
Under review as a conference paper at ICLR 2023

SUPERFED: WEIGHT SHARED FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) is a well-established technique for privacy preserving
distributed training. Much attention has been given to various aspects of FL train-
ing. A growing number of applications that consume FL-trained models, however,
increasingly operate under dynamically and unpredictably variable conditions, ren-
dering a single model insufficient. We argue for training a global “family of models”
cost efficiently in a federated fashion. Training them independently for different
tradeoff points incurs ≈ O(k) cost for any k architectures of interest, however.
Straightforward applications of FL techniques to recent weight-shared training
approaches is either infeasible or prohibitively expensive. We propose SuperFed—
an architectural framework that incurs O(1) cost to co-train a large family of
models in a federated fashion by leveraging weight-shared learning. We achieve
an order of magnitude cost savings on both communication and computation by
proposing two novel training mechanisms: (a) distribution of weight-shared models
to federated clients, (b) central aggregation of arbitrarily overlapping weight-shared
model parameters. The combination of these mechanisms is shown to reach an
order of magnitude (9.43x) reduction in computation and communication cost for
training a 5 ∗ 108-sized family of models, compared to independently training as
few as k = 9 DNNs without any accuracy loss.

1 INTRODUCTION

With the increase in the computational power of smartphones, the use of on-device inference in
mobile applications is on the rise, ranging from image recognition (google vision; azure vision) ,
virtual assistant (Alexa) , voice recognition (google ASR) to recommendation systems (Bin et al.,
2019). Indeed, on-device inference is pervasive, especially with recent advances in software (Chen
et al., 2018; torch mobile), accelerators (samsung exynos; apple neural engine), and neural architecture
optimizations (Howard et al., 2019; Sun et al., 2020; Wu et al., 2019a). The surge in its use cases
(Cai et al., 2017; Han et al., 2019; Kang et al., 2017; Lane et al., 2016; Reddi et al., 2021; Wu et al.,
2019b) has led to a growing interest in providing support not only for on-device inference, but also
for on-device training of these models (Dhar et al., 2021).
Federated Learning (FL) is an emerging distributed training technique that allows smartphones with
different data sources to collaboratively train an ML model (McMahan et al., 2017; Chen & Chao,
2020; Wang et al., 2020; Karimireddy et al., 2021; Konečnỳ et al., 2016). FL enjoys three key
properties, it — a) has smaller communication cost, b) is massively parallel, and c) involves no
data-sharing. As a result, numerous applications such as GBoard (Hard et al., 2018), Apple’s Siri
(sir, 2019), pharmaceutical discovery (CORDIS., 2019), medical imaging (Silva et al., 2019), health
record mining (Huang & Liu, 2019), and recommendation systems (Ammad-ud-din et al., 2019) are
readily adopting federated learning.
However, adoption of FL in smartphone applications is non-trivial. As a result, recent works pay
attention to the emerging challenges that occur in training, such as data heterogeneity (Karimireddy
et al., 2021; Li et al., 2020; Acar et al., 2021), heterogeneous resources (Alistarh et al., 2017;
Ivkin et al., 2019; Li et al., 2020; Konečnỳ et al., 2016), and privacy (Truex et al., 2019; Mo et al.,
2021; Gong et al., 2021). These helped FL adoption, particularly in challenging training conditions.
However, the success of FL adoption depends not only on tackling challenges that occur in training but
also post-training (deployment). Indeed, deploying ML models for on-device inference is exceedingly
challenging (Wu et al., 2019b; Reddi et al., 2021). Yet, most of the existing training techniques in FL
do not take these deployment challenges into consideration. In this paper, we focus on developing FL

1

Under review as a conference paper at ICLR 2023

training algorithms specifically designed to address deployment challenges related to post-training
inference.

It is well-established that any single model statically chosen for on-device inference is sub-optimal.
This is because the deployment conditions may continuously change on a multi-task system like
smartphones (Xu et al., 2019) due to dynamic resource availability (Fang et al., 2018). For instance,
the computational budget may vary due to excessive consumption by background apps; the energy
budget may vary if the smartphone is in low power or power-saver mode (Yu et al., 2019). Furthermore,
an increasing number of applications require flexibility with respect to resource-accuracy trade-offs
in order to efficiently utilize the dynamic resources in deployment (Fang et al., 2018). In all of these
deployment scenarios, a single model neither satisfies variable constraints nor offers the flexibility to
make trade-offs.
In contrast to existing FL approaches that produce a single model, we need to produce multiple model
variants (varying in size/latency) for efficient on-device inference. However, training these model
variants independently is computationally prohibitive (Cai et al., 2020). This is particularly true for
FL, where training these variants independently will cumulatively inflate the communication cost
as well as the computation cost. Thus, it is imperative to develop techniques for training multiple
models in a federated fashion cost efficiently without any accuracy loss—achieving asymptotic cost
improvements relative to independently training them.

. . .

. . .

. . .

.

.

Server

Local
update

Weight Sharing + FL

Federated Weight
Shared Training Deployment (Inference)

Te
st

 A
cc

ur
ac

y

Latency

Te
st

 A
cc

ur
ac

y

Latency

Figure 1: Weight shared FL Training.
Shared weights reside on the server. NN
subnetworks are distributed (left) and de-
ployed (right) to participating clients, glob-
ally training a dense accuracy-latency trade-
off space.

To achieve this goal, we propose SuperFed- a novel fed-
erated framework that targets the problem of efficient on-
device inference on smartphones with better training algo-
rithms. SuperFed co-trains a family of model variants in
a federated fashion simultaneously by leveraging weight-
sharing (Cai et al., 2020; Yu et al., 2020). After federated
training, the clients perform local neural architecture search
to find the appropriate model variants for their deployment
scenarios. In weight-sharing, all model variants are sub-
networks of a supernetwork (Cai et al., 2020) and share
their parameters partially. The largest subnetwork’s (or
supernetwork’s) parameters contain other subnetworks’ pa-
rameters within it as proper subgraphs. There are two
key benefits that weight-sharing brings in FL, it a) signif-
icantly reduces the communication and computation cost
for training k model variants, and b) requires no re-training
after the federated training of the supernetwork is complete.
Hence, SuperFed decouples training from neural architec-
ture search which allows local clients to dynamically select
subnetworks of their choice from the globally-trained su-
pernetwork without any re-training.
However, applying existing weight-shared training tech-
niques to federated learning is challenging. First, weight-
shared training techniques like Progressive Shrinking (PS)
(Cai et al., 2020) work on centralized i.i.d data, whereas the
data is decentralized and typically non-i.i.d in FL. Second, PS uses a pre-trained largest subnetwork
during the weight-shared training. This requirement becomes impractical in the context of FL as it
- a) is hard to obtain a globally pre-trained FL model, or b) may significantly increase the overall
communication cost to train it first. Third, weight-sharing training techniques need to minimize
interference (Cai et al., 2020; Xu et al., 2022). Interference occurs when smaller subnetworks inter-
fere with the training of larger subnetworks (Fig 2a in Yu et al. (2020)). To mitigate interference,
PS adopts multi-phase training approach that prioritizes the training of larger subnetworks before
training smaller subnetworks. Such multi-phase training may lead to significant communication cost
in federated learning. Instead, we argue that the weight-shared training technique in FL must be be
one-shot (single phase) to mitigate interference.
As a part of SuperFed framework, we propose MaxNet — a weight-shared training technique for FL.
Figure 1 provides a high level overview of our proposed approach. MaxNet hosts the supernetwork
in the server and assumes no prior pre-trained model before the federated training. MaxNet decides
which individual subnetworks are distributed for training on participating clients and when (subnet-
work distribution). MaxNet ’s subnetwork distribution optimizes both lower bound (smallest subnet)

2

Under review as a conference paper at ICLR 2023

and upper bound (largest subnet) to increase the accuracy of every subnet in between. Since the
subnetworks partially share their parameters, MaxNet also introduces a novel shared model weight
aggregation mechanism that mitigates interference in weight-shared FL training. To summarize, our
contributions are as follows:

• SuperFed: A weight shared training framework for FL that trains a family of model variants
(DNN models), cost-efficiently in a federated fashion.

• MaxNet’s subnetwork distribution: a heuristic that trains the upper and lower bounds in the
model family by optimizing both bounds and load balancing their distribution over time.

• MaxNet’s Aggregation: A mechanism for subnetwork weight aggregation with variable
overlaps mitigating intra-network interference.

We perform rigorous evaluation of SuperFed ’s weight-shared training technique MaxNet against
non-weight shared baselines, where each model variant is trained independently in a federated fashion
over CIFAR10/100 and CINIC-10 (downsampled ImageNet images) datasets. MaxNet trains a family
of ≈ 5 ∗ 108 subnets showing 9.43x lower computational and 10.94x lower communication cost
compared to training as few as 9 subnetworks separately with FedAvg. This order of magnitude
reduction in training cost is achieved with no accuracy loss compared to independently trained
subnetworks (without weight-sharing) with FedAvg.

1.1 RELATED WORK

In this section, we describe FL approaches that are closely related to SuperFed. We provide a
background of weight shared training in non-federated environments in App. A.
FL-training challenges. Our proposed work targets a challenge of efficient deployment of FL-models
for on-device inference which is fundamentally different from challenges that occur during training.
Specifically, SuperFed aims to reduce the cost of training k global model variants in FL whereas
existing works train a single model in FL-training. FedAvg (McMahan et al., 2017) and local SGD
(Lin et al., 2020b) train a single model by averaging model updates received from the participating
clients. We show that FedAvg is a special case of SuperFed in App. C. Recent modifications to
FedAvg like FedDyn (Acar et al., 2021), FedProx (Li et al., 2020), Scaffold (Karimireddy et al.,
2021) modify client local training to minimize communication cost for non-i.i.d client datasets. These
techniques are complimentary to the proposed work and incorporating them in SuperFed framework
is left as future work. Other techniques like Diao et al. (2020); Lin et al. (2020a) enable FL clients to
train neural-nets (NNs) that differ in architecture enabling system heterogeneity in FL. SuperFed also
allows clients to train architecturally different NNs during training. However, the goal of SuperFed is
not to enable system-heterogeneity but satisfy varying deployment scenarios of clients after training.
Hence, SuperFed provides k global models to clients during on-device inference, whereas, Diao et al.
(2020); Lin et al. (2020a) provide a single global model to every client during inference (post-training).
Developing system-heterogeneity aware weight-shared FL training is future work.
AutoML in FL. AutoML for federated learning is an emerging field. SuperFed automates the neural
architecture selection for varied client deployment scenarios. A known AutoML technique FedNAS
(He et al., 2020) automatically searches for NN architecture that maximizes global accuracy in FL.
We argue that the goal of SuperFed fundamentally differs from that of FedNAS. FedNAS doesn’t
target varying deployment scenarios of FL clients whereas SuperFed does. Hence, SuperFed trains
k global model variants while FedNAS trains a single global model. SuperFed decouples training
from searching of NN architectures whereas FedNAS doesn’t. This decoupling is important to allow
clients to run local NAS after training in SuperFed. Another line of work FedEx (Khodak et al.,
2021) automates hyper-parameter search in FL. Similar to SuperFed, it uses weight-sharing to reduce
the communication cost. However, FedEx uses weight-sharing in a different context than that of
SuperFed. Specifically, FedEx shares parameter of an NN across different hyper-parameters like
learning rate schedules, momentum and weight-decay. Whereas, SuperFed shares parameters of an
NN across different NNs that differ in shape and sizes (similar to Cai et al. (2020)). Moreover, FedEx
produces a single global model at the end of hyper-parameter optimization in FL. Whereas, SuperFed
produces k global models in FL.
Multi-Model FL. Another line of FL-research trains multiple models simultaneously but on a fairly
different FL scenario than SuperFed. Multi-Model FL (Bhuyan & Moharir, 2022; da Silva et al.,
2022) trains k global models (simultaneously) that make predictions on k different tasks (for e.g. one
model may predict birds’ species while another predicts dogs’ species). Whereas, SuperFed trains k

3

Under review as a conference paper at ICLR 2023

Notation Explanation
S The set of clients in FL training, S = {1, 2, ..,K}
C Client Participation ratio in FL
h Spatial heuristic for subnetwork distribution such that h : S → ϕ
H(t) Spatio-temporal heuristic for subnetwork distribution such thatH : {1, 2, ...T} → h
M(W, arch ,w) Weight w of subnetwork arch partially replacing weight W of supernetwork

Table 1: Notations used in Algorithms 1 and 2. Full list of notations are described in Tab. 3.

different global models on a single task (every model in SuperFed makes prediction for the same
classes) for varying client deployment scenarios. Multi-Model FL assumes availability of k different
datasets on a client device whereas SuperFed trains every model on a single (and same) dataset per
client.

2 SUPERFED: WEIGHT SHARED FL FRAMEWORK

We start by describing our weight shared FL framework in this section. It provides a pluggable
algorithmic and implementation base for subnetwork distribution and aggregation heuristics between
participating clients—a novel challenge introduced by weight shared FL. We also propose one such
SuperFed’s heuristic MaxNet which instantiates a specific approach to subnetwork distribution and
aggregation. Overall, the goal of weight-shared FL training is to train all subnetworks contained
inside supernetwork on all the data partitions. The problem formulation of weight-shared FL is
discussed in detail in App. B. Tab. 1 lists some notations used to describe SuperFed.

2.1 FEDERATED SETUP

Fundamentally, to train a supernetwork in a federated fashion, a server must decide how to distribute
its sub-architectures between participating clients. This happens at the beginning of each FL round
(line 4 of algorithm 1). The server extracts the subnetworks from the hosted supernet and sends them
to the clients (algorithm 1 line 6). Each participating client trains the received subnetwork for a fixed
number of local epochs and sends the updated subnetwork parameters back to the server (algorithm 1
line 7). Upon receipt of individual updated subnetwork parameters, the server is then responsible
for merging them and assimilating the updates into the shared supernetwork. Critically, it must take
into consideration any overlaps or contributions to individual parameters from more than one client
(algorithm 1 line 11-15). Note that FedAvg (McMahan et al., 2017) is a special case of algorithm 1
(App. C) where this overlap is constant and equals to the number of clients K. However, the overlap
cardinality may vary (∈ [1,K]) in weight shared FL. This is handled on lines 10-16 of algorithm 1.
This shared-parameter averaging is one of the key contributions and further investigation opportunity.
Now, we describe these two principal framework components in more detail.

2.2 SUBNETWORK DISTRIBUTION

We start by taxonomizing different subnetwork distribution heuristics on the server side. Funda-
mentally, the design space for subnetwork distribution heuristics can be divided into two high-level
categories: spatial and temporal.

Spatial refers to the distribution of subnetworks among participating clients within a given FL round.
Intuitively, this class of heuristics concerns itself with which subnets go where.

Temporal refers to the distribution of subnetworks for an individual client across rounds. Intuitively,
this class of heuristics concerns itself with when a given subnet is forwarded to a given client.

Both spatial (which) and temporal (when) aspects should be taken into consideration for subnetwork
distribution for best performance. We propose one concrete spatio-temporal heuristic in this paper
(§2.4). Indeed, spatial distribution makes sure that the upper and lower bound of the model family is
optimized, while temporal heuristics ensure exposure to all data partitions. The latter can be thought
of as a form of temporal load balancing of individual subnetworks across partitioned datasets. To
further validate the importance of spatio-temporal heuristics, we perform an ablation study, comparing
it with random subnetwork distribution (§3.4).

4

Under review as a conference paper at ICLR 2023

1: Initialize W
2: for round t = 1,2, ... T do
3: St ← random set of max(C ·K, 1) clients

(St ⊆ S)
4: ht = H(t) // tth spatial subnet distr.
5: for client k ∈ St do
6: archk

t ← ht(k) , wk
t ← G(Wt, arch

k
t)

7: wk
t+1 ← ClientUpdate(k , wk

t)
8: end for
9: W 0 ← zeros(Wt)

10: // shared-param avg by overlap cardinality
11: Wsum ←∑

k∈St
nk ∗M(W 0, archk

t , w
k
t+1)

12: Wsum ← replace_zeros(Wsum, Wt)
13: Wcnt ←∑

k∈St
M(W 0, archk

t , nk ∗ ones(wk
t+1))

14: Wcnt ← replace_zeros(Wcnt, 1)
15: Wt+1 ← Wsum

Wcnt

16: end for
Algorithm 1: Weight Shared FL in Server

1: Input: Client j (j ∈ St) which has been assigned the
largest subnetwork at tthround (H(t)(j) = archM),
St is set of randomly sampled clients tth round

2: βt = decay(β0, t)
3: W 0 ← zeros(Wt)
4: Wsum ←∑

k∈St\j

(1−βt)
|St|−1

∗ nk ∗M(W 0, archk
t , w

k
t+1)

5: Wsum += βt ∗ nj ∗M(W 0, archM , wj
t+1) //

largest subnet
6: Wsum ← replace_zeros(Wsum, Wt) // no overlaps
7: Wcnt ←∑

k∈St\j
M(W 0, archk

t ,
(1−βt)
|St|−1

∗ nk ∗ ones(wk
t+1))

8: Wcnt += βt ∗M(W 0, archM , nj ∗ ones(wj
t+1))

9: Wcnt ← replace_zeros(Wcnt, 1) // no overlaps
10: Wt+1 ← Wsum

Wcnt

Algorithm 2: MaxNet’s Shared-Param Averaging
For Round t after clients’ local updates

2.3 SHARED-PARAMETER AVERAGING

Shared parameter averaging is the second principal component of the weight shared FL framework.
Fundamentally, it provides a scaffolding for implementing heuristics that aggregate parameter updates
from participating clients. The server performs shared-parameter averaging of spatio-temporally
distributed subnetworks at the end of each FL round. One naive way of shared-parameter averaging
is to keep track of the cardinality of the overlap—the number of overlaps of shared parameters—and
average the parameters based on this cardinality (Algorithm 1 line 10-16). We call this simplest
FedAvg extension to weight shared supernets as averaging by overlap cardinality and analyze it in
§3.4. While the framework is designed to accommodate arbitrary spatio-temporally aware aggregation
mechanisms, we propose a specific aggregation mechanism in §2.4.
Limitation. In order to fully replace previous round’s supernetwork parameters in the current round t,
the largest subnetwork must be trained by at least one client. Note that the weights with zero overlap
are kept same as the previous round’s weights (algorithm 1 Line 12 and 14). Since largest subnetwork
weights archM are same as supernetwork’s parameters W , the largest subnetwork should be included
in each round to ensure the cardinality of overlap ≥ 1. Hence, our framework makes a simplifying
assumption (justified in App. J) that a spatio-temporal heuristic will sample the largest network each
round for at least one client.

2.4 SUPERFED’S WEIGHT SHARED FL TRAINING

We propose a novel spatio-temporal subnet distribution heuristic and shared-parameter averaging in
this section. We collectively refer to this combination as MaxNet.

MaxNet’s subnet distribution. In order to optimize the weight-shared FL objective (App. B
equation 1), we first use the sandwich rule (Yu & Huang, 2019b). With the sandwich rule, optimizing
the lower and upper bound can implicitly optimize all the architectures in ϕ. Hence, if |St| is the
number of clients participating in the tth FL round, then MaxNet heuristic spatially samples one
smallest, one largest and |St| − 2 random subnets. However, not every client participates in even
single communication round. The heuristic should train the lower and upper bound on as many
clients as possible to train muliple model variants. Therefore, temporally, MaxNet keeps track of the
number of times the smallest and largest subnetworks have been assigned to each client. Hence, in
each communication round, the heuristic assigns the smallest and largest subnetworks to the clients
which have seen them the least. Random subnetworks are assigned to the rest of the clients. We call
this subnet distribution as Tracking-Sandwich.

MaxNet’s shared-parameter averaging. The shared-parameter averaging of MaxNet is derived
from averaging by overlap cardinality described in §2.3. We find that naive way of shared-parameter
averaging leads to interference Cai et al. (2020). We report our findings in §3.4. In order to reduce

5

Under review as a conference paper at ICLR 2023

interference, we propose performing a weighted average among subnetworks (algorithm 2). While
averaging the parameters of |St| subnetworks, we assign βt (βt ∈ R, 0 < βt < 1) weight to the
largest subnetwork’s parameters and (1−βt)

|St|−1 weight to the parameters of rest of the subnetworks
(algorithm 2 line 4-5). The training starts with an initial value βt = βo (say βo = 0.9), and βt

value is decayed over some communication rounds to reach βT (say βT = (1/|ST |)) (algorithm 2
line 2). Our proposed heuristic has three hyperparameters — 1) initial weight given to maximum
subnetwork in averaging β0 2) decay function of βt 3) decay period of βt w.r.t percentage of total
communication rounds. We perform a detailed ablation on these hyperparameters in §3.4. We use
β0 = 0.9 and decay it for 80% of the total communication rounds using cosine decay function as
standard hyperparameters for the majority of experiments.

2.4.1 REDUCING INTERFERENCE

Interference is a known phenomenon in centralized weight shared training (Cai et al., 2020) in
which smaller subnetworks interfere with the training of the larger subnetworks. We demonstrate
interference in weight shared federated learning (§3.4) and that weight-shared training in FL context
is non-trivial. We argue that in order to reduce interference, it is paramount to facilitate/priortize
the training of the largest subnetwork first in the global model family. Hence, MaxNet weighs the
importance of largest subnetwork’s parameters and reduces it’s influence over time. Specifically,
weighted averaging with βt prioritizes the contributions of the largest subnetwork in the earlier phase
of training. We later demonstrate that MaxNet’s shared-parameter averaging reduces interference
among subnetworks (figure 7). In §3.4, we perform a detailed ablation on MaxNet heuristic and its
derivations to show attribution of benefit (Tab. 2).

3 EXPERIMENTS

We show generality of our proposed algorithm on various federated learning scenarios through
comprehensive evaluation. We compare SuperFed’s MaxNet and independent training (using FedAvg)
on the following dimensions : (1) real-world datasets (2) non-i.i.d degree α (3) client participation
ratio C . Our goal is to match FedAvg across diverse FL scenarios and achieve an order-of-magnitude
cost reduction w.r.t training a global model family. Furthermore, we also provide a cost analysis for
global model family training. Later, we perform a detailed ablation study to highlight key factors
which contribute to our results. We run every experiment for three different seeds and report mean
and standard deviation.

3.1 SETUP

Baseline. To our knowledge, there does not exist an FL algorithm which trains a global family of
models using weight-sharing. Hence, our baseline is independent SOTA training of DNN subnetworks
(without weight sharing) using FedAvg. We call this iFedAvg. While SuperFed trains upto 5 ∗ 108
subnetworks jointly, it is computationally infeasible to train such a large number of subnetworks
with FedAvg independently. We train a family of four DNN models using FedAvg (independently)
containing both the smallest (lower bound) and the largest (upper bound) subnetworks of the super-
network (App. F Tab. 4). We compare test accuracy/perplexity of these subnetworks trained using the
two approaches and add upto 5 more subnetworks for SuperFed to illustrate that SuperFed trains an
order of magnitude more subnetworks which is computationally infeasible for iFedAvg.
Dataset and Models. We compare our algorithm with the baseline on four datasets CIFAR10/100
(Krizhevsky et al., 2009), CINIC-10 (Darlow et al., 2018) and PennTreeBank (PTB) (Marcus et al.,
1993). For image datasets, The base supernetwork is a ResNet (He et al., 2016) based architecture
and contains ResNet-10/26 as the smallest and largest subnetworks respectively. For text dataset, the
base supernetwork is a TCN (Bai et al., 2018) based architecture (defined in App. H.1). In SuperFed,
we train subnetworks varying in the depth and number of filters in convolution layers (App. F).
Heterogeneity in Client Data Similar to (Chen & Chao, 2020; Lin et al., 2020a), we use the Dirichlet
distribution for disjoint non-iid training data. The α parameter controls the degree of heterogeneity —
α = 100 is a close to uniform distribution of classes. Lower α values increase per-class differences
between data partitions (App. K).
Local Training Hyper-params. We keep client’s local training hyperparameters same for SuperFed
and iFedAvg. For image datasets, our training setting is similar to (Lin et al., 2020a) using local

6

Under review as a conference paper at ICLR 2023

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.84

0.86

0.88

0.90

0.92

Te
st

 A
cc

ur
ac

y
iFedAvg
MaxNet (SuperFed)

(a) CIFAR10.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.42

0.44

0.46

0.48

0.50

Te
st

 A
cc

ur
ac

y

iFedAvg
MaxNet (SuperFed)

(b) CIFAR100.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.62

0.64

0.66

0.68

0.70

Te
st

 A
cc

ur
ac

y

iFedAvg
MaxNet (SuperFed)

(c) CINIC10.

0.05 0.10 0.15 0.20 0.25
GFLOPs

120

125

130

135

140

145

150

Te
st

 P
er

pl
ex

ity

iFedAvg
MaxNet (SuperFed)

(d) PTB.

Figure 2: Datasets. Test accuracy (higher is better) or perplexity (lower is better) comparison between SuperFed
and iFedAvg for different datasets. FL training is done with C = 0.4, α = 100 and 20/20/100/20 total clients
for CIFAR10/100, CINIC-10 and PennTreeBank (PTB) datasets.

SGD (Lin et al., 2020b) with no weight decay and a constant learning rate (no decay). We perform
the grid search for learning rate between {0.03, 0.1} on training largest subnetwork using FedAvg
(App. K). We find the optimal learning rate to be 0.1 and train the model for 5 local epochs for each
communication round1 . We defer local training hyper-params for text dataset to App. H.2.

3.2 EVALUATION

We compare our weight shared framework SuperFed with iFedAvg across various federated learning
settings in this section.

Accuracy on Real-world Datasets. figure 2 compares MaxNet and iFedAvg on four datasets. For
this experiment, we keep C = 0.4 and α = 100. CINIC10/CIFAR10/100 and PTB experiments
are run for R = 1000/1500/2000/100 communication rounds with total clients as 100/20/20/20
respectively.
Takeaway. SuperFed’s MaxNet achieves at par (or better) test accuracy/perplexity (for all subnet-
works) than iFedAvg. MaxNet gets closer to iFedAvg as the dataset becomes harder (CIFAR100 is a
harder dataset than CIFAR10 Krizhevsky et al. (2009)).

Effect of Non-i.i.d Degree α. figure 3 evaluates MaxNet as the degree of heterogeneity increases. In
this experiment, we use CIFAR10 dataset with C = 0.4 and run different α = {0.1, 1, 100} settings
for R = 1500/1500/2500 communications rounds respectively.
Takeaway. SuperFed’s MaxNet is robust to non-i.i.d-ness and experiences no loss of accuracy relative
to iFedAvg across all the α settings. As the degree of non-i.i.d-ness increases, the difference of the
test accuracy between both the approaches decreases.

Effect of Client Participation Ratio C. figure 4 compares SuperFed’s MaxNet and iFedAvg by
varying percentage of clients participating in each communication round. The experiment is run
using CIFAR10 dataset, α = 100 and 20 clients. Different C = {0.2, 0.4, 0.8} settings are run for
R = 1500/1500/1000 communication rounds respectively.
Takeaway. MaxNet experiences no loss of accuracy relative to iFedAvg across all the C settings as
well. MaxNet’s tracking makes sure that every client contributes to the global supernet eventually.
Hence, MaxNet is resilient to client participation ratios.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

iFedAvg
MaxNet (SuperFed)

(a) α = 100

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

iFedAvg
MaxNet (SuperFed)

(b) α = 1

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

iFedAvg
MaxNet (SuperFed)

(c) α = 0.1

Figure 3: Non-i.i.d Degree (α). Test accuracy comparison between SuperFed and iFedAvg for different
α = {100, 1, 0.1} values run for 1500/1500/2500 comm. rounds respectively. The lower the α value, the
more heterogeneous is the data. Dataset used is CIFAR10 with C = 0.4 and 20 clients.

1We adopt SOTA approach to batchnorm which is known to be problematic in FL non-iid settings (Hsieh
et al., 2020)

7

Under review as a conference paper at ICLR 2023

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.84

0.86

0.88

0.90

0.92

Te
st

 A
cc

ur
ac

y
iFedAvg
MaxNet (SuperFed)

(a) C = 0.2

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.84

0.86

0.88

0.90

0.92

Te
st

 A
cc

ur
ac

y

iFedAvg
MaxNet (SuperFed)

(b) C = 0.4

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.84

0.86

0.88

0.90

0.92

Te
st

 A
cc

ur
ac

y

iFedAvg
MaxNet (SuperFed)

(c) C = 0.8

Figure 4: Client Participation Ratio (C). Test accuracy comparison between SuperFed and iFedAvg for
C = {0.2, 0.4, 0.8} values run for 1500/1500/1000 FL comm. rounds respectively. Dataset used is CIFAR10
with α = 100 and 20 clients.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.86

0.88

0.90

0.92

Te
st

 A
cc

ur
ac

y

0=0.5

0=0.9

(a) β0 value

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.86

0.88

0.90

0.92

Te
st

 A
cc

ur
ac

y

Constant
Linear
Cosine

(b) βt-decay function

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.86

0.88

0.90

0.92

Te
st

 A
cc

ur
ac

y

50%
80%
100%

(c) Decay Period (% total comm. rounds)

Figure 5: MaxNet’s hyperparameters. a) Initial β0 value used in weighted aggregation of subnetwork
parameters. βt is assigned to maximum subnetwork and (1− βt) to the rest b) For decaying functions (except
constant), βt is decayed from 0.9→ uniform within the same number of rounds (80% of total rounds) c) Decay
period is defined as % of total rounds until which βt decay occurs.

2 4 6 8
Model Family Size

0

2

4

6

8

0.67

C
lie

nt
's

 A
vg

. G
FL

O
P

s
/ R

ou
nd

1.36 1.55
2.59

6.32iFedavg
MaxNet (SuperFed)

(a) Computational Cost

2 4 6 8
Model Family Size

0

5

10

15

20

25

2.28

A
vg

. G
B

yt
e

Tr
an

sf
er

 /
R

ou
nd

4.72 5.52

9.56

24.96
iFedavg
MaxNet (SuperFed)

(b) Communication Cost

Figure 6: Costs of training a model family in FL. Costs of training a model family with varied size is shown.
Blue line represents cost of training each subnetwork in the family using FedAvg. The dotted line (orange)
line represents costs of training a model family of size ≈ 5 ∗ 108 using SuperFed. Cost calculation details are
described in App. G.

3.3 COST COMPARISON

We now compare SuperFed and iFedAvg w.r.t computational and communication costs for training a
family of models. We defer cost calculation details to App. G.
Takeaway. figure 6 shows computational and communication costs of iFedAvg as the model family
size increases. The dotted line represents cost for training ≈ 5 ∗ 108 subnetworks using SuperFed’s
MaxNet. Clearly, as the size of model family increases the cost of training model family with
iFedAvg approach increases. In fact, training a family of 9 models with iFedAvg is 9.43x costlier
computationally and 10.94x costlier in communication than training ≈ 5 ∗ 108 subnetworks using
SuperFed’s MaxNet. Hence, iFedAvg is infeasible if used for training subnetworks of the same
order of magnitude as SuperFed. Furthermore, we emphasize that SuperFed incurs smaller cost than
independently training the largest network with iFedAvg (model family size as 1, App. E), making it
the preferred method of federated training for any family of models, however small.

3.4 ABLATION STUDY

We now study attribution of benefits by performing an ablation on 1) Spatio Temporal Heuristics 2)
Hyperparameters of MaxNet heuristic.

8

Under review as a conference paper at ICLR 2023

0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs

0.82

0.84

0.86

0.88

0.90

0.92

Te
st

 A
cc

ur
ac

y

iFedAvg
overlap + R
overlap + S

overlap + TS
Wt -decay + TS (Maxnet)

Figure 7: SuperFed’s Spatio-Temporal Heuris-
tics. Test accuracy comparison for various spatio-
temporal heuristics. The dataset used is CIFAR10
with C = 0.4, α = 100 and 20 clients.

Heuristic Subnetwork Dist Averaging

overlap + R Random overlap cardinal-
ity

overlap + S Sandwich overlap cardinal-
ity

overlap + TS Tracking-
Sandwich

overlap cardinal-
ity

Wt β-decay + TS
(MaxNet)

Tracking-
Sandwich

Wt β-decay +
overlap cardinal-
ity

Table 2: Description of subnetwork distribution and
shared-parameter averaging for different spatio-temporal
subnetwork distributions in SuperFed

Spatio Temporal Heuristics. Tab. 2 lists the spatio-temporal heuristics tried as a part of this ablation
study. For fair comparison, all the training hyperparameters are kept constant — CIFAR10 dataset,
C = 0.4 and α = 100. figure 7 compares the test accuracy of all the spatio-temporal heuristics.
Takeaway. First, MaxNet has the best accuracy for all the subnetworks among all other heuristics.
Second, notice that the simple overlap cardinality averaging (overlap + R) with random subnetwork
distribution underperforms for all subnetworks compared to independently training them. While,
both sandwich (overlap + S) and tracking-sandwich (overlap + TS) subnetwork distribution improve
smallest subnetwork’s accuracy as compared to random subnetwork distribution (overlap + R) and
match the accuracy of independently training it. Tracking-sandwich (overlap + TS) performs slightly
better than sandwich (overlap + S). However, the largest subnetwork’s accuracy is still sub-par
compared to iFedAvg. We attribute the reason for sub-par accuracy of the largest subnetwork to
interference (for overlap + (R,S,TS) in figure 7), i.e. smaller subnetworks interfere with the training of
the larger subnetworks Cai et al. (2020). MaxNet prioritizes contributions of the largest subnetwork
in the earlier phase of training and decays its importance over time. This reduces interference and
achieves no loss of accuracy compared to independently trained subnetworks.

Hyperparameters of MaxNet. MaxNet’s hyperparameters are described in §2.4. We perform
a grid search on the following hyperparameters : β0 : {0.9, 0.5} , decay function {linear, cosine,
constant}, decay period {50%, 80%}. figure 5 compares test accuracy of the subnetworks for different
hyperparameters.
Takeaway. Hyperparameter β0 has a major effect on test accuracy of subnetworks (figure 5a).
Starting the training with larger β0 value helps reduce interference. Hence, training of the largest
subnetwork is preferred more in the earlier phase of training, which also benefits the smaller networks.
Also, keeping βt = 0.9 = const only improves largest subnetwork’s accuracy. Decaying βt over
communication rounds increases accuracy for smaller subnetworks without reducing the largest
subnetwork accuracy(figure 5b). Similar empirical evidence of the benefit of gradually reducing
larger subnetwork’s importance in training is also seen in OFA (Cai et al., 2020). Moreover, cosine
decay performs better than linear decay. Longer decay period (80% of the total comm. rounds)
further helps in achieving better test accuracy (figure 5c).

4 CONCLUSION

SuperFed is the new framework for weight shared FL. Its pluggable architecture is used to evaluate a
newly proposed set of distributed training algorithms for spatio-temporal subnetwork distribution
and model parameter aggregation, collectively called MaxNet. MaxNet is able to train multiple
DNNs jointly with weight sharing in a federated fashion, matching state-of-the-art FedAvg w.r.t
accuracy. SuperFed amortizes the cost of training over an arbitrary selection of subnetworks, while
conventional FL techniques (e.g., FedAvg) incur O(k) training cost for any selection of k models
from the “family of models”. SuperFed opens new directions for future work: adjusting MaxNet for
client resource constraints (e.g., compute, bandwidth, memory capacity) and developing theoretical
insights on training enabled by MaxNet. We believe that SuperFed takes an important first step
towards co-training model families in a federated fashion cost-efficiently, achieving an order of
magnitude communication and computation cost reduction (even with as few as k = 9 models) while
maintaining accuracy through interference mitigation.

9

Under review as a conference paper at ICLR 2023

5 REPRODUCIBILITY STATEMENT

We provide anonymized source code https://anonymous.4open.science/r/
SuperFed/ for the experimental results included in the main text. The code includes full
instructions to perform weight-shared federated learning on the datasets and settings considered in
the paper.

REFERENCES

Apple. designing for privacy (video and slide deck). apple wwdc, 2019. URL https://
developer.apple.com/videos/play/wwdc2019/708.

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and
Venkatesh Saligrama. Federated learning based on dynamic regularization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=B7v4QMR6Z9w.

Alexa. Amazon alexa. https://developer.amazon.com/en-US/alexa. Accessed: 2022-
09-18.

Dan Alistarh, Demjan Grubic, Jerry Z. Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, pp. 1707–1718,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Muhammad Ammad-ud-din, Elena Ivannikova, Suleiman A. Khan, Were Oyomno, Qiang Fu,
Kuan Eeik Tan, and Adrian Flanagan. Federated collaborative filtering for privacy-preserving
personalized recommendation system. CoRR, abs/1901.09888, 2019. URL http://arxiv.
org/abs/1901.09888.

apple neural engine. Deploying transformers on the apple neural engine. https://
machinelearning.apple.com/research/neural-engine-transformers. Ac-
cessed: 2022-09-18.

azure vision. Azure computer vision. https://azure.microsoft.com/en-us/pricing/
details/cognitive-services/computer-vision/. Accessed: 2022-09-18.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. CoRR, abs/1803.01271, 2018. URL http:
//arxiv.org/abs/1803.01271.

Neelkamal Bhuyan and Sharayu Moharir. Multi-model federated learning. In 2022 14th International
Conference on COMmunication Systems & NETworkS (COMSNETS), pp. 779–783. IEEE, 2022.

Chenzhong Bin, Tianlong Gu, Yanpeng Sun, Liang Chang, and Lei Sun. A travel route recommenda-
tion system based on smart phones and iot environment. Wireless Communications and Mobile
Computing, 2019, 2019.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, Timon
Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. Towards federated learning
at scale: System design. In A. Talwalkar, V. Smith, and M. Zaharia (eds.), Proceedings of Machine
Learning and Systems, volume 1, pp. 374–388, 2019. URL https://proceedings.mlsys.
org/paper/2019/file/bd686fd640be98efaae0091fa301e613-Paper.pdf.

Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. Neuralpower: Predict and
deploy energy-efficient convolutional neural networks. In Asian Conference on Machine Learning,
pp. 622–637. PMLR, 2017.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HylxE1HKwS.

10

https://anonymous.4open.science/r/SuperFed/
https://anonymous.4open.science/r/SuperFed/
https://developer.apple.com/videos/play/wwdc2019/708
https://developer.apple.com/videos/play/wwdc2019/708
https://openreview.net/forum?id=B7v4QMR6Z9w
https://openreview.net/forum?id=B7v4QMR6Z9w
https://developer.amazon.com/en-US/alexa
http://arxiv.org/abs/1901.09888
http://arxiv.org/abs/1901.09888
https://machinelearning.apple.com/research/neural-engine-transformers
https://machinelearning.apple.com/research/neural-engine-transformers
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/computer-vision/
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
https://proceedings.mlsys.org/paper/2019/file/bd686fd640be98efaae0091fa301e613-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/bd686fd640be98efaae0091fa301e613-Paper.pdf
https://openreview.net/forum?id=HylxE1HKwS

Under review as a conference paper at ICLR 2023

Hong-You Chen and Wei-Lun Chao. Feddistill: Making bayesian model ensemble applicable to
federated learning. CoRR, abs/2009.01974, 2020. URL https://arxiv.org/abs/2009.
01974.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen
Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm: An
automated end-to-end optimizing compiler for deep learning. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation, OSDI’18, pp. 579–594, USA, 2018.
USENIX Association. ISBN 9781931971478.

EU CORDIS. Machine learning ledger orchestration for drug discovery, 2019. URL
https://cordis.europa.eu/project/id/831472?WT.mc_id=RSS-Feed&
WT.rss_f=project&WT.rss_a=223634&WT.rss_ev=a.

Rafael Valente da Silva, Jinho Choi, Jihong Park, Glauber Brante, and Richard Demo Souza. Multi-
channel aloha optimization for federated learning with multiple models. IEEE Wireless Communi-
cations Letters, 2022.

Luke Nicholas Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J. Storkey. CINIC-10 is
not imagenet or CIFAR-10. CoRR, abs/1810.03505, 2018. URL http://arxiv.org/abs/
1810.03505.

Sauptik Dhar, Junyao Guo, Jiayi (Jason) Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah.
A survey of on-device machine learning: An algorithms and learning theory perspective. ACM
Trans. Internet Things, 2(3), jul 2021. ISSN 2691-1914. doi: 10.1145/3450494. URL https:
//doi.org/10.1145/3450494.

Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient
federated learning for heterogeneous clients. CoRR, abs/2010.01264, 2020. URL https://
arxiv.org/abs/2010.01264.

Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-tenant on-device deep learning
for continuous mobile vision. CoRR, abs/1810.10090, 2018. URL http://arxiv.org/abs/
1810.10090.

Xuan Gong, Abhishek Sharma, Srikrishna Karanam, Ziyan Wu, Terrence Chen, David Doermann,
and Arun Innanje. Ensemble attention distillation for privacy-preserving federated learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15076–15086,
2021.

google ASR. Google automatic speech recognition. https://cloud.google.com/
speech-to-text. Accessed: 2022-09-18.

google vision. Google cloud vision ai. https://cloud.google.com/vision. Accessed:
2022-09-18.

Myeonggyun Han, Jihoon Hyun, Seongbeom Park, Jinsu Park, and Woongki Baek. Mosaic:
Heterogeneity-, communication-, and constraint-aware model slicing and execution for accu-
rate and efficient inference. In 2019 28th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 165–177. IEEE, 2019.

Andrew Hard, Chloé M Kiddon, Daniel Ramage, Francoise Beaufays, Hubert Eichner, Kanishka Rao,
Rajiv Mathews, and Sean Augenstein. Federated learning for mobile keyboard prediction, 2018.
URL https://arxiv.org/abs/1811.03604.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Fednas: Federated deep learning via
neural architecture search. CoRR, abs/2004.08546, 2020. URL https://arxiv.org/abs/
2004.08546.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

11

https://arxiv.org/abs/2009.01974
https://arxiv.org/abs/2009.01974
https://cordis.europa.eu/project/id/831472?WT.mc_id=RSS-Feed&WT.rss_f=project&WT.rss_a=223634&WT.rss_ev=a
https://cordis.europa.eu/project/id/831472?WT.mc_id=RSS-Feed&WT.rss_f=project&WT.rss_a=223634&WT.rss_ev=a
http://arxiv.org/abs/1810.03505
http://arxiv.org/abs/1810.03505
https://doi.org/10.1145/3450494
https://doi.org/10.1145/3450494
https://arxiv.org/abs/2010.01264
https://arxiv.org/abs/2010.01264
http://arxiv.org/abs/1810.10090
http://arxiv.org/abs/1810.10090
https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text
https://cloud.google.com/vision
https://arxiv.org/abs/1811.03604
https://arxiv.org/abs/2004.08546
https://arxiv.org/abs/2004.08546

Under review as a conference paper at ICLR 2023

A. Howard, M. Sandler, B. Chen, W. Wang, L. Chen, M. Tan, G. Chu, V. Vasudevan, Y. Zhu, R. Pang,
H. Adam, and Q. Le. Searching for mobilenetv3. In 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 1314–1324, Los Alamitos, CA, USA, nov 2019. IEEE Computer
Society. doi: 10.1109/ICCV.2019.00140. URL https://doi.ieeecomputersociety.
org/10.1109/ICCV.2019.00140.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-IID data quagmire
of decentralized machine learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 4387–4398. PMLR, 13–18 Jul 2020. URL https://proceedings.
mlr.press/v119/hsieh20a.html.

Li Huang and Dianbo Liu. Patient clustering improves efficiency of federated machine learning
to predict mortality and hospital stay time using distributed electronic medical records. CoRR,
abs/1903.09296, 2019. URL http://arxiv.org/abs/1903.09296.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and Raman Arora.
Communication-Efficient Distributed SGD with Sketching. Curran Associates Inc., Red Hook, NY,
USA, 2019.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning, 2021.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia
Tang. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM
SIGARCH Computer Architecture News, 45(1):615–629, 2017.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning, 2021.

Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina Balcan, Virginia Smith, and Ameet
Talwalkar. Federated hyperparameter tuning: Challenges, baselines, and connections to weight-
sharing. CoRR, abs/2106.04502, 2021. URL https://arxiv.org/abs/2106.04502.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao, Lorena Qendro,
and Fahim Kawsar. Deepx: A software accelerator for low-power deep learning inference on
mobile devices. In 2016 15th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), pp. 1–12. IEEE, 2016.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks, 2020.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 2351–2363. Curran As-
sociates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/
18df51b97ccd68128e994804f3eccc87-Paper.pdf.

12

https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00140
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00140
https://proceedings.mlr.press/v119/hsieh20a.html
https://proceedings.mlr.press/v119/hsieh20a.html
http://arxiv.org/abs/1903.09296
https://arxiv.org/abs/2106.04502
https://proceedings.neurips.cc/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf

Under review as a conference paper at ICLR 2023

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches,
use local sgd. In International Conference on Learning Representations, 2020b. URL https:
//openreview.net/forum?id=B1eyO1BFPr.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Comput. Linguist., 19(2):313–330, jun 1993. ISSN
0891-2017.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data, 2017.

Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas Kourtellis.
Ppfl: privacy-preserving federated learning with trusted execution environments. In Proceedings
of the 19th Annual International Conference on Mobile Systems, Applications, and Services, pp.
94–108, 2021.

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, and
Carole-Jean Wu. The vision behind mlperf: Understanding ai inference performance. IEEE Micro,
41(3):10–18, 2021.

Manas Sahni, Shreya Varshini, Alind Khare, and Alexey Tumanov. Comp{ofa} – compound once-
for-all networks for faster multi-platform deployment. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=IgIk8RRT-Z.

samsung exynos. Samsung exynos 9825. https://semiconductor.samsung.com/
processor/mobile-processor/exynos-9825/. Accessed: 2022-09-18.

Santiago Silva, Boris A. Gutman, Eduardo Romero, Paul M. Thompson, Andre Altmann, and
Marco Lorenzi. Federated learning in distributed medical databases: Meta-analysis of large-scale
subcortical brain data. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI
2019), pp. 270–274, 2019. doi: 10.1109/ISBI.2019.8759317.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert: a
compact task-agnostic BERT for resource-limited devices. CoRR, abs/2004.02984, 2020. URL
https://arxiv.org/abs/2004.02984.

torch mobile. Pytorch mobile. https://pytorch.org/mobile/home/. Accessed: 2022-09-
18.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and
Yi Zhou. A hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th
ACM workshop on artificial intelligence and security, pp. 1–11, 2019.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Fed-
erated learning with matched averaging. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BkluqlSFDS.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong
Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 10734–
10742. Computer Vision Foundation / IEEE, 2019a. doi: 10.1109/CVPR.2019.01099. URL
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_
Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_
Neural_Architecture_Search_CVPR_2019_paper.html.

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, Kim
Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learning at facebook: Understanding
inference at the edge. In 2019 IEEE international symposium on high performance computer
architecture (HPCA), pp. 331–344. IEEE, 2019b.

Jin Xu, Xu Tan, Kaitao Song, Renqian Luo, Yichong Leng, Tao Qin, Tie-Yan Liu, and Jian Li.
Analyzing and mitigating interference in neural architecture search. In International Conference
on Machine Learning, pp. 24646–24662. PMLR, 2022.

13

https://openreview.net/forum?id=B1eyO1BFPr
https://openreview.net/forum?id=B1eyO1BFPr
https://openreview.net/forum?id=IgIk8RRT-Z
https://semiconductor.samsung.com/processor/mobile-processor/exynos-9825/
https://semiconductor.samsung.com/processor/mobile-processor/exynos-9825/
https://arxiv.org/abs/2004.02984
https://pytorch.org/mobile/home/
https://openreview.net/forum?id=BkluqlSFDS
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html

Under review as a conference paper at ICLR 2023

Zirui Xu, Fuxun Yu, Chenchen Liu, and Xiang Chen. Reform: Static and dynamic resource-
aware dnn reconfiguration framework for mobile device. In Proceedings of the 56th Annual
Design Automation Conference 2019, DAC ’19, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450367257. doi: 10.1145/3316781.3324696. URL https:
//doi.org/10.1145/3316781.3324696.

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1803–1811,
2019a.

Jiahui Yu and Thomas S. Huang. Universally slimmable networks and improved training techniques.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October
2019b.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=H1gMCsAqY7.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural architec-
ture search with big single-stage models. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm (eds.), Computer Vision – ECCV 2020, pp. 702–717, Cham, 2020. Springer
International Publishing. ISBN 978-3-030-58571-6.

14

https://doi.org/10.1145/3316781.3324696
https://doi.org/10.1145/3316781.3324696
https://openreview.net/forum?id=H1gMCsAqY7
https://openreview.net/forum?id=H1gMCsAqY7

Under review as a conference paper at ICLR 2023

A BACKGROUND ON WEIGHT-SHARED TRAINING

OFA (Cai et al., 2020) proposes a progressive shrinking method for weight-shared training of 1019
subnetworks jointly by using a neural supernetwork. The training is facilitated by a pre-trained
teacher network which is used for distillation throughout the training. Training a supernetwork
naively causes “interference” (Cai et al., 2020). Hence, OFA takes a phased approach to training, by
training larger subnetworks first and progressively shrinking the dimensions of a subnetwork being
trained. BigNAS (Yu et al., 2020) proposes a one-shot approach (doesn’t use any pretrained network)
for training a supernetwork using inplace distillation (Yu & Huang, 2019a). It also proposes several
training hyperparameters which optimize the supernetwork training. However, these weight-shared
training techniques are proposed for centralised setting with i.i.d data. The proposed SuperFed is a
one-shot weight shared training framework for non-i.i.d decentralised data. We empirically show
that naive application of FL techniques for globally training weight shared supernetwork structures
causes interference among subnetworks in non-i.i.d setting (§3.4).

B PROBLEM FORMULATION

Now, we formulate the objective for our weight shared federated learning (notations listed in App. D
Tab. 3). Later, we discuss our proposed heuristic to minimize the objective. In FedAvg (McMahan
et al., 2017), a single global model with parameters w is trained by minimizing the following objective
function - minw

∑K
k=1

nk

n ∗ Fk(w). where there are K clients with their own data partition Pk such
that the size of the partition is denoted by nk (where n =

∑K
k=1 nk is the total number of data

points). Fk(W) =
∑

i∈Pk
fi(w) denotes the loss for data points of partition Pk

Meanwhile, in weight shared training, OFA’s goal is to train every possible architecture in the
supernetwork. Assume ϕ : {arch1 , arch2 , ... archM } as a DNN model family with archM

being the largest subnetwork. The shared weights of these architectures are denoted by W (su-
pernet’s parameters). Hence the objective of OFA (Cai et al., 2020) can be formalized as follows:
minW

∑
archi∈ϕ L(G(W,archi))). where w = G(W,archi) denotes a selection (subset) of archi

parameters from shared weights W . L(w) denotes the loss of subnetwork’s parameters w (w ∈ W)
on a single central dataset.
As stated in §1, the goal of this work is to train a global model family of size |ϕ|. Thus, the objective
function of such training takes the following form:

min
W

∑
archi∈ϕ

K∑
k=1

nk

n
∗ Fk(G(W,archi)) (1)

Indeed, the goal of weight shared FL training is to train all the architectures in the family ϕ on all the
data partitions {P1, P2, ..., PK}. Weight shared FL aims at training a family of models ϕ at an order
of magnitude lesser training cost (both communication and computational) relative to independently
training these networks in FL while matching or even surpassing accuracy. We compare weight
shared FL trained subnetworks with independently FL trained subnetworks in §3.2.

C FEDAVG: A SPECIAL CASE OF SUPERFED

FedAvg (McMahan et al., 2017) is a special case of SuperFed’s algorithm (algorithm 1). When the
family of models contains only a single subnetwork i.e. ϕ = {arch}, then algorithm 1 only trains
the weights of that subnetwork. The spatio-temporal heuristic H becomes H(t)(k) = arch ∀t ∈
{1, 2, ..T}, k ∈ S. Since the same subnetwork is sent to all the clients participating in a round, the
number of overlaps for weights of subnetwork arch equals the number of participating clients |St|.
Hence the averaging method reduces to FedAvg’s averaging mechanism for subnetwork arch.

15

Under review as a conference paper at ICLR 2023

D DESCRIPTION OF NOTATIONS

Table 3: Notations used in the paper

Notation Explanation
K The number of clients
S The set of clients involved in FL training, S = {1, 2, ..,K}
T The total number of communication rounds in
Pk Dataset partition for client k
Fk(w) Sum of loss of data points in Pk for DNN weight w
nk Size of dataset partition Pk (|Pk|)
C Client Participation ratio in federated setting
ϕ Family of DNN models or a set of DNN architectures
W Weight of supernetwork
w Weight of subnetwork contained inside supernetwork
arch DNN architecture (subnetwork) such that arch ∈ ϕ
G(W,arch) Selection of weights for DNN arch from supernet weights W
archM largest subnetwork in ϕ such that G(W,archM) = wM = W
h Spatial heuristic for subnetwork distribution such that h : S → ϕ
H(t) Spatio-temporal heuristic for subnetwork distribution such that H : {1, 2, ...T} → h
M(W, arch, w) Weight w of subnetwork arch partially replacing weight W of supernetwork (super-imposition)

E COST COMPARISON FOR TRAINING THE LARGEST SUBNETWORK

Since supernetwork’s weights are same as the largest subnetwork’s weights, we compare SuperFed
and FedAvg w.r.t communication and computational costs of training the same weights for total
communication rounds T . In SuperFed, other subnetworks (i.e., subsets of the largest subnetwork
parameters) are also trained along with the largest subnetwork while FedAvg only trains the largest
subnetwork. We assume that the largest subnetwork is assigned to atleast one client for every round
in SuperFed (assumption in §2.3). Note that the overall time spent by a client in training the neural
network(s) send by the server over multiple rounds would be less in SuperFed than FedAvg. Moreover,
the amount of bytes exchanged between the server and clients would be less in SuperFed than FedAvg
in every round. This is because in SuperFed, smaller subnetworks are also sent to some clients other
than just sending the largest subnetwork to every client (FedAvg). These smaller subnetworks not
only take less training time (computational) but also have less parameters (communication). Hence,
our proposed weight shared federated learning framework trains a family of models with lesser
computational and communication costs than training the largest subnetwork using FedAvg.

F DNN ARCHITECTURE SPACE AND SELECTION FOR IMAGE DATASETS

We modified OFAResNets — a supernetwork proposed in OFA (Cai et al., 2020) to have smaller
size (10-26 layers) models and make it amenable to 32x32 image size. A typical ResNet architecture
He et al. (2016) has multiple stages and each stage contains a list of residual blocks. We implement
the supernetwork with 4 such stages. Next, we describe the two elastic dimensions we use to vary
subnetworks in size.
Depth. It decides the no. of residual blocks per stage. Hence, this dimension is usually specified
using a list of size 4 with each value denoting the depth of that stage. Our smallest subnetwork
keeps a depth of two per stage. Hence these two per-stage residual blocks are shared among every
subnetwork. Depth elastic dimension can also be specified using a single integer say d which denotes
d depth for every stage in the supernetwork.
Elastic ratio. This dimension changes number of filters and channels of convolution layers in a
residual block. The block has two convolutional layers with input, middle and output channels.
Elastic ratio is a ratio of output to middle channel only affecting the number middle channels in the
block. The elastic ratio is specified via list of size 12 expressing number of middle channels for each
residual block. It can also be specified using a single integer say e which denotes e elastic ratio for

16

Under review as a conference paper at ICLR 2023

every residual block in the supernetwork.
Tab. 4 lists the subnetworks selected for comparing SuperFed with iFedAvg. Out of the 9 subnetworks,
4 of them are also trained using FedAvg independently. SuperFed ≈ 5 ∗ 108 subnetworks including
the nine subnetworks listed in Tab. 4.

Table 4: Dimensions of subnetwork architectures shown in all the figures. Out of nine architectures,
four of them are also trained using FedAvg independently for comparison.

Subnetwork Depth Subnetwork Expand Ratio GB FedAvg Model Family
[0,0,0,0] 0.1 0.40 ✓
[0,0,0,1] 0.14 0.83
[0,1,0,1] 0.14 0.85 ✓
[0,1,1,1] 0.14 0.94
[1,1,1,1] 0.18 1.17 ✓
[1,1,1,2] 0.22 1.91
[1,2,1,2] 0.22 1.94
[1,2,2,2] 0.22 2.08
[2,2,2,2] 0.25 2.36 ✓

G COST CALCULATION

G.1 COMPUTATIONAL COST

We define computational cost as the average time spent/computations done by the client in FL training.
Hence, we estimate average computational cost in a single FL communication round. Note that the
cost is proportional to the GFLOPs of the model (subnetwork) that it is training. Now, we describe
cost calculation for the two approaches compared in §3.
SuperFed. Sum of GFLOPs of all the subnetworks that each clients sees over the course of training
procedure is done. Then, an average is calculated over the total number of clients and total number of
communication rounds.
iFedAvg. Here all the subnetworks of a model family are trained independently. The GFLOPs of a
subnetwork is proportional to the time client spends per round in FedAvg training . Hence, the sum
of GFLOPs of all subnetworks in the family is the average computational cost per round in iFedAvg.

G.2 COMMUNICATION COST

Communication cost is defined by the average bytes transferred between the clients and the server in
FL training. The total communication cost is the sum of communication cost per round. Hence, we
first calculate average communication cost per FL round. The average includes both the download
and upload of the model. The bytes transferred to the clients and vice-versa depend on the size of the
subnetwork. Now we describe communication cost calculation -
SuperFed. The sum of size (in GB) of subnetworks distributed to each client at each communication
round is calculated. Then average is taken over total communication round.
iFedAvg. We first calculate the average communicaton cost per round for training a single subnetwork
(say archi). This is typically given by - 2∗ |St| ∗ sizeOf(archi) (|St| denotes number of participating
clients). Since every subnetwork is trained independently the total communication cost per round is
given by - 2 ∗ |St| ∗

∑
archi∈ϕ sizeOf(archi). In figure 6, we show costs for training a model family

of size upto nine subnetworks with iFedAvg.

H DNN ARCHITECTURE SPACE AND CLIENT LOCAL TRAINING FOR TEXT
DATASET

In this section, we describe our TCN Bai et al. (2018) supernetwork and local training hyper-
parameters associated with the text dataset experiment.

17

Under review as a conference paper at ICLR 2023

H.1 SUPERNET BASED ON TCNS

A standard TCN architecture (Bai et al., 2018) for PTB dataset Marcus et al. (1993) consists of eight
layer (or four temporal blocks) with 600 input and output channels. We enable two elastic dimensions
in the standard TCN architecture — depth and expand ratio. Depth defines the the number of blocks
to be activated whereas the expand ratio defines the number of output channels of the first layer of
each block. Overall, the depth choices considered are {0,1,2} with 0 denoting activating top two
blocks only and expand ratio choices are {0.1, 0.2, 0.5, 1.0}.

H.2 LOCAL TRAINING HYPER-PARAMS

For client local training in text dataset, the initial learning rate is kept as 4 which is a standard learning
rate to train TCN on PTB dataset. We decay the learning rate every 50 local epochs by 0.1. We
use gradient norm clipping as 0.35 and batch size 16. We run five local epochs per client for every
communication round

I NEURAL ARCHITECTURE SEARCH

Table 5: NAS performed for 3 GFLOPs constraints using seed 0 best model checkpoint for cifar10
alpha 100.

NAS Constraint (GFLOPs) Test Accuracy GFLOPs Subnetwork Architecture
1.0 89.98 0.94 d:[1,0,0,0], e:[0.14, 0.18, 0.22, 0.1, 0.18, 0.14, 0.22, 0.18, 0.1, 0.22, 0.22, 0.14]
2.0 91.25 1.99 d:[1,2,2,0], e:[0.25, 0.22, 0.22, 0.18, 0.18, 0.18, 0.22, 0.18, 0.18, 0.18, 0.25, 0.18]
3.0 91.53 2.72 d:[2,2,2,2], e:[0.14, 0.22, 0.18, 0.25, 0.22, 0.14, 0.18, 0.25, 0.25, 0.25, 0.18, 0.1]

The goal of weight shared FL is to offer a rich latency accuracy trade-off space so that clients can
choose one or more models for her deployment needs. In this section, we demonstrate that once
the supernetwork is trained, a neural architectural search (NAS) can be performed by the clients to
extract Pareto-optimal subnetworks. Similar to Sahni et al. (2021), we use evolutionary algorithm to
search for pareto-optimal subnetworks for a given FLOP constraint. Tab. 5 lists different subnetworks
found by the search algorithm for different GFLOPs constraints. The subnetworks are extracted
from supernetwork trained with the following setting - C = 0.4, α = 100, 20 clients and CIFAR-10
dataset. The subnetworks are extracted without retraining.

J JUSTIFICATION OF SUPERFED’S LIMITATION

We first highlight that goal of SuperFed is to target multiple deployment scenarios of clients rather than
assume system-heterogeneity during training. Furthermore, we argue that resources are extremely
dynamic and scarce in deployment (discussed in §1) than during FL-training. One of the foremost
requirement of FL is to make the model training invisible to the user i.e. it should not slow down the
smartphone or drain its battery (Bonawitz et al., 2019). Hence, smartphones usually participate in
FL-training when they are idle, above a certain battery level and connected to unmetered network
(Kairouz et al., 2021). Since resources are fairly available at FL-training time, it is reasonable to
assume that atleast one client takes the largest subnetwork during FL-training in a given comm. round
(a limitation discussed in §2.3).

K LEARNING RATE GRID SEARCH

We perform a grid search on learning rate for the largest subnetwork in the model family using
FedAvg. figure 8 compares learning rates 0.03 and 0.1. This shows that learning rate 0.1 achieves
a better test accuracy for 1500 communication round. To have less complexity, we keep the same
learning rate for training each subnetwork using FedAvg. SuperFed also uses learning rate as 0.1 for
fair comparison.

18

Under review as a conference paper at ICLR 2023

0 250 500 750 1000 1250 1500
Communication Round

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

LR=0.1
LR=0.03

Figure 8: LR Grid Search. Comparison of test accuracy for two different learning rate values {0.03,
0.1} on CIFAR-10 dataset using FedAvg. The total number of clients are 20 with C = 0.4 and
α = 100.

L CLIENT CLASS DISTRIBUTION

0 2 4 6 8 10 12 14 16 18
Client ID

0

2

4

6

8

C
la

ss

(a) α = 100.

0 2 4 6 8 10 12 14 16 18
Client ID

0

2

4

6

8

C
la

ss

(b) α = 1.

0 2 4 6 8 10 12 14 16 18
Client ID

0

2

4

6

8

C
la

ss

(c) α = 0.1.

Figure 9: Non-i.i.d Degree (α). Client class distribution visualization across different α = {100, 1, 0.1}
values. Showing visualizations for CIFAR10 dataset partitioned using Drichlet distribution among 20 clients.

figure 9 visualizes distribution of classes among 20 clients. The size of dots symbolizes the amount
of data points for that particular class in client’s dataset partition. Partition is done using dirichlet
distribution which is parameterized by α. As seen in the figure, the lower the α value the higher the
degree of non-i.i.d-ness. Specifically for α = 0.1, many clients don’t have even a single data point
for some classes.

19

