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ABSTRACT

Complex-valued neural networks have attracted growing attention for their ability
to handle complex-valued data with enhanced representational capacity. However,
their potential in computer vision remains relatively untapped. In this paper, we
introduce Deep Complex Spatio-Spectral Network (DCSNet), a fully complex-
valued token-based, end-to-end neural network designed for binary segmentation
tasks. Additionally, our DCSNet encoder can be used for image classification
in the complex domain. We also propose an invertible real-to-complex (R2C)
transform, which generates two complex-valued input channels, complex inten-
sity and complex hue, while producing complex-valued images with distinct real
and imaginary components. DCSNet operates in both spatial and spectral do-
mains by leveraging complex-valued inputs and complex Fourier transform. As a
result, the complex-valued representation is maintained throughout DCSNet, and
we avoid the information loss typically associated with Real↔Complex transfor-
mations. Extensive experiments show that DCSNet surpasses existing complex-
valued methods across various tasks on both real and complex-valued data and
achieves competitive performance compared to existing real-valued methods, es-
tablishing a robust framework for handling both data types effectively.

1 INTRODUCTION

In the evolving landscape of deep learning, complex-valued neural networks (iCNNs) have shown
great potential by enabling richer and more expressive representations. Despite their promise, iC-
NNs remain relatively underinvestigated in addressing key computer vision problems. Addressing
problems problems like binary segmentation necessitates a prominent understanding of the global
and local context in the input. Despite complex-valued networks showing promising outcomes
Löwe et al.; Stanic et al. (2023); Singhal et al. (2022), the application of complex-valued networks
remains understudied due to a lack of complex-valued input and suboptimal complex-valued archi-
tectures. When tackling these issues, we are faced with a few challenges that need to be addressed:
(i) A suitable way is required to have complex-valued inputs from real-valued RGB images. (ii) No
prior work has shown promising results while maintaining the complex-valued nature of the input
throughout different tasks. (iii) For binary segmentation, there is no objective function to handle
complex-valued output.

Despite the challenges at hand, our motivation to explore complex-valued representation for com-
puter vision tasks stems from the success demonstrated in diverse domains where complex-valued
inputs are readily available, such as MRI Cole et al. (2021); Vasudeva et al. (2022), radar signals
Gao et al. (2018); Georgiou & Koutsougeras (1992), and audio signals Hayakawa et al. (2018);
Hu et al. (2020). Moreover, studies conducted in Arjovsky et al. (2016); Danihelka et al. (2016);
Jojoa et al. (2022); Löwe et al., highlight the superior performance of complex-valued neural net-
works (iCNNs) compared to their real-valued counterparts. Additionally, iCNNs exhibit biological
inspiration Reichert & Serre (2014) and greater generalization capacity Hirose & Yoshida (2012).
Recent works Stanic et al. (2023); Halimeh & Kellermann (2022) also highlight the importance of
complex-valued representation in images as well as audio, further fueling our exploration of iCNNs
for computer vision tasks.

More specifically, we develop a complex-valued color transform R2C (real-to-complex), which con-
verts real-valued images to complex-valued ones. We observe that any color vector in RGB space
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Figure 1: We introduce a novel token-based Deep Complex Spatio-Spectral Networks (DCSNet), which lever-
age (i) complex R2C transform for producing complex-valued inputs, (ii) Fourier Filter module for capturing
global context using complex Fourier transform, (iii) Complex T2T for progressively reducing tokens and its in-
verse Complex RT2T, and (iv) our novel complex-valued objective function Lidense to optimize complex-valued
output for binary segmentation.

can be projected to a grayscale line. The shortest angle between the two can provide us with the
projection of color vector (on grayscale line) and the deflection (⊥ to grayscale line). Interestingly,
the projection vector and the deflection vector are orthogonal, which creates an argand plane repre-
senting a complex number with the projection as the real part and deflection as the imaginary part.
Similarly, we observe that the plane orthogonal to the grayscale line containing the color point can
be considered an argand plane. Using the polar form, we can locate the point as a complex num-
ber using the perpendicular distance of the color point from grayscale line and a reference angle.
Following this, we can generate two complex-valued representations for any color.

Furthermore, we introduce DCSNet, a novel end-to-end deep complex spatio-spectral network de-
signed to operate on complex-valued images generated through the R2C transformation. It is first
token-based approach utilizing complex-valued representation. The core component of DCSNet
is the Fourier Filter Module, which transforms complex-valued tokens from the spatial domain to
the frequency domain, applies a learnable Fourier filter, and subsequently maps the filtered results
back to the spatial domain. Note that complex Fourier transform provides positive and negative
frequency representation of complex-valued input. This architecture enables the network to capture
both spatial and spectral domain information effectively, leading to preserved complex-valued repre-
sentations. For binary segmentation tasks, we further propose a novel objective function Lidense that
optimizes the separation of foreground and background in the predicted complex-valued outputs.
This is achieved by decomposing the output into real and imaginary components, enabling more
effective supervision and improved performance in handling complex-valued predictions. We give
an overview of our proposed approach in Fig. 1. Our extensive experiments reveal that our DCSNet
outperforms all existing complex-valued methods for binary segmentation tasks on both real-valued
and complex-valued datasets. Since we needed a backbone trained on a large dataset, we trained
the encoder of our DCSNet on ImageNet-1k. Although our primary goal is not image classification,
we observed that our encoder outperformed existing complex-valued methods for it as well, on both
real-valued and complex-valued datasets.

Our contributions in this paper are as follows: (i) We propose R2C (real-to-complex), a novel
complex-valued color transformation. (ii) We propose first token-based complex-valued network,
DCSNet, which maintains the complex-valued information throughout. (iii) We propose a loss min-
imization strategy to handle complex-valued dense outputs. (iv) Our experimental analysis shows
that our approach significantly improves for real and complex-valued data over existing methods
across multiple tasks.

2 RELATED WORK

Complex-valued Deep Learning: The integration of complex numbers as weights in deep learning
introduces novel possibilities for delving into two-dimensional spectra, as highlighted in previous
works Tygert et al. (2016); Hirose & Yoshida (2011). Moreover, the significance of phase infor-
mation in the firing rate of neurons is underscored by studies such as Reichert & Serre (2014) and
Jiang et al. (2019), emphasizing the potential advantages of employing complex-valued representa-
tions in neural networks. Specifically, the observed behavior of synchronized neurons with similar
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phases firing together, contrasted with asynchronous neurons with differing phases causing interfer-
ence, bears a closer resemblance to the dynamics of biological neurons. This synchronization of
inputs through neurons draws parallels to the gating mechanism found in both deep feedforward and
recurrent neural networks Srivastava et al. (2015); Van den Oord et al. (2016); Kim & Adalı (2003).

Recent studies have showcased the superior generalization capacity of complex-valued networks,
as evidenced by prior research Jojoa et al. (2022); Hirose & Yoshida (2012); Singhal et al. (2022).
Notably, complex-valued autoencoders have outperformed slot-attention in the domain of object-
centric learning Löwe et al. (2022); Stanic et al. (2023). Moreover, the application of complex-
valued networks has proven beneficial in diverse areas, including saliency prediction Jiang et al.
(2019; 2020) and iris recognition Nguyen et al. (2022). The findings presented in Cheung et al.
(2019) further support the notion that employing a complex-valued vector can enhance the learning
process for addressing multiple tasks.

Fourier Transform in Vision: The application of Fourier transform has been a cornerstone in digital
image processing for decades, as acknowledged by seminal works in the field Gonzalez (2009); Pitas
(2000). With the advent of Convolutional Neural Networks (CNNs) revolutionizing vision tasks
He et al. (2016); Krizhevsky et al. (2012), there is a growing body of research integrating Fourier
transform into deep learning methodologies Ding et al. (2017); Lee et al. (2018); Li et al. (2020);
Yang & Soatto (2020). Some approaches employ discrete Fourier transform to transition images
into the frequency domain, leveraging frequency information to enhance task performance Coates
et al. (2011); Yang & Soatto (2020). Others exploit the convolution theorem, employing fast Fourier
transform (FFT) to accelerate CNNs Ding et al. (2017); Li et al. (2020). In this study, we introduce a
novel methodology using learnable Fourier filters to learn the global context in the Fourier domain,
drawing inspiration from frequency filters in digital image processing Pitas (2000). Additionally,
we capitalize on specific properties of FFT to reduce computational costs and parameter count.

3 PROPOSED METHOD

3.1 R2C: COMPLEX-VALUED COLOR TRANSFORM

In order to obtain complex-valued images from a real-valued one, our goal is to define a trans-
formation T : Rd1 → Cd2 , where d1 & d2 are dimensions of the input and output respectively.
Since Real-valued images are typically in RGB format, we have d1 = H × W × 3, where H ,
and W are the height and width of the image. So, our target transformation function becomes
T : RH×W×3 → CH×W×k, where k is the number of complex channels in the complex image.

Defining the transformation function on the pixel level is relatively more straightforward. Let us
consider T̂ (p) : R3 → Ck,∀p ∈ IRGB . If we find k for each pixel p, we will ultimately have
our transformation T . Each pixel p in the image IRGB has its corresponding R, G & B values:
IRGB(p) = {Ir(p), Ig(p), Ib(p)}. Note that all the pixels in IRGB image are located in the three-
dimensional RGB space. Given their corresponding Ir, Ig&Ib values, one can quickly locate them
in this space. We use properties of RGB space and simple linear algebra to create a complex-valued
representation of the image.

In RGB space (Fig. 2), we consider an isotropic vector O (grayscale line) passing through the origin
C and making equal angles with each axis. For a given pixel p in this space, we have a plane P ,
which has O as a normal vector intersecting at point E and contains pixel p at point F . Also, The
plane P intersects the red, blue, and green axes at B,A, and D. Let us try to determine k for pixel
p.

3.1.1 COMPLEX INTENSITY CHANNEL (Iθ):

It is crucial to notice that pixels lying on the vector O will represent grayscale color since Ir(p) =
Ig(p) = Ib(p). If we project other pixels on vector O, we can obtain a projected grayscale version
of the image Irgb.

Taking this observation into account, in Fig 2, we see that vector v =
−−→
CF for pixel p makes

an angle θ = ∠ECF . v has two orthogonal components in the direction of
−−→
CE(projection) &

−−→
EF (deflection). Using θ and ||v||, we can decompose v into its two orthogonal components, form-
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Figure 2: Proposed R2C color transformation: Given an RGB color IRGB(p) = {IR(p), IG(p), IB(p)} for a
pixel p. We have vectors v =

−−→
CF & u =

−−→
EF . (a) Using θ, we project v onto the grayscale vector O, giving

us projection ||v|| cos θ and deflection ||v|| sin θ, which gives us the real and imaginary components of the first
complex number. (b) Using ϕ between the reference vector R and vector u. In the argand plane P (assuming R
as the real axis), we locate p, giving us the second complex number.

ing real and imaginary components of a complex value. Real component of this complex value Iθ
being ||v|| cos θ and imaginary component being ||v|| sin θ. It results in the first complex value of
pixel p as follows:

Iθ(p) = ||v||eiθ = ||v|| cos θ + i||v|| sin θ (1)
Here, ||.|| represents the norm of the vector.

3.1.2 COMPLEX HUE CHANNEL (Iϕ):

Note that in Fig 2, u =
−−→
EF for pixel p lies in a plane that is ⊥ to O, denoted as P . Assuming P

as an argand plane, we can locate p using a complex number. For this, we need a reference axis. In
Fig 2, we take this as a reference vector R =

−−→
EB, from E to the intersection of plane P and the

red axis, given as B. Here, we assume P as an argand plane with R as the real axis and R⊥ as the
imaginary axis.

If we find the ∠FEB = ϕ, we can easily locate p in this argand plane using polar coordinates
(||u||, ϕ). For computing ϕ, we first find the shortest angle ϕ′ between u and R using cosϕ′ =

u.R
||u||||R|| . Now we define ϕ as:

ϕ =

{
ϕ′ if Ib ≥ Ig
2π − ϕ′ else

(2)

Now, using the polar coordinate, we can easily locate p in argand plane P . This leads to the second
complex value of p as:

Iϕ(p) = ||u||eiϕ = ||u|| cosϕ+ i||u|| sinϕ (3)

3.1.3 iRGB INPUT:

From above, we found that k = 2 and established T̂ (p) = R3 → Ck=2,∀p ∈ Irgb. This results in
a complex transformation T : RH×W×3 → CH×W×2 such that T (IRGB) = IiRGB . Using T , we
can convert our real-valued image IRGB to complex-valued image IiRGB with two complex-valued
color channels. We use that to form the set required for the complex representation of IiRGB(p) as
follows:

IiRGB(p) = {Iθ(p), Iϕ(p)} (4)
We can separate complex-valued image IiRGB into its real and imaginary component as: IiRGB =
Ire + iIim, where Ire = {||v|| cos θ, ||u|| cosϕ} and Iim = {||v|| sin θ, ||u|| sinϕ}. Algorithm 1
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Algorithm 1 R2C Color Transformation
Input: A Real-valued RGB Image, IRGB

Output: A Complex-valued transformed Image, IiRGB

for p ∈ IRGB do ▷ for each pixel in the image
▷ Find angle between pixel vector v and vector O.
cos θ = O·v

||O||×||v||
sin θ =

√
1− cos θ

Iθ(p) = ||v||(cos θ + i sin θ) ▷ Intensity channel
▷ Find angle between between vector u and vector R.
ϕ′ = cos−1( R·u

||R||×||u|| )

Ihsv = rgb2hsv(Irgb)
if sin(hue(Ihsv)) ≥ 0 then

ϕ = ϕ′

else
ϕ = 2π − ϕ′

end if
Iϕ(p) = ||u||(cosϕ+ i sinϕ) ▷ Color channel

end for
return IiRGB = {Iθ, Iϕ} ▷ Final complex image

presents the algorithm for the above-presented R2C transform. Note that R2C is also invertible; we
provide a detailed explanation for inverse R2C in Appendix A. Moreover, we considered using the
Fourier transform to get complex input, but the complex input generated from the Fourier transform
proved unsuitable. We present empirical results and discuss them in Appendix B.

3.2 DCSNET: DEEP COMPLEX SPATIO-SPECTRAL NETWORKS

Recent advances in transformers Dosovitskiy et al. (2021); Yuan et al. (2021) demonstrate that self-
attention based models can achieve good performances in solving various tasks. Following this
approach, complex-valued transformer-based approaches Eilers & Jiang (2023); Yang et al. (2020);
Dong et al. (2021) try to utilize self-attention. However, due to the nature of complex domain,
they suffer from increased computation and poor results for image-related tasks. The proposed
DCSNet architecture removes self-attention in favor of Fourier filters, enabling the model to retain
information entirely within the complex domain while preserving global contextual information. As
illustrated in Figure 3, DCSNet takes a complex input of size H × W , divides it into patches, and
unfolds these patches into tokens. The token length is progressively reduced in the spatial domain,
while the Fourier filter operates in the frequency domain. This process is reversed in the decoder to
progressively increase the token length.

3.3 DCSNET ENCODER

We propose an encoder part that learns to generate image embeddings that can be used to generate
binary segmentation output. However, unlike previous methods, we cannot use existing pre-trained
encoders because we propose a new architecture that utilizes complex-valued information end-to-
end. Hence, we also train DCSNet encoder on image classification, more details in experiments.

Initially, we have our complex input image I ∈ CH×W×2. We apply complex convolution and
generate complex-valued patches of size = H

4 × W
4 . We introduce a Complex T2T module, which

reduces the number of complex tokens, and a Fourier filter module, which acts as a global convolu-
tion operation in the frequency domain while maintaining the complex-valued nature of the input.

3.3.1 FOURIER FILTER MODULE

We propose a Fourier filter module consisting of a Fourier filter and a complex MLP
layer. Before each layer, we apply layer normalization. In the Fourier filter layer, given
the input feature x ∈ CH×W×D, we first perform 2D DFT (see Appendix C) along
the spatial dimension to convert x to the frequency domain X = F [x] ∈ CH×W×D,

5
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Figure 3: The overall architecture of our proposed DCSNet. It first encodes input image patch
sequences to generate tokens to multiple resolutions (TE

1 , TE
2 , TE

3 ), using Complex T2T. Then,
we add a saliency token (TS) to the output (T ε) of the encoder. Finally, the decoder progressively
upsamples the tokens using Complex RT2T while predicting saliency map at each step. We also
optimize the generated map at each step using our proposed loss to improve the predicted map.

2D FFT

Complex
Learnable

Fourier filter

Complex features in
frequency domain

2D IFFT Complex
MLP 

Fourier Filter Module
Residual Connection

Figure 4: Fourier Filter Module takes a complex-valued input,
applies a learnable complex filter in the frequency domain, and
gives a complex-valued output.

where F [·] denotes 2D complex DFT.
The output X of DFT is a complex
tensor and represents x in the fre-
quency domain. We can now apply
a learnable filter K ∈ CH×W×D to
X by simple element-wise multipli-
cation.

X̂ = K ⊙X (5)

where ⊙ denotes element-wise mul-
tiplication. Since K has the same dimension as X , it will act as a global filter in the frequency
domain. Finally, we use inverse DFT to transform back to the spatial domain as x′ = F−1[X̂]. We
illustrate this process in Fig. 4. Fourier filter in the frequency domain is equivalent to a convolution
with filter size H×W in the spatial domain. Hence, unlike convolution in the spatial domain, which
focuses on local features due to the small filter size, the Fourier filter module focuses on the global
context as shown by Rao et al. (2021). Moreover, keeping the operation in a complex domain helps
us preserve additional complex information and both positive and negative frequencies in the spatial
frequency domain.

3.3.2 COMPLEX T2T MODULE

Given a sequence of patch tokens T with length l from the previous layer, following T2T-ViT in
Yuan et al. (2021), we introduce and iteratively apply the Complex T2T module (Fig. 5), which is
composed of a re-structurization step and a soft split step, to model the local structure information
in T and obtain a new sequence of tokens.

This module consists of a structurization and a de-structurization step. In structurization step, T ∈
Cl×c is reshaped to a 2D image I ∈ Ch×w×c, where l = h × w, to recover spatial structures.
After the structurization step, we apply the de-structurization step, where I is first split into k × k
patches with s overlapping. p zero-padding is also utilized to pad image boundaries. Then, the
image patches are unfolded to a sequence of tokens T ′ ∈ Cl′×ck2

, where the sequence length l′ is
computed as l′ = h′ × w′ = ⌊h+2p−k

k−s + 1⌋ × ⌊w+2p−k
k−s + 1⌋.
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Figure 5: Complex T2T and Complex RT2T reduce and increase the number of tokens, respectively,
while maintaining the complex nature of tokens.

3.4 DCSNET DECODER

As shown in Fig. 3, after obtaining complex feature embeddings T ε , we want to predict the re-
spective salient masks M ∈ {0, 1}H×W×1 for each input I . The encoded length of T ε is quite
small lε = [H16 ,

W
16 ]. We use the reverse version of the Complex T2T module, Complex RT2T. Com-

plex RT2T upsamples each token into multiple subtokens while maintaining common information
between them. We leverage low-level tokens from the encoder to provide additional information
simultaneously. Progressively, we upsample embedded tokens T ε and add information from T1 and
T2 using concatenation and complex linear projection.

3.4.1 COMPLEX RT2T MODULE

In order to upsample the encoded information in tokens, we introduce the reverse version of the
complex T2T module. Specifically, we first project the input patch tokens to reduce their embedding
dimension from d = 384 to c = 64. Then, we use another complex linear projection to expand the
embedding dimension from c to ck2. Next, similar to the de-structurization step in complex T2T,
each token is seen as a k × k image patch, and neighboring patches have s overlapping. Then, we
can fold the tokens as an image using p zero-padding. Finally, we reshape the image to match the
upsampled tokens, as shown in Fig. 5.

3.4.2 TOKEN-BASED MASK GENERATION

Inspired by existing transformer architecture Dosovitskiy et al. (2021); Yuan et al. (2021); Eilers &
Jiang (2023); Liu et al. (2021), we add a dense token as shown in Fig. 3 In doing so, we design a
complex-valued dense token TS ∈ C1×d, where d is the embedding dimension. At each level in the
decoder, we add TS to the encoded patch tokens TD

i , i ∈ {0, 1, 2, 3}. When the modified tokens
are processed through the Fourier filter module, the dense token learns dense information from an
image by progressively extracting feature information from other tokens. For binary segmentation,
we do not use any self-attention module. We again send our obtained tokens TD

1 to a Fourier filter
module, and the third complex RT2T module upsamples the tokens from 1/4 to full resolution.

3.5 OBJECTIVE FUNCTION

Since our architecture is complex-valued, we must ensure that the loss function can handle the
complex output. For classification tasks, we employ the complex loss function proposed by Yadav
& Jerripothula (2023). However, existing loss functions cannot handle complex outputs directly
for binary segmentation. To tackle this problem, we propose a modified binary cross entropy loss
Lidense. We obtain a complex-valued output zj from our network for jth input. Given the real-valued
ground truth yj , we construct a complex-valued ground truth by considering the foreground dense
map as the real part and the background dense map as the imaginary part, as shown in Fig. 6. It turns
out to be a complex-valued map with the foreground pixel having value = 1 and the background pixel
having value = i, just like real-valued ground-truth dense maps have foreground pixel value = 1 and
background pixel value = 0. We develop a loss Lidense which can minimize the comlpex-valued
output of our network zj with help of complex-valued ground truth saliency map yj + i(1 − yj).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Complex grountruth,
foreground pixels are denoted by
1, and background pixels as 0

We formulate our Lidense as follows:

Lidense(zj) =

N∑
j=1

3∑
k=0

LBCE(y
k
j ,ℜ(zkj )) + LBCE((1− ykj ),ℑ(zkj ))

(6)

where LBCE is binary cross entropy loss, k indicates token levels
TD
k in decoder, N is total number of input images, and ℜ and ℑ

are real and imaginary components of complex output zj . To gen-
erate the final binary mask from complex-valued output zj , we take
the average of real and complement of the imaginary component as
mask = (ℜ(zj) + (1−ℑ(zj)))/2.

4 EXPERIMENTS

In this section, we present the evaluation of our proposed Deep
Complex Spatio-Spectral Networks (DCSNet) and compare their
performance with other methods (both real and complex-valued)
for multiple task.

4.1 DATASETS & METHODS

We conduct extensive experiments on binary segmentation tasks. We present results on both real-
valued and complex-valued datasets.

Real-valued Datasets: For binary segmentation, we assess the performance of DCSNet on salient
object detection, defocus blur detection, and shadow detection using multiple datasets. Furthermore,
we provide a comprehensive comparison of real-valued and complex-valued methods across these
tasks. In the process, we had to train our backbone/encoder on a large dataset such as ImageNet-1k
Deng et al. (2009). We also used CIFAR10 dataset Krizhevsky et al. for running our encoder-related
ablation studies.

We follow the approach outlined in Liu et al. (2021) for comparison with real-valued methods on
salient object detection. We evaluate our model on five widely-used benchmark datasets: ECSSD
Yan et al. (2013) (1,000 images), PASCAL-S Li et al. (2014) (850 images), HKU-IS Li & Yu (2015)
(4,447 images), DUT-O Yang et al. (2013) (5,168 images), and DUTS Wang et al. (2017) (10,553
images). We use four commonly employed evaluation metrics across these datasets: Sm Fan et al.
(2017), maxF (maximum F-measure), Emax

ξ Fan et al. (2018) (maximum enhanced-alignment mea-
sure), and MAE (mean absolute error).

We use the CUHKShi et al. (2014) and DUT Zhao et al. (2018) datasets for defocus blur detection.
The CUHK dataset contains 704 defocus images, while DUT comprises 1,100 images. Our method
is trained on 604 images from CUHK and 600 from DUT. We evaluate the remaining test images
from both datasets using F-measure (Fβ) and mean absolute error (MAE) as evaluation metrics. For
shadow detection, we assess our model on the SBU Vicente et al. (2016) and ISTD Wang et al.
(2018) datasets. We train the model separately on each dataset and report the performance using the
balanced error rate (BER).

Complex-valued Datasets: We utilize the Simulated InSAR Building dataset Chen (2020) for
building detection, treating the layover class as the foreground. The dataset consists of 270 training
images and 42 test images. We use mean Intersection over Union (mIoU) as the evaluation metric
and compare our results with other complex-valued methods. We also benchmarked our encoder on
two complex-valued datasets: MSTAR Ross et al. (1998) and S1SLC CVDL Mohammadi Asiyabi
et al. (2023) for classification tasks.

We resize input images to 256 × 256 and then randomly crop 224 × 224 image regions as the
model input and use random flipping as data augmentation. We randomly initialize weights, set
the batch size to 8, and use Adam Kingma & Ba (2015) optimizer. For implementating complex-
valued operations, we use the PyTorch library which provides native support for complex tensor and
complex operations including convolution and complex FFT.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Comparing classification accuracy(%) of our encoder with only other complex-valued
method to show results on Real-valued (ImageNet-1kDeng et al. (2009)) and Complex-valued
(MSTARRoss et al. (1998), S1SLC CVDLMohammadi Asiyabi et al. (2023)) datasets.

(a) Real-valued Dataset

Model Top-1 Acc. (%)

ResNet50He et al. (2016) 76.1
Vit-S/16Dosovitskiy et al. (2021) 78.1

GFNet-xsRao et al. (2023) 78.6
ResMLP-12Touvron et al. (2022) 76.6

ResNet152 (DCN)Trabelsi et al. (2018) 72.6
ResNet152 (FCCN)Yadav & Jerripothula (2023) 77.3

DCSNet Encoder 78.8

(b) Complex-valued Dataset

Dataset DCN FCCN DCSNet Encoder

MSTAR 96.1 97.4 97.7
S1SLC CVDL 93.2 89.8 91.6

Table 2: Quantitative comparison of our proposed DCSNet with other real-valued RGB SOD meth-
ods on five benchmark datasets. “-R” and “-R2” means the ResNet50 and Res2Net backbone, re-
spectively. The values in red are best, and the ones in blue are second best. Our DCSNet performs
best or second best 55% of the time.

DUTSWang et al. (2017) ECSSDYan et al. (2013) HKU-ISLi & Yu (2015) PASCAL-SLi et al. (2014) DUT-OYang et al. (2013) Average

Method Param(M) Sm ↑ maxF↑ Emax
ξ ↑ MAE↓ Sm ↑ maxF↑ Emax

ξ ↑ MAE↓ Sm ↑ maxF↑ Emax
ξ ↑ MAE↓ Sm ↑ maxF↑ Emax

ξ ↑ MAE↓ Sm ↑ maxF↑ Emax
ξ ↑ MAE↓ Sm ↑ maxF↑ Emax

ξ ↑ MAE↓
Real-valued

PiCANetLiu et al. (2018) 47.22 0.863 0.840 0.915 0.040 0.916 0.929 0.953 0.035 0.905 0.913 0.951 0.031 0.846 0.824 0.882 0.072 0.826 0.767 0.865 0.054 0.871 0.854 0.913 0.046
BASNetQin et al. (2019) 87.06 0.866 0.838 0.902 0.047 0.916 0.931 0.951 0.037 0.909 0.919 0.952 0.032 0.837 0.819 0.868 0.083 0.836 0.779 0.872 0.057 0.872 0.856 0.909 0.051
PoolNetLiu et al. (2019) 68.26 0.879 0.853 0.917 0.041 0.917 0.929 0.948 0.042 0.916 0.920 0.955 0.032 0.852 0.830 0.880 0.076 0.832 0.769 0.869 0.056 0.879 0.864 0.914 0.049
EGNet-RZhao et al. (2019a) 111.64 0.887 0.866 0.926 0.039 0.925 0.936 0.955 0.037 0.0918 0.923 0.956 0.031 0.852 0.825 0.874 0.080 0.841 0.778 0.878 0.053 0.886 0.868 0.918 0.048
MINet-RPang et al. (2020) 162.38 0.884 0.864 0.926 0.037 0.925 0.938 0.957 0.034 0.919 0.926 0.960 0.031 0.856 0.831 0.883 0.071 0.833 0.769 0.869 0.056 0.885 0.868 0.919 0.046
LDF-RWei et al. (2020) 25.15 0.892 0.877 0.930 0.034 0.925 0.938 0.954 0.034 0.920 0.929 0.958 0.028 0.861 0.839 0.888 0.067 0.839 0.782 0.879 0.052 0.892 0.876 0.921 0.043
CSF-R2Gao et al. (2020) 36.53 0.890 0.869 0.929 0.037 0.931 0.942 0.960 0.033 - - - - 0.863 0.839 0.885 0.073 0.838 0.775 0.869 0.055 0.892 0.874 0.911 0.049
GateNet-RZhao et al. (2020) 128.63 0.891 0.874 0.932 0.038 0.924 0.935 0.955 0.038 0.921 0.926 0.959 0.031 0.863 0.836 0.886 0.071 0.840 0.782 0.878 0.055 0.888 0.874 0.922 0.047
VSTLiu et al. (2021) 44.48 0.896 0.877 0.939 0.037 0.932 0.944 0.964 0.034 0.928 0.937 0.968 0.030 0.873 0.850 0.900 0.067 0.850 0.800 0.888 0.058 0.904 0.894 0.932 0.045

Complex-valued

FCCNYadav & Jerripothula (2023) 48.61 0.811 0.750 0.872 0.070 0.874 0.876 0.918 0.082 0.867 0.857 0.919 0.058 0.807 0.783 0.854 0.100 0.787 0.695 0.827 0.079 0.824 0.813 0.878 0.078
SCVUNetWei et al. (2023) 54.15 0.824 0.769 0.874 0.063 0.882 0.887 0.922 0.062 0.877 0.872 0.929 0.052 0.815 0.795 0.865 0.089 0.788 0.697 0.875 0.077 0.831 0.827 0.893 0.069

DCSNet (ours) 39.12 0.894 0.874 0.941 0.039 0.927 0.945 0.960 0.034 0.917 0.924 0.967 0.029 0.866 0.850 0.903 0.062 0.839 0.776 0.880 0.056 0.893 0.895 0.930 0.044

4.2 RESULTS

DCSNet encoder results: Our proposed DCSNet encoder is the first token-based approach for
complex-valued image classification. When comparing our encoder on image classification (Ta-
ble 1a and 1b), we observe that DCSNet beats FCCNYadav & Jerripothula (2023) on both large-
scale real-valued dataset (ImageNet) and complex-valued datasets (MSTARRoss et al. (1998)&
S1SLC CVDLMohammadi Asiyabi et al. (2023)). We provide additional comparisons with FCCN
in Appendix E. We obtain significantly better results than Yadav & Jerripothula (2023) while main-
taining fewer parameters, marking the best result for complex-valued image classification on large-
scale datasets for both real and complex-valued datasets.

Comparison on binary segmentation: To show the applicability and efficiency of our proposed
method, we also compare our DCSNet with 9 other real-valued salient object detection methods on
five different datasets for a more extensive comparison with real-valued methods. We also present re-
sults and compare them with two recent complex-valued methods: FCCN & SCVUNet. For FCCN,
we follow a CNN-based encoder-decoder approach for binary segmentation, while SCVUNet is
directly utilized for the real-valued dataset. We present our results in Table 2, which shows that
DCSNet performs either best or second best 55% of the time. We also present qualitative results in
Appendix F. Similarly, for both defocus blur detection, and shadow detection, we outperform exist-
ing real-valued and complex-valued methods. We present the comparison on both tasks in Tab. 3&
4.
When comparing complex-valued data for foreground extraction (Tab. 5), we see a similar pat-
tern, i.e., DCSNet outperforms existing complex-valued methods decisively. Our proposed fully
complex-valued method obtains results comparable to existing real-valued methods. It marks the
first milestone for the application of complex-valued methods in binary segmentation tasks.

4.3 ABLATION STUDY

We conduct three ablation studies to highlight the importance of our contributions. The first two
ablation studies are conducted on four benchmark datasets for SOD. The third study is conducted
on CIFAR10 following Yadav & Jerripothula (2023) for image classification. In addition to our
encoder, we take a smaller version with fewer parameters to observe performance variation. All the
models for the ablation study are trained from scratch in order to maintain fairness.
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Table 3: Comparison with real and complex-valued methods
on defocus blur detection. Red: best, Blue: second best.

Method Param DUT CUHK
(M) Fβ ↑ M ↓ Fβ ↑ M ↓

Real-valued

DeFusionNetTang et al. (2019) - 0.823 0.118 0.818 0.117
BTBNetZhao et al. (2018) - 0.827 0.138 0.889 0.082
CENetZhao et al. (2019b) - 0.817 0.135 0.906 0.059
DAD Zhao et al. (2021b) 44.13 0.794 0.153 0.884 0.079
EFENetZhao et al. (2021a) 43.61 0.854 0.094 0.914 0.053

Complex-valued

FCCNYadav & Jerripothula (2023) 48.61 0.860 0.104 0.898 0.081
SCVUNetWei et al. (2023) 54.15 0.848 0.096 0.901 0.078

DCSNet (ours) 39.12 0.894 0.058 0.907 0.045

Table 4: Comparison with real and complex-valued approaches
on shadow detection. Red: best, Blue: second best.

Method Param ISTD SBU
(M) BER ↓ BER ↓

Real-valued

Stacked CNNVicente et al. (2016) - 8.60 -
BDRARZhu et al. (2018) 42.45 2.69 3.89
DSCHu et al. (2018) 122.49 3.42 5.59
DSDZheng et al. (2019) 58.15 2.17 3.45
MTMTChen et al. (2020) 44.12 1.72 3.15
FDRNet Zhu et al. (2021) - 1.55 3.04

Complex-valued

FCCNYadav & Jerripothula (2023) 48.61 1.78 3.22
SCVUNetWei et al. (2023) 54.15 1.91 3.25

DCSNet (ours) 39.12 1.49 3.05

Table 5: Comparison on Complex-valued Building InSAR
datasetChen (2020)
for foreground extraction. Red: best, Blue: second best.

Method Param Building
(M) mIoU ↑

FCCNYadav & Jerripothula (2023) 48.61 0.82
SCVUNetWei et al. (2023) 54.15 0.86
DCSNet (ours) 39.12 0.89

Effects of complex input on binary segmentation: In this ablation study, we analyze the con-
tribution of various inputs and channels in IiRGB input by providing them one at a time. Results
are shown in Table 6. Each IiRGB channel performs well; however, we get the best results when
both are taken together. Even while using other inputs to DCSNet, i.e., RGB and iHSVYadav &
Jerripothula (2023), we observe that our complex input performs better for binary segmentation.

Effects of Lidense & TS: To analyze the importance of dense loss Lidense, we use binary cross
entropy loss and only optimize the real component of complex-valued output. Similarly, to observe
the importance of dense token TS , we remove it from our model. We present the result of these
ablations in Table 6.

Table 6: Results of ablation study that highlights the effect of both channels in IiRGB and various
other inputs. We also highlight the importance of our loss Lidense, and dense token(TS).

Dataset DUTS ECSSD PASCAL-S DUT-O

Sm ↑ maxF↑ Emax
ξ ↑ MAE↓ Sm ↑ maxF↑ Emax

ξ ↑ MAE↓ Sm ↑ maxF↑ Emax
ξ ↑ MAE↓ Sm ↑ maxF↑ Emax

ξ ↑ MAE↓
baseline (VST) 0.732 0.644 0.785 0.130 0.819 0.808 0.866 0.112 0.742 0.691 0.866 0.157 0.731 0.631 0.782 0.131

ours (RGB) 0.731 0.641 0.774 0.147 0.820 0.801 0.857 0.114 0.732 0.658 0.847 0.139 0.731 0.625 0.781 0.136
ours (iHSV) 0.735 0.648 0.780 0.128 0.824 0.813 0.864 0.105 0.742 0.710 0.813 0.128 0.738 0.631 0.789 0.112

ours (Iθ) 0.729 0.629 0.790 0.123 0.810 0.791 0.865 0.109 0.743 0.701 0.794 0.144 0.735 0.634 0.792 0.122
ours (Iϕ) 0.726 0.631 0.791 0.120 0.805 0.788 0.866 0.112 0.745 0.692 0.789 0.139 0.729 0.636 0.785 0.119

ours (w/o Lidense) 0.731 0.630 0.789 0.122 0.824 0.807 0.872 0.097 0.747 0.702 0.794 0.143 0.733 0.633 0.788 0.123
ours (w/o TS) 0.734 0.649 0.787 0.113 0.825 0.818 0.878 0.091 0.749 0.709 0.703 0.138 0.730 0.646 0.792 0.114

ours (iRGB) 0.740 0.654 0.801 0.107 0.831 0.825 0.884 0.083 0.747 0.713 0.801 0.131 0.739 0.645 0.795 0.109

Table 7: Improvements over baseline two variants of GFNetRao et al. (2021) -xs and -ti. Here, we
study the results of another complex-valued input, iHSVYadav & Jerripothula (2023), and the effect
of each complex-valued channel in Image classification on the CIFAR-10 dataset.

Model GFNet-xs DCSNet Encoder GFNet-ti DCSNet Encoder-small

Input (RGB) (HSV) (iHSV) (Iθ) (Iϕ) (iRGB) (RGB) (HSV) (iHSV) (Iθ) (Iϕ) (iRGB)

Acc (%) 93.6 93.3 93.5 92.7 91.4 94.3 92.1 91.9 92.2 91.7 90.3 92.8

Effects of complex input on image classification: This study observes the effect of various
complex-valued inputs and each channel of IiRGB for image classification. We compare these re-
sults with two variants of real-valued model GFNetRao et al. (2021). Our DCSNet encoders contain
a similar number of parameters as variants of GFNet. From Table 7, we can observe the role of
proposed complex-valued input.

5 CONCLUSION
In this work, we have presented DCSNet, a fully complex-valued token-based network for binary
segmentation tasks, which operates both in spatial and frequency domain. It takes complex-valued
input generated from our R2C transform and optimizes the complex-valued dense output using our
proposed loss function. While maintaining complex-valued information throughout, our model out-
performs previous complex-valued methods on various tasks and both real and complex-valued data,
presenting a robust approach using complex-valued representation.
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A INVERTIBILITY OF R2C TRANSFORM

As mentioned in the main manuscript, R2C transform is invertible. Given the function transform
function T : RH×W×3 → CH×W×2, we need to show that it is invertible, which implies it is a one
to one function. In Algorithm. 2, we present a pseudo code for inverse R2C color transform. We
focus on obtaining the vector v =

−−→
CF , as shown in Fig 7. Once it is obtained, we will have the

location of pixel p at F.

We provide a pseudo code for the inverse R2C transform. Given the complex image IiRGB , we
convert each pixel value from complex to real. First, we find u =

−−→
EF (Fig. 7) using its components

along R and R⊥, then using the component of v along O =
−−→
CE, we obtain v =

−−→
CE +

−−→
EF and

hence the point F which is the location of pixel p in RGB space. We also provide a code demo for
R2C transform in the supplementary zip folder.

Algorithm 2 Pseudo code for inverse R2C Color Transformation
Input: A complex-valued Image, IiRGB

Output: A real-valued Image, IRGB

for p ∈ IiRGB do ▷ for each pixel in the complex image
▷ Our goal is to find vector v =

−−→
CF =

−−→
CE +

−−→
EF

▷ Let us assume u =
−−→
EF , O = grayscale vector

▷ We have two complex numbers for pixel p
C1 = ||v|| cos θ + i||v|| sin θ
C2 = ||u|| cosϕ+ i||u|| sinϕ
point E = (ℜ(C1),ℜ(C1),ℜ(C1)) ▷ lies on O
plane P = plane formed perpendicular to vector O at point E
point B = Intersection of Plane P and Red axis ▷ plane and axis are known
vector R =

−−→
EB

vector R⊥ = lies in plane P, and has angle +π/2 with R
▷ find vector u in RGB space
u1 = ℜ(C2)R̂ ▷ component of u along R
u2 = ℑ(C2)R̂⊥ ▷ component of u along R⊥

u =
−−→
EF = u1 + u2

▷ find component of vector v in RGB space
−−→
CE = ℜ(C1)Ô ▷ component of v along O
▷ find vector v in RGB space
v =

−−→
CF =

−−→
CE +

−−→
EF = [IR(p), IG(p), IB(p)]

point F = (IR(p), IG(p), IB(p))
end for
return IRGB = {IR, IG, IB} ▷ Final real-valued image

B COMPLEX INPUT USING FOURIER TRANSFORM

In addition to the R2C transform, DFT (Discrete Fourier transform) can be used to generate complex-
valued representations of images. However, due to a lack of spatial structure and localized context,
Fourier representation does not provide additional benefits. To assert this observation, we conduct
an experiment with two variations of the DCSNet encoder on the CIFAR10 dataset in Tab. 8.

Table 8: Comparison with DFT (Discrete Fourier transform) and iRGB input to DCSNet encoders.

DCSNet-Encoder DCSNet-Encoder small
Input DFT iRGB DFT iRGB

Acc(%) 85.8 94.3 77.6 92.8
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Table 9: Additional ablation study to compare our Fourier filter module and self-attention.

Metric DUTS ECSSD HKU-IS PASCAL-S DUT-O

SA Ours SA Ours SA Ours SA Ours SA Ours

Sm ↑ 0.735 0.740 0.828 0.831 0.748 0.733 0.745 0.747 0.738 0.739
maxF ↑ 0.651 0.654 0.820 0.825 0.688 0.689 0.711 0.713 0.645 0.645
Emax

ξ ↑ 0.788 0.801 0.875 0.884 0.763 0.791 0.787 0.801 0.788 0.795
MAE ↓ 0.104 0.107 0.091 0.083 0.170 0.157 0.146 0.131 0.112 0.109

C BACKGROUND

We start by introducing the discrete Fourier transform (DFT), which plays a vital role in signal
processing. For clarity we consider 1D DFT. Give a sequence of N complex numbers x[n], 0 ≤ n ≤
N − 1, the DFT of x[n] will be:

X[k] =

N−1∑
n=0

x[n]e−i(2π/N)kn =

N−1∑
n=0

x[n]W kn
N (7)

where i is the iota, and WN = e−i(2π/N).

Since X[k] repeats on intervals of length N, we can take value of X[k] at N consecutive points
k = 0, 1, . . . , N − 1. Specifically, X[k] represents the spectrum of sequence x[n] at the frequency
wk = 2πk/N .

It is well known that the DFT is a bijective function, i.e., the inverse of DFT function exists. Given
X[k], we can recover the original signal x[n] by the inverse DFT also denoted as IDFT

x[n] =
1

N

N−1∑
k=0

X[k]ei(2π/N)kn (8)

Note that, in real DFT, the input x[n] is real, and its DFT is conjugate symmetric Rao et al. (2021),
i.e., X[N −k] = X∗[k]. The reverse is true as well; if we perform IDFT to X[k] which is conjugate
symmetric, a real discrete signal can be covered. This is a major point that half of the DFT {X[k] :
0 ≤ k ≤ [N/2]} contains full information of x[n].

However, in complex DFT, the input x[n] is complex. Hence, its DFT includes both positive and
negative frequencies. This means that unlike real DFT, X[k] is not conjugate symmetric. X[k]
between 0 to N/2 is positive and between N/2 and N − 1 its negative.

The DFT described above can be extended to 2D signals. Given 2D complex signal X[m,n], 0 ≤
m ≤ M − 1, 0 ≤ n ≤ N − 1, the 2D DFT of x[m.n] is given by:

X[u, v] =

m=0∑
M−1

n=0∑
N−1

x[m,n]e−i2π(um
M + vn

N ) (9)

The 2D DFT can be thought of as performing 1D DFT on the two dimensions alternatively. Similar
to complex 1D DFT, 2D DFT does not have properties of conjugate symmetry.

D ABLATION EXPERIMENTS

We also provide another ablation study to compare complex-valued self-attention and our proposed
learnable Fourier filter. For this ablation, we replace the Fourier filter module with the complex-
valued self-attention (SA) module as proposed by Eilers & Jiang (2023); Yang et al. (2020). We
can notice performance-decline in most cases when the Fourier filter module is replaced. Table 9
empirically validates our proposed method for capturing global information in complex-domain.
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Figure 7: R2C color transformation: Given an RGB color IRGB(p) = {IR(p), IG(p), IB(p)} for a
pixel p, we transform p as IiRGB = {Iθ(p), Iϕ(p)}.

E ADDITIONAL RESULTS

For comparison with complex-valued method for saliency prediction, we follow Jiang et al. (2019)
in our experimental setup. DCSNet is trained from scratch over the training set of SALICON Jiang
et al. (2015), following Jiang et al. (2019). We test our trained model on 3 widely used image
saliency datasets, i.e., MIT1003Cornia et al. (2016), CAT2000Borji & Itti (2015), and DUTYang
et al. (2013) and compare using 4 metrics: area under the curve (AUC), normalized scanpath saliency
(NSS), CC and KL divergence.

In Table 11, we present a comparison with only published complex-valued saliency prediction
methodJiang et al. (2019). As shown in the table, our method performs best overall.

Table 10: Comparison with FCCNYadav & Jerripothula (2023) across diffrent number of parame-
ters.

ImageNet FCCN DCSNet
Resnet18 ResNet50 ResNet152 Encoder

Param (M) 11 26 60 5 15 17

Acc (%) 73.41 76.26 77.27 71.24 76.07 78.83

F QUALITATIVE RESULTS

In addition to all quantitative evaluations, we also validate our results qualitatively. We present these
results in Fig. 8. The figure verifies our empirical claims when comparing with the complex-valued
method as well as the real-valued method.

Image GT OursSAL-DCNN Image GT OursSAL-DCNN

(a) Saliency map compared with SAL-DCNNJiang
et al. (2019)

Image GT Ours Image GT OursVST VST

(b) Salient Objects compared with VSTLiu et al. (2021)

Figure 8: Qualitative results of our proposed CSNet compared with other methods.
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Table 11: Comparison with existing complex-valued method SAL-DCNN Jiang et al. (2019)(light
gray). Following Jiang et al. (2019), we take 201, 400, and 1, 035 test images for MIT1003,
CAT2000 and DUT respectively. Our DCSNet obtains best results across all three datasets.

MIT1003Cornia et al. (2016) CAT2000Borji & Itti (2015) DUTYang et al. (2013)

AUC NSS CC KL AUC NSS CC KL AUC NSS CC KL

SALICONJiang et al. (2015) 0.82 1.28 0.42 1.61 0.77 0.99 0.39 1.17 0.85 2.27 0.48 1.24
DVAWang & Shen (2018) 0.86 2,19 0.66 0.87 0.81 1.50 0.56 0.84 0.91 3.11 0.67 0.88
SALGANPan et al. (2017) 0.87 2.05 0.65 0.96 0.81 1.47 0.56 0.97 0.91 2.80 0.68 0.90
ML-NetCornia et al. (2016) 0.84 2.01 0.61 1.01 0.79 1.37 0.51 0.99 0.88 2.87 0.61 1.15

SAMCornia et al. (2018) 0.87 2.19 0.61 1.30 0.84 1.74 0.63 1.12 0.91 2.96 0.67 1.07
BMSZhang & Sclaroff (2016) 0.77 1.15 0.37 1.43 0.78 1.20 0.46 1.07 0.83 1.76 0.42 1.40

PQFTGuo & Zhang (2010) 0.70 0.78 0.25 1.67 0.75 0.98 0.37 1.18 0.77 1.26 0.33 1.53
SRHou & Zhang (2007) 0.70 0.80 0.25 1.69 0.72 0.87 0.32 6.05 0.67 0.70 0.15 3.54

Sal-DCNNJiang et al. (2019) 0.87 2.10 0.62 0.89 0.86 2.03 0.79 0.63 0.92 3.07 0.76 0.55
Sal-DCNN-PPJiang et al. (2019) 0.86 1.98 0.61 0.93 0.86 2.00 0.77 0.65 0.92 3.06 0.75 0.57
Sal-DCNN-PJiang et al. (2019) 0.86 1.97 0.60 0.98 0.86 1.99 0.76 0.74 0.92 3.05 0.75 0.60
Sal-DenseNetJiang et al. (2019) 0.85 1.95 0.59 1.04 0.86 1.95 0.74 0.97 0.91 3.03 0.74 0.63

DCSNet (ours) 0.93 2.35 0.71 0.82 0.89 2.26 0.83 0.57 0.95 3.23 0.81 0.52
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