K∏

k=1
(τx,k(U))

vj =k∑
j=1,...,m

aj

(1 − τx,k(U))

vj =k∑
j=1,...,m

(1−aj)

.

The first line is a standard application of conditional density manipulation, and note that U⃗ is independent
of (X, Y). The second line rewrites the joint density of fU⃗ into individual densities, since the joint density is
simply a product of fU |V =vj

(uj). The fourth line computes the integral: since uj only appears once in the
whole product, either via δ(x, uj)aj or (1 − δ(x, uj))1−aj due to aj taking values of either 0 or 1, solving the
integral at each j yields either E(δ(x, uj)) or (1−E(δ(x, uj))). Since this expectation is identical throughout
the same vj , we can represent this expectation as:

τx,k(U) = E(δ(x, U)|V = k).

This allows us to group terms with the same expectation together based on k.

Continuing with the derivation, we un-condition X to derive fA|Y :

fA|Y (a1, a2, . . . , am) =
∫

x

fA|(Y,X)(a1, a2, . . . , am)fX|Y (x)

=
∫

x

K∏
k=1

(τx,k(U))

vj =k∑
j=1,...,m

aj

(1 − τx,k(U))

vj =k∑
j=1,...,m

(1−aj)

fX|Y (x).

Next, we consider the encoder embedding Z. Starting from fZ|(Y,X,U⃗)(z1, z2, . . . , zK), under such condition-
ing, the density at each dimension k is a Poisson Binomial distribution, i.e.,

mkZk|(Y, X, U⃗) ∼ Poisson Binomial({δ(x, uj)})

for j = 1, . . . , m and vj = k. After un-conditioning U⃗ , each probability δ(x, uj) again becomes E(δ(x, U)|V =
k) by the same reasoning as above for fA|(Y,X). Therefore,

mkZk|(Y, X) ∼ Binomial(mk, τx,k(U)).

As each dimension is conditionally independent, the density of Z is the product of independent Binomials,
and we have

fZ|(Y,X)(z1, z2, . . . , zK) =
K∏

k=1

(
mk

mkzk

)
(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk ,

2

Under review as submission to TMLR

and

fZ|Y (z1, z2, . . . , zK) =
∫

x

fZ|(Y,X)(z1, z2, . . . , zK)fX|Y (x)

=
∫

x

K∏
k=1

(
mk

mkzk

)
(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk fX|Y (x)

=
K∏

k=1

(
mk

mkzk

) ∫
x

K∏
k=1

(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk fX|Y (x),

where the third line follows because (mk, zk) are not affected by the integration of x.

Observe that the encoder embedding enforces mkzk =
∑vj=k

j=1,...,m aj for each k. Comparing fZ|Y to fA|Y , we
immediately have

c × fA|Y (a1, a2, . . . , am) = fZ|Y (z1, z2, . . . , zK)

when Z = AW , where c =
∏K

k=1
(

mk

mkzk

)
is a positive constant.

This conditional density equality holds regardless of the underlying (X, V⃗) or δ(·, ·). Hence, we have
Y |A dist= Y |Z for the encoder embedding.

(ii) Without loss of generality, let us assume that D = {1, 2, . . . , d}, and d ∈ [1, K). This means the first
d communities are the principal communities, and the remaining are redundant communities. The trivial
cases that d = 0 or d = K will be addressed at the end

Recall the expression from part (i) above:

fZ|Y (z1, z2, . . . , zK) =
K∏

k=1

(
mk

mkzk

) ∫
x

K∏
k=1

(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk fX|Y (x).

This leads to:

Prob(Y = y|Z) =
πyfZ|Y =y(z1, z2, . . . , zK)∑K
l=1 πlfZ|Y =l(z1, z2, . . . , zK)

=
πy

∏K
k=1

(
mk

mkzk

) ∫
x

∏K
k=1(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk fX|Y =y(x)∑K

l=1 πl

∏K
k=1

(
mk

mkzk

) ∫
x

∏K
k=1(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk fX|Y =l(x)

=
πy

∫
x

∏K
k=1(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk fX|Y =y(x)∑K

l=1 πl

∫
x

∏K
k=1(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk fX|Y =l(x)

where

τx,k(U) = E(δ(x, Uk)).

We first look at the terms from community K, which is assumed the redundant community. From the
definition of redundant community, we have

τx,K(U) = E(δ(x, UK)) = cK

for all possible x where fX(x) > 0, where cK is a constant unrelated to x. Consequently, all terms involving
τx,K(U) can be taken outside of the integral in both numerator and denominator, and the same holds for

3

Under review as submission to TMLR

terms associated with τx,k(U) for each k = d + 1, . . . , K. In essence, for any l ∈ [1, K], we always have

πl

∫
x

K∏
k=1

(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk fX|Y =l(x)

= (
K∏

k=d+1
cmkzk

k (1 − ck)mk−mkzk)πl

∫
x

d∏
k=1

(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk fX|Y =l(x).

It follows that

Prob(Y = y|Z) =
πy

∫
x

∏d
k=1(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk fX|Y =y(x)∑K

l=1 πl

∫
x

∏d
k=1(τx,k(U))mkzk (1 − τx,k(U))mk−mkzk fX|Y =l(x)

,

which exclusively pertains to dimensions corresponding to the principal communities. It is evident that:

Prob(Y = y|ZD) = Prob(Y = y|Z) = Prob(Y = y|A)

Hence, the principal graph encoder embedding satisfies Y |A dist= Y |ZD.

Regarding the two trivial cases: when d = K, implying that all communities are principal communities, the
theorem trivially holds since no additional dimension reduction occurs. When d = 0, there is no principal
community and D is empty. In this scenario, we have

Prob(Y = y|A) = Prob(Y = y|Z) = πy = Prob(Y = y),

indicating that A and Y are independent, and Z and Y are independent as well. In other words, the graph
provides no information for predicting Y , so the graph data itself is redundant.

(iii) Given two random variables (X, Y) where Y is categorical, the Bayes optimal classifier for using X to
predict Y is

g(X) = arg max
k=1,...,K

Prob(Y = k | X).

By the conditional density equivalence in parts (i) and (ii), it is immediate that the Bayes optimal classifier
for using A to predict Y satisfies

g(A) = arg max
k

Prob(Y = k | A)

= arg max
k

Prob(Y = k | Z) = g(Z)

= arg max
k

Prob(Y = k | ZD) = g(ZD).

Therefore, the Bayes optimal classifier for predicting Y is the same, regardless of whether the underlying
random variable is A, Z, or ZD. Since the optimal classifier is always the same, the resulting optimal error
is also the same.

Theorem 2. Assume A ∼ RBG(X, V⃗), and δ(X, Uk)|Y is independent of X|Y , which is satisfied under
the stochastic block model. Then the population community score λ(k) = 0 if and only if community k is a
redundant community.

Proof. (i) We first prove that the required condition, δ(X, Uk)|Y being independent of X|Y , can be satisfied
under the stochastic block model (SBM).

Recall that the standard stochastic block model satisfies:

A(i, j) ∼ Bernoulli(B(Y(i), Y(j))),

4

Under review as submission to TMLR

which, when cast into the framework of a random Bernoulli graph, is equivalent to:

δ(X, Uk)|(Y = y) = B(y, k),

where B(y, k) is a constant and, therefore, always independent of X|(Y = y).

This condition can also hold under the more general degree-corrected stochastic block model (DC-SBM),
with an additional assumption regarding how the degree parameters are generated. Under DC-SBM, we
have:

δ(X, Uk)|(Y = y) = θθ′B(y, k),

where θ and θ′ are the degrees for X and Uk, respectively. Clearly, θ′B(y, k) is independent of X|(Y = y).
By further assuming that the degree variable θ is generated independently of X|(Y = y), δ(X, Uk)|(Y = y)
becomes independent of X|(Y = y) under DC-SBM.

(ii) Next, we prove that under the condition that δ(X, Uk)|Y is independent of X|Y , the population com-
munity score λ(k) equals 0 if and only if community k is a redundant community.

From the definition of principal community and the population community score, we need to prove two
things. First, we shall prove that

V ar
(
E(δ(X, Uk) | X)

)
= 0

if and only if

V ar(E(Zk|Y = l)) = 0.

This is because when the above conditional variance equals 0, E(Zk|Y = l) is a constant across different l,
which makes the numerator of the population community score always 0.

From the proof of Theorem 1, we have:

mkZk|(Y = l, X = x) ∼ Binomial(mk, E(δ(x, Uk))).

From this, we can derive the conditional expectations as follows:

E(Zk|(Y, X = x)) = E(δ(x, Uk)),
E(Zk|Y = l) = E(δ(X, Uk)|Y = l).

When community k is redundant such that

V ar(E(δ(X, Uk)|X)) = 0,

we immediately have

V ar(E(Zk|Y = l)) = V ar(E(δ(X, Uk)|Y = l)) = 0.

This is because when the conditional variance equals 0 for all possible X, it must also be 0 when conditioning
on Y = l, which restricts to part of the support of X. This proves the only if direction.

To prove the if direction, we need the additional assumption that δ(X, Uk)|Y is independent of X|Y .
Given such conditional independence, and the fact that Zk|Y is a random variable with parameter mk

and E(δ(X, Uk)), we immediately have that Zk|Y is independent of X|Y , which implies E(Zk|Y = l) =
E(Zk|(Y = l, X)). Therefore, when V ar(E(Zk|Y = l)) = 0, we also have V ar(E(Zk|(Y = l, X))) = 0. Since
E(Zk|(Y = l, X = x)) = E(δ(x, Uk)) = E(δ(X, Uk)|X = x), which intuitively means that conditioning on
Y is redundant once X is known, this leads to V ar(E(Zk|X)) = V ar(E(δ(X, Uk)|X)) = 0.

(iii) Part (ii) proved that the numerator of the population community score equals 0 if and only if community k
is a redundant community. To complete the proof, it remains to show that the denominator of the population
community score is greater than 0; otherwise, a 0/0 problem could arise when community k is redundant.

5

Under review as submission to TMLR

Based on the binomial distribution of Zk, we have:

V ar(Zk|(Y, X)) = E(δ(x, Uk))(1 − E(δ(x, Uk)))
mk

> 0,

which always holds, regardless of whether k is redundant or not, except in the trivial case where δ(x, Uk) = 0
or 1 almost surely. This corresponds to the scenario where the graph adjacency matrix is entirely 0s or 1s,
making all communities redundant and reducing vertex classification to random guessing. Excluding such
trivial cases, we have:

V ar(Zk|Y = l) = EX(V ar(Zk|(Y, X))) + V arX(E(Zk|(Y, X))) > 0,

where the first term is positive, and the second term is non-negative.

Thus, excluding trivial graphs, the denominator of the principal community score is always positive, regard-
less of whether community k is redundant or principal.

6

	Introduction
	The Main Method
	Principal Graph Encoder Embedding
	On Normalization
	The Community Score
	On Label Vector
	Computational Complexity

	Population Definition and Supporting Theory
	Existing Random Graph Models
	Defining a Graph Variable
	The Principal Graph Encoder Embedding for the Graph Variable
	Conditional Density Preserving Property
	Population Community Score

	Simulations
	Embedding Visualization and Sample Community Score
	Detection Accuracy and Vertex Classification

	Real Data
	Setting
	Using Original Data
	Using Noisy Data

