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ABSTRACT

Accurate prediction of RNA properties, such as stability and interactions, is cru-
cial for advancing our understanding of biological processes and developing RNA-
based therapeutics. RNA structures can be represented as 1D sequences, 2D
topological graphs, or 3D all-atom models, each offering different insights into
its function. Existing works predominantly focus on 1D sequence-based models,
which overlook the geometric context provided by 2D and 3D geometries. This
study presents the first systematic evaluation of incorporating explicit 2D and 3D
geometric information into RNA property prediction, considering not only per-
formance but also real-world challenges such as limited data availability, partial
labeling, sequencing noise, and computational efficiency. To this end, we intro-
duce a newly curated set of RNA datasets with enhanced 2D and 3D structural
annotations, providing a resource for model evaluation on RNA data. Our find-
ings reveal that models with explicit geometry encoding generally outperform
sequence-based models, with an average prediction RMSE reduction of around
12% across all various RNA tasks and excelling in low-data and partial labeling
regimes, underscoring the value of explicitly incorporating geometric context. On
the other hand, geometry-unaware sequence-based models are more robust under
sequencing noise but often require around 2 − 5× training data to match the per-
formance of geometry-aware models. Our study offers further insights into the
trade-offs between different RNA representations in practical applications and ad-
dresses a significant gap in evaluating deep learning models for RNA tasks.
All datasets and code will be released upon acceptance.

1 INTRODUCTION

RNA plays a central role in the machinery of life, serving as a crucial intermediary between nu-
cleotide and amino acid worlds (Sahin et al., 2014). Beyond its messenger role, RNA is involved
in diverse biological processes, including gene regulation, catalytic activity, and structural support
within ribosomes (Sharp, 2009; Strobel et al., 2016). This versatility makes RNA a key target for
fundamental biological research and therapeutic interventions. As our understanding of RNA com-
plexity grows, so does the need for advanced computational tools for its analysis.

Modeling RNA is challenging due to its intricate secondary and tertiary structures, dynamic confor-
mational changes, and interactions with cellular components (Han et al., 2015). Furthermore, RNA
analysis is hindered by the practical challenges of RNA data acquisition which include sequencing
errors (Ozsolak & Milos, 2011), batch effects (Tran et al., 2020), incomplete sequencing (Alfonzo
et al., 2021), partial labeling (Wayment-Steele et al., 2022b), and high costs of obtaining large la-
beled datasets (Byron et al., 2016). Moreover, RNA molecule can be represented in different ways:
as a 1D nucleotide sequence, a 2D graph of base pairings, or a 3D atomic structure. Each represen-
tation highlights different aspects of RNA, presenting both opportunities and challenges for model
design and selection (Fig. 1).

In this work, we systematically study the performance of various machine learning models for RNA
property prediction, extending beyond traditional sequence-based approaches (He et al., 2021; Soylu
& Sefer, 2023; Franke et al., 2022) to include methods that process RNA with its 2D or 3D geometry.
While 2D and 3D RNA representations offer potentially richer information, they also present unique
challenges. In the absence of high-quality experimental data, accessing 2D or 3D RNA structures re-
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Figure 1: Overview of the study. (a) Left panel: RNA sequences represented in 1D, 2D, and
3D structures, processed by 1D sequence, 2D GNN, and 3D GNN models. Our analysis includes
prediction error, robustness and generalization to sequencing noise, and performance under lim-
ited training data and partial labelings. (b) Right panel: Comparative performance of 1D, 2D, and
3D methods across experimental conditions. Histograms show RMSE performance, relative RMSE
changes with increasing noise, and data requirements for optimal performance. Lower values indi-
cate better performance in all metrics.

quires running structure prediction algorithms prone to noise and mistakes, especially in the presence
of sequencing errors (Schneider et al., 2023; Wang et al., 2023). A few mutations in the nucleotide
sequence owing to sequencing mistakes can hugely alter the 2D and 3D structure (Fig. 4), poten-
tially undermining the benefit of using additional geometric context. Furthermore, real-world RNA
datasets often suffer from partial labeling (Wayment-Steele et al., 2022b) and scarcity of training
samples (Wint et al., 2022), which may affect geometry-aware methods differently than sequence-
based approaches. These challenges raise a fundamental question: to what extent does explicit 2D
and 3D geometry contribute to RNA property prediction, and under what circumstances might it
offer advantages over geometry-free sequence models?

In this study, we seek to answer this question by making the following contributions:

• We introduce a diverse collection of RNA datasets, including newly annotated 2D and 3D struc-
tures, covering various prediction tasks at nucleotide and sequence levels across multiple species.

• We provide a unified testing environment to evaluate different types of machine learning models
for RNA property prediction, including sequence models for 1D, graph neural networks for 2D,
and equivariant geometric networks for 3D RNA representations.

• We conduct a comprehensive analysis of how different models perform under various conditions,
such as limited data and labels, different types of sequencing errors, and out-of-distribution scenar-
ios. We highlight the trade-offs and contexts in which each modeling approach is most effective,
guiding researchers in selecting suitable models for specific RNA analysis challenges.

• We also introduce novel modifications to existing 3D geometric models based on biological prior,
specifically optimizing them for handling large-scale point cloud RNA data, thus improving the
efficiency and performance of 3D models significantly.

Our study reveals several key insights: (i) 2D models generally outperform 1D models, with spec-
tral GNNs reducing prediction error by about 12% on average across all datasets, highlighting the
importance of explicitly considering RNA structural information; (ii) 3D equivariant GNNs outper-
form 1D and some 2D methods in noise-free scenario but are sensitive to noise, exhibiting up to a
56% decrease in prediction quality under high sequencing error rates; (iii) geometry-free sequence
models remain the most robust to sequencing noise, showing only a 14-27% increase in prediction
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error compared to noise-free conditions, however they require around 2− 5× more training data to
match the performance of geometry-aware models.

2 DATASETS AND MODELS

Here, we discuss datasets selected for our study with RNA-level prediction labels. These datasets
are selected to vary from small to large-scale and to encompass both nucleotide-level tasks and
sequence-level tasks. We perform an extensive evaluation across these datasets, leveraging three
different model families (1D, 2D, 3D) spanning 9 representative models in total.

2.1 DATASETS

The datasets vary in size based on the number of sequences and sequence lengths: the small dataset
Tc-Riboswitches (Groher et al., 2018), the medium datasets Open Vaccine COVID-19 (Wayment-
Steele et al., 2022b) and Ribonanza-2k (He et al., 2024), and the large dataset Fungal (Wint et al.,
2022). All datasets provide regression labels. Detailed statistics for these datasets are provided in
Appendix F.1.

1. Tc-Riboswitches: 355 mRNA sequences (67-73 nucleotides) with sequence-level labels for
tetracycline-dependent riboswitch switching behavior, important for optimizing gene regulation
in synthetic biology and gene therapy.

2. Open Vaccine COVID-19: 4,082 RNA sequences (each of 107 nucleotides) with nucleotide-
level degradation rate labels, crucial for predicting RNA stability in mRNA vaccine development.

3. Ribonanza-2k: 2,260 RNA sequences (each of 120 nucleotides) with nucleotide-level experi-
mental reactivity labels, supporting RNA structure modeling and RNA-based drug design.

4. Fungal: 7,056 coding and tRNA sequences (150-3,000 nucleotides) from 450 fungal species,
used for sequence-level protein expression prediction.

2.2 DATA PREPROCESSING AND CURATION

For the OpenVaccine COVID-19 dataset, we filter out sequences with a signal-to-noise ratio (SNR)
below 1, as recommended by the dataset authors (Wayment-Steele et al., 2022b), to ensure that only
sequences with a significant signal relative to background noise are included, thereby enhancing
the reliability of modeling. For the other datasets, we use the original sequences since no SNR
annotations are available.

Since all the RNA datasets come with sequences only, we employ EternaFold (Wayment-Steele
et al., 2022a) and RhoFold (Shen et al., 2022) to infer 2D and 3D molecular structures respectively.
We selected EternaFold and RhoFold due to their state-of-the-art performances acknowledged in
recent works (Wayment-Steele et al., 2020; 2022b; He et al., 2024) Additionally, RhoFold typically
runs in seconds to a minute per sequence, unlike other 3D structure prediction tools which usually
take hours, and hence not suitable for large datasets.

For 1D modeling, we use the original RNA sequences without structural augmentation which
equates to processing a plain string of nucleotides. The 2D datasets represent each RNA sequence
as a graph with nodes for nucleotides and edges for bonds between nucleotides. The node features
are six-dimensional, incorporating one-hot nucleotide identity (‘A’, ‘C’, ‘G’, ‘U’) alongside the sum
and mean base-pairing probabilities (BPP), which are available from 2D structure prediction tools.
In 3D, each RNA molecule is represented as a graph, with nodes corresponding to individual atoms.
Node features represent one-hot atom identity.

2.3 MODELS

We select well-established model architectures recognized for their state-of-the-art performance for
molecular property prediction tasks in various domains. 1D Model: Transformer1D (Honda et al.,
2019; He et al., 2021); RNA-FM (Chen et al., 2022), SpliceBERT (Chen et al., 2023) 2D Mod-
els: GCN (Kipf & Welling, 2017; Wieder et al., 2020), GAT (Veličković et al., 2018; Ye et al.,
2022), ChebNet (Defferrard et al., 2016; Knyazev et al., 2018), Transformer1D2D (He et al., 2023),
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Graph Transformer (Shi et al., 2020; Li et al., 2022), and GraphGPS (Rampášek et al., 2022; Zhu
et al., 2023); 3D Models: SchNet (Schütt et al., 2017; Han et al., 2022), EGNN (Satorras et al.,
2021), FAENet (Duval et al., 2023), DimeNet (Gasteiger et al., 2020), GVP (Jing et al., 2020), and
FastEGNN (Zhang et al.). Detailed descriptions of all the models can be found in Appendix Sec. B.

Training and evaluation All models were trained on a NVIDIA A100 GPU. To ensure hyperpa-
rameter parity for each baseline, hyperparameters were optimized using Optuna (Akiba et al., 2019),
restricting the search to models with fewer than 10 million parameters that fit within the GPU mem-
ory constraint of 80GB. All model hyperparameters, training, and evaluation details are reported in
Appendix H. We ran all models for 5 random data splits (train:val:test split of 70:15:15) and we re-
port average performance with a standard deviation across splits. The mean column-wise root mean
squared error (MCRMSE), introduced in Wayment-Steele et al. (2020), is used as the evaluation

metric. It is defined as MCRMSE(f,D) =
√

1
n

∑n
i=1 (ŷi − yi)

2, where f represents a model, D is
the dataset, and ŷi and yi are the predicted and true values for data point i.

3 TASK DEFINITIONS

Here, we introduce the downstream tasks for evaluating models for RNA property prediction. Each
task is designed to quantify specific behaviors under various real-world experimental conditions.

Task 1: Impact of structural information on prediction performance This task aims to evaluate
how incorporating RNA structural information affects prediction quality. We compare the perfor-
mance of models using 1D (sequence-only), 2D, and 3D RNA representations to determine if and to
what extent geometric data improves property prediction.

Task 2: Model efficiency in limited training data settings Acquiring high-quality comprehen-
sive RNA datasets is often challenging and resource-intensive thus limiting the amount of labeled
data for training (Teufel & Sobetzko, 2022; Byron et al., 2016). This task aims to investigate how
model performance depends on the amount of training data used, evaluating the sample efficiency
of each family of models. In other words, given a dataset D = {X,Y }, let Dα = {Xα, Yα} be
a subset where the training set is reduced to a fraction α. We train models on different sets of Dα

datasets with decreasing α.

Task 3: Performance with partial sequence labeling Due to the high cost of measuring prop-
erties for every nucleotide in RNA sequence, real-world datasets often contain partial annota-
tions (Wayment-Steele et al., 2022b) where labels are only available for the first small part of the
sequence. This task is relevant for nucleotide-level datasets and it aims to investigate how well a
model can generalize to a whole RNA sequence when labels are only available for a portion of it.

Task 4: Robustness to sequencing noise Acquiring RNA data requires sequencing. In practice
sequencing procedure may introduce sequencing errors (random mutations of nucleotides) that vary
depending on the sequencing technology and platform (Ozsolak & Milos, 2011; Fox et al., 2014).
These errors affect the raw sequence data, and propagate to structural noise in 2D and 3D. The goal
of this task is to assess how well models can maintain reliable performance when trained and tested
under the same distribution of realistic levels of sequencing noise observed in practice, ensuring
robustness across a consistent noise environment. This reflects real-world cases where a specific
sequencing method produces noisy data, but the noise characteristics are stable across training and
deployment.

Task 5: Generalization to Out-of-Distribution (OOD) data This task focuses on a different
practical challenge: models trained on high-quality RNA sequences are often deployed in conditions
where the data exhibits different noise characteristics due to batch effect (Tran et al., 2020) or the
use of different sequencing platforms (Tom et al., 2017). Here, the objective is to evaluate how
well models generalize to OOD datasets with different levels of sequencing noise, assessing the
extent of performance degradation as noise levels increase. This task simulates the scenario where a
model encounters noisier data than it was trained on, highlighting its ability to adapt to unexpected
experimental conditions.

4
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Table 1: Comparison of 1D, 2D, and 3D models across datasets. Bold indicates the best, underline
the second-best. ‘OOM’ means out-of-memory. ChebNet excels by capturing global graph informa-
tion. Overall, 2D models outperform 1D models, highlighting the value of structural information.
Although 3D models face challenges with scalability and noisy predictions, our nucleotide pooling
strategy, based on biological prior, enhances their performance on shorter sequences, allowing 3D
encoding to occasionally surpass 1D models. See Sec. 4.1 for details on nucleotide pooling strategy.

Model COVID Ribonanza Tc-Ribo Fungal
1D model

Transformer1D 0.361±0.017 0.705±0.015 0.705±0.079 1.417±0.005
RNA-FM 0.591±0.081 0.99±0.144 0.693±0.001 1.420±0.028
SpliceBERT 0.588±0.077 1.022±0.144 0.708±0.003 1.435±0.059

2D model

Transformer1D2D 0.305±0.012 0.514±0.004 0.633±0.001 OOM
GCN 0.359±0.009 0.595±0.006 0.701±0.004 1.192±0.077
GAT 0.315±0.006 0.534±0.006 0.685±0.024 1.112±0.035
ChebNet 0.279±0.007 0.468±0.002 0.621±0.022 0.973±0.003
Graph Transformer 0.318±0.008 0.515±0.001 0.710±0.041 1.317±0.002
GraphGPS 0.332±0.013 0.523±0.003 0.715±0.012 1.025±0.081

3D model (w/o pooling)

EGNN (w/o pooling) 0.480±0.025 0.808±0.023 0.725±0.002 OOM
SchNet (w/o pooling) 0.499±0.003 0.843±0.004 0.696±0.008 OOM
FAENet (w/o pooling) 0.486±0.010 0.834±0.003 0.703±0.011 OOM
DimeNet (w/o pooling) 0.497±0.012 0.855±0.006 0.712±0.004 OOM
GVP (w/o pooling) 0.467±0.010 0.797±0.012 0.744±0.004 OOM
FastEGNN (w/o pooling) 0.477±0.005 0.816±0.014 0.753±0.001 OOM

3D model (with nuc. pooling)

EGNN (nuc. pooling) 0.364±0.003 0.619±0.007 0.663±0.010 OOM
SchNet (nuc. pooling) 0.390±0.006 0.685±0.006 0.655±0.038 OOM
FastEGNN (nuc. pooling) 0.444±0.003 0.753±0.015 0.710±0.011 OOM

For detailed descriptions, motivations and significance of the five task settings, please refer to Ap-
pendix D.

4 EXPERIMENTS AND RESULTS

4.1 IMPACT OF EXPLICIT GEOMETRY LEARNING ON MODEL PERFORMANCE

We begin by addressing Task 1, where we compare the performance of model families when trained
and evaluated on the downstream RNA datasets. Additionally, we provide runtime and memory
comparison in Appendix C.

2D models consistently outperform 1D model Results in Table 1 reveal that 2D methods consis-
tently outperform the 1D sequence model across all datasets. Notably, the Transformer1D2D model,
which simply augments the attention matrix with adjacency features alongside, achieves around 10%
lower prediction MCRMSE on average across datasets than its geometry-free counterpart. This sug-
gests that explicitly incorporating structural information is crucial, as learning from sequence data
alone proves to be insufficient. Further experiments, detailed in the Appendix F.4, investigate the
learned attention maps of both the Transformer1D2D and the Transformer1D model and their corre-
lation with structural information and reveal that Transformer1D2D attention maps are much more
closely aligned with the topological structure of nucleotide graph, reinforcing the conclusion that
explicit encoding of structural information is essential for improved performance.

For the foundation models, RNA-FM and SpliceBERT, we observe that for 2 out of 4 datasets (Covid
and Ribonanza-2k), RNA foundation models perform worse than the simple supervised transformer
baseline wheres for the other two datasets (Tc-Riboswitches and Fungal), transformer and RNA
foundation models achieve similar performance. This is consistent with recent works in multiple
biology related domains demonstrating specialized foundation models are yet to surpass simple
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supervised learning baselines (Xu et al., 2024; Kedzierska et al., 2023; Yang et al., 2024). Hence,
we choose Transformer1D as the model of choice for subsequent experiments.

Spectral GNN outperforms spatial GNNs in 2D ChebNet, a spectral method, outperforms
spatial methods such as GCN, GAT, Graph Transformer, and GraphGPS, achieving a prediction
MCRMSE 2.5% lower than the next best 2D model across datasets. Spatial GNNs aggregate node
features layer by layer, emphasizing local information within a fixed distance. While computation-
ally efficient, these methods are limited by the 1-Weisfeiler-Lehman (WL) test, which constrains the
expressive power of node-based updates (Xu et al., 2018). In addition, spatial GNNs may suffer from
a limited receptive field while spectral methods approximate global graph features, enabling a global
receptive field since the first layer. This allows ChebNet to effectively process global information
which is important for RNA data due to potential long-range interaction between nucleotides.

Challenges of modeling geometric context in all-atom resolution Contrary to our expectations,
3D models at all-atom resolution (EGNN w/o pooling, SchNet w/o pooling DimeNet (w/o pooling),
FAENet (w/o pooling), GVP (w/o pooling) and FastEGNN (w/o pooling) in Table 1) show relatively
high prediction MCRMSE across datasets, underperforming compared to 1D and 2D methods. We
hypothesize this is due to two factors.

First, all-atom 3D models rely on a limited local neighborhoods of adjacent atoms, limiting their
receptive fields and preventing them from capturing long-range dependencies (see Appendix Ta-
ble F.1), which can be crucial for determining RNA properties (Shetty et al., 2013; Alshareedah
et al., 2019). Expanding the local neighborhood for these methods turns challenging due to the
overwhelming scale of large molecular systems in all-atom resolution. Second, the performance
of 3D models is often limited by the inherent inaccuracies in 3D structure prediction tools, which
are generally less reliable compared to 2D structure prediction methods (Ponce-Salvatierra et al.,
2019). While FastEGNN is designed for larger molecules, its reliance on the center of mass virtual
node initialization may not align well with tasks like RNA property prediction, which inherently
have a sequence prior. This may explain the limited performance of FastEGNN in this context and
RNA-specific virtual node initialization and carefully designed pooling mechanisms may be needed
to further adopt this architecture for large-molecules with a sequence prior.

To address the receptive field limitation of all-atom methods, we employ a biological prior by pool-
ing atomic features into nucleotide-level representations after a few layers of all-atom operations.
This strategy is aligned with RNA’s natural secondary structure, where atoms group into nucleotides,
and nucleotides form the complete RNA molecule (Deng et al., 2023). This novel strategy allows
us to maintain all-atom resolution in the initial layers while increasing the receptive field via pool-
ing. By balancing the number of all-atom and nucleotide layers as hyperparameters, we can balance
fine- and coarse-grained all-atom and nucleotide resolution. Compared to other 3D models, EGNN,
FastEGNN and SchNet perform slightly better and hence we introduce the nucleotide pooled vari-
ants for these models. We call 3D models with pooling EGNN (nuc. pooling), FastEGNN (nuc.
pooling) and SchNet (nuc. pooling). This strategy significantly enhances 3D model performance,
reducing prediction MCRMSE by ∼10% compared to the original EGNN, SchNet, and FastEGNN
and outperforming 1D models on the Ribonanza-2k and Tc-Riboswitches datasets by 5% on aver-
age. On the COVID dataset, EGNN (nuc. pooling) matches the Transformer1D model but still trails
behind 2D models. All subsequent experiments report results using nucleotide-pooled versions of
the 3D models.

Next, we investigated the second hypothesis regarding higher noise in 3D structures by quantifying
variability in predicted structures across different 3D prediction tools in Appendix G. We observe
substantial variability (between 11-45Å RMSD across structures given by different 3D structure
prediction tools), suggesting considerable noise in 3D predictions, which likely contributes to the
poorer performance of 3D models.

4.2 MODEL EFFICIENCY UNDER LIMITED DATA AND PARTIAL SEQUENCE LABELING

In this section, we combine the analysis of Tasks 2 and 3, assessing model performance in scenarios
with limited training data or partial labels.

6
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To analyze how the amount of training data influences model performance, we run experiments with
varying portions of the full datasets (25%, 50%, 75%, and 100%) on the medium- and large-scale
datasets: COVID, Ribonanza-2k, and Fungal (Appendix Fig. 8(a) for illustration). The small size
of the Tc-Riboswitches dataset is excluded from the analysis, as training with lower ratios would
have resulted in inadequate sample sizes for meaningful evaluation. Additionally, GPU memory
constraints prevent the application of Transformer1D2D and 3D models on the Fungal dataset due
to its large sequence length.

We also evaluate the impact of partial property labels for nucleotide-level tasks, a common occur-
rence owing to costly experimental measurements (Wayment-Steele et al., 2020) to identify which
models are best suited to handle the challenges of incomplete labels in RNA property prediction.
For this, we use the COVID and Ribonanza datasets as these datasets contain nucleotide-level la-
bels. We train the models using all training data but with varying proportions of labeled nucleotides
(20%, 40%, 60%, 80%, and 100%) per sequence, thus simulating incomplete or sparse labeling,
while testing on fully labeled test sets (Appendix Fig. 8(b) for illustration).
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Figure 2: Performance vs. fraction of training data across various datasets. Model performance
improves with increasing data, with lower MCRMSE across all models. 2D models consistently
outperform 1D models, particularly in low-data regimes, underscoring the value of structural in-
formation for generalization. Dotted, solid, and dashed lines denote 1D, 2D, and 3D methods,
respectively, which applies consistently throughout all figures in this paper.
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Figure 3: Performance vs. partial property labels on COVID and Ribonanza datasets. 2D
models consistently outperform 1D models with sparse labeling, while Transformer1D and Trans-
former1D2D improve rapidly with denser supervision, emphasizing the need for more labels in
transformer-based models.

More training data improves performance Unsurprisingly, across all models and datasets, a
clear trend emerges: increasing the amount of available data, whether through higher number of
training data points or greater proportion of available labels leads to improved performance (Fig. 2,
Fig. 3, Appendix Tables in Sec. I.1, I.2). However, the degree of performance improvement varies
significantly between model types, as analyzed next.

2D models excel in low data and partial label regimes Evaluating model performance at differ-
ent training and label ratios reveals a notable trend: 2D models consistently outperform 1D and 3D
models under low data and incomplete labeling regimes. Between 20-50% training data and label
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levels, 2D models such as ChebNet, Transformer1D2D, GraphGPS, and GAT significantly outper-
form Transformer1D, highlighting the role of additional structural information for model sample
efficiency. Interestingly, Transformer1D and Transformer1D2D exhibit a faster rate of improvement
when more labels are available (Fig. 3), suggesting that transformer-based architectures benefit from
denser supervision. Notably, Transformer1D requires 2− 5× more training data/labels to match the
performance of the least effective 2D models, which achieve comparable results using only 20% to
50% of the training data needed by Transformer1D when trained on the full dataset.

3D models outperform 1D model in limited data regime despite structural noise For the
medium-scale datasets (COVID and Ribonanza), where 3D models can be evaluated, we observe
that the 3D models generally outperform or are on par with the Transformer1D, even for lower
data and labeling regimes. This suggests that despite the noise introduced by inaccuracies in 3D
structure predictions, the explicit geometric encoding in 3D models still provides an advantage over
1D models. EGNN, in particular, is consistently better than or on par with Transformer1D across
all training and label ratios. This further emphasizes that models incorporating explicit geometric
encoding (whether 2D or 3D) are more data-efficient than those relying solely on sequence informa-
tion. However, it is important to note that 3D models do not match the efficiency of 2D models in
these scenarios, likely due to their susceptibility to noise as discussed in Section 4.1.
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Figure 4: Visualization of 1D, 2D, and 3D structures under varying noise ratios (mutation
errors during sequencing). Each column represents a different noise ratio, showcasing the impact
of noise on the structures across different dimensions.

4.3 MODEL ROBUSTNESS AND GENERALIZATION UNDER SEQUENCING NOISE

Tasks 4 and 5 both deal with model performance with noise in the data, but focus on different aspects,
robustness to noise, and ability to generalize across unseen noise distributions. As explained in
Sec. 3, sequencing noise is common depending on the sequencing method and platform used (Fox
et al., 2014), thereby introducing errors in sequences that propagate into 2D and 3D structures.
Additionally one of the deployment scenarios involves models trained on high-quality clean data
applied for datasets acquired under noisy conditions owing to different sequencing platforms or
experimental batch effects (Tom et al., 2017).

To explore these practical aspects, we design two sets of experiments:

• Robustness: We introduce sequencing noise into the training, validation, and test sequences to
simulate realistic sequencing errors. Nucleotide mutations are applied with probabilities {0.05,
0.1, 0.15, 0.2, 0.25, 0.3}, mirroring typical sequencing error rates (Pfeiffer et al., 2018) which also
propagates to the 2D and 3D structures (Fig. 4) via structure prediction tools. Importantly, these
mutations are not random; the likelihood of a particular nucleotide mutating into another varies, as
is well documented in sequencing studies Pfeiffer et al. (2018). Our noise model reflects these real-
world mutation profiles. Crucially, while the input training, validation, and test sequences contain
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noise, the property labels remain clean. This again reflects practical scenarios where labels are
experimentally determined independent of sequencing and thus unaffected by sequencing errors.

• Generalization: Here, models are trained on clean, noise-free data corresponding to high-quality
sequencing experiments but are tested on datasets with varying levels of noise simulated by se-
quencing mutation probabilities in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. This setup reflects the real-
world scenario where models trained on high-quality data will be deployed on OOD data that may
come from different sequencers or have been affected by batch effects.
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Figure 5: Robustness experiments. Transformer1D shows the least performance drop under in-
creasing noise, maintaining the highest accuracy, with Transformer1D2D following closely. In con-
trast, 2D and 3D models, particularly ChebNet and 3D models, are more impacted by noise.

Transformer architectures demonstrate superior robustness and generalization under se-
quencing noise Expectedly, across both tasks, increased noise levels generally leads to worse
test MCRMSE for all models, indicating a decline in prediction performance (Fig. 5, Fig. 6 and
Appendix Tables in Sec. I.3, I.4).

Among all models, Transformer1D demonstrates the highest robustness and generalization, exhibit-
ing the least performance degradation as noise levels increase. Notably, in generalization exper-
iments, Transformer1D achieves the best prediction MCRMSE on the COVID, Ribonanza, and
Tc-Riboswitches datasets under higher noise levels (Fig. 6 and Appendix I.4). The reliance of
Transformer1D on sequence-only information without considering geometric context, while being
a weakness in other scenarios, becomes a strength in case of noisy sequences as minor sequenc-
ing errors may severely alter the predicted RNA structures (Fig. 4). While its performance on the
Fungal dataset is worse overall, Transformer1D maintains remarkably consistent performance as
noise increases. Transformer1D2D ranks just behind Transformer1D outperforming other 2D and
3D models. This can be attributed to Transformer1D2D’s ability to selectively focus on sequence
information for noisy data rather than relying on structural data alone as the self-attention is only
weakly conditioned on the graph topology.

More elaborated 2D and 3D models, which rigidly rely on structural information, are significantly
more affected by noise, underperforming compared to plain sequence baseline in both robustness
and generalization experiments for high noise levels. For low-to-moderate noise levels (5-10%
noise), 2D methods such as ChebNet still perform the best. Interestingly, ChebNet shows the worst
generalization among 2D models, although it performs on par with other methods in robustness
experiments. This suggests that while ChebNet struggles with OOD noise, its performance gets
better when it is also trained on the same noise level used during testing, highlighting the need
for retraining for different experimental data batches/noise levels in real-world applications. Across
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Figure 6: Generalization experiments. Transformer1D outperforms other models on noisy se-
quences, achieving the lowest RMSE at higher noise levels, particularly on COVID, Ribonanza, and
Tc-Riboswitches. Transformer1D2D follows closely, showing that transformer-based models gener-
alize better under noise than 2D and 3D models, especially in tasks with geometric representations.

both experiments, 3D models have poor performance for more noisy conditions, particularly with the
COVID and Ribonanza datasets, due to their dependence on 3D structures which are also sensitive to
the propagation of sequencing errors (Fig.4 bottom). In the smaller Tc-Riboswitches dataset, model
performances vary more, likely due to limited data size, but transformer models still consistently
demonstrate greater robustness to noise.

Across both settings, as the noise ratio rises, the 1D model demonstrates the greatest resilience to
noise, showing an average test MCRMSE increase of approximately 14% and 27%, respectively,
relative to the train and test on clean data. In contrast, 2D models exhibit the highest sensitivity,
with test MCRMSE increasing from 30% to 82%. Meanwhile, 3D models show intermediate per-
formance, with MCRMSE increases of 29% and 56%. Our results reveal a higher vulnerability of
2D and 3D models to sequencing noise where geometric context becomes unreliable at a faster rate
than a plain sequence of nucleotides.

5 CONCLUSION

We present the first comprehensive study on the benefits and challenges of the effect of geometric
context for RNA property prediction models. With providing a curated set of RNA datasets with
annotated 2D and 3D structures, we systematically evaluate the performance of 1D, 2D, and 3D
models under various real-world conditions, such as limited data, partial labeling, sequencing er-
rors and out-of-distribution generalization. Our results reveal that 2D models outperform 1D and
3D models, with spectral graph neural networks excelling even in low-data and partial labeling sce-
narios. For 3D models, we find that their potential benefits are hindered by the limited receptive
field, computational complexity, and structural noise from RNA structure prediction tools. At the
same time, 1D models demonstrate better robustness compared to 2D and 3D models in noisy and
OOD conditions. This study highlights the value and limitations of using geometric context for
RNA modeling. Future work could focus on ensembling 1D, 2D, and 3D models for complemen-
tary strengths, and on improving 2D and 3D models to better handle noise from structure prediction
tools as elaborated in Appendix E.2. Another promising direction can be to investigate advanced 3D
model architectures which incorporate high-degree steerable features as discussed in Appendix E.1.
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ETHICS STATEMENT

This work aims to advance the computational prediction of RNA properties through the development
and evaluation of machine learning models utilizing diverse representations of RNA, including 1D
sequences, 2D structures, and 3D geometries. In conducting this research, we are committed to up-
holding high ethical standards in all aspects of our study, ensuring that our work promotes scientific
integrity, transparency, and responsible use of technology.

• Data Integrity and Fair Use: All RNA datasets used in this study were acquired from
publicly available and ethically sourced repositories. Where applicable, the original data
sources have been duly cited, and all efforts have been made to ensure data privacy and
compliance with relevant data-sharing agreements. Our curated datasets have been handled
responsibly, with proper annotations to minimize errors and misinterpretations.

• Minimization of Bias: We recognize that RNA data, particularly when it involves lim-
ited or incomplete datasets, can introduce biases in model predictions. To mitigate this,
we employ a diverse set of RNA data and systematically analyze model performance un-
der various conditions, including label scarcity and sequencing errors. By doing so, we
aim to provide balanced insights into the potential advantages and limitations of different
modeling approaches, fostering responsible model selection and deployment.

• Responsible Use of AI in Biology: The machine learning techniques used in this study are
intended to assist in scientific discovery and biological understanding, with potential appli-
cations in therapeutic interventions. However, we acknowledge the importance of caution
in applying computational models in sensitive domains such as healthcare. While our mod-
els are designed to improve RNA property prediction, we emphasize that these predictions
should not be used in isolation for clinical or therapeutic decision-making without further
validation and consideration of ethical implications.

REPRODUCIBILITY STATEMENT

We are committed to the transparency and reproducibility of our findings. All methodologies,
datasets, and benchmarking environments will be made publicly available to the research commu-
nity, allowing others to reproduce, verify, and extend our work. This open approach aims to advance
the field of RNA research and promote collaborative progress. To ensure reproducibility, we also
provide detailed descriptions of model architecture and training procedures in the main text. The
appendix H contains full details on data preprocessing, hyperparameter searching and additional
experimental information. All data and code will be provided to upon acceptance.
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• Appendix I: Additional Results.

A RELATED WORK

RNA property prediction RNA-specific models remain scarce, likely due to limited specialized
datasets. Recent advancements in sequence modeling have shown promise, particularly with founda-
tion models like RNA-FM (Chen et al., 2022), UTRBERT (Yang et al., 2023), and RINALMO (Penić
et al., 2024), which use transformer-based architectures pre-trained on large RNA sequence corpora
to predict various RNA functions and structures. While RNNs and CNNs have been applied to tasks
like RNA methylation and protein binding (Wang et al., 2022), they struggle with long-range depen-
dencies. Hybrid models like RNAdegformer (He et al., 2023), combining convolutional layers with
self-attention, improve predictions by capturing both local and global dependencies. Although some
efforts integrate 2D structures with transformers, explicit 2D and 3D geometric modeling for RNA
remains underexplored, with graph-based models mainly focusing on RNA-protein and RNA-drug
interaction tasks rather than property prediction (Krishnan et al., 2024; Yan et al., 2020; Arora &
Sanguinetti, 2022; Zheng et al., 2022).

RNA structure prediction RNA 2D structure prediction has progressed from dynamic program-
ming methods like Vienna RNAfold (Hofacker et al., 1994) to deep learning-based tools like SPOT-
RNA2 (Singh et al., 2021) and UFold (Fu et al., 2022), which enhance accuracy by using neural
networks and evolutionary data. Models such as E2Efold (Chen et al., 2020) and RNA-FM (Chen
et al., 2022) employ transformer architectures to achieve state-of-the-art results in secondary struc-
ture prediction.

RNA 3D structure prediction has progressed through ab initio, template-based, and deep learning ap-
proaches. Ab initio methods (e.g., iFoldRNA (Sharma et al., 2008), SimRNA (Boniecki et al., 2016))
balance detail and efficiency but struggle with non-canonical interactions. Template-based models
(e.g., FARNA/FARFAR (Das & Baker, 2007), 3dRNA (Zhang et al., 2020)) depend on existing
structures but are limited by available data. Deep learning models like DeepFoldRNA (Pearce et al.,
2022), RhoFold (Shen et al., 2022), RoseTTAFoldNA (Baek et al., 2024), and trRosettaRNA (Wang
et al., 2023) show promise in predicting 3D structures from sequence data but face challenges with
novel RNA families due to RNA’s conformational flexibility (Kulkarni et al., 2023).

Despite these advances, there is a gap in applying 2D and 3D modeling techniques to RNA property
prediction. Most works focus on 1D representations and overlook the potential of geometric infor-
mation from 2D and 3D structures. This study is the first to systematically explore the benefits and
limitations of incorporating explicit structural data in deep learning-based RNA property prediction.

B MODELS OVERVIEW

1. Transformer1D: The Transformer1D model is a standard Transformer architecture adopted for
RNA sequence processing. It includes an embedding layer to convert input tokens into dense
vectors, positional encoding (PE) to retain sequence order and a multi-layer Transformer encoder
to capture long-range dependencies within the sequence.
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2. Transformer1D2D: An adaptation of Transformer1D that integrates sequence and 2D graph
structure information. The model encodes each nucleotide and incorporates BPP features, com-
bining standard Transformer with positional encoding and a convolutional layer on the graph
adjacency matrix. This convolutional output is added to the attention matrix, enabling the model
to capture both sequential and structural dependencies.

3. Graph Convolutional Network (GCN): A basic model in graph learning that aggregates and
processes node features from local neighborhoods to capture both node characteristics and graph
structure, making it effective for tasks like node classification.

4. Graph Attention Network (GAT): Enhances graph convolutions by assigning different impor-
tance to neighboring nodes through local attention mechanisms, allowing the model to focus on
more relevant nodes during feature aggregation.

5. ChebNet: A spectral GNN that utilizes Chebyshev polynomials to approximate the graph Lapla-
cian, enabling graph convolutions with global structural context. This approach allows ChebNet
to approximate global graph features with lower computational complexity.

6. Graph Transformer: This model uses Laplacian positional encoding to integrate structural in-
formation from the graph’s Laplacian into node features, which are then processed by Trans-
former layers. This enables aligning the sequential nature of transformer layers with graph topol-
ogy.

7. GraphGPS: A hybrid model combining GNNs with transformers to capture both local and global
graph information. It uses GNNs for local feature aggregation and transformers for long-range
dependencies, making it effective for complex graph tasks requiring both local and global context.

8. SchNet: An SE(3)-invariant network designed for molecular property prediction on geometric
graphs of atomic systems. It operates by modeling interactions through continuous-filter con-
volutional layers. Since the continuous-filter in Schnet is conditioned on distance features, it
maintains invariance to rotations and translations of atom coordinates.

9. E(n)-Equivariant Graph Neural Network (EGNN): An equivariant network for geometric
graphs with rotations, translations, and reflections symmetry. The EGNN operates by as non-
linear message passing between scalar-invariant and vector equivariant quantities.

10. FAENet: FAENet, or Frame Averaging Equivariant Network, is a lightweight and scalable Graph
Neural Network designed for materials modeling. It introduces Stochastic Frame Averaging to
achieve E(3)-equivariance through data transformations rather than architectural constraints, en-
abling superior accuracy and scalability on tasks like molecular and materials property prediction.

11. GVPGNN: Geometric Vector Perceptron GNN is a graph-based model designed to learn from
3D molecular structures by integrating geometric and relational information. It uses Geometric
Vector Perceptrons to encode scalar and vector features, enabling effective modeling of both
protein structure and interactions.

12. DimeNet: Directional Message Passing Neural Network leverages directional message passing
to encode both distance and angular information between atoms. It utilizes spherical harmonics
and Bessel functions for rotation equivariant message representations, enabling precise modeling
of molecular interactions.

13. FastEGNN: FastEGNN introduces virtual nodes to traditional equivariant GNNs, enabling
global message passing while maintaining scalability. These virtual nodes are designed to ap-
proximate and enhance real node interactions, ensuring E(3)-equivariance for efficient modeling
of large geometric graphs.

C MEMORY AND COMPUTATIONAL CONSTRAINTS

In this section, we compare the models based on run times and GPU memory. Both Trans-
former1D2D and 3D models (even with nucleotide pooling) encounter out-of-memory (OOM) is-
sues when processing longer sequences, such as those in the Fungal dataset (Table 1). This high-
lights the need for optimization to handle longer sequences. Figure 7 shows that Transformer1D
scales poorly in both runtime and memory due to its expensive attention mechanism, and Trans-
former1D2D faces additional challenges by processing the sequence and adjacency matrix simulta-
neously. In contrast, simpler 2D models like GCN, GAT, and ChebNet are more efficient. 3D models
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also scale poorly with sequence length due to the increasing number of atoms. Overall, 2D models
provide a good balance between computational demands and performance for encoding structural
information.
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Figure 7: Running time and memory usage comparison across models. (1) Running time vs.
sequence length (left): Transformer1D and Transformer1D2D scale poorly with sequence length
due to expensive attention mechanisms and simultaneous processing of sequences and adjacency
matrices, while simpler 2D models like GCN, GAT, and ChebNet are more efficient. (2) Memory
usage vs. sequence length (right): Transformer1D2D and 3D models face out-of-memory issues
with longer sequences, especially in the largest Fungal dataset, whereas 2D models use memory
more efficiently, balancing computational demands and structural encoding.

D DETAILED TASK DESCRIPTIONS

To comprehensively evaluate RNA property prediction models, we define five tasks that simulate
real-world experimental challenges. These tasks are designed to assess the performance, efficiency,
and robustness of models under various conditions encountered in RNA research and application.
Below, we provide detailed explanations for each task, their scientific motivation, and their relevance
to practical RNA property prediction.

D.1 TASK 1: IMPACT OF STRUCTURAL INFORMATION ON PREDICTION PERFORMANCE

Motivation: RNA molecules fold into complex secondary (2D) and tertiary (3D) structures that dic-
tate their functional properties. While traditional ML approaches often rely solely on the nucleotide
sequence (1D representation), it is well-known in chemistry and biology that structural informa-
tion influences RNA properties (Schlick & Pyle, 2017). However, the extent to which geometric
representations can improve performance of ML models remains unclear.

Task Definition: We evaluate multiple models across three classes (models described in main text):

• 1D models: Utilize only the linear sequence of nucleotides.

• 2D models: Incorporate RNA secondary structure, such as base-pairing interactions.

• 3D models: Leverage full tertiary structural information, including spatial arrangements of
nucleotides.

By comparing their performance across diverse datasets, this task quantifies the benefits of using
geometric information. Specifically, we aim to determine if models with explicit 2D or 3D inputs
outperform sequence-only models, thereby highlighting the added value of structural representations
in RNA property prediction.

Significance: This analysis addresses the gap in existing literature, where the impact of structural
information on RNA property prediction remains underexplored. The findings inform whether ad-
ditional computational costs associated with structural modeling are justified by performance gains.
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D.2 TASK 2: MODEL EFFICIENCY IN LIMITED TRAINING DATA SETTINGS

Motivation: High-quality RNA datasets with experimentally measured properties are scarce due
to the technical difficulty and cost of experimental data acquisition (Byron et al., 2016; Teufel &
Sobetzko, 2022). In such scenarios, models must be sample-efficient, learning effectively from
small datasets.

Task Definition: Let D = {X,Y } represent a dataset, where X is the RNA input and Y is the prop-
erty label. For this task, we define subsets Dα by sampling a fraction α of the original dataset. We
evaluate models trained on varying α values (e.g., α = 25%, 50%, 75%) to assess how performance
scales with reduced training data.

Significance: This task simulates real-world scenarios where large labeled datasets are unavailable.
It evaluates the ability of different models to generalize from limited data, providing insights into
their efficiency and practical applicability.

D.3 TASK 3: PERFORMANCE WITH PARTIAL SEQUENCE LABELING

Motivation: In nucleotide-level RNA datasets, labels for molecular properties (e.g., binding affini-
ties or reactivity) are often available only for a subset of nucleotides in a sequence (Wayment-Steele
et al., 2022b). This is due to the high cost of annotating every nucleotide experimentally.

Task Definition: We consider datasets where only the first ℓ-nucleotide positions in each sequence
are labeled, representing partial sequence labeling. Models are trained using these incomplete labels
and evaluated on their ability to predict properties across the full sequence. Performance is assessed
using datasets with varying ℓ-label fractions.

Significance: This task reflects a critical real-world challenge where complete annotations are un-
available. It assesses a model’s ability to generalize from partial labels to unseen portions of RNA
sequences, a valuable capability for applications with sparse experimental data.

D.4 TASK 4: ROBUSTNESS TO SEQUENCING NOISE

Motivation: RNA sequencing technologies often introduce noise in the form of random nucleotide
errors (e.g., insertions, deletions, or substitutions) (Ozsolak & Milos, 2011; Fox et al., 2014). This
noise propagates through derived RNA structures (2D and 3D), potentially degrading model perfor-
mance. Understanding how well models handle noise is crucial for their reliable deployment.

Task Definition: To simulate realistic sequencing errors, we introduce controlled noise levels into
RNA sequences during both training and testing. Models are evaluated for their ability to maintain
performance under consistent noise conditions, representing a scenario where noise characteristics
are stable across experimental phases.

Significance: This task assesses a model’s robustness in practical settings where sequencing noise
is unavoidable. It provides insights into the resilience of RNA models to variations in input quality.

D.5 TASK 5: GENERALIZATION TO OUT-OF-DISTRIBUTION (OOD) DATA

Motivation: RNA models are often trained on high-quality experimental datasets but deployed in
conditions where data characteristics differ significantly due to variations in sequencing platforms or
protocols (Tran et al., 2020; Tom et al., 2017). This mismatch can lead to performance degradation.

Task Definition: We evaluate models trained on clean RNA data and tested on datasets with higher
levels of noise (representing OOD conditions). Performance metrics are analyzed as a function of
increasing noise, quantifying the models’ ability to generalize to unseen distributions.

Significance: This task mirrors real-world deployment scenarios where models encounter noisy
or biased data. It highlights the limitations of models trained on idealized datasets and informs
strategies for improving generalization under OOD conditions.
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E DISCUSSION ON ADVANCED MODEL ARCHITECTURES

E.1 ENHANCING 3D RNA PREDICTION WITH HIGH-DEGREE STEERABLE FEATURES

Apart from the 3D models considered in this work, models using high-degree steerable features such
as TFN (Thomas et al., 2018), MACE (Batatia et al., 2022) and NequIP (Batzner et al., 2022) repre-
sent an important aspect of equivariant models, with potential to enhance model expressiveness by
incorporating higher-order information. While memory constraints have limited their practical im-
plementation in our current work, techniques such as scalarization of high-degree steerable features,
as demonstrated in works such as HEGNN (Frank et al., 2024) and SO3krates (Cen et al., 2024),
could address this challenge. For instance, HEGNN can improve the expressivity of equivariant
GNNs by mitigating expressivity degeneration on symmetric graphs and leveraging higher-order
representations. Although 3D RNA graphs are too complex to be considered symmetric, the abil-
ity to handle high-degree steerable features in large RNA graphs, with hundreds of nucleotides and
thousands of atoms, remains valuable and has the potential to improve performance. Future work
can explore such methods to improve 3D RNA prediction.

E.2 MITIGATING SEQUENCING NOISE

Notably, most studies in this field do not explicitly address sequencing noise common for RNA in
model architecture design, prompting a need to explore effective strategies for mitigating its impact.
An effective way to handle noise can be through ensemble methods. For instance, combining 1D,
2D, and 3D models by independently learning representations and integrating them via attention
mechanisms that dynamically weigh each modality based on task relevance and noise can leverage
the robustness of 1D methods while benefiting from the strengths of 2D and 3D approaches and be
a good direction for future research.

F ADDITIONAL EXPERIMENTAL INFORMATION

F.1 DATASET STATISTICS

Here, we present the statistics for each dataset used in the paper in Table 2. The datasets are catego-
rized as small, medium, or large based on the number of sequences and sequence length. “Target”
refers to the task the dataset is designed to predict, and “# Avg. Atoms” indicates the average number
of atoms used in 3D models.

Table 2: The statistics of Tc-Riboswitches, Ribonanza, COVID, and Fungal datasets.

Tc-Riboswitches Ribonanza COVID Fungal
Dataset Size Small Medium Medium Large
Task Level RNA-level Nucleotide-level Nucleotide-level RNA-level

Target Switching Factor Degradation Degradation Expression
# Sequences 355 2260 4082 7089

Sequence Length 66 - 75 177 107 - 130 150 - 3063
# Labels 1 2 3 1

# Avg. Atoms
(for 3D models) 1531 3791 2598 N/A

F.2 COMPARISON OF PARTIAL TRAINING DATA AND PARTIAL SEQUENCE LABELING

To clarify the differences and provide a more detailed explanation, we illustrate two experiments:
partial training data and partial sequence labeling (Figure 8).

F.3 DETAILS OF NOISY EXPERIMENTS: ROBUSTNESS AND GENERALIZATION

To create the noisy datasets, we vary the noise ratio r across the values {0.05, 0.1, 0.15, 0.2, 0.25,
0.3}. For each given noise ratio, we independently mutate the nucleotide at each position in a
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(a) Varying fraction of training data.
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Figure 8: Comparison of partial training data and partial sequence labeling. The orange arrows
indicate the varying components. (a) utilizes full nucleotide labels but trains on varying fractions of
RNA sequences (0.25, 0.5, 0.75, 1.0). (b) uses all training sequences but with varying fractions of
nucleotide labels (0.2, 0.4, 0.6, 0.8, 1.0). Therefore, (b) is only for nucleotide-level tasks.

sequence with probability r, as illustrated in Figure 9. The resulting mutated sequence is then
passed to the 2D and 3D prediction tools to generate the corresponding structures. Figure 4 gives a
comprehensive illustration of getting noisy 1D, 2D, and 3D structures.

For the robustness experiments, all training, validation, and testing are conducted on the noisy
datasets. In contrast, for the generalization experiments, the model is trained and validated on clean
datasets, and its performance is tested on noisy datasets with varying noise ratios.

𝑟

Figure 9: Mutation the nucleotide at each position independently with the probability r.

F.4 ANALYSIS OF TRANSFORMER1D AND TRANSFORMER1D2D

To further validate that incorporating structural information contributes to the final results, we an-
alyze the attention maps generated by Transformer1D and Transformer1D2D. Fig. 10 illustrates
the average attention maps across all heads before the final output layer for both the models for
a randomly selected RNA sequence. The attention maps of Transformer1D2D exhibit a striking
similarity to both the adjacency matrix and the BPP matrix, whereas the attention maps from the
standard Transformer model seem to suggest that the model does not learn to attend to the structural
features. Moreover, we quantify this observation by computing the cosine similarity between the
attention maps of the models and the true adjacency matrix and BPP for all sequences in the COVID
dataset. The results, reported in Table 3 show that Transformer1D2D achieves much higher sim-
ilarity scores compared to the 1D Transformer alone. This reinforces the conclusion that explicit
encoding of structural information is essential for improved model performance.
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(a) Transformer1D attention matrix.
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(b) Transformer1D2D attention matrix.
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(c) Base pair probability matrix.
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(d) Graph adjacency matrix.

Figure 10: The heatmaps of matrices in Transformer1D and Transformer1D2D. Attention maps
from Transformer1D2D exhibit a striking resemblance to both the adjacency matrix and BPP matrix,
highlighting the model’s ability to learn structural features. In contrast, the standard Transformer
struggles with this task, as shown by lower cosine similarity scores, reinforcing the conclusion that
explicitly encoding structural information is crucial for enhanced model performance.

Table 3: Cosine similarity values for different models. Cosine similarity scores between the
attention maps and the true adjacency and BPP matrices for all sequences in the COVID dataset
demonstrate that Transformer1D2D significantly outperforms the standard Transformer. These re-
sults underscore the importance of explicitly encoding structural information for superior model
performance.

Model Cosine similarity adjacency Cosine similarity BPP
Transformer1D 0.107 0.090
Transformer1D2D 0.448 0.672

G ANALYSIS OF NOISE IN 3D STRUCTURES

As mentioned in the main context, predicted 3D structures consistently exhibit noise. In this section,
we analyze this issue from two perspectives: sensitivity to sequence length and variability across
different prediction tools.
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G.1 IMPACT OF SEQUENCE LENGTH ON 3D STRUCTURE PREDICTION NOISE

To investigate the hypothesis that longer sequences result in greater noise in 3D structure predictions,
we randomly selected a COVID and Tc-Riboswitches dataset sequence and generated structures
using four state-of-the-art 3D structure prediction tools: RhoFold (Shen et al., 2022), RNACom-
poser (Xu et al., 2014), trRosetta (Baek et al., 2024), and SimRNA (Boniecki et al., 2016). High
variability among these predicted structures would indicate significant uncertainty in absolute atom
positions. We quantified this noise by aligning the structures using the Kabsch algorithm (Kabsch,
1976) and computing the pairwise RMSD values, resulting in a 4x4 matrix showing structural devia-
tions between each pair of tools (see Table 4). The observed pairwise RMSD values ranged from 16
to 45 Å for the COVID dataset and from 11 to 15 Å for the Tc-Riboswitches dataset, reflecting sub-
stantial variability and suggesting considerable noise in the 3D predictions. This level of structural
inaccuracy likely contributes to the poorer performance of 3D models. However, we found that 3D
models outperform 1D models for shorter sequences, such as those in the Tc-Riboswitches dataset
(67 to 73 nucleotides long). This improved performance is due to the lower noise in 3D predictions
for shorter sequences, a phenomenon supported by previous studies (Nithin et al., 2024; Ponce-
Salvatierra et al., 2019) and also exhibited by the comparatively smaller RMSD values reported in
Table 4 for Tc-Riboswitches dataset. The reduced complexity of shorter sequences allows 3D mod-
els to capture structural details more accurately, thereby enhancing performance and validating that
accurate 3D structure encoding can outperform 1D models.

Table 4: Pairwise RMSD values (in Å) between 3D structure prediction tools for the COVID
dataset (left) and Tc-Riboswitches dataset (right). The results indicate larger noise in predictions
for longer COVID sequences.

COVID RhoFold trRosetta SimRNA Composer
RhoFold 0 39.05192 44.76146 45.45994
trRosetta 39.05192 0 22.54974 18.17359
SimRNA 44.76146 22.54974 0 16.73399

Composer 45.45994 18.17359 16.73399 0

Tc-Ribo RhoFold trRosetta SimRNA Composer
RhoFold 0 14.338 11.996 15.056
trRosetta 14.338 0 12.932 14.916
SimRNA 11.996 12.932 0 14.243

Composer 15.056 14.916 14.243 0

G.2 IMPACT OF DIFFERENT 3D PREDICTION TOOLS

In this section, we demonstrate the significant differences in 3D structures predicted by various tools.
We compare the 3D structure obtained from RhoFold (Shen et al., 2022), which serves as our default
method, with those predicted by RNAComposer (Xu et al., 2014), trRosetta (Baek et al., 2024), and
SimRNA (Boniecki et al., 2016). Each structure is visualized side by side with RhoFold in Figure 11
to facilitate a more intuitive comparison. As observed, these structures predicted by each tool vary
considerably.

H REPRODUCTION

This section outlines the necessary details to reproduce all experiments discussed in this paper. The
code will be made publicly available upon acceptance.

H.1 TRAINING DETAILS

All experiments were conducted on a single NVIDIA A100 GPU. For each baseline, hyperparame-
ters were optimized using Optuna (Akiba et al., 2019), restricting the search to models with fewer
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(a) RhoFold vs. RNAComposer (b) RhoFold vs. SimRNA (c) RhoFold vs. trRosetta

Figure 11: Comparison of RhoFold against other 3D structure prediction tools on an example se-
quence from Tc-Riboswitches dataset.

than 10 million parameters that fit within the memory constraints of an 80GB NVIDIA A100 GPU.
Most baseline implementations were sourced from PyTorch Geometric (Fey & Lenssen, 2019). The
Transformer1D model was adapted to Transformer1D2D as detailed in the paper. For EGNN, we
utilized the authors’ implementation (Satorras et al., 2021), and for SchNet, the implementation
from (Joshi et al., 2023) was used.

H.2 HYPERPARAMETERS

This section provides a comprehensive overview of the hyperparameters used in each baseline
model, facilitating reproducibility and understanding of the model configurations.

Common hyperparameters across these models include in channels, which specifies the number
of input features, hidden, which determines the number of hidden units in each hidden layer, and
out channels, which defines the number of output features. The L parameter controls the num-
ber of layers in the network, and the dropout parameter sets the dropout rate for regularization.
The lr parameter specifies the learning rate, and weight decay sets the weight decay for regu-
larization of the optimizer. For graph-level tasks, the pool parameter specifies the pooling method,
which can be mean, max, or add.

Transformer1D is a standard Transformer architecture for RNA sequence processing. It in-
cludes an embedding layer to convert input tokens into dense vectors, positional encoding
(PE) to retain sequence order and a multi-layer Transformer encoder to capture complex de-
pendencies within the sequence. There are some hyperparameters from the original trans-
former (Vaswani et al., 2017). nhead, which defines the number of attention heads in each
Transformer layer; num encoder layers, which controls the number of encoder layers in the
Transformer; d model, which determines the dimensionality of the embeddings and the model;
dim feedforward, which sets the dimensionality of the feedforward network model. To shrink
the search space, we set d model and dim feedforward as the same with a new hyperparameter
hidden.

Transformer1D2D is an adaptation of Transformer1D that integrates both sequence and 2D graph
structure information. In addition to encoding each nucleotide, the model incorporates base pair
probabilities (BPP) features for each nucleotide. It combines a standard Transformer with positional
encoding and a convolutional layer applied to the graph adjacency matrix. This convolutional out-
put is added to the Transformer’s attention matrix, allowing the model to incorporate graph structure
into its attention mechanism. This design captures both the sequential and structural dependen-
cies in RNA data, improving predictive performance. The unique hyperparameter for this model is
kernel size, which specifies the size of the convolutional kernel.

GAT includes the unique hyperparameters gat heads, which specify the number of attention
heads in each GAT layer.
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ChebNet model has the unique hyperparameter power, which specifies the polynomial order for
the Chebyshev convolution.

GraphGPS and Graph Transformer includes heads, which specifies the number of attention
heads in each layer, and pe dim, which defines the dimensionality of positional encoding.

EGNN and SchNet are 3D models that operate at two granularities within the network: atom
layers and nucleotide layers. The two types of layers are connected through nucleotide pooling.
Atom layers use atoms as nodes, while nucleotide layers use nucleotides as nodes. Both the atom
layer and nucleotide layer employ a point cloud setting and calculate edges based on the distance
between two nodes. An edge is considered to exist if the distance is smaller than a certain threshold.
Therefore, EGNN and SchNet share the following hyperparameters: L atom, which denotes the
number of atom layers; L nt, which specifies the number of nucleotide layers; threshold atom,
which is the threshold for edges in atom layers; and threshold nt, which is the threshold for
edges in nucleotide layers.
For SchNet, the unique hyperparameters include num filters, which refers to the number of
filters used in convolutional layers, and num gaussians, which indicates the number of Gaussian
functions used for radial filters. For a more detailed explanation of these hyperparameters, please
refer to (Schütt et al., 2017).
To ensure a fair comparison, the best hyperparameter configuration for each method was selected
based on validation set performance. We report the mean performance and standard deviation across
5 random splits on the test set. For the COVID and Ribonanza datasets, we performed hyperparam-
eter searching only on the COVID dataset and applied the same configuration to Ribonanza, as the
two datasets share similar properties. The optimal hyperparameters are shown in Table 5.

I ADDITIONAL RESULTS

In this section, we present the additional results supporting Figures 2, 3, 5, and 6 in main text.

I.1 IMPACT OF DATA AVAILABILITY

The detailed results of partial training data from Figure 2 are shown in Tables 6, 7, and 8.

I.2 IMPACT OF PARTIAL LABELING

The detailed results of the partial labeling sequence from Figure 3 are shown in Tables 9 and 10.

I.3 ROBUSTNESS TO SEQUENCING NOISE

The results of the robustness experiment from Figure 5 are shown in Tables 11, 12, 13, and 14.

I.4 GENERALIZATION TO OOD DATA

The results of the generalization experiment from Figure 6 are shown in Tables 15, 16, 17, and 18.
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Hyperparameter COVID & Ribonanza Tc-riboswitches Fungal

Transformer1D

lr 0.001 0.0005 0.001
weight decay 0 0.0005 0.0005

hidden 128 64 32
nhead 8 8 8

num encoder layers 8 6 6
pool / mean mean

Transformer1D2D

lr 0.001 0.005

OOM

weight decay 0 0
hidden 256 32
nhead 16 4

num encoder layers 8 4
pool mean mean

kernel size 5 5

GCN

lr 0.001 0.0001 0.0001
weight decay 0 0 0

hidden 1024 512 512
L 7 5 3

dropout 0.3 0.1 0.7
pool / max add

ChebNet

lr 0.001 0.005 0.0001
weight decay 0 0.0005 0

hidden 512 256 256
L 5 7 5

dropout 0.3 0.3 0.3
power 6 2 2
pool / max mean

GAT

lr 0.001 0.005 0.0005
weight decay 0 0 0.0005

hidden 256 1024 256
L 7 3 7

dropout 0.1 0.1 0.3
heads 4 2 1
pool / add add

Graph
Transformer

lr 0.001 0.005 0.005
weight decay 0 0 0.0005

hidden 128 64 256
L 7 5 7

heads 4 1 2
pool / add mean

GraphGPS

lr 0.001 1e-5 0.0005
weight decay 0 0.0005 0.0005

hidden 256 256 512
L 5 7 5

heads 2 1 2
pool / add max

EGNN

lr 0.0005 0.001

OOM

weight decay 0 0
hidden 256 256
L atom 3 3

L nt 2 1
threshold atom 1.6 1.6

threshold nt 22 22

SchNet

lr 0.0005 0.001

OOM

weight decay 0 0
hidden 128 128
L atom 1 1

L nt 2 4
threshold atom 1.6 1.8

threshold nt 44 88
num filters 128 256

num gaussians 50 50

Table 5: Best hyperparameters for each model and dataset. Hyperparameters are searched by Op-
tuna. COVID and Ribonanza share the same hyperparameters.
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Table 6: Performance (MCRMSE) of different models across various training data (mean ± standard
deviation) fractions on COVID dataset.

COVID 0.25 0.50 0.75 1.00
Transformer1D 0.429 ± 0.018 0.410 ± 0.016 0.375 ± 0.018 0.361 ± 0.017
Transformer1D2D 0.345 ± 0.010 0.330 ± 0.011 0.306 ± 0.014 0.305 ± 0.012
GCN 0.389 ± 0.008 0.377 ± 0.009 0.358 ± 0.014 0.359 ± 0.009
GAT 0.352 ± 0.011 0.342 ± 0.009 0.320 ± 0.014 0.315 ± 0.006
ChebNet 0.320 ± 0.011 0.309 ± 0.009 0.286 ± 0.018 0.279 ± 0.007
Graph Transformer 0.356 ± 0.008 0.344 ± 0.007 0.324 ± 0.016 0.318 ± 0.008
GraphGPS 0.367 ± 0.018 0.362 ± 0.005 0.344 ± 0.010 0.332 ± 0.013
EGNN 0.398 ± 0.001 0.391 ± 0.013 0.368 ± 0.013 0.364 ± 0.003
SchNet 0.419 ± 0.003 0.414 ± 0.011 0.392 ± 0.011 0.390 ± 0.006
FastEGNN 0.460 ± 0.018 0.452 ± 0.015 0.443 ± 0.016 0.444 ± 0.003

Table 7: Performance (MCRMSE) of different models across various fractions of training data
(mean ± standard deviation) on Ribonanza dataset.

Ribonanza 0.25 0.50 0.75 1.00
Transformer1D 0.777 ± 0.014 0.740 ± 0.005 0.739 ± 0.001 0.705 ± 0.015
Transformer1D2D 0.630 ± 0.016 0.553 ± 0.015 0.541 ± 0.018 0.514 ± 0.004
GCN 0.668 ± 0.018 0.618 ± 0.017 0.612 ± 0.013 0.595 ± 0.006
GAT 0.600 ± 0.018 0.553 ± 0.026 0.544 ± 0.012 0.534 ± 0.006
ChebNet 0.537 ± 0.019 0.494 ± 0.022 0.499 ± 0.007 0.468 ± 0.002
Graph Transformer 0.567 ± 0.019 0.529 ± 0.013 0.529 ± 0.010 0.515 ± 0.001
GraphGPS 0.581 ± 0.021 0.529 ± 0.015 0.540 ± 0.004 0.523 ± 0.003
EGNN 0.694 ± 0.010 0.650 ± 0.010 0.632 ± 0.015 0.619 ± 0.007
SchNet 0.768 ± 0.008 0.724 ± 0.013 0.715 ± 0.015 0.685 ± 0.006
FastEGNN 0.795 ± 0.007 0.788 ± 0.002 0.774 ± 0.016 0.753 ± 0.015

Table 8: Performance (MCRMSE) of different models across various fractions of training data
(mean ± standard deviation) on Fungal dataset.

Fungal 0.25 0.50 0.75 1.00
Transformer1D 1.510 ± 0.006 1.446 ± 0.014 1.475 ± 0.035 1.417 ± 0.005
GCN 1.243 ± 0.064 1.244 ± 0.128 1.151 ± 0.077 1.192 ± 0.077
GAT 1.211 ± 0.125 1.168 ± 0.033 1.146 ± 0.109 1.112 ± 0.035
ChebNet 1.125 ± 0.097 1.011 ± 0.010 1.008 ± 0.009 0.973 ± 0.003
Graph Transformer 1.415 ± 0.014 1.331 ± 0.163 1.306 ± 0.127 1.317 ± 0.002
GraphGPS 1.289 ± 0.071 1.377 ± 0.127 1.357 ± 0.106 1.025 ± 0.081

Table 9: Performance (MCRMSE) of different models across various fractions of sequence labeling
(mean ± standard deviation) on COVID dataset.

COVID 0.2 0.4 0.6 0.8 1.0
Transformer1D 0.654 ± 0.040 0.559 ± 0.011 0.480 ± 0.004 0.429 ± 0.034 0.361 ± 0.017
Transformer1D2D 0.502 ± 0.002 0.470 ± 0.052 0.374 ± 0.007 0.325 ± 0.006 0.305 ± 0.012
GCN 0.450 ± 0.012 0.416 ± 0.012 0.397 ± 0.012 0.378 ± 0.011 0.359 ± 0.009
GAT 0.411 ± 0.010 0.376 ± 0.012 0.360 ± 0.012 0.336 ± 0.009 0.315 ± 0.006
ChebNet 0.380 ± 0.007 0.344 ± 0.008 0.325 ± 0.009 0.299 ± 0.007 0.279 ± 0.007
Graph Transformer 0.415 ± 0.012 0.379 ± 0.011 0.362 ± 0.011 0.338 ± 0.004 0.318 ± 0.008
GraphGPS 0.428 ± 0.015 0.400 ± 0.017 0.376 ± 0.013 0.351 ± 0.007 0.332 ± 0.013
EGNN 0.436 ± 0.014 0.421 ± 0.010 0.407 ± 0.004 0.385 ± 0.006 0.364 ± 0.003
SchNet 0.442 ± 0.004 0.429 ± 0.005 0.413 ± 0.001 0.407 ± 0.005 0.390 ± 0.006
FastEGNN 0.497 ± 0.004 0.490 ± 0.007 0.466 ± 0.007 0.469 ± 0.009 0.444 ± 0.003
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Table 10: Performance (MCRMSE) of different models across various fractions of sequence labeling
(mean ± standard deviation) on Ribonanza dataset.

Ribonanza 0.2 0.4 0.6 0.8 1.0
Transformer1D 1.137 ± 0.163 0.929 ± 0.023 0.823 ± 0.018 0.742 ± 0.013 0.705 ± 0.015
Transformer1D2D 0.859 ± 0.025 0.638 ± 0.013 0.632 ± 0.028 0.568 ± 0.013 0.514 ± 0.004
GCN 1.191 ± 0.031 1.026 ± 0.079 1.111 ± 0.206 1.070 ± 0.137 0.595 ± 0.006
GAT 0.703 ± 0.015 0.632 ± 0.025 0.612 ± 0.030 0.560 ± 0.010 0.534 ± 0.006
ChebNet 0.614 ± 0.013 0.546 ± 0.008 0.540 ± 0.008 0.514 ± 0.006 0.468 ± 0.002
Graph Transformer 0.719 ± 0.043 0.607 ± 0.020 0.584 ± 0.015 0.552 ± 0.013 0.515 ± 0.001
GraphGPS 0.743 ± 0.058 0.663 ± 0.026 0.627 ± 0.024 0.651 ± 0.026 0.523 ± 0.003
EGNN 0.882 ± 0.010 0.722 ± 0.021 0.687 ± 0.008 0.665 ± 0.013 0.619 ± 0.007
SchNet 0.810 ± 0.002 0.781 ± 0.009 0.750 ± 0.009 0.725 ± 0.004 0.685 ± 0.006
FastEGNN 1.223 ± 0.008 0.929 ± 0.008 0.860 ± 0.004 0.837 ± 0.004 0.753 ±0.015

Table 11: Performance (MCRMSE) of various models in robustness experiments on the COVID
dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.361 ± 0.017 0.386 ± 0.015 0.400 ± 0.010 0.409 ± 0.006 0.428 ± 0.005 0.435 ± 0.003 0.449 ± 0.011
Transformer1D2D 0.305 ± 0.012 0.373 ± 0.007 0.403 ± 0.007 0.428 ± 0.011 0.444 ± 0.015 0.457 ± 0.009 0.463 ± 0.009
GCN 0.359 ± 0.009 0.436 ± 0.009 0.464 ± 0.011 0.481 ± 0.010 0.491 ± 0.012 0.497 ± 0.009 0.501 ± 0.009
GAT 0.315 ± 0.006 0.409 ± 0.009 0.448 ± 0.011 0.471 ± 0.010 0.484 ± 0.012 0.494 ± 0.011 0.500 ± 0.010
ChebNet 0.279 ± 0.007 0.368 ± 0.003 0.423 ± 0.009 0.456 ± 0.007 0.471 ± 0.009 0.481 ± 0.010 0.487 ± 0.008
Graph Transformer 0.318 ± 0.008 0.403 ± 0.008 0.441 ± 0.012 0.467 ± 0.011 0.480 ± 0.012 0.487 ± 0.010 0.494 ± 0.011
GraphGPS 0.332 ± 0.013 0.408 ± 0.012 0.441 ± 0.010 0.464 ± 0.014 0.475 ± 0.012 0.484 ± 0.012 0.487 ± 0.008
EGNN 0.364 ± 0.003 0.432 ± 0.012 0.467 ± 0.009 0.486 ± 0.009 0.499 ± 0.011 0.505 ± 0.012 0.511 ± 0.011
SchNet 0.390 ± 0.006 0.447 ± 0.012 0.477 ± 0.011 0.496 ± 0.009 0.507 ± 0.014 0.513 ± 0.012 0.517 ± 0.010
FastEGNN 0.444 ± 0.003 0.49283 ± 0.008 0.516 ± 0.005 0.516 ± 0.004 0.522 ± 0.002 0.527 ± 0.003 0.540 ± 0.004

Table 12: Performance (MCRMSE) of various models in robustness experiments on the Ribonanza
dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.015 0.733 ± 0.010 0.769 ± 0.014 0.782 ± 0.005 0.794 ± 0.010 0.805 ± 0.017 0.823 ± 0.005
Transformer1D2D 0.514 ± 0.004 0.635 ± 0.004 0.714 ± 0.014 0.763 ± 0.008 0.790 ± 0.009 0.811 ± 0.014 0.830 ± 0.008
GCN 0.595 ± 0.006 0.750 ± 0.014 0.846 ± 0.008 0.893 ± 0.003 0.912 ± 0.005 0.924 ± 0.005 0.929 ± 0.005
GAT 0.534 ± 0.006 0.691 ± 0.015 0.785 ± 0.006 0.850 ± 0.003 0.877 ± 0.001 0.904 ± 0.007 0.915 ± 0.007
ChebNet 0.468 ± 0.002 0.611 ± 0.012 0.720 ± 0.006 0.802 ± 0.011 0.841 ± 0.003 0.876 ± 0.007 0.897 ± 0.008
Graph Transformer 0.515 ± 0.001 0.670 ± 0.011 0.768 ± 0.011 0.833 ± 0.008 0.870 ± 0.006 0.893 ± 0.010 0.908 ± 0.007
GraphGPS 0.523 ± 0.003 0.677 ± 0.017 0.772 ± 0.006 0.832 ± 0.006 0.872 ± 0.004 0.896 ± 0.011 0.912 ± 0.006
EGNN 0.619 ± 0.007 0.764 ± 0.003 0.847 ± 0.003 0.889 ± 0.005 0.904 ± 0.003 0.917 ± 0.000 0.922 ± 0.002
SchNet 0.685 ± 0.006 0.814 ± 0.006 0.873 ± 0.004 0.897 ± 0.004 0.908 ± 0.004 0.918 ± 0.005 0.922 ± 0.005
FastEGNN 0.753 ± 0.015 0.857 ± 0.001 0.884 ± 0.005 0.908 ± 0.001 0.914 ± 0.004 0.920 ± 0.003 0.922 ± 0.003

Table 13: Performance (MCRMSE) of various models in robustness experiments on the Fungal
dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 1.417 ± 0.005 1.545 ± 0.045 1.546 ± 0.044 1.546 ± 0.046 1.543 ± 0.048 1.543 ± 0.051 1.550 ± 0.041
GCN 1.192 ± 0.077 1.222 ± 0.044 1.255 ± 0.002 1.277 ± 0.014 1.269 ± 0.011 1.328 ± 0.026 1.294 ± 0.025
GAT 1.112 ± 0.035 1.244 ± 0.074 1.391 ± 0.155 1.334 ± 0.099 1.468 ± 0.056 1.444 ± 0.094 1.446 ± 0.092
ChebNet 0.978 ± 0.000 1.031 ± 0.003 1.091 ± 0.007 1.108 ± 0.009 1.243 ± 0.005 1.210 ± 0.014 1.269 ± 0.007
Graph Transformer 1.342 ± 0.087 1.267 ± 0.116 1.409 ± 0.046 1.426 ± 0.051 1.442 ± 0.038 1.413 ± 0.020 1.450 ± 0.018
GraphGPS 1.083 ± 0.131 1.048 ± 0.095 1.133 ± 0.057 1.109 ± 0.040 1.173 ± 0.071 1.256 ± 0.016 1.328 ± 0.041

Table 14: Performance (MCRMSE) of various models in robustness experiments on the Tc-
riboswitches dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.079 0.698 ± 0.071 0.736 ± 0.004 0.672 ± 0.003 0.739 ± 0.008 0.694 ± 0.011 0.675 ± 0.047
Transformer1D2D 0.633 ± 0.001 0.697 ± 0.031 0.742 ± 0.003 0.708 ± 0.008 0.681 ± 0.001 0.762 ± 0.022 0.738 ± 0.016
GCN 0.701 ± 0.004 0.758 ± 0.003 0.747 ± 0.005 0.744 ± 0.004 0.733 ± 0.013 0.740 ± 0.011 0.765 ± 0.009
GAT 0.685 ± 0.024 0.749 ± 0.017 0.770 ± 0.047 0.734 ± 0.021 0.737 ± 0.009 0.753 ± 0.001 0.747 ± 0.011
ChebNet 0.621 ± 0.022 0.766 ± 0.014 0.754 ± 0.021 0.738 ± 0.014 0.763 ± 0.039 0.778 ± 0.048 0.739 ± 0.004
Graph Transformer 0.703 ± 0.054 0.754 ± 0.005 0.754 ± 0.006 0.773 ± 0.008 0.810 ± 0.087 0.742 ± 0.004 0.754 ± 0.005
GraphGPS 0.702 ± 0.028 0.785 ± 0.053 0.805 ± 0.092 0.750 ± 0.006 0.755 ± 0.060 0.769 ± 0.031 1.078 ± 0.469
EGNN 0.663 ± 0.010 0.750 ± 0.001 0.739 ± 0.002 0.749 ± 0.005 0.749 ± 0.001 0.749 ± 0.001 0.756 ± 0.013
SchNet 0.655 ± 0.038 0.762 ± 0.005 0.742 ± 0.002 0.771 ± 0.037 0.746 ± 0.005 0.791 ± 0.016 0.730 ± 0.016
FastEGNN 0.710 ± 0.010 0.733 ± 0.007 0.749 ± 0.006 0.748 ± 0.006 0.752 ± 0.008 0.758 ± 0.017 0.761 ± 0.010
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Table 15: Performance (MCRMSE) of various models in generalization experiments on the
COVID dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.361 ± 0.017 0.382 ± 0.022 0.402 ± 0.018 0.436 ± 0.015 0.461 ± 0.021 0.478 ± 0.015 0.494 ± 0.016
Transformer1D2D 0.305 ± 0.012 0.406 ± 0.016 0.466 ± 0.017 0.513 ± 0.016 0.545 ± 0.027 0.581 ± 0.025 0.596 ± 0.018
GCN 0.359 ± 0.009 0.459 ± 0.011 0.508 ± 0.011 0.550 ± 0.014 0.572 ± 0.016 0.601 ± 0.014 0.612 ± 0.008
GAT 0.315 ± 0.006 0.437 ± 0.013 0.490 ± 0.013 0.528 ± 0.008 0.555 ± 0.013 0.580 ± 0.015 0.592 ± 0.012
ChebNet 0.279 ± 0.007 0.415 ± 0.017 0.483 ± 0.023 0.538 ± 0.025 0.571 ± 0.029 0.604 ± 0.030 0.621 ± 0.028
Graph Transformer 0.318 ± 0.008 0.449 ± 0.015 0.501 ± 0.018 0.543 ± 0.015 0.571 ± 0.019 0.596 ± 0.014 0.609 ± 0.014
GraphGPS 0.332 ± 0.013 0.443 ± 0.011 0.496 ± 0.006 0.536 ± 0.005 0.559 ± 0.010 0.586 ± 0.007 0.593 ± 0.005
EGNN 0.365 ± 0.011 0.458 ± 0.014 0.504 ± 0.018 0.530 ± 0.020 0.549 ± 0.021 0.565 ± 0.022 0.572 ± 0.022
SchNet 0.390 ± 0.006 0.457 ± 0.011 0.491 ± 0.008 0.515 ± 0.007 0.531 ± 0.010 0.543 ± 0.009 0.556 ± 0.002
FastEGNN 0.444 ± 0.003 0.491 ± 0.020 0.511 ± 0.014 0.524 ± 0.009 0.533 ± 0.006 0.541 ± 0.003 0.543 ± 0.001

Table 16: Performance (MCRMSE) of various models in generalization experiments on the Ribo-
nanza dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.015 0.747 ± 0.005 0.796 ± 0.006 0.828 ± 0.008 0.860 ± 0.013 0.886 ± 0.013 0.899 ± 0.003
Transformer1D2D 0.514 ± 0.004 0.685 ± 0.014 0.857 ± 0.008 0.986 ± 0.015 1.055 ± 0.007 1.142 ± 0.020 1.192 ± 0.034
GCN 0.595 ± 0.006 0.857 ± 0.018 0.993 ± 0.012 1.054 ± 0.034 1.094 ± 0.043 1.129 ± 0.061 1.139 ± 0.075
GAT 0.534 ± 0.006 0.778 ± 0.021 0.919 ± 0.030 1.003 ± 0.056 1.047 ± 0.073 1.076 ± 0.082 1.093 ± 0.091
ChebNet 0.468 ± 0.002 0.699 ± 0.005 0.881 ± 0.038 1.025 ± 0.095 1.083 ± 0.111 1.165 ± 0.185 1.200 ± 0.220
Graph Transformer 0.515 ± 0.001 0.752 ± 0.005 0.930 ± 0.013 1.067 ± 0.036 1.124 ± 0.033 1.194 ± 0.080 1.224 ± 0.104
GraphGPS 0.523 ± 0.003 0.771 ± 0.026 0.958 ± 0.068 1.087 ± 0.142 1.116 ± 0.195 1.154 ± 0.202 1.165 ± 0.196
EGNN 0.691 ± 0.006 0.815 ± 0.004 0.975 ± 0.026 1.138 ± 0.078 1.228 ± 0.079 1.350 ± 0.173 1.395 ± 0.187
SchNet 0.685 ± 0.006 0.844 ± 0.006 0.949 ± 0.022 1.068 ± 0.035 1.157 ± 0.069 1.270 ± 0.049 1.342 ± 0.117
FastEGNN 0.753 ± 0.015 0.857 ± 0.001 0.912 ± 0.007 0.939 ± 0.011 0.940 ± 0.010 0.952 ± 0.008 0.957 ± 0.001

Table 17: Performance (MCRMSE) of various models in generalization experiments on the Fungal
dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 1.417 ± 0.005 1.575 ± 0.002 1.575 ± 0.002 1.575 ± 0.002 1.575 ± 0.002 1.575 ± 0.002 1.575 ± 0.002
GCN 1.192 ± 0.077 1.230 ± 0.061 1.256 ± 0.050 1.280 ± 0.052 1.290 ± 0.044 1.328 ± 0.032 1.333 ± 0.046
GAT 1.112 ± 0.035 1.262 ± 0.115 1.284 ± 0.102 1.312 ± 0.092 1.334 ± 0.087 1.364 ± 0.080 1.373 ± 0.072
ChebNet 0.973 ± 0.003 1.118 ± 0.008 1.257 ± 0.018 1.382 ± 0.022 1.525 ± 0.020 1.686 ± 0.030 1.777 ± 0.033
Graph Transformer 1.317 ± 0.002 1.407 ± 0.053 1.418 ± 0.046 1.427 ± 0.040 1.439 ± 0.033 1.447 ± 0.029 1.456 ± 0.028
GraphGPS 1.025 ± 0.081 1.083 ± 0.011 1.160 ± 0.006 1.217 ± 0.012 1.316 ± 0.026 1.405 ± 0.040 1.463 ± 0.052

Table 18: Performance (MCRMSE) of various models in generalization experiments on the Tc-
riboswitches dataset (mean ± standard deviation).

Model 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Transformer1D 0.705 ± 0.079 0.711 ± 0.038 0.732 ± 0.007 0.753 ± 0.019 0.815 ± 0.091 0.803 ± 0.062 0.796 ± 0.079
Transformer1D2D 0.633 ± 0.001 0.705 ± 0.007 0.745 ± 0.008 0.749 ± 0.017 0.800 ± 0.034 0.766 ± 0.017 0.754 ± 0.014
GCN 0.701 ± 0.004 0.774 ± 0.026 0.781 ± 0.051 0.782 ± 0.062 0.825 ± 0.093 0.845 ± 0.072 0.858 ± 0.126
GAT 0.685 ± 0.024 0.829 ± 0.074 0.958 ± 0.131 0.926 ± 0.152 1.037 ± 0.297 0.998 ± 0.213 1.036 ± 0.392
ChebNet 0.621 ± 0.022 0.824 ± 0.185 0.862 ± 0.251 0.888 ± 0.302 0.997 ± 0.439 0.983 ± 0.412 1.045 ± 0.514
Graph Transformer 0.710 ± 0.041 0.759 ± 0.035 0.770 ± 0.047 0.776 ± 0.054 0.815 ± 0.101 0.795 ± 0.085 0.822 ± 0.115
GraphGPS 0.715 ± 0.012 0.751 ± 0.016 0.801 ± 0.023 0.795 ± 0.014 0.833 ± 0.025 0.814 ± 0.022 0.830 ± 0.018
EGNN 0.663 ± 0.010 0.760 ± 0.043 0.898 ± 0.134 0.901 ± 0.123 0.849 ± 0.053 1.058 ± 0.239 1.192 ± 0.453
SchNet 0.655 ± 0.038 1.368 ± 0.449 1.099 ± 0.320 1.419 ± 0.491 0.900 ± 0.119 1.957 ± 0.858 2.025 ± 0.779
FastEGNN Pooling 0.710 ± 0.011 0.854 ± 0.079 0.806 ± 0.032 0.863 ± 0.020 0.846 ± 0.110 0.849 ± 0.079 0.988 ± 0.131
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