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Abstract
Zero-shot imitation learning algorithms hold the
promise of reproducing unseen behavior from
as little as a single demonstration at test time.
Existing practical approaches view the expert
demonstration as a sequence of goals, enabling
imitation with a high-level goal selector, and a
low-level goal-conditioned policy. However, this
framework can suffer from myopic behavior: the
agent’s immediate actions towards achieving indi-
vidual goals may undermine long-term objectives.
We introduce a novel method that mitigates this
issue by directly optimizing the occupancy match-
ing objective that is intrinsic to imitation learning.
We propose to lift a goal-conditioned value func-
tion to a distance between occupancies, which are
in turn approximated via a learned world model.
The resulting method can learn from offline, sub-
optimal data, and is capable of non-myopic, zero-
shot imitation, as we demonstrate in complex,
continuous benchmarks. The code is available
at https://github.com/martius-lab/
zilot.

1. Introduction
The emergence of zero/few-shot capabilities in language
modeling (Brown et al., 2020; Wei et al., 2022; Kojima
et al., 2022) has renewed interest in generalist agents across
all fields in machine learning. Typically, such agents are
pretrained with minimal human supervision. At inference,
they are capable of generalization across diverse tasks, with-
out further training, i.e. zero-shot. Such capabilities have
also been a long-standing goal in learning-based control
(Duan et al., 2017). Promising results have been achieved
by leveraging the scaling and generalization properties of
supervised learning (Jang et al., 2022; Reed et al., 2022;
O’Neill et al., 2023; Ghosh et al., 2024; Kim et al., 2024),
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which however rely on large amounts of expert data, usually
involving costly human participation, e.g. teleoperation. A
potential solution to this issue can be found in reinforce-
ment learning approaches, which enable learning from
suboptimal data sources (Sutton & Barto, 2018). Existing
methods within this framework ease the burden of learning
general policies by limiting the task class to additive
rewards (Laskin et al., 2021; Sancaktar et al., 2022; Frans
et al., 2024) or single goals (Bagatella & Martius, 2023).

This work lifts the restrictions of previous approaches,
and proposes a method that can reproduce rich behaviors
from offline, suboptimal data sources. We allow arbitrary
tasks to be specified through a single demonstration devoid
of actions at inference time, conforming to a zero-shot
Imitation Learning (IL) setting (Pathak et al., 2018; Pirotta
et al., 2024). Furthermore, we consider a relaxation of this
setting (Pathak et al., 2018), where the expert demonstration
may be rough, consisting of an ordered sequence of states
without precise time-step information, and partial, meaning
each state contains only partial information about the full
state. These two relaxations are desirable from a practical
standpoint, as they allow a user to avoid specifying infor-
mation that is either inconsequential to the task or costly
to attain (e.g. only through teleoperation). For example,
when tasking a robot arm with moving an object along a
path, it is sufficient to provide the object’s position for a
few “checkpoints” without specifying the exact arm pose.

In principle, a specified goal sequence can be decomposed
into multiple single-goal tasks that can be accomplished by
goal-conditioned policies, as proposed by recent zero-shot
IL approaches (Pathak et al., 2018; Hao et al., 2023).
However, we show that this decomposition is prone to
myopic behavior when expert demonstrations are partial.
Continuing the robotic manipulation example from above,
let us consider a task described by two sequential goals,
each specifying a certain position that the object should
reach. In this case an optimal goal-conditioned policy
would attempt to reach the first goal as fast as possible,
possibly by throwing the object towards it. The agent would
then relinquish control of the object, leaving it in a subop-
timal—or even unrecoverable—state. In this case, the agent
would be unable to move the object towards the second
goal. This myopic behavior is a fundamental issue arising
from goal abstraction, as we formally argue in Section
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Figure 1. Overview of ZILOT. After learning a world model P̂ and a goal-conditioned value function V from offline data (left), a
zero-order optimizer directly matches the occupancy of rollouts ρ̂π from the learned world model to the occupancy of a single expert
demonstration ρ̂E (center). This is done by lifting the goal-conditioned value function to a distance between occupancies using Optimal
Transport. The resulting policy displays non-myopic behavior (right).

3, and results in catastrophic failures in hard-to-control
environments, as we demonstrate empirically in Section 5.

In this work we instead provide a holistic solution to zero-
shot offline imitation learning by adopting an occupancy
matching formulation. We name our method ZILOT (Zero-
shot Offline Imitation Learning from Optimal Transport).
We utilize Optimal Transport (OT) to lift the state-goal dis-
tance inherent to GC-RL to a distance between the expert’s
and the policy’s occupancies, where the latter is approxi-
mated by querying a learned world model. Furthermore,
we operationalize this distance as an objective in a standard
fixed horizon MPC setting. Minimizing this distance leads
to non-myopic behavior in zero-shot imitation. We verify
our claims empirically by comparing our planner to previous
zero-shot IL approaches across multiple robotic simulation
environments, down-stream tasks, and offline datasets.

2. Preliminaries
2.1. Imitation Learning

We model an environment as a controllable Markov Chain1

M = (S,A, P, µ0), where S and A are state and action
spaces, P : S ×A → Ω(S)2 is the transition function and
µ0 ∈ Ω(S) is the initial state distribution. In order to allow
for partial demonstrations, we additionally define a goal
space G and a surjective function ϕ : S → G which maps
each state to its abstract representation. To define “goal
achievement”, we assume the existence of a goal metric
h on G that does not need to be known. We then regard
state s ∈ S as having achieved goal g ∈ G if we have
h(ϕ(s), g) < ϵ for some fixed ϵ > 0. For each policy
π : S → Ω(A), we can measure the (undiscounted) N -step
state and goal occupancies respectively as

ϱπN (s) =
1

N + 1

N∑
t=0

Pr[s = st] (1)

1or reward-free Markov Decision Process.
2where Ω(S) denotes the set of distributions over S.

and

ρπN (g) =
1

N + 1

N∑
t=0

Pr[g = ϕ(st)], (2)

where s0 ∼ µ0, st+1 ∼ P (st, at) and at ∼ π(st). These
quantities are particularly important in the context of imita-
tion learning. We refer the reader to (Liu et al., 2023) for a
full overview over IL settings, and limit this discussion to of-
fline IL with rough and partial expert trajectories. It assumes
access to two datasets: Dβ = (si0, a

i
0, s

i
1, a

i
1, . . . )

|Dβ |
i=1

consisting of full state-action trajectories from M and
DE = (gi0, g

i
1, . . . )

|DE |
i=1 containing demonstrations of an

expert in the form of goal sequences, not necessarily abid-
ing to the dynamic ofM. Note that both datasets do not
have reward labels. The goal is to train a policy π that imi-
tates the expert, which is commonly formulated as matching
goal occupancies

ρπN
D
= ρπE

N . (3)

The setting we consider in this work is zero-shot offline
IL which imposes two additional constraints on offline IL.
First, DE is only available at inference time, which means
pre-training has to be task-agnostic. We further assume DE
consists of a single trajectory (g0, . . . , gm) = g0:m. Second,
at inference, the agent should imitate πE , with a “modest
compute-overhead” (Pathak et al., 2018; Touati & Ollivier,
2021; Pirotta et al., 2024). In practice, imitation of unseen
trajectories should be order of magnitudes cheaper than
IL from scratch, and largely avoid costly operations (e.g.
network updates).

2.2. Optimal Transport

In the field of machine learning, it is often of interest to
match distributions, i.e. find some probability measure µ
that resembles some other probability measure ν. In re-
cent years there has been an increased interest in Optimal
Transportation (OT) (Amos et al., 2023; Haldar et al., 2022;
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Figure 2. An example of Optimal Transport between the discrete
approximation µ̂, ν̂ of two Gaussians µ, ν. The cost matrix C
consists of the point-wise costs where the cost here is the Euclidian
distance. A coupling matrix T ∈ U(µ̂, ν̂) (middle) is visualized
through lines representing the matching (right).

Bunne et al., 2023; Pooladian et al., 2024). As illustrated
in figure 2, OT does not only compare probability mea-
sures in a point-wise fashion, like f -Divergences such as
the Kullbach-Leibler Divergence (DKL), but also incorpo-
rates the geometry of the underlying space. This also makes
OT robust to empirical approximation (sampling) of proba-
bility measures ((Peyré & Cuturi, 2019), p.129). Formally,
OT describes the coupling γ ∈ P(X × Y) of two measures
µ ∈ P(X ), ν ∈ P(Y) with minimal transportation cost
w.r.t. some cost function c : X × Y → R. The primal
Kantorovich form is given as the optimization problem

OTc(µ, ν) = inf
γ∈U(µ,ν)

∫
X×Y

c(x1, x2)dγ(x1, x2) (4)

where the optimization is over all joint distributions of µ
and ν denoted as γ ∈ U(µ, ν) (couplings). If X = Y and
(X , c) is a metric space then for p ∈ N, W p

p = OTcp is
called the Wasserstein-p distance which was shown to be
a metric on the subset of measures on X with finite p-th
moments (Clement & Desch, 2008).

Given samples x1, . . . , xn ∼ µ and y1, . . . , ym ∼ ν the dis-
crete OT problem between the discrete probability measures
µ̂ =

∑n
i=1 aiδxi and ν̂ =

∑m
j=1 bjδyj can be written as a

discrete version of equation 4, namely

OTc(µ̂, ν̂) = min
T∈U(a,b)

n∑
i=1

m∑
j=1

c(xi, yj)Tij (5)

= min
T∈U(a,b)

⟨C,T ⟩ (6)

with the cost matrix Cij = c(xi, yj). The marginal con-
straints can now be written as U(a, b) = {T ∈ Rn×m :
T · 1m = b and T⊤ · 1n = a}. This optimization problem
can be solved via Linear Programming. Furthermore, Cu-
turi (2013) shows that the entropically regularized version,
commonly given as OTc,η(µ̂, ν̂) = minT∈U(a,b)⟨C,T ⟩ −
ηDKL(T ,ab

⊤), can be efficiently solved in its dual form
using Sinkhorn’s algorithm (Sinkhorn & Knopp, 1967).

2.3. Goal-conditioned Reinforcement Learning

As techniques from the literature will be recurring in this
work, we provide a short introduction to fundamental ideas

in GC-RL. We can introduce this framework by enriching
the controllable Markov ChainM. We condition it on a goal
g ∈ G and cast it as an (undiscounted) Markov Decision
ProcessMg = (S∪{⊥},A, Pg, µ0, Rg, Tmax). Compared
to the reward-free setting above, the dynamics now include
a sink-state ⊥ upon goal-reaching and a reward of −1 until
this happens:

Pg(s, a) =

{
P (s, a) if h(ϕ(s), g) ≥ ϵ
δ⊥ otherwise

(7)

Rg(s, a) =

{
−1 if h(ϕ(s), g) ≥ ϵ
0 otherwise

(8)

where δx stands for the probability distribution assigning all
probability mass to x.

We can now define the goal-conditioned value function as

V π(s0, g) = E
µ0,Pg,π

[
Tmax∑
t=0

Rg(st, at)

]
(9)

where s0 ∼ µ0, st+1 ∼ Pg(st, at), at ∼ π(st, g).
The optimal goal-conditioned policy is then π⋆ =
argmaxπ Eg∼µG ,s∼µ0

V π(s0; g) for some goal distribution
µG ∈ Ω(G). Intuitively, the value function V π(s, g) cor-
responds to the negative number of expected steps that π
needs to move from state s to goal g. Thus the distance
d = −V ⋆ corresponds to the expected first hit time. If no
goal abstraction is present, i.e. ϕ = idS , then (S, d) is a
quasimetric space (Wang et al., 2023), i.e. d is non-negative
and satisfies the triangle inequality. Note, though, that d
does not need be be symmetric.

3. Goal Abstraction and Myopic Planning
The distribution matching objective at the core of IL prob-
lems is in general hard to optimize. For this reason, tra-
ditional methods for zero-shot IL leverage a hierarchical
decomposition into a sequence of GC-RL problems (Pathak
et al., 2018; Hao et al., 2023). We will first describe this ap-
proach, and then show how it potentially introduces myopic
behavior and suboptimality.

In the pretraining phase, Pathak et al. (2018) propose to
train a goal-conditioned policy πg : S×G → A on reaching
single goals and a goal-recognizer C : S × G → {0, 1}
that detects whether a given state achieves the given
goal. Given an expert demonstration g1:M and an initial
state s0, imitating the expert can then be sequentially
decomposed into M goal-reaching problems, and solved
with a hierarchical agent consisting of two policies. On the
lower level, πg chooses actions to reach the current goal;
on the higher level, C decides whether the current goal is
achieved and πg should target the next goal in the sequence.
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Figure 3. Controllable Markov Chain with ϕ : (x, y) 7→ x.

We define the pre-image ϕ−1(g) = {s ∈ S : ϕ(s) = g}
as the set of all states that map to a goal, and formalize the
suboptimality of the above method under goal abstraction
as follows.

Proposition 3.1. Let us define the optimal classifier
C(s, g) = 1h(ϕ(s),g)<ϵ. Given a set of visited states P ⊆ S ,
the current state s ∈ P , and a goal sequence g1:M ∈ GM ,
let the optimal hierarchical policy be π⋆h(s) = π⋆(s, gi+1),
where i is the smallest integer such that there exist a state
sp ∈ P with h(ϕ(sp), gi) < ϵ, and i = 0 otherwise. There
exists a controllable Markov Chain M and a realizable
sequence of goals g0:M such that, under a suitable goal
abstraction ϕ(·), π⋆h will not reach all goals in the sequence,
i.e. ρπ

⋆
h

N (gi) = 0 for some i ∈ [0, . . . ,M ] and all N ∈ N.

Proof. Consider the Markov ChainM depicted in figure 3
with goal abstraction ϕ : (x, y) 7→ x and p > 0. Now,
consider the goal sequence (g0, g1, g2) = (0, 1, 2), which
can only be achieved, by a policy taking action a1 in the
initial state s0 = (0, 0). Consider π⋆h in s0, with P = {s0}.
The smallest integer i such that h(ϕ(s0), gi) < ϵ is i = 0,
therefore π⋆h(s0) = π⋆(s0, g1). We can then compare the
state-action values Q in s0:

Qπ
⋆(·,g1)(s0, a1, g1) =

Tmax∑
t=0

−pt = −1 · 1− p
(Tmax+1)

1− p

< −1 = Qπ
⋆(·,g1)(s0, a0, g1). (10)

This implies that π⋆h(s0) = π⋆(s0, 1) = a0. The next
state visited by π⋆h will always be (1, 0), from which (2, 1)
is not reachable, and g2 is not achievable. We thus have
ρ
π⋆
h

N (g2) = 0 for all N ∈ N.

We remark that this issue arises in the presence of goal
abstraction which plays a vital role in the partial demon-
stration setting we consider. Without goal abstraction,
i.e., if each goal is fully specified, there is no leeway in
how to achieve it for the policy (assuming ϵ → 0 as well).
Nevertheless, goal abstraction is ubiquitous in practice
(Schaul et al., 2015) and necessary to enable learning in
complex environments (Andrychowicz et al., 2017).

4. Optimal Transport for Zero-Shot IL
Armed with recent tools in value estimation, model-based
RL and trajectory optimization, we propose a method for
zero-shot offline imitation learning that directly optimizes
the occupancy matching objective, introducing only mini-
mal approximations. As a result, the degree of myopia is
greatly reduced, as we show empirically in section 5.

In particular, we propose to solve the occupancy matching
problem in equation 3 by minimizing the Wasserstein-1
metric W1 with respect to goal metric h on the goal space
G, i.e.

W1(ρ
π
N , ρ

E
N ) = OTh(ρπN , ρ

E
N ). (11)

This objective involves two inaccessible quantities: goal
occupancies ρπN , ρ

E
N , as well as the goal metric h. Our key

contribution lies in how these quantities can be practically
estimated, enabling optimization of the objective with scal-
able deep RL techniques.

Occupancy Estimation Since the expert’s and the pol-
icy’s occupancy are both inaccessible, we opt for discrete,
sample-based approximations. In the case of the expert
occupancy ρEN , the single trajectory provided at inference
(g0, . . . , gM ) represents a valid sample from it, and we use
it directly. For an arbitrary agent policy π, we use a discrete
approximation after training a dynamics model P̂ ≈ P on
Dβ , which can be done offline through standard supervised
learning. We can then approximate ρπN by jointly rolling out
the learned dynamics model and the policy π. We thus get
the discrete approximations

ρEN ≈ ρ̂EM =
1

M + 1

M∑
j=0

δgj and (12)

ρπN ≈ ρ̂πN =
1

N + 1

N∑
t=0

δϕ(st) (13)

where for the latter we sample

s0 ∼ µ0, st+1 ∼ P̂ (st, at), at ∼ π(st). (14)

Similarly, we can also obtain an estimate for the state occu-
pancy of π as ϱπN ≈ ϱ̂πN = 1

N+1

∑N
t=0 δst .

Metric Approximation As h may be unavailable or hard
to specify in practical settings, we propose to train a goal-
conditioned value function V ⋆ from the offline data Dβ and
use the distance d(s, g) = −V ⋆(s, g) (i.e. the learned first
hit time) as a proxy. For a given state-goal pair (s, g), this
corresponds to the approximation d(s, g) ≈ h(ϕ(s), g). It is
easy to show that a minimizer of h(ϕ(·), g) also minimizes
d(·, g). Using d also has the benefit of incorporating the
dynamics of the MDP into the cost of the OT problem. The
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use of this distance has seen some use as the cost function in
Wasserstein metrics between state occupancies in the past
(Durugkar et al., 2021). As we show in section 5.3, d is
able to capture potential asymmetries in the MDP, while
remaining informative of h. We note that, while h : G ×
G → R is a distance in goal-space, d : S × G → R is a
distance between states and goals. Nonetheless, d remains
applicable as the policy’s occupancy can also be estimated
in state spaces as ϱ̂πN . Given the above considerations, we
can rewrite our objective as the discrete optimal transport
problem

π⋆ = argmin
π

OTd(ϱ̂πN , ρ̂
E
M ). (15)

Optimization Having addressed density and metric ap-
proximations, we now focus on optimizing the objective
in equation 15. Fortunately, as a discrete OT problem, the
objective can be evaluated efficiently using Sinkhorn’s algo-
rithm when introducing entropic regularization with a factor
η (Cuturi, 2013; Peyré & Cuturi, 2019). A non-Markovian,
deterministic policy optimizing the objective at state sk ∈ S
can be written as

π(s0:k, g0:m) (16)

≈ argmin
ak

min
ak+1:N−1

OTd,η

 1
N+1

N∑
i=0

δsi ,
1

M+1

M∑
j=0

δgj


where s0:k are the states visited so far and sk+1:N are rolled
out using the learned dynamics model P̂ and actions ak:N−1.
Note that while s0:k are part of the objective, they are con-
stant and are not actively optimized.

Intuitively, this optimization problem corresponds to finding
the first action from a sequence (ak:N−1) that minimizes
the OT costs between the empirical expert goal occupancy,
and the induced empirical policy state occupancy. This type
of optimization problem fits naturally into the framework
of planning with zero-order optimizers and learned world
models (Chua et al., 2018; Ha & Schmidhuber, 2018); while
these algorithms are traditionally used for additive costs, the
flexibility of zero-order optimizers (Rubinstein & Kroese,
2004; Williams et al., 2015; Pinneri et al., 2020) allows a
straightforward application to our problem. The objective
in equation 17 can thus be directly optimized with CEM
variants (Pinneri et al., 2020) or MPPI (Williams et al.,
2015), in a model predictive control (MPC) fashion.

Like for other MPC approaches, we are forced to plan for a
finite horizon H , which might be smaller than N , because
of imperfections in the learned dynamics model or compu-
tational constraints. This is referred to as receding horizon
control (Datko, 1969). When the policy rollouts used for
computing ϱ̂πN are truncated, it is also necessary to trun-
cate the goal sequence to exclude any goals that cannot be

reached within H steps. To this end, we train an extra value
function W that estimates the number of steps required
to go from one goal to the next by regressing onto V , i.e.
by minimizing Es,s′∼Dβ

[(W (ϕ(s);ϕ(s′))−V (s;ϕ(s′)))2].
For i ∈ [0, . . . ,M ], we can then estimate the time when gi
should be reached as

ti ≈ −V (s0; g0)−
i∑

j=1

W (gj−1; gj). (17)

We then simply truncate the online problem to only con-
sider goals relevant to s1, . . . , sk+H , i.e. g0, . . . , gK where
K = min{j : tj ≥ k+H}. We note that this approximation
of the infinite horizon objective can potentially result in my-
opic behavior if K < M ; nonetheless, optimal behavior is
recovered as the effective planning horizon increases. Algo-
rithm 1 shows how the practical OT objective is computed.

Algorithm 1 OT cost computation for ZILOT

Require: Pretrained GC value functions V,W and dynam-
ics model P̂ ; horizon H , solver iterations r and regular-
ization factor η.

Initialization: State s0 and expert trajectory g1:M , precom-
puted t0:M

input State history s0:k, future actions ak:k+H−1

{Rollout learned dynamics}
sk+1:k+H ← rollout(P̂ , sk, ak:k+H−1)
{Compute which goals are reachable}

K ← min{j : tj ≥ k +H}
{Compute cost matrix}

Cij ← −V (si; gj), i ∈ {0, . . . , k+H}, j ∈ {0, . . . ,K}
{Compute uniform marginals}

a← 1
k+H+11k+H+1, b← 1

K+11K+1

{Run Sinkhorn Algorithm}
T ← sinkhorn(a, b,C, r, η)

output
∑
ij TijCij {Return OT cost}

Implementation The method presented relies solely on
three learned components: a dynamics model P̂ , and the
state-goal and goal-goal GC value functions V and W . All
of them can be learned offline from the dataset Dβ . In
practice, we found that several existing deep reinforcement
learning frameworks can be easily adapted to learn these
functions. We adopt TD-MPC2 (Hansen et al., 2024), a state
of the art model-based algorithm that has shown promising
results in single- and multitask online and offline RL. We
note that planning takes place in the latent space constructed
by TD-MPC2’s encoders. We adapt the method to allow
estimation of goal-conditioned value functions, as described
in appendix C. We follow prior work (Andrychowicz et al.,
2017; Bagatella & Martius, 2023; Tian et al., 2021) and
sample goals from the future part of trajectories in Dβ in
order to synthesize rewards without supervision. We note
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that this goal-sampling method also does not require any
knowledge of h.

5. Experiments
This section constitutes an extensive empirical evaluation of
ZILOT for zero-shot IL. We first describe our experimental
settings, and then present qualitative and quantitative result,
as well as an ablation study. We consider a selection of 30
tasks defined over 5 environments, as summarized below
and described in detail in appendix A and C.

fetch (Plappert et al., 2018) is a manipulation suite in
which a robot arm either pushes (Push), or lifts (Pick&Place)
a cube towards a goal. To illustrate the failure cases of my-
opic planning, we also evaluate a variation of Push (i.e.
Slide), in which the table size exceeds the arm’s range, the
table’s friction is reduced, and the arm is constrained to be
touching the table. As a result, the agent cannot fully con-
strain the cube, e.g. by picking it up, or pressing on it, and
the environment strongly punishes careless manipulation.
In all three environments, tasks consist of moving the cube
along trajectories shaped like the letters “S”, “L”, and “U”.

halfcheetah (Wawrzyński, 2009) is a classic Mujoco
environment where the agent controls a cat-like agent in
a 2D horizontal plane. As this environment is not goal-
conditioned by default, we choose the x-coordinate and the
orientation of the cheetah as a meaninful goal-abstraction.
This allows the definition of tasks involving standing up and
hopping on front or back legs, as well as doing flips.

pointmaze (Fu et al., 2021) involves maneuvering a point-
mass through a maze via force control. Downstream tasks
consist of following a series of waypoints through the maze.

Planners The most natural comparison is the framework
proposed by Pathak et al. (2018), which addresses imitation
through a hierarchical decomposition, as discussed in
section 3. Both hierarchical components are learned within
TD-MPC2: the low-level goal-conditioned policy is by
default part of TD-MPC2, while the goal-classifier (Cls)
can be obtained by thresholding the learned value function
V . We privilege this baseline (Policy+Cls) by selecting
the threshold minimizing Wmin per environment among
the values {1, 2, 3, 4, 5}. Moreover, we also compare to
a version of this baseline replacing the low-level policy
with zero-order optimization of the goal-conditioned
value function (MPC+Cls), thus ablating any benefits
resulting from model-based components. We remark that
all MPC methods use the same zero-order optimizer iCEM
(Pinneri et al., 2020). We further compare ZILOT to ERFB
and RERFB, two approaches that combine zero-shot RL
and reward-based IL using the Forward-Backward (FB)
framework (Pirotta et al., 2024). We refer the reader to

y

x

MPC+Cls ZILOT (ours)

Trajectories Plan Render

Figure 4. Example tasks in fetch slide large 2D. The left
two columns show five trajectories across five seeds of the myopic
method MPC+Cls and ZILOT (ours). The trajectories are drawn
in the x-y-plane of the goal space and just show the movement of
the cube. ZILOT’s behavior imitates the given goal trajectories
more closely. On the right, we visualize the OT objective at around
three quarters of the episode time. It includes both the past and
planned future states, as well as their coupling to the goals. Note
that planning occurs in the latent state of TD-MPC2, and separately
trained decoders are used for this visualization.

appendix B for a discussion of all FB-IL approaches in our
rough and partial setting.

Metrics We report two metrics for evaluating planner per-
formance. The first one is the minimal encountered (em-
pirical) Wasserstein-1 distance under the goal metric h of
the agent’s trajectory and the given goal sequence. For-
mally, given trajectory (s0, . . . , sN ) and the goal sequence
(g0, . . . , gM ) we define Wmin(s0:N , g1:M ) as

min
k∈{0,...,N}

W1

(
1

k + 1

k∑
i=0

δϕ(si),
1

M + 1

M∑
j=0

δgj

)
. (18)

We introduce a secondary metric “GoalFraction”, which
represents the fraction of goals that are achieved in the order
they were given. Formally, this corresponds to the length of
the longest subsequence of achieved goals that matches the
desired order.

5.1. Can ZILOT effectively imitate unseen trajectories?

We first set out to qualitatively evaluate whether the method
is capable of imitation in complex environments, despite
practical approximations. Figure 4 illustrates how MPC+Cls
and ZILOT imitate an expert sliding a cube across the big
table of the fetch slide large 2D environment. The
myopic baseline struggles to regain control over the cube
after moving it towards the second goal, leading to trajecto-
ries that leave the manipulation range. In contrast, ZILOT
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Figure 5. Performance comparison of ZILOT and other methods aggregated over environments. Table 1 reports more detailed results.

plans beyond the second goal. As displayed in the middle
part of figure 4, the coupling of the OT problem approxi-
mately pairs up each state in the planned trajectory with the
appropriate goal, leading to closer imitation of the expert.

5.2. How does ZILOT perform compared to prior
methods?

We provide a quantitative evaluation of ZILOT with respect
to the other planners in table 5. For more details we re-
fer the reader to appendix A. As ZILOT directly optimizes
a distribution matching objective, it generally reproduces
expert trajectories more closely, achieving a lower Wasser-
stein distance to its distribution. This is especially evident
in environments that are very punishing to myopic plan-
ning, such as the Fetch Slide environment shown in figure 4.
In most environments, our method also out-performs the
baselines in terms of the fraction of goals reached. In less
punishing environments, ZILOT may sacrifice precision in
achieving the next goal exactly for an overall closer match
of the expert trajectory which is most clearly visible in the
pointmaze environment. We note that the performance
of the two myopic baselines Pi+Cls and MPC+Cls are very
similar, suggesting that the performance gap to ZILOT stems
from the change in objective, rather than implementation or
model-based components. We suspect the origins of the sub-
par performance of ERFB and RERFB are two-fold. First, the
FB framework (Touati & Ollivier, 2021; Pirotta et al., 2024)
has been found to underperform in low-data regimes(Jeen
et al., 2024). Second, ERFB and RERFB use a regularized
f-divergence objective, which translates to an RL problem
with additive rewards. As (Pirotta et al., 2024) state, this
regularization comes at a cost, particularly if states do not
contain dynamical information or in ergodic MDPs. In this
case, a policy can optimize the reward by remaining in the
most likely expert state, yielding a degenerate solution. Con-
versely, such a solution would be discarded by ZILOT as it
uses an unregularized objective.

5.3. What matters for ZILOT?

To validate some of our design choices we finally evaluate
the following versions of our method.

• OT+unbalanced, our method with unbalanced OT
(Liero et al., 2018; Séjourné et al., 2019), which turns
the hard marginal constraint U (see section 2.2) into a
soft constraint. We use this method to address the fact
that a rough expert trajectory may not necessarily yield
a feasible expert occupancy approximation.

• OT+Cls, a version of our method which uses the clas-
sifier (Cls) (with the same hyperparameter search) to
discards all goals that are recognized as reached. This
allows this method to only consider future goals and
states in the OT objective.

• OT+h, our method with the goal metric h on G as the
cost function in the OT problem, replacing d.

Our results are summarized in figure 6. First, we see that us-
ing unbalanced OT does not yield significant improvements.
Second, using a goal-classifier can have a bad impact on
matching performance. We suspect this is the case because
keeping track of the history of states gives a better, more
informative, estimate of which part of the expert occupancy
has already been fulfilled. Finally, we observe that the goal
metric h may not be preferable to d, even if it is available.
We mainly attribute this to the fact that, in the considered en-
vironments, any action directly changes the state occupancy,
but the same cannot be said for the goal occupancy. Since
h only allows for the comparison of goal occupancies, the
optimization landscape can be very flat in situations where
most actions do not change the future state trajectory under
goal abstraction, such as the start of fetch tasks as visible
in its achieved trajectories in the figures in appendix E. Fur-
thermore, while h is locally accurate, it ignores the global
geometry of MDPs, as shown by its poor performance in
strongly asymmetric environments (i.e., halfcheetah).

7



Zero-Shot Offline Imitation Learning via Optimal Transport

0.0
0.1
0.2
0.3

W
m

in
 

fetch_pick_and_place

0.0
0.1
0.2
0.3

fetch_push

0.0
0.1
0.2
0.3

fetch_slide_large_2D

0

1

2
halfcheetah

0

1

2
pointmaze_medium

0.0

0.5

1.0

Go
al

Fr
ac

tio
n 

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

ZILOT+h ZILOT+Cls ZILOT+Unbalanced ZILOT (ours)

0.0

0.5

1.0

Figure 6. Ablation of design choices in ZILOT, including coupling constraints (OT+unbalanced), partial trajectory matching (OT+Cls),
and the approximation of h by d (OT+h). For more detailed results, please refer to table 2.

6. Related Work
Zero-shot IL When a substantial amount of compute is
allowed at inference time, several existing methods leverage
pretrained models to infer actions, and retrieve an imitator
policy via behavior cloning (Pan et al., 2020; Zhang et al.,
2023; Torabi et al., 2018). As already discussed in section 3,
most (truly) zero-shot methods cast the problem of imitating
an expert demonstration as following the sequence of its
observations (Pathak et al., 2018; Hao et al., 2023). Expert
demonstrations are then imitated by going from one goal
to the next using a goal-conditioned policy. In contrast,
our work proposes a holistic approach to imitation, which
considers all goals within the planning horizon.

Zero-Shot RL Vast amounts of effort have been dedicated
to learning generalist agents without supervision, both on
the theoretical (Touati & Ollivier, 2021; Touati et al., 2023)
and practical side (Laskin et al., 2021; Mendonca et al.,
2021). Among others, (Sancaktar et al., 2022; P. et al., 2021;
Bagatella & Martius, 2023) learn a dynamics model through
curious exploration and show how it can be leveraged to
optimize additive objectives. More recently, Frans et al.
(2024) use Functional Reward Encodings to encode arbi-
trary additive reward functions in a latent that is used to
condition a policy. While these approaches are effective in a
standard RL setting, they are not suitable to solve instances
of global RL problems (Santi et al., 2024) (i.e., distribution
matching). One notable exception is the forward-backward
framework (Touati & Ollivier, 2021; Pirotta et al., 2024),
which we discuss in detail in appendix B.

Imitation Learning A range of recent work has been
focused on training agents that imitate experts from their
trajectories by matching state, state-action, or state-next-
state occupancies depending on what is available. These
methods either directly optimize various distribution match-
ing objectives (Liu et al., 2023; Ma et al., 2022) or recover
a reward using Generative Adversarial Networks (GAN)

(Ho & Ermon, 2016; Li et al., 2023) or in one instance OT
(Luo et al., 2023). Another line of work has shown impres-
sive real-world results by matching the action distributions
(Shafiullah et al., 2022; Florence et al., 2021; Chi et al.,
2023) directly. All these approaches do not operate in a
zero-shot fashion, or need ad-hoc data collection.

OT in RL Previous works have often used OT as a re-
ward signal in RL. One application is online fine-tuning,
where a policy’s rollouts are rewarded in proportion to how
closely they match expert trajectories (Dadashi et al., 2021;
Haldar et al., 2022). Luo et al. (2023) instead use a similar
trajectory matching strategy to recover reward labels for
unlabelled mixed-quality offline datasets. Most of the works
mentioned above rely on simple Cosine similarities and
Euclidean distances as cost-functions their OT problems..

7. Discussion
In this work, we point out a failure-mode of current zero-
shot IL methods that cast imitating an expert demonstra-
tion as following a sequence of goals with myopic GC-RL
policies. We address this issue by framing the problem as
occupancy matching. By introducing discretizations and
minimal approximations, we derive an Optimal Transporta-
tion problem that can be directly optimized at inference
time using a learned dynamics model, goal-conditioned
value functions, and zero-order optimizer. Our experimental
results across various environments and tasks show that our
approach outperforms state-of-the-art zero-shot IL methods,
particularly in scenarios where non-myopic planning is cru-
cial. We additionally validate our design choices through a
series of ablations.

From a practical standpoint, our method is mainly limited in
its reliance on a world model. As the inaccuracy and com-
putational cost of learned dynamics models increase with
the prediction horizon, we are forced to optimize a fixed-
horizon objective. This may reintroduce a slight degree of

8



Zero-Shot Offline Imitation Learning via Optimal Transport

myopia that could lead to actions which cause suboptimal
behavior beyond the planning horizon. This, however, was
not a practical issue in our empirical validation, and we
expect our framework to further benefit as the accuracy of
learned world models improves. From a theoretical stand-
point, ZILOT induces a non-Markovian policy, even when
expert trajectories are collected by a Markovian policy, and
a Markovian policy would thus be sufficient for imitation.
While the space of non-Markovian policies is larger, we find
ZILOT to be able to efficiently find a near-optimal policy.
This aligns with the fact that several practical zero-shot IL
algorithms are based on efficient search over non-Markovian
policies (e.g. those based on a goal-reaching policy and a
classifier (Pathak et al., 2019; Pirotta et al., 2024)).

Impact Statement
Advancements in imitation learning may lead to more capa-
ble robotic systems across a variety of application domains.
While such systems could have societal implications de-
pending on their use cases, our contributions are algorithmic
rather than domain-specific.
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Séjourné, T., Feydy, J., Vialard, F., Trouvé, A., and Peyré, G.
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A. Additional Results
A.1. Main Result Details

In tables 1 and 2 we provide detailed results for the figures 5 and 6. We also provide a summary of all planners we evaluated
in figure 7.
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Figure 7. Summarized performance of all discussed Planners. See table 1 and table 2 for detailed results.

Table 1. Performance of Pi+Cls, MPC+Cls and ZILOT (ours) in all environments and tasks. Each metric is the mean over 20 trials, we
then report the mean and standard deviation of those metrics across 5 seeds. We perform a Welch t-test with p = 0.05 do distinguish the
best values and mark them bold. Values are rounded to 3 and 2 digits respectively.

Task Wmin ↓ GoalFraction ↑
ERFB RERFB Pi+Cls MPC+Cls ZILOT (ours) ERFB RERFB Pi+Cls MPC+Cls ZILOT (ours)

fetch pick and place-L-dense 0.233±0.017 0.233±0.017 0.089±0.027 0.109±0.024 0.049±0.019 0.17±0.03 0.17±0.03 0.65±0.11 0.58±0.07 0.88±0.07
fetch pick and place-L-sparse 0.170±0.011 0.170±0.011 0.112±0.014 0.127±0.022 0.092±0.015 0.35±0.04 0.35±0.04 0.62±0.05 0.43±0.04 0.65±0.05
fetch pick and place-S-dense 0.183±0.019 0.183±0.019 0.113±0.022 0.101±0.022 0.049±0.014 0.16±0.04 0.16±0.04 0.41±0.07 0.62±0.08 0.85±0.08
fetch pick and place-S-sparse 0.098±0.008 0.098±0.008 0.081±0.017 0.091±0.007 0.067±0.006 0.33±0.08 0.33±0.08 0.57±0.06 0.50±0.04 0.70±0.06
fetch pick and place-U-dense 0.124±0.021 0.124±0.021 0.127±0.007 0.116±0.015 0.068±0.005 0.21±0.08 0.21±0.08 0.47±0.10 0.60±0.03 0.70±0.02
fetch pick and place-U-sparse 0.163±0.028 0.163±0.028 0.142±0.005 0.160±0.008 0.098±0.003 0.30±0.07 0.30±0.07 0.51±0.02 0.38±0.03 0.55±0.05

fetch pick and place-all 0.162±0.010 0.162±0.010 0.111±0.007 0.117±0.012 0.070±0.009 0.25±0.04 0.25±0.04 0.54±0.02 0.52±0.02 0.72±0.04

fetch push-L-dense 0.246±0.001 0.246±0.001 0.056±0.001 0.085±0.018 0.041±0.015 0.15±0.00 0.15±0.00 0.96±0.03 0.72±0.09 0.91±0.06
fetch push-L-sparse 0.184±0.014 0.184±0.014 0.101±0.011 0.103±0.010 0.082±0.004 0.35±0.04 0.35±0.04 0.65±0.09 0.44±0.04 0.69±0.06
fetch push-S-dense 0.182±0.019 0.182±0.019 0.077±0.024 0.104±0.026 0.049±0.010 0.25±0.05 0.25±0.05 0.83±0.09 0.70±0.08 0.87±0.08
fetch push-S-sparse 0.123±0.010 0.123±0.010 0.062±0.004 0.077±0.004 0.064±0.006 0.36±0.08 0.36±0.08 0.90±0.07 0.65±0.04 0.72±0.06
fetch push-U-dense 0.141±0.011 0.141±0.011 0.102±0.044 0.091±0.009 0.065±0.004 0.28±0.07 0.28±0.07 0.72±0.18 0.67±0.08 0.77±0.02
fetch push-U-sparse 0.195±0.024 0.195±0.024 0.106±0.014 0.131±0.012 0.109±0.007 0.32±0.03 0.32±0.03 0.70±0.12 0.45±0.05 0.53±0.03

fetch push-all 0.178±0.008 0.178±0.008 0.084±0.007 0.098±0.010 0.068±0.005 0.29±0.02 0.29±0.02 0.79±0.05 0.61±0.03 0.75±0.03

fetch slide large 2D-L-dense 0.282±0.014 0.282±0.014 0.258±0.022 0.217±0.034 0.074±0.011 0.17±0.04 0.17±0.04 0.26±0.06 0.40±0.11 0.76±0.03
fetch slide large 2D-L-sparse 0.255±0.007 0.255±0.007 0.223±0.014 0.185±0.027 0.120±0.011 0.38±0.05 0.38±0.05 0.47±0.10 0.70±0.05 0.73±0.04
fetch slide large 2D-S-dense 0.232±0.029 0.232±0.029 0.299±0.006 0.254±0.022 0.111±0.010 0.19±0.05 0.19±0.05 0.21±0.10 0.31±0.06 0.51±0.07
fetch slide large 2D-S-sparse 0.215±0.014 0.215±0.014 0.266±0.006 0.230±0.021 0.086±0.015 0.28±0.04 0.28±0.04 0.31±0.02 0.43±0.02 0.74±0.04
fetch slide large 2D-U-dense 0.225±0.051 0.226±0.051 0.214±0.029 0.191±0.045 0.076±0.009 0.14±0.03 0.14±0.03 0.30±0.07 0.35±0.10 0.76±0.04
fetch slide large 2D-U-sparse 0.291±0.049 0.294±0.048 0.169±0.043 0.150±0.012 0.120±0.005 0.30±0.04 0.29±0.04 0.36±0.09 0.53±0.04 0.70±0.06

fetch slide large 2D-all 0.250±0.012 0.251±0.012 0.238±0.008 0.205±0.020 0.098±0.007 0.24±0.02 0.24±0.02 0.32±0.04 0.45±0.04 0.70±0.02

halfcheetah-backflip 2.002±0.149 2.002±0.149 3.089±0.588 4.281±0.371 2.625±0.780 0.44±0.08 0.44±0.08 0.28±0.13 0.12±0.12 0.57±0.17
halfcheetah-backflip-running 2.853±0.104 2.853±0.104 2.879±0.427 3.044±0.752 2.171±0.454 0.06±0.05 0.06±0.05 0.44±0.10 0.46±0.18 0.58±0.11
halfcheetah-frontflip 1.286±0.059 1.286±0.059 1.544±0.127 1.695±0.147 1.295±0.094 0.73±0.22 0.73±0.22 0.77±0.09 0.79±0.12 1.00±0.00
halfcheetah-frontflip-running 2.137±0.204 2.137±0.204 2.086±0.133 2.083±0.104 1.955±0.057 0.27±0.08 0.27±0.08 0.70±0.08 0.81±0.07 0.85±0.03
halfcheetah-hop-backward 0.910±0.316 0.910±0.316 0.806±0.110 0.950±0.075 0.589±0.107 0.65±0.19 0.65±0.19 0.96±0.03 0.90±0.02 0.96±0.03
halfcheetah-hop-forward 1.418±0.332 1.418±0.332 1.580±0.069 1.392±0.206 1.101±0.152 0.43±0.09 0.43±0.09 0.51±0.07 0.62±0.14 0.58±0.12
halfcheetah-run-backward 0.667±0.079 0.667±0.079 0.897±0.092 0.679±0.035 0.489±0.167 0.81±0.09 0.81±0.09 0.96±0.04 1.00±0.00 0.99±0.01
halfcheetah-run-forward 0.712±0.064 0.712±0.064 0.857±0.044 0.822±0.206 0.376±0.019 0.76±0.07 0.76±0.07 1.00±0.01 0.94±0.08 1.00±0.00

halfcheetah-all 1.498±0.105 1.498±0.105 1.717±0.101 1.868±0.079 1.325±0.123 0.52±0.03 0.52±0.03 0.70±0.05 0.71±0.02 0.82±0.02

pointmaze medium-circle-dense 1.128±0.250 1.128±0.250 0.243±0.038 0.221±0.021 0.156±0.010 0.18±0.06 0.18±0.06 1.00±0.00 1.00±0.00 1.00±0.00
pointmaze medium-circle-sparse 1.483±0.410 1.483±0.410 0.385±0.015 0.404±0.025 0.466±0.024 0.22±0.00 0.22±0.00 1.00±0.00 1.00±0.00 0.81±0.11
pointmaze medium-path-dense 0.900±0.317 0.900±0.317 0.275±0.063 0.235±0.023 0.199±0.013 0.56±0.11 0.56±0.11 1.00±0.00 1.00±0.00 1.00±0.00
pointmaze medium-path-sparse 1.086±0.505 1.086±0.505 0.555±0.080 0.511±0.035 0.459±0.015 0.48±0.10 0.48±0.10 1.00±0.00 1.00±0.00 0.97±0.03

pointmaze medium-all 1.149±0.163 1.149±0.163 0.365±0.021 0.343±0.023 0.320±0.009 0.36±0.02 0.36±0.02 1.00±0.00 1.00±0.00 0.94±0.04
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Table 2. Performance of our method and its ablations in all environments and tasks. Each metric is the mean over 20 trials, we then report
the mean and standard deviation of those metrics across 5 seeds. We perform a Welch t-test with p = 0.05 do distinguish the best values
and mark them bold. Values are rounded to 3 and 2 digits respectively.

Task Wmin ↓ GoalFraction ↑
ZILOT+h ZILOT+Cls ZILOT+Unbalanced ZILOT (ours) ZILOT+h ZILOT+Cls ZILOT+Unbalanced ZILOT (ours)

fetch pick and place-L-dense 0.214±0.033 0.091±0.011 0.052±0.018 0.049±0.019 0.26±0.10 0.68±0.04 0.84±0.07 0.88±0.07
fetch pick and place-L-sparse 0.188±0.014 0.158±0.004 0.095±0.016 0.092±0.015 0.40±0.01 0.35±0.02 0.65±0.08 0.65±0.05
fetch pick and place-S-dense 0.198±0.042 0.089±0.019 0.045±0.006 0.049±0.014 0.36±0.15 0.71±0.07 0.86±0.03 0.85±0.08
fetch pick and place-S-sparse 0.174±0.029 0.115±0.009 0.056±0.008 0.067±0.006 0.42±0.08 0.57±0.02 0.76±0.08 0.70±0.06
fetch pick and place-U-dense 0.237±0.043 0.071±0.006 0.060±0.008 0.068±0.005 0.17±0.10 0.74±0.04 0.75±0.04 0.70±0.02
fetch pick and place-U-sparse 0.229±0.034 0.167±0.004 0.101±0.008 0.098±0.003 0.34±0.04 0.33±0.05 0.54±0.05 0.55±0.05

fetch pick and place-all 0.207±0.026 0.115±0.007 0.068±0.008 0.070±0.009 0.32±0.06 0.56±0.02 0.73±0.05 0.72±0.04

fetch push-L-dense 0.211±0.020 0.071±0.006 0.040±0.004 0.041±0.015 0.27±0.06 0.73±0.02 0.91±0.03 0.91±0.06
fetch push-L-sparse 0.200±0.022 0.150±0.005 0.101±0.014 0.082±0.004 0.39±0.06 0.36±0.03 0.65±0.07 0.69±0.06
fetch push-S-dense 0.203±0.046 0.077±0.008 0.049±0.010 0.049±0.010 0.32±0.14 0.72±0.05 0.86±0.05 0.87±0.08
fetch push-S-sparse 0.197±0.055 0.097±0.006 0.060±0.009 0.064±0.006 0.40±0.17 0.56±0.02 0.78±0.06 0.72±0.06
fetch push-U-dense 0.228±0.045 0.068±0.007 0.058±0.009 0.065±0.004 0.20±0.10 0.78±0.04 0.81±0.03 0.77±0.02
fetch push-U-sparse 0.224±0.047 0.136±0.017 0.100±0.007 0.109±0.007 0.36±0.07 0.39±0.05 0.61±0.05 0.53±0.03

fetch push-all 0.211±0.033 0.100±0.006 0.068±0.005 0.068±0.005 0.32±0.08 0.59±0.02 0.77±0.03 0.75±0.03

fetch slide large 2D-L-dense 0.255±0.022 0.098±0.027 0.060±0.009 0.074±0.011 0.26±0.08 0.69±0.08 0.81±0.07 0.76±0.03
fetch slide large 2D-L-sparse 0.236±0.020 0.181±0.039 0.112±0.016 0.120±0.011 0.41±0.04 0.45±0.08 0.83±0.08 0.73±0.04
fetch slide large 2D-S-dense 0.256±0.035 0.105±0.011 0.091±0.009 0.111±0.010 0.23±0.10 0.63±0.03 0.59±0.10 0.51±0.07
fetch slide large 2D-S-sparse 0.272±0.045 0.132±0.033 0.084±0.010 0.086±0.015 0.28±0.07 0.52±0.08 0.79±0.04 0.74±0.04
fetch slide large 2D-U-dense 0.315±0.051 0.087±0.009 0.074±0.011 0.076±0.009 0.12±0.08 0.75±0.07 0.75±0.04 0.76±0.04
fetch slide large 2D-U-sparse 0.288±0.058 0.147±0.009 0.117±0.008 0.120±0.005 0.30±0.04 0.41±0.04 0.68±0.07 0.70±0.06

fetch slide large 2D-all 0.270±0.025 0.125±0.011 0.090±0.005 0.098±0.007 0.27±0.04 0.57±0.04 0.74±0.02 0.70±0.02

halfcheetah-backflip 1.947±0.312 3.170±0.730 2.710±0.742 2.625±0.780 0.50±0.18 0.43±0.14 0.55±0.20 0.57±0.17
halfcheetah-backflip-running 2.537±0.810 2.479±0.284 2.297±0.525 2.171±0.454 0.47±0.27 0.50±0.11 0.58±0.16 0.58±0.11
halfcheetah-frontflip 1.172±0.091 1.796±0.173 1.330±0.168 1.295±0.094 0.96±0.03 0.52±0.03 0.98±0.03 1.00±0.00
halfcheetah-frontflip-running 2.526±0.110 2.091±0.210 1.969±0.075 1.955±0.057 0.13±0.07 0.60±0.06 0.88±0.09 0.85±0.03
halfcheetah-hop-backward 0.739±0.736 0.889±0.103 0.548±0.056 0.589±0.107 0.84±0.33 0.82±0.07 0.96±0.04 0.96±0.03
halfcheetah-hop-forward 0.682±0.120 1.070±0.086 1.007±0.094 1.101±0.152 0.78±0.12 0.63±0.08 0.67±0.07 0.58±0.12
halfcheetah-run-backward 0.555±0.415 0.838±0.139 0.473±0.162 0.489±0.167 0.92±0.11 0.68±0.03 0.99±0.01 0.99±0.01
halfcheetah-run-forward 0.372±0.156 0.742±0.044 0.381±0.026 0.376±0.019 0.93±0.09 0.72±0.05 1.00±0.01 1.00±0.00

halfcheetah-all 1.316±0.181 1.634±0.089 1.339±0.090 1.325±0.123 0.69±0.06 0.61±0.02 0.83±0.02 0.82±0.02

pointmaze medium-circle-dense 0.252±0.032 0.651±0.377 0.168±0.015 0.156±0.010 0.91±0.04 0.62±0.25 1.00±0.00 1.00±0.00
pointmaze medium-circle-sparse 0.465±0.056 1.074±0.115 0.465±0.028 0.466±0.024 0.87±0.03 0.41±0.10 0.83±0.10 0.81±0.11
pointmaze medium-path-dense 0.495±0.130 1.835±1.064 0.192±0.008 0.199±0.013 0.95±0.03 0.45±0.29 1.00±0.00 1.00±0.00
pointmaze medium-path-sparse 0.716±0.119 1.416±0.828 0.444±0.010 0.459±0.015 0.89±0.10 0.61±0.24 0.99±0.01 0.97±0.03

pointmaze medium-all 0.482±0.055 1.244±0.463 0.317±0.008 0.320±0.009 0.91±0.02 0.52±0.15 0.95±0.03 0.94±0.04

A.2. Finite Horizon Ablations

As discussed in section 4, we are forced to optimize the objective over a finite horizon H due to the imperfections in the
learned dynamics model and computational constraints. The hyperparameter H should thus be as large as possible, as long
as the model remains accurate. We visualize this trade-off in figure 8 for environment fetch slide large 2D. It is
clearly visible that if the horizon is smaller than 16, the value we chose for our experiments, then performance rapidly
deteriorates towards the one of the myopic planners. However, when increasing the horizon beyond 16, performance does
not improve, suggesting that the model is not accurate enough to plan beyond this horizon.

A.3. Single Goal Performance

When the expert trajectory consists of only a single goal, myopic planning is of course sufficient to imitate the expert. To
verify this we evaluate the performance of all planners in the standard single goal task of the environments. Figure 9 shows
the success rate of all planners in this task verifying that non-myopic planning neither hinders nor helps in this case.

A.4. Environment Similarity

We evaluate ZILOT and the myopic baselines Pi+Cls and MPC+Cls on the walker environment (Tassa et al., 2018) in
Table 3. Because this environment is very similar to the halfcheetah environment we use in our main evaluation, we
can reuse the same goal-space, tasks, and data collection method. These similarities are also visible in the performance of
the three methods.
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Figure 8. Mean performance across five seeds in fetch slide large 2D for different planning horizons.
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Figure 9. Single Goal Success Rate in the standard single goal tasks of the environments. We report the mean performance across 20 trials
and standard deviationacross 5 seeds.

Table 3. Evaluation on the walker environment with the halfcheetah results repeated for comparison.
Task Wmin ↓ GoalFraction ↑

Pi+Cls MPC+Cls ZILOT (ours) Pi+Cls MPC+Cls ZILOT (ours)

walker-backflip 2.804±0.056 1.737±0.146 1.273±0.205 0.34±0.07 0.89±0.03 0.92±0.06
walker-backflip-running 3.039±0.292 2.444±0.189 1.709±0.093 0.49±0.07 0.70±0.08 0.81±0.09
walker-frontflip 2.688±0.400 1.830±0.185 1.551±0.086 0.57±0.16 0.94±0.04 0.95±0.07
walker-frontflip-running 2.597±0.265 1.937±0.172 1.921±0.149 0.55±0.03 0.63±0.16 0.76±0.11
walker-hop-backward 1.447±0.076 0.872±0.032 0.836±0.100 0.64±0.11 0.78±0.06 0.84±0.07
walker-hop-forward 0.932±0.098 0.663±0.071 0.467±0.044 0.95±0.05 0.99±0.01 1.00±0.01
walker-run-backward 1.290±0.148 1.050±0.086 0.957±0.111 0.81±0.08 0.83±0.14 0.84±0.09
walker-run-forward 1.180±0.105 0.954±0.079 0.672±0.058 0.86±0.07 0.97±0.03 0.99±0.01

walker-all 1.997±0.047 1.436±0.049 1.174±0.061 0.65±0.03 0.84±0.02 0.89±0.04

halfcheetah-backflip 3.089±0.588 4.281±0.371 2.625±0.780 0.28±0.13 0.12±0.12 0.57±0.17
halfcheetah-backflip-running 2.879±0.427 3.044±0.752 2.171±0.454 0.44±0.10 0.46±0.18 0.58±0.11
halfcheetah-frontflip 1.544±0.127 1.695±0.147 1.295±0.094 0.77±0.09 0.79±0.12 1.00±0.00
halfcheetah-frontflip-running 2.086±0.133 2.083±0.104 1.955±0.057 0.70±0.08 0.81±0.07 0.85±0.03
halfcheetah-hop-backward 0.806±0.110 0.950±0.075 0.589±0.107 0.96±0.03 0.90±0.02 0.96±0.03
halfcheetah-hop-forward 1.580±0.069 1.392±0.206 1.101±0.152 0.51±0.07 0.62±0.14 0.58±0.12
halfcheetah-run-backward 0.897±0.092 0.679±0.035 0.489±0.167 0.96±0.04 1.00±0.00 0.99±0.01
halfcheetah-run-forward 0.857±0.044 0.822±0.206 0.376±0.019 1.00±0.01 0.94±0.08 1.00±0.00

halfcheetah-all 1.717±0.101 1.868±0.079 1.325±0.123 0.70±0.05 0.71±0.02 0.82±0.02

B. Forward-Backward Representations and Imitation Learning
In a foundational paper in zero-shot, model-free IL, (Pirotta et al., 2024) propose several methods based on the forward-
backward (FB) framework (Touati & Ollivier, 2021). FB trains two functions F and B, which recover a low-rank
approximation of the successor measure, as well as a parameterized policy (πz)z∈Rd . These functions can be trained offline,
without supervision, so that for each reward r, an optimal policy πzr can be recovered. This property gives rise to a range of
reward-based and occupancy-matching based methods for zero-shot IL. In the following we will go over each method, and
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discuss how it differs from ZILOT in terms of objective. We will highlight how several methods do not directly apply to our
setting, which involves expert demonstrations that are actionless, rough, and partial. We refer the reader to section C.10 for
implementation details of baselines based on FB.

B.1. FB Imitation Learning Approaches

Behavioral Cloning The first approach in Pirotta et al. (2024) is is based on gradient descent on the latent z to find the
policy πz that maximizes the likelihood of expert actions. Since this approach strictly requires expert actions it does not
apply in our case.

Reward-Based Imitation Learning (Pirotta et al., 2024) derive two reward-based zero-shot IL methods maximizing
the reward r(·) = ρE(·)/ρDβ (·) (ERFB) (Ma et al., 2022; Kim et al., 2022) and its regularized counterpart r(·) =
ρE(·)/(ρE(·)+ρDβ (·)) (RERFB) (Reddy et al., 2020; Zolna et al., 2020). While ZILOT’s objective is based on a Wasserstein
distance, these rewards are derived from regularized f -divergence objectives. These objectives are fortunately tractable, and
can be minimized by solving an RL problem with additive rewards. In practice, this corresponds to assigning a scalar reward
to each state visited by the expert, without considering the order of the states in the expert trajectory. However, as stated in
Section 4.2 of Pirotta et al. (2024), this regularization comes at a cost, particularly if the state does not contain dynamical
information, or in ergodic MDPs. In this case, a policy can maximize the reward by remaining in the most likely expert
state, and the objective might be optimized by degenerate solution. On the other hand, such solution would be discarded by
ZILOT, which uses an unregularized objective.

Nonetheless, these two instantiations are fully compatible with partial and rough demonstrations. Thus, we provide an
empirical comparison in Section 5.

Distribution Matching A further approach in Pirotta et al. (2024) finds the policy πz whose occupancy matches the
expert occupancy w.r.t. different distances on the space of measures. ZILOT also performs occupancy matching, but with
respect to Wasserstein distances. However, ZILOT is designed to handle state abstraction, i.e. partial states. To the best
of our understanding, distribution- and feature-matching flavors of FB-IL require the demonstration to contain full states,
unless further FB representations are trained to approximate successor measures over abstract states. While the standard
implementation of distribution-matching FB-IL cannot imitate rough demonstrations, we believe that an extension in this
direction may be interesting for future work.

Goal-Based Imitation Pirotta et al. (2024) also instantiate a hierarchical, goal-based imitation method, in which the FB
framework is only used for goal-reaching. This idea is closely related with one of our baselines (Pi+Cls). However, their
framework assumes that trajectories to imitate are not rough and, instead of using a classifier, the goal can be chosen at a
fixed offset of in time for each time-step. In any case, their approach remains myopic as per Proposition 3.1. Empirically,
Pirotta et al. (2024) observe that this instantiation of FB-IL does not significantly outperform an equivalent method relying
on TD3+HER instead. As the latter method is very similar to our Pi+Cls baseline, we do not investigate this approach
further in this work.

C. Implementation Details
C.1. ZILOT

The proposed method is motivated and explained in section 4. We now present additional details.

Sinkhorn First, we rescale the matrix C by Tmax and clamp it to the range [0, 1] before running Sinkhorns algorithm. The
precise operation performed is

C ← min (1,max(0,C/Tmax)) . (19)

This is done so that the same entropy regularization ϵ can be used across all environments, and to ensure there are no outliers
that hinder the convergence of the Sinkhorn algorithm. For the algorithm itself, we use a custom implementation for batched
OT computation, heavily inspired by (Flamary et al., 2021) and (Cuturi et al., 2022). We run our Sinkhorn algorithm for
r = 500 iterations with a regularization factor of ϵ = 0.02.
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Truncation When the agent gets close to the end of the expert trajectory, then we might have that tK < k +H , i.e. the
horizon is larger than needed. We thus truncate the planning horizon to the estimated remaining number of steps (and at
least 1), i.e. we set

Hactual ← max (1,min(tK − k,H)) . (20)

Unbalanced OT As mentioned in the main text in section 5.3, we can use unbalanced OT (Liero et al., 2018; Séjourné
et al., 2019) to address that fact that the uniform marginal for the goal occupancy approximation may not be feasible.
Unbalanced OT replaces this hard constraint of T⊤ · 1N = 1M into the term ξbKL(T⊤ · 1N ,1M ) in the objective function.
For our experiments we have chosen ξb = 1.

C.2. TD-MPC2 Modifications

As TD-MPC2 (Hansen et al., 2024) is already a multi-task algorithm that is conditioned on a learned task embedding t from a
task id i, we only have to switch out this conditioning to a goal latent zg to arrive at a goal-conditioned algorithm as detailed
in table 4. We remove the conditioning on the encoders and the dynamics model f completely as the goal conditioning
of GC-RL only changes the reward but not the underlying Markov Decision ProcessM (assuming truncation after goal
reaching, see section 2.3). For training we adopt all TD-MPC2 hyperparameters directly (see table 7). As mentioned in the
main text, we also train a small MLP to predict W that regresses on V .

Table 4. Our modifications to TD-MPC2 to making it goal- instead of task-conditioned.

TD-MPC2 (Hansen et al., 2024) “GC”-TD-MPC2 (our changes)

Task/Goal Embedding t = E(i) zg = hg(g)
Encoder z = h(s, t) z = h(s)
Dynamics z′ = f(z, a, t) z′ = f(z, a)
Reward Prediction r = R(z, a, t) r = R(z, a, zg)
Q-function q = Q(z, a, t) q = Q(z, a, zg)
Policy a ∼ π(z, t) a ∼ π(z, zg)

We have found the computation of pair-wise distances d to be the major computational bottleneck in our method, as TD-
MPC2 computes them as d = −V π(s, g) = −Q(z, π(z, zg), zg) where z = h(s), zg = hg(g). To speed-up computation,
we train a separate network that estimates the value function directly. It employs a two-stream architecture (Schaul et al.,
2015; Eysenbach et al., 2022) of the form V π(z, zg) = ϕ(z)⊤ψ(zg) where ϕ and ψ are small MLPs for fast inference of
pair-wise distances.

Our GC-TD-MPC2 is trained like the original TD-MPC2 with two losses additionally employing HER (Andrychowicz et al.,
2017) to sample goals g which we discuss in detail in Appendix C.4. The first loss combines a multi-step loss for d and h
with a single-step TD-step loss for R and Q

L = E (s,a,s′)0:H∼D
g0:H∼HERγ(s0:H)

[
H∑
t=0

λt
(
∥z′t − sg(h(s′t))∥22 + CE(R(zt, at, zgt), rt) + CE(Q(zt, at, zgt), qt)

)]
(21)

where sg is the “stop-gradient”-operator, zt, zgt , and z′t are defined in Table 4, rewards are rt = Ist=gt−1, and (undiscounted)
TD-targets are qt = max(rt + Ist ̸=gt ·Q(z′t, π(z

′
t, zgt), zgt),−Tmax). The second loss is a SAC-style loss for π (Haarnoja

et al., 2018)

Lπ = E (s,a,s′)0:H∼D
g0:H∼HERγ(s0:H)

[
H∑
t=0

λt (αQ(zt, π(zt, zgt), zgt) + βH(π(·|zt, zgt))

]
, zt = d(zt, at), z0 = h(s0). (22)

Additional to GC-TD-MPC2 we then also train our goal-conditioned value function V π(z, zg) = ϕ(z)⊤ψ(zg) using the
same TD-targets as in Equation (21)

Lϕ,ψ = E s0:H∼D
g0:H∼HERγ(s0:H)

[
H∑
t=0

λt
(
ϕ(zt)

⊤ψ(zgt)− qt
)2]

. (23)
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C.3. Runtime

ZILOT runs at 2 to 4Hz on an Nvidia RTX 4090 GPU, depending on the size of H and the size of the OT problem. Given
that the MPC+Cls method runs at around 25 to 72Hz with the same networks and on the same hardware, it is clear that most
computation is spent on preparing the cost-matrix C and running the Sinkhorn solver. Several further steps could be taken to
speed-up the Sinkhorn algorithm itself, including η-schedules and/or Anderson acceleration (Cuturi et al., 2022) as well as
warm-starting it with potentials, e.g. from previous (optimizer) steps or from a trained network (Amos et al., 2023).

C.4. Goal Sampling

As mentioned in the main text, we follow prior work (Andrychowicz et al., 2017; Bagatella & Martius, 2023; Tian et al.,
2021) and sample goals from the future part of trajectories in Dβ in order to synthesize rewards without supervision. The
exact procedure is as follows:

• With probability pfuture = 0.6 we sample a goal from the future part of the trajectory with time offset t∆ ∼ Geom(1−γ).
• With probability pnext = 0.2 we sample the next goal in the trajectory.
• With probability prand = 0.2 we sample a random goal from the dataset.

C.5. Training

We train our version of TD-MPC2 offline with the datasets detailed in table 5 for 600k steps. Training took about 8 to 9
hours on a single Nvidia A100 GPU. Note that as TD-MPC2 samples batches of 3 transitions per element, we effectively
sample 3 · 256 = 768 transitions per batch. The resulting models are then used for all planners and experiments.

Table 5. Environment description. We detail the datasets used for training.

Environment Dataset #Transitions

fetch push WGCSL (Yang et al., 2022) (expert+random) 400k + 400k
fetch pick and place WGCSL (Yang et al., 2022) (expert+random) 400k + 400k
fetch slide large 2D custom (curious exploration (Pathak et al., 2019)) 500k
halfcheetah custom (curious exploration (Pathak et al., 2019)) 500k
pointmaze medium D4RL (Fu et al., 2021) (expert) 1M

C.6. Environments

We provide environment details in table 6. Note that while we consider an undiscounted setting, we specify γ for the goal
sampling procedure above.

Table 6. Environment details. We detail the goal abstraction ϕ, metric h, threshold ϵ, horizon H , maximum episode length Tmax, and
discount factor γ used for each environment.

Environment Goal Abstraction ϕ Metric h Threshold ϵ Horizon H Tmax γ

fetch push (x, y, z)cube ∥ · ∥2 0.05 16 50 0.975
fetch pick and place (x, y, z)cube ∥ · ∥2 0.05 16 50 0.975
fetch slide large 2D (x, y, z)cube ∥ · ∥2 0.05 16 50 0.975
halfcheetah (x, θy) ∥ · ∥2 0.50 32 200 0.990
pointmaze medium (x, y) ∥ · ∥2 0.45 64 600 0.995

The environments fetch push and fetch pick and place and pointmaze medium are used as is. As
halfcheetah is not goal-conditioned by default, we define our own goal range to be (x, θy) ∈ [−5, 5] × [−4π, 4π]3.
fetch slide large 2D is a variation of the fetch slide environment where the table size exceeds the arm’s range
and the arm is restricted to two-dimensional movement touching the table.

3Note that the halfcheetah environment does not reduce θ with any kind of modular operation, i.e. states with θ = 0 and θ = 2π
are distinct.
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C.7. Tasks

The tasks for the fetch and pointmaze environments are specified in the environments normal goal-space. Their shapes
can be seen in the figures in appendix E. To make the tasks for halfcheetah more clear, we visualize some executions of
our method in the figures 10, 11, 12, 13, 14, and 15.

Figure 10. Example trajectory of ZILOT (ours) in halfcheetah-backflip-running.

Figure 11. Example trajectory of ZILOT (ours) in halfcheetah-backflip.

Figure 12. Example trajectory of ZILOT (ours) in halfcheetah-frontflip-running.
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Figure 15. Example trajectory of ZILOT (ours) in halfcheetah-hop-forward.

Figure 13. Example trajectory of ZILOT (ours) in halfcheetah-frontflip.

Figure 14. Example trajectory of ZILOT (ours) in halfcheetah-hop-backward.

C.8. Task Difficulty

This section investigates the ability of ZILOT to imitate trajectories that do not appear in the offline dataset it is trained on.
As ZILOT uses a learned dynamics model and an off-policy value function, it should in theory be able to stitch together
any number of trajectories in the dataset. To get some qualitative intuition we overlay the following: first, a kernel density
estimate of the data distribution in the offline datasets, second, an expert trajectory to imitate, and finally the five trajectories
that are closest to the expert w.r.t. the Wasserstein distance under the goal-metric h. We present a few tasks for each
environment in Figures 16, 18, 19, 17, and 20.
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Comparing the density estimates and the expert trajectories, we can see that essentially all expert trajectories are within distri-
bution. Although, especially in halfcheetah, there are some tasks, such as hop-forward and backflip-running
with very little coverage which might explain the bad performance of all planners in these tasks (see table 1). Comparing the
selected trajectories with the expert trajectory, it is also evident that the expert demonstrations are not directly present in
the datasets. Thus, ZILOT is capable of imitating unseen sequences of states, as long as each individual state is within the
support of the training data. In other words, ZILOT is capable of off-policy learning, or trajectory stitching.

(a) hop-forward (b) hop-backward (c) backflip

(d) frontflip (e) frontflip-running (f) backflip-running

Figure 16. The 5 trajectories (blue) from the dataset that are closest to the expert trajectory in different halfcheetah tasks (orange)
overlayed over a kernel density estimate of the goal occupancy in the full training dataset.
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(a) L-dense (b) U-dense (c) S-dense

Figure 17. The 5 trajectories (blue) from the dataset that are closest to the expert trajectory in different fetch slide large 2D tasks
(orange) overlayed over a kernel density estimate of the goal occupancy in the full training dataset.

(a) L-dense (b) U-dense (c) S-dense

Figure 18. The 5 trajectories (blue) from the dataset that are closest to the expert trajectory in different fetch push tasks (orange)
overlayed over a kernel density estimate of the goal occupancy in the full training dataset.

(a) L-dense (b) U-dense (c) S-dense

Figure 19. The 5 trajectories (blue) from the dataset that are closest to the expert trajectory in different fetch pick and place tasks
(orange) overlayed over a kernel density estimate of the goal occupancy in the full training dataset.
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(a) circle-dense (b) path-dense

Figure 20. The 5 trajectories (blue) from the dataset that are closest to the expert trajectory in different pointmaze medium tasks
(orange) overlayed over a kernel density estimate of the goal occupancy in the full training dataset.

C.9. Hyperparameters

Table 7. TD-MPC2 Hyperparameters. We have adopted these unchanged from Hansen et al. (2024)

Name Value

lr 3e-4
batch size 256
n steps (“horizon”) 3
rho 0.5
grad clip norm 20
enc lr scale 0.3
value coef 0.1
reward coef 0.1
consistency coef 20
tau 0.01
log std min -10
log std max 2
entropy coef 1e-4

Name Value

num bins 101
vmin -10
vmax 10
num enc layers 2
enc dim 256
num channels 32
mlp dim 512
latent dim 512
bin dim 12
num q 5
dropout 0.01
simnorm dim 8
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Table 8. Hyperparameters used for iCEM (Pinneri et al., 2020). We use the implementation from Pineda et al. (2021).

(a) ICEM hyperparameters for all MPC planners.

Name Value

num iterations 4
population size 512
elite ratio 0.01
population decay factor 1.0
colored noise exponent 2.0
keep elite frac 1.0
alpha 0.1

(b) ICEM hyperparameters for curious exploration.

Name Value

num iterations 3
population size 512
elite ratio 0.02
population decay factor 0.5
colored noise exponent 2.0
keep elite frac 1.0
alpha 0.1
horizon 20

C.10. FB Implementation Details

Since there is no implementation available for FB-IL directly, we have adopted the code for FB (Touati & Ollivier, 2021)
according to the architectural details in appendix D.3 and the hyperparameters in appendix D.4 of FB-IL (Pirotta et al., 2024).
The main architectural changes consisted of changing the state input of the B networks to only a goal input, as suggested in
(Touati & Ollivier, 2021) as well as adding a last layer in the B networks for L2 projection, batch normalization, or nothing,
depending on the environment.

We follow the specifications of Pirotta et al. (2024) whenever possible. As halfcheetah and maze are also used in their
evaluations we have adopted their hyperparameters for these environments. For our fetch environments, we used the
hyperparameters most common in the environments except for the discount γ which we adjusted to 0.95 to account for the
shorter episode length. Finally, we have found that the FB framework seems to be ill-adjusted to be trained on an order of
magnitude less data then in the original experiments (Touati & Ollivier, 2021; Pirotta et al., 2024). For some environments,
performance started to deteriorate rather quickly, so we to report the best performance encountered during training when
evaluating every 50k steps (see D.2). We provide the full set of hyperparameters in table 9.

Table 9. Hyperparameters used for FB-IL training. Closely follows table 1 in appendix D.4 of (Pirotta et al., 2024) for halfcheetah
and maze.

Environment fetch halfcheetah maze

Representation dimension 50 50 100
Batch size 2048 2048 1024
Discount factor γ 0.95 0.98 0.99
Optimizer Adam Adam Adam
learning rate of F 10−4 10−4 10−4

learning rate of B 10−4 10−4 10−6

learning rate of π 10−4 10−4 10−6

Normalization of B L2 None Batchnorm
Momentum for target networks 0.99 0.99 0.99
Stddev for policy smoothing 0.2 0.2 0.2
Truncation level for policy smoothing 0.3 0.3 0.3
Regularization weight for orthonormality 1 1 1
Numer of training steps 2 · 106 2 · 106 2 · 106
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D. Hyperparameter Searches
D.1. Classifier Threshold

As mentioned in the main text, we perform an extensive hyperparameter search for the threshold value of the goal classifier
(Cls) for the myopic methods Pi+Cls and MPC+Cls as well as for the ablation of our method ZILOT+Cls. In figures 22
and 21 we show the performance of the three respective planners in all five environments and denote the threshold values
that yield the best performance per environment. Interestingly, in some of the fetch environments not all tasks attain
maximum performance with the same threshold value showing that this hyperparameter is rather hard to tune.
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Figure 21. ZILOT+Cls hyperparameter search for Cls threshold.
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(a) Pi+Cls for fetch pick and place
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(b) MPC+Cls for fetch pick and place
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(c) Pi+Cls for fetch push
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(e) Pi+Cls for fetch slide large 2D
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(f) MPC+Cls for fetch slide large 2D
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(g) Pi+Cls for halfcheetah
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(h) MPC+Cls for halfcheetah
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(i) Pi+Cls for pointmaze medium
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(j) MPC+Cls for pointmaze medium

Figure 22. Pi+Cls and MPC+Cls hyperparameter searches for Cls threshold in each environment.
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D.2. FB-IL Training steps.

As mentioned in section C.10 we report the best evaluation results of all FB methods that occur during training. In figures 23
and 24 we report the evaluation performance for different training lengths.
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(c) fetch slide large 2D
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Figure 23. ERFB evaluation performance during training.
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Figure 24. RERFB evaluation performance during training.
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E. Additional Qualitative Results
In the following, we present all goal-space trajectories across all planners, tasks, and seeds presented in this work. Note that
since the tasks of the fetch environments display some natural symmetries, we decided to split evaluations between all
four symmetrical versions of them. Further, we quickly want to stress that these trajectories are shown in goal-space. This
means that if the cube in fetch is not touched, as is the case in some cases for ZILOT+h, then the trajectory essentially
becomes a single dot at the starting position. Also note that Pi+Cls is completely deterministic, which is why its visualization
appears to have less trajectories.

(a) U-dense (b) U-sparse

Figure 25. fetch pick and place
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(a) L-sparse (b) L-dense

Figure 26. fetch pick and place

(a) S-dense (b) S-sparse

Figure 27. fetch pick and place
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(a) U-dense (b) U-sparse

Figure 28. fetch slide large 2D

(a) L-sparse (b) L-dense

Figure 29. fetch slide large 2D
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(a) S-dense (b) S-sparse

Figure 30. fetch slide large 2D

(a) U-dense (b) U-sparse

Figure 31. fetch push

33



Zero-Shot Offline Imitation Learning via Optimal Transport

(a) L-sparse (b) L-dense

Figure 32. fetch push

(a) S-dense (b) S-sparse

Figure 33. fetch push
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(a) circle-sparse

(b) path-sparse

(c) path-dense

(d) circle-dense

Figure 34. pointmaze medium
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(a) run-forward

(b) run-backward

(c) backflip

(d) hop-forward

Figure 35. halfcheetah part 1
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(a) hop-backward

(b) frontflip-running

(c) backflip-running

(d) frontflip

Figure 36. halfcheetah part 2
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