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Abstract
Causal effect identification is a fundamental task
in artificial intelligence. A most ideal scenario
for causal effect identification is that there is a di-
rected acyclic graph as a prior causal graph encod-
ing the causal relations of all relevant variables.
In real tasks, however, the prior causal graph is
usually not available, and some relevant variables
may be latent as well. With observational data,
we can only learn a partial ancestral graph (PAG),
which contains some indeterminate causal rela-
tions. Since many causal graphs can correspond
to one PAG, they are possibly associated with dif-
ferent causal effects. The aim of this paper is to
estimate these possible causal effects via covariate
adjustment given a PAG. This task is challenging
because the number of causal graphs correspond-
ing to a PAG grows super-exponentially with the
number of variables. We propose a new graphi-
cal characterization for possible adjustment sets,
and based on this, we develop the first method
to determine the set of possible causal effects
that are consistent with the given PAG without
enumerating any causal graphs. Our method can
output the same set as the enumeration method
with super-exponentially less complexity. Experi-
ments validate the effectiveness and tremendous
efficiency improvement of the proposed method.

1. Introduction
Decision is a fundamental task throughout artificial intelli-
gence, economics, and social sciences. Causal effect identifi-
cation is inherently linked to decision-making, as it answers
‘what will happen to outcome Y if X is set to x’. There
exists a growing literature studying causal effect identifica-
tion given a causal graph (Tian & Pearl, 2002; Shpitser &
Pearl, 2006; Pearl, 2009; Shpitser et al., 2010; Jung et al.,
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2021). A practical method to estimate causal effect is via
(covariate) adjustment, i.e., estimating it by adjusting for
some observed variables called adjustment set (van der Zan-
der et al., 2014; Maathuis et al., 2015; Perkovic et al., 2017;
van der Zander et al., 2019).

A most ideal scenario for causal effect identification is that
there is a directed acyclic graph (DAG) as a prior causal
graph which encodes the causal relations among all the
relevant variables. In real tasks, however, such knowledge is
often not available. Moreover, some relevant variables in the
DAGs may be latent as well. For example, macroeconomic
policy influences many factors in business, but it is hard to
quantify. When there is not a prior causal graph, a common
practice is to learn the causal graph at first.

In the presence of latent variables, a partial ancestral graph
(PAG) can be learned with observational data (Spirtes et al.,
2000; Ali et al., 2005; Zhang, 2008a). A PAG represents
a Markov equivalence class (MEC) of maximal ancestral
graphs (MAG) which encode the causal relations among the
observed variables. Roughly speaking, a MAG is a “projec-
tion graph” of an underlying DAG containing all relevant
variables1. Notably, many DAGs, even infinite ones, can be
projected to the same MAG. Henceforth, any DAG that can
be projected to a MAG in the MEC represented by a given
PAG is considered a DAG corresponding to the PAG. An
example of the three types of graphs is given in Fig. 1.

There are some studies (Entner et al., 2013; Hyttinen et al.,
2015; Jaber et al., 2022) on the causal effect identifiability
in a PAG, i.e., whether all the DAGs corresponding to the
PAG are associated with the same causal effect and can be
estimated with observational data. Generally, due to the lim-
ited information of PAG, the causal effect is unidentifiable,
in which case there can be many possible causal effects.

In light of the fact that the causal effect of some variable
X on variable Y is not always identifiable in a PAG, this
paper aims to determine the set of possible causal effects
of X on Y obtainable via covariate adjustment, i.e., the set
includes the causal effects that can be identified via covariate
adjustment in any DAGs corresponding to the PAG. When
the causal effect is not identifiable, the set can provide some
valuable information as well. Moreover, it requires neither

1The “projection” is elaborated in Appendix A.2
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Figure 1: Fig. 1(a): PAG P . Fig. 1(b): MAGM in the MEC
represented by P . Fig. 1(c)/ 1(d)/ 1(e): DAGD1/D2/D3 that
is projected toM over the observed variables {A,B,X, Y }.
L1, L2: latent variables. As the number of latent vari-
ables is arbitrary, there can be infinite DAGs projected to
M. According to previous study (Appendix A.4, Def. 8),
f(Y |do(X)) is identifiable via adjustment inD1 andD3 but
not inD2, thus f(Y |do(X)) is not identifiable inM and P .

prior structural knowledge nor experimental data, thus is
always feasible in practice. Note that there are possibly
some DAGs corresponding to the PAG such that the causal
effect in the DAGs cannot be identified with observational
data via covariate adjustment. We do not try to return such
causal effects since it is usually beyond the ability of current
observations when latent variables exist. To consistently
identify them, it is necessary to observe more variables.

The primary challenge in set determination lies in the large
number of DAGs corresponding to a PAG. With observa-
tional data, we can only learn a PAG, which can represent a
super-exponential number of MAGs and each MAG can be
a projection graph of infinite DAGs. The enumerations of ei-
ther MAGs or DAGs are computationally prohibitive. In this
paper, we propose the first method to determine the PAG-
consistent causal effect set without any enumerations of
DAGs or MAGs, called PAGcauses for short. The method
relies on two main theoretical results. One is a graphical
characterization for adjustment sets comprised of observed
variables in all the DAGs which can be projected to a given
MAG, through which we can circumvent the enumerations
of DAGs and find adjustment sets based on mere MAGs.
The other is a graphical characterization for adjustment sets
in all the MAGs, through which we can determine whether
each set of vertices could be an adjustment set without the
enumerations of MAGs. The complexity of our method
is super-exponentially less than the method based on (lo-
cal) enumerations (Malinsky & Spirtes, 2016). Further, we
prove that PAGcauses can output the set of possible causal
effects equal to the direct method to enumerate all the DAGs
where the causal effect can be identified via covariate ad-
justment with observational data. Experiments verify the
effectiveness and tremendous efficiency improvement.

2. Related Work
In the literature, there are some classical methods to de-
termine the set of possible causal effects. Maathuis et al.

(2009) made significant contributions by presenting the first
related method based on CPDAG under the assumption
of no latent variables. Some further studies are also con-
ducted by introducing background knowledge or reducing
the variance (Fang et al., 2022; Henckel et al., 2022). Guo &
Perkovic (2021) proposed an algorithm to list all the possible
causal effects that take polynomial time per output instance.
To relax the assumption of no latent variables, Malinsky &
Spirtes (2016) proposed the first method to take latent vari-
ables into account by enumerating MAGs in a subspace of
MEC. However, only considering MAGs may ignore some
causal effects, which is detailed in Sec. 4.1, and is with a
super-exponential complexity. Cheng et al. (2020) presented
an efficient method assuming that all the variables except
for {X,Y } are not descendants of X . Due to the page limit,
we give a detailed discussion about the differences between
our paper and related studies in Appendix B.

Decision-making is a crucial task in real-world applications,
and identifying causal effects is often considered as a vital
aspect (Entner et al., 2013; Perkovic et al., 2017; Jaber et al.,
2018; Chakrabortty et al., 2018; Jaber et al., 2019; Wang
et al., 2020; Qin et al., 2021; Jaber et al., 2022; Pfister &
Peters, 2022; Yata, 2021). However, causal effect identifi-
cation requires accurate causal relations. Causal discovery,
which involves learning causal relations, has attracted sig-
nificant attention in this regard (Peters et al., 2014; Rothen-
häusler et al., 2015; Zhang et al., 2017; Cai et al., 2018; Yu
et al., 2019). Apart from methods based on causality, there
are also approaches to decision-making based on bandit or
MDP (Lee & Bareinboim, 2018; Zhao et al., 2021; 2022).

3. Preliminary
A graph G = (V,E) consists of a set of vertices V =
{V1, · · · , Vp} and a set of edges E. For any subset V′ ⊆ V,
the subgraph induced by V′ is G[V′] = (V′,EV′), where
EV′ is the set of edges in E whose both endpoints are in
V′. For a graph G, V(G) denotes the set of vertices in G.
G is a complete graph if there is an edge between any two
vertices. The subgraph induced by an empty set is trivially
a complete graph. G[−V′] denotes the subgraph induced
by V(G)\V′. Usually, bold letter (e.g., V) denotes a set of
vertices and normal letter (e.g., V ) denotes a vertex.

Due to the page limit, we show some graph-related
definitions in Appendix A.1, including mixed, partial mixed
graph (PMG), adjacent, parent, child, path, directed path,
possible directed path, ancestor, possible ancestor, descen-
dant, possible descendant, directed cycle, almost directed
cycle, collider, collider path, minimal path, minimal collider
path, unshielded, uncovered path, minimal possible directed
path, DAG (denoted by D), active path, m-separated,
ancestral graph, maximal graph, MAG (denoted by M),
inducing path, discriminating path, visible,MX , and PX .
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We denote the set of parents/children/ancestors/possible
ancestors/descendants/possible descendants of Vi in G by
Pa(Vi, G)/Chd(Vi, G)/Anc(Vi, G)/PossAn(Vi, G)/De(Vi, G)/
PossDe(Vi, G).

⊕
denotes concatenation of paths. For a

path p, let p[Vi, Vj ] denote the sub-path of p from Vi to Vj .

The two ends of an edge are called marks and have two
types arrowhead or tail. The circle (◦) in a graph implies
that the mark here could be either arrowhead or tail but is
indeterminate. ∗ is a wildcard that denotes any of arrow-
head, tail, or circle. We make a convention that if an edge
is ◦−∗, the ∗ here cannot be a tail for otherwise the circle
can be replaced by an arrowhead due to the assumption of
no selection bias (there is not an edge with two tails). An
edge Vi ◦−◦ Vj is a circle edge. The circle component in G
is the subgraph consisting of all the ◦−◦ edges in G. Two
vertices Vi and Vj are in a connected circle component in
G if there is a path comprised of circle edges from Vi to Vj

in G. Two MAGs are Markov equivalent if they have the
same m-separations. A class comprised of all the Markov
equivalent MAGs is a Markov equivalence class (MEC). A
partial ancestral graph (PAG, denoted by P) represents an
MEC, where a tail/arrowhead occurs if the corresponding
mark is tail/arrowhead in all the Markov equivalent MAGs,
and a circle occurs otherwise. A MAG M is consistent
with a PAG P if M belongs to the MEC represented by
P . A MAG represents the conditional independences and
causal relations over the observed variables in a DAG. The
construction of a MAG based on a DAG is shown in Ap-
pendix A.2. We sayD is represented by (or can be projected
to)M ifM can be obtained from D by the construction
process. And D is corresponding to P if D is represented
by a MAGM consistent with P . LetMX˜ denote the graph
obtained fromM by deleting the directed edges out of X .

Zhang (2008a) proposed complete rules for obtaining a
PAG with observational data. Further, Wang et al. (2022a;b)
present complete rules for incorporating local background
knowledge into a PAG. See Appendix A.3 for the rules.

Definition 1 (Adjustment set; Pearl (2009); van der Zander
et al. (2014)). Given a DAG, MAG, or PAG G, Z is called
an adjustment set relative to (X,Y ) if for any density f com-
patible with G, the causal effect of X on Y f(Y |do(X)) ={

f(Y |X), if Z = ∅,∫
Z
f(Y |Z, X)f(Z) dZ, otherwise. (1)

A common method to estimate causal effect is covariate
adjustment, i.e., estimating by (1) with adjustment sets in
Def. 1. Adjustment criterion (Appendix A.4, Def. 8) charac-
terizes adjustment sets. A set Z satisfies adjustment criterion
if and only if Z is an adjustment set (Shpitser et al., 2010;
VanderWeele & Shpitser, 2011; van der Zander et al., 2014).

Definition 2 (D-SEP(X,Y,G); Spirtes et al. (2000);
Colombo et al. (2012); Maathuis et al. (2015)). Let X and

Y be two distinct vertices in a mixed graph G. We say that
V ∈ D-SEP(X,Y,G) if V ̸= X , and there is a collider
path between X and V in G, such that every vertex on this
path (including V ) is an ancestor of X or Y in G.

Maathuis et al. (2015) proposed generalized back-door cri-
terion to identify causal effect of X on Y in a MAG/PAG
by adjusting for a generalized back-door set. When X is
singleton, there is a generalized back-door set relative to
(X,Y ) if and only if there is an adjustment set relative to
(X,Y ) (Perkovic et al., 2017). We combine them in Prop. 1.

Proposition 1 (Maathuis et al. (2015); Perkovic et al.
(2017)). Let X and Y be two distinct vertices in G, where
G is a MAG or PAG. There exists an adjustment set rela-
tive to (X,Y ) in G if and only if Y ̸∈ Adj(X,GX) and
D-SEP(X,Y,GX) ∩ PossDe(X,G) = ∅. Moreover, if an
adjustment set exists, then D-SEP(X,Y,GX) is such a set.
Denote D-SEP(X,Y,GX) by D, then

f(Y |do(X = x)) =

∫
D

f(D)f(Y |D, X = x) dD. (2)

4. Proposed Method
In this section, we present the method to determine the set
of possible causal effects of a variable X on outcome Y via
adjustment in a PAG P . P can be learned by FCI algorithm
from observational data (Spirtes et al., 2000). Let d denote
the number of vertices in P . We assume the absence of
selection bias. If the causal effect is identifiable in P by
Prop. 1, an unbiased estimate can be directly returned, thus
there is no need to determine a set. Hence we focus on the
case when it is unidentifiable. And our attention is only on
finding all valid adjustment sets given P , without touching
upon practical calculation of causal effects by (1). Here, a
set of vertices is a valid adjustment set if there exists a DAG
corresponding to P such that in the DAG the causal effect
of X on Y is identifiable by adjusting for this set.

A direct method is first enumerating all the MAGs in the
MEC represented by P , then enumerating all the DAGs
for each above MAG. However, the enumerations of ei-
ther DAGs or MAGs are computationally prohibitive. In
Sec. 4.1, we present the theoretical result for circumventing
the enumerations of DAGs. We provide a graphical char-
acterization for the adjustment set comprised of observable
variables in DAGs represented by a given MAG, through
which we can find all valid adjustment sets based on mere
MAGs instead of DAGs. In Sec. 4.2, we find all the valid
adjustment sets without enumerating MAGs. The whole
process includes two steps. First, we determine all possible
definite local structures at X . The definite local structure
is not sufficient for determining a unique adjustment set in
the presence of latent variables. Hence, we further provide
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a graphical characterization of valid adjustment sets relative
to (X,Y ) under each definite local structure at X , which
can be evaluated in O(d3) for each set. The algorithm to
determine the set of causal effects is presented in Sec. 4.3,
associated with a worst-case complexity analysis.

4.1. Adjustment sets in DAGs represented by a MAG

In this part, we provide a graphical characterization for ad-
justment sets (relative to (X,Y )) in all DAGs represented
by a given MAG. For a MAGM, the causal effect of X on
Y is identifiable inM via covariate adjustment if and only
if all the DAGs represented byM are associated with the
same causal effect and can be estimated with observational
data via covariate adjustment (van der Zander et al., 2014,
Def. 5.3). Prop. 1 presents the sufficient and necessary
condition for the identifiability. Hence, if the graphical con-
ditions of Prop. 1 are satisfied for a MAGM, it is direct
that all the DAGs represented by M are associated with
the same causal effect, and we can obtain the adjustment
set according to Prop. 1. However, when it is unidentifi-
able inM, different DAGs represented byM are possibly
associated with different causal effects. Perhaps surpris-
ingly, we find that for each DAG represented byM, it is
either associated with a common causal effect that can be
estimated, or with a causal effect that cannot be estimated
with observational data by covariate adjustment. Concretely,
we provide Thm. 1, establishing a graphical characterization
for the adjustment sets comprised of V(M) in the DAGs.

Theorem 1. Suppose a MAGM where X ∈ Anc(Y,M).
There exists a DAG D represented by M such that the
causal effect of X on Y in D can be identified by ad-
justing for a set comprised of V(M) if and only if
D-SEP(X,Y,MX˜ )∩De(X,M) = ∅. Furthermore, if such
a set exists, D-SEP(X,Y,MX˜ ) is an adjustment set.

Remark 1. X is restricted to be an ancestor of Y in Thm. 1.
If X ̸∈ Anc(Y,M), it is a trivial case that X has no causal
effect on Y in any DAG D represented by the MAGM.

Thm. 1 is similar to Prop. 1 in form, but they are quite
different in both the implications and proofs. Prop. 1 im-
plies an adjustment set in a MAGM when all the DAGs
represented byM are associated with the same causal ef-
fect. Here, since we aim to determine the set of causal
effects, regardless of whether all the DAGs represented
byM are associated with the same causal effect, if there
are some DAGs represented by the MAG associated with
the causal effect that is identifiable by adjusting for ob-
served variables, then we want to include the causal effect
in the set. See the MAG M in Fig. 1(b) for an example,
where D-SEP(X,Y,MX) ∩ PossDe(X,M) = {B} and
D-SEP(X,Y,MX˜ ) ∩ PossDe(X,M) = ∅. According to
Prop. 1, the causal effect of X on Y inM is not identifi-
able by covariate adjustment. It is true since the DAGs in

Fig. 1(c), 1(d), and 1(e) represented byM are associated
with different causal effects. Nevertheless, according to
Thm. 1, there exists some DAG represented byM where
the causal effect can be identified and {A} is an adjustment
set. It is true because it is the case in DAGs as Fig. 1(c), 1(e).

Thm. 1 has two implications. One is that it provides a
graphical condition based on a mere MAG for the existence
of adjustment sets comprised of observed variables in the
DAGs represented by the MAG, thus we can find adjustment
sets on the level of MAGs. The other is that it implies
that the causal effects are identical in the DAGs where the
causal effect is identifiable by adjusting for a set of observed
variables. Hence, if D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅,
D-SEP(X,Y,MX˜ ) is an adjustment set in all the DAGs
where the causal effect is identifiable by adjusting for a set
comprised of V(M), thus finding D-SEP(X,Y,MX˜ ) as
the adjustment set is sufficient. These two aspects ensure
that we can obtain the adjustment set without enumerating
DAGs. Henceforth, we make a convention that when we
say an adjustment set inM, it implies an adjustment set
comprised of V(M) in some DAG represented byM as
Thm. 1, without restricting that all the DAGs represented by
M are associated with the same causal effect as Prop. 1.

4.2. Adjustment sets in MAGs consistent with a PAG

In this part, we aim to find all the sets that can be adjustment
sets relative to (X,Y ) in some MAG consistent with a given
PAG P . This task is hard to achieve with only P due to
the considerable uncertainty of the structure. Hence, we
first determine all the valid local structures at X , i.e., what
orientations of the circles at X in P can be in the MAGs
consistent with P . To determine which local structure is
valid, we introduce a result of Wang et al. (2022b) in Prop. 2,
which presents a sufficient and necessary condition for the
existence of MAGs with any given definite local structure
at X . Before that, we introduce bridged in Def. 3.

Definition 3 (Bridged relative to V′ in H , Wang et al.
(2022b)). Let H be a partial mixed graph. Denote G a
subgraph of H induced by a set of vertices V. Given a set
of vertices V′ in H that is disjoint of V, two vertices A
and B in a connected circle component of G are bridged
relative to V′ if either A = B or in each minimal circle
path A(= V0)◦−◦V1 ◦−◦· · ·◦−◦Vn ◦−◦B(= Vn+1) from A to
B in G, there exists one vertex Vs, 0 ≤ s ≤ n+1, such that
FVi
⊆ FVi+1

, 0 ≤ i ≤ s− 1 and FVi+1
⊆ FVi

, s ≤ i ≤ n,
where Fi = {V ∈ V′ | V ∗−◦ Vi in H}. Further, G is
bridged relative to V′ in H if any two vertices in a con-
nected circle component of G are bridged relative to V′.

Proposition 2 ( Wang et al. (2022b)). Given a PAG P , for
any set C ⊆ {V | X ◦−∗ V in P}, there exists a MAGM
consistent with P with X ←∗V for ∀V ∈ C and X → V
for ∀V ∈ {V | X ◦−∗ V in P}\C if and only if
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Figure 2: Fig. 2(a) depicts a PAG P . We first consider all the valid local structures at X . For the local structure dictated by
C = {A,C}, we could obtain a maximal local MAG M1 as Fig. 2(b), where the edge C → Y colored by red denotes the
edges oriented by the complete orientation rules. Fig. 2(c) and 2(d) depict two MAGs valid to M. We note the adjustment
sets in them are {B,C} and {C}, respectively. Fig. 2(e) depicts another maximal local MAG M2 obtained from the local
structure dictated by C = {A}. The edges with solid line are those remained after deleting the edges out of X .

(1) PossDe(X,P[−C]) ∩ Pa(C,P) = ∅;

(2) the subgraph P[C] of P induced by C is a complete
graph;

(3) P[PossDe(X,P[−C])\{X}] is bridged relative to
C ∪ {X} in P .

Remark 2. Given any set C ⊆ {V | X ◦−∗ V in P}, we
transform X ◦−∗ V to X ←∗V for ∀V ∈ C and transform
X ◦−∗ V to X −∗V for others, the marks at X are definite.
Hence, each set of vertices C dictates a local structure at X .

Hence, for each definite local structure dictated by C, we
can determine whether it is valid by Prop. 2. After enumer-
ating each set C and using Prop. 2, we can obtain all valid
local structures (at X). Given each valid local structure, we
introduce the sound and complete orientation rules (Wang
et al., 2022b) to further orient the PAG with the local struc-
tures, which are detailed in Appendix A.3. We give Fig. 2(a)
as an example. The local structure dictated by C = {A,C}
is valid according to Prop. 2. When we introduce this lo-
cal structure, it can be seen as background knowledge, and
thus we further orient the partial graph as Fig. 2(b) with the
complete orientation rules of Wang et al. (2022b) until no
rules are triggered. In the following, we call the obtained
graph from P with a valid local structure dictated by C
and the complete orientation rules by maximal local MAG
based on P and C, and denote it by M. When it is clear
from the context, we call it maximal local MAG for short. A
MAGM is valid to M ifM is consistent with P and has
the non-circle marks in M. For each valid local structure
at X , we can obtain a maximal local MAG. The graph in
Fig. 2(b) is an example of M. By obtaining all valid local
structures of X and using the complete orientation rules, we
can obtain all maximal local MAGs.

For a maximal local MAG M, we propose the method to
find the adjustment sets in the MAGs valid to M in the
following. We only consider the non-trivial case Y ∈

PossDe(X,M), otherwise X has no causal effect on Y ac-
cording to Lemma 8 in Appendix D.2. A question here is,
could we determine a common adjustment set for all the
MAGs valid to M? Unfortunately, it is not the case in the
presence of latent variables. See M in Fig. 2(b) for an exam-
ple, there are MAGs valid to M in Fig. 2(c) and 2(d) with
distinct adjustment sets {B,C} and {C}, respectively. The
definite local structure at X is not sufficient for determining
a common adjustment set. We need to consider further what
adjustment sets can be in the MAGs valid to M.

A trivial method is to enumerate each MAG M valid to
M, and obtain D-SEP(X,Y,MX˜ ) as the adjustment set if
the conditions of Thm. 1 are fulfilled. However, the space
of MAGs is extremely large. In the worst case, the size is
O(3d2/2) ( d(d− 1)/2) edges with 3 types), which makes
enumeration computationally prohibitive. To circumvent
the super-exponential computation, we convert the problem
of finding D-SEP(X,Y,MX˜ ) in each enumerated MAG
to the problem of determining for any given subset W of
the observed variables, whether there is a MAGM valid
to M such that W can be adjustment set inM as Thm. 1,
i.e., W = D-SEP(X,Y,MX˜ ) and D-SEP(X,Y,MX˜ ) ∩De(X,M) = ∅. The benefit of the conversion is apparent.
The size of the space of subset W is O(2d), which is super-
exponentially less than that of the space of MAGsO(3d2/2).
Note when M is a complete graph and all the marks at X
are arrowheads in M, there are exactly 2d−2 adjustment sets
that result in different causal effects. Hence 2d−2 is a lower
bound of the time complexity of finding adjustment sets in
MAGs valid to M.

The key here is, for any maximal local MAG M and set W,
we need to determine the existence of MAGsM valid to M
fulfilling the two conditions (1) W = D-SEP(X,Y,MX˜ )and (2) D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅. To address
this issue, we propose a graphical characterization. The
idea is that for any given M and W, we determine whether
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we can construct a MAGM fulfilling the two conditions.
If the construction succeeds, then there exists the MAGs
aforementioned, otherwise the MAGs do not exist.

For the construction process, we introduce W̄ and block
set S in Def. 4. Intuitively, W̄ denotes the set of vertices
disjoint of W that are not allowed to be ancestors of Y in
the constructedM, otherwise D-SEP(X,Y,MX˜ )\W ̸= ∅;
and S denotes a set of vertices located at the paths from W̄
to Y . To prevent W̄ to be ancestors of Y in the constructed
M, we need to orient the edges of S in the paths mentioned
above. See Fig. 2(b) for an example. Given W = {A,C},
to construct a MAGM such that D-SEP(X,Y,MX˜ ) = W,
it is necessary to restrict that {B} is not an ancestor of Y
inM, otherwise B ∈ D-SEP(X,Y,MX˜ )\W. To achieve
it, B◦→ Y/C must be oriented as bi-directed. Hence we
define W̄ = {B} and S ⊇ {Y,C} in Def. 4.

Definition 4. Given a set of vertices W in a maximal local
MAG M, we define a set of vertices W̄ as V ∈ W̄ if and
only if V ∈ PossAn(Y,M)\W and there exists a collider
path beginning with an arrowhead from X to V where each
non-endpoint vertex belongs to W. We say S is a block
set if Anc(Y ∪W,M) ∩ [PossDe(W̄,M)\W̄] ⊆ S ⊆
PossAn(Y ∪W,M) ∩ [PossDe(W̄,M)\W̄].

We then present potential adjustment set in Def. 5. Accord-
ing to Def. 2 and Thm. 1, there is W = D-SEP(X,Y,MX˜ )and D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅ in some MAG
M valid to M only if W is a potential adjustment set2.

Definition 5. In a maximal local MAG M, W is a potential
adjustment set if

(1) ∀V ∈W, there is a collider path X ↔ · · · ←∗V such
that each non-endpoint belongs to W, and there is a
possible directed path from V to Y that does not go
through the vertices in W̄;

(2) W ∩ PossDe(X,M) = ∅;

(3) W̄ ∩ Anc(Y ∪W,M) = ∅.

We present the graphical condition in Thm. 2. To prove the
existence of MAGs, we give the construction method, shown
by Alg. 2 in Appendix D.2. The complexity of judging the
three conditions in Thm. 2 for a block set S is O(d3).
Theorem 2. Given a maximal local MAG M, for any po-
tential adjustment set W, there exists a MAGM valid to
M such that W is an adjustment set inM if there exists a
block set S such that

(1) PossDe(W̄,M[−S]) ∩ Pa(S,M) = ∅;
2The detailed proof will be given later in Thm. 3.

(2) M[SV ] is a complete graph for any V ∈ W̄, where
SV = {V ′ ∈ S|V ◦−∗ V ′ in M};

(3) M[PossDe(W̄,M[−S])] is bridged relative to S in M.

Remark 3. The initial target of Thm. 2 is to present a
sufficient condition for the existence of MAG M such
that D-SEP(X,Y,MX˜ ) = W, where W is a given po-
tential adjustment set. However, following our MAG con-
struction method as Alg. 2 in Appendix D.2, we can only
construct a MAG M where D-SEP(X,Y,MX˜ ) ⊆ W

and W ∩ De(X,M) = ∅, as Alg. 2 cannot ensure that
each vertex V in W is an ancestor of Y in the construc-
tion MAG. Nevertheless, perhaps surprisingly, there is al-
ways a good property that W\D-SEP(X,Y,MX˜ ) ⊥ Y |
{X,D-SEP(X,Y,MX˜ )} if W\D-SEP(X,Y,MX˜ ) is non-
empty in the constructedM. With this property, it is direct
that using W and D-SEP(X,Y,MX˜ ) as the adjustment
sets in (1) can lead to the same causal effect, i.e., W is
equivalent to D-SEP(X,Y,MX˜ ) in the sense of estimating
the causal effect. See the proof of Thm. 2 in Appendix D.2
for details.

Hence, for each subset W of V(P)\{X,Y }, we can evalu-
ate whether it can be an adjustment set in some MAG valid
to M by determining whether it is a potential adjustment set
and whether the three conditions in Thm. 2 are satisfied for
a block set S if so. By considering all the subsets, we can
find all the valid adjustment sets in MAGs valid to M.

Finally, there is one issue remaining to address: for the
adjustment set D-SEP(X,Y,MX˜ ) in any MAGM valid to
M, can we always find it by the process above? We present
Thm. 3 to show that the adjustment set D-SEP(X,Y,MX˜ )in any MAGM valid to M is a potential adjustment set and
satisfies the three conditions in Thm 2 for a block set S.

Theorem 3. Given a maximal local MAG M, suppose a
MAGM valid to M such that there exists an adjustment set
relative to (X,Y ). Let W be D-SEP(X,Y,MX˜ ). Then W

is a potential adjustment set in M and there exists a block
set S such that

(1) PossDe(W̄,M[−S]) ∩ Pa(S,M) = ∅;

(2) M[SV ] is a complete graph for any V ∈ W̄, where
SV = {V ′ ∈ S|V ◦−∗ V ′ in M};

(3) M[PossDe(W̄,M[−S])] is bridged relative to S in M.

4.3. The algorithm to determine the set of causal effects

In this part, based on the theoretical results before, we
present the method in Alg. 1 to find all the valid adjust-
ment sets given a PAG P and then determine the set of
causal effects by (1). If X is not a possible ancestor of Y
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in P , X has no effect on Y in every MAG consistent with
P , thereby returning no causal effect. If the causal effect is
identifiable in P by Prop. 1, we obtain the adjustment set
directly according to Prop. 1. When it is not identifiable,
we first find all valid local structures at X based on Prop. 2,
and obtain the corresponding maximal local MAGs. In each
maximal local MAG M, for any set W ⊆ V(P)\{X,Y },
if W is a potential adjustment set as in Def. 5, we determine
whether it is an adjustment set in someM valid to M by
Thm. 2. Note the sufficient condition in Thm. 2 is that there
exists a block set such that the three conditions are fulfilled,
hence we search for each set S on Line 10. Thm. 4 indicates
that PAGcauses can output the complete set of causal effects
obtainable via covariate adjustment, i.e., it returns the set
equivalent to the direct method to enumerate all the DAGs
corresponding to P and use covariate adjustment.

Algorithm 1: PAGcauses
Input: PAG P , X , Y

1 ÂS(P) = ∅ // Record all the valid adjustment sets;
2 if X ̸∈ PossAn(Y,P) then return No causal effects;
3 if the conditions in Prop. 1 are satisfied for P then
4 return ÂS(P)← {D-SEP(X,Y,PX)} // Prop. 1
5 for each set C ⊆ {V | V ∗−◦X in P} do
6 if the three conditions in Prop. 2 are satisfied then
7 Obtain a maximal local MAG M based on P

and C;
8 Find all potential adjustment sets W1,W2, · · ·

given M according to Def. 5;
9 for each set potential adjustment set Wi do

10 for each block set S do
11 if the three conditions in Thm. 2 are

satisfied given S then
12 ÂS(P)← ÂS(P) ∪ {Wi};
13 break // Break the loop of S;

Output: Set of causal effects via adjustment in the
given PAG P identified with ÂS(P) by (1)

Theorem 4. Given a PAG P , denote the set of (possible)
causal effects in the DAGs corresponding to P which can be
estimated with observational data by covariate adjustment
and the set of (possible) causal effects obtained from Alg. 1
by CE(P) and ĈE(P). There is CE(P) set

= ĈE(P).

Proof. The result can be directly concluded according to
Thm. 1, 2, and 3. As we consider all the valid local structures
at X in Alg. 1, it suffices to show that the set of causal
effects ĈE(M) identified with ÂS(M) by (1) is equal to the
set CE(M), where ÂS(M) denotes the obtained adjustment
sets on Line 8-13 of Alg. 1, and CE(M) denotes the set of
causal effects that can be identified with observational data
in the DAGs represented by any MAGs valid to M.

As shown by Thm. 1, the set of causal effects CE(M) in the
DAGs represented by the MAGM valid to M is equal to
that identified with the set of D-SEP(X,Y,MX˜ ) for each
M valid to M such that D-SEP(X,Y,MX˜ )∩De(X,M) =

∅. According to Thm. 3, there is evidently CE(M) ⊆
ĈE(M). And Thm. 2 implies that for each set V′ in ÂS(M),
there is some MAGM valid to M such that the set V′ is an
adjustment set inM, i.e., the adjustment set V′ implies the
same causal effect by (1) as that of D-SEP(X,Y,MX˜ ) in

some MAGM valid to M. Hence ĈE(M) ⊆ CE(M). We
conclude ĈE(M)

set
= CE(M), thus ĈE(P) set

= CE(P).

The worst-case complexity of Alg. 1 is O(5dd6),
which is super-exponentially less than the complexity
Ω(3d(d−1)/2d3) of LV-IDA (Malinsky & Spirtes, 2016).
Due to the page limit, we show the details in Appendix C.
Note the number of causal effects in the worst case grows ex-
ponentially with respect to the number of variables. Hence
the task of set determination cannot be finished within poly-
nomial time. To evaluate the complexity in general cases,
we conduct empirical analysis in Sec. 5.

5. Experiments
In this part, we evaluate the effectiveness and efficiency of
PAGcauses to determine the set of causal effects. We take
LV-IDA (Malinsky & Spirtes, 2016) as a baseline, which
determines the set by enumerating the MAGs in a subspace
of MEC. As detailed in Sec. B.1, LV-IDA returns the causal
effect in the MAGM where the causal effect is identifiable
via adjustment, i.e., D-SEP(X,Y,MX) ∩ De(X,M) = ∅,
while PAGcauses also considers the MAG M where the
causal effect is not identifiable but there is some DAG D
represented by M such that the causal effect is identifi-
able by some observed variables, i.e., D-SEP(X,Y,MX˜ )∩De(X,M) = ∅. Hence, to compare the two methods fairly,
we modify LV-IDA by finding D-SEP(X,Y,MX˜ ) instead
of D-SEP(X,Y,MX). In this way, the two methods tackle
with the totally same task. Note this modification does not
take any additional computation to LV-IDA.

We generate random DAGs with vertex number d =
8, 10, 12, 14, 16 and each edge between two vertices oc-
curs with probability ρ = 0.2, 0.3, 0.4, 0.5, which is called
graph density. The DAG is parameterized as a linear Gaus-
sian structural equation model. The weight of each edge is
drawn from Uniform([1, 2]). For each graph, we randomly
select three vertices as latent variables and the others as
observed variables. To prevent degeneration to a trivial case
where X has no causal effect on Y , we select the last vertex
in the causal order as Y . We randomly select a decision vari-
able X . For each set of parameters, we generate 100 causal
graphs and obtain the output set in the time limit of 3000
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Figure 3: Results of the number of returned causal effects and running time over 100 simulations for each vertice
number(including 3 latent ones)/graph density. The vertical line represents the 95% confidence interval generated by
bootstrap sampling. The maximum running time for each simulation is 3000s.

seconds for each graph. For LV-IDA, when the running time
achieves the limit, it stops and returns the causal effects in
the enumerated MAGs. For PAGcauses, it returns no effects
if the time is used up. Since the main focus is on the set
determination based on a PAG, we obtain PAG directly with
the true covariance matrix of the observable variables.

We show the average number of the output set of causal
effects and running time in 100 graphs under each parameter
in Fig. 3. The results demonstrate the effectiveness of our
method and that the efficiency of determining the set of
causal effects is improved tremendously by exploiting the
proposed graphical characterization. When d and ρ is small,
PAGcauses and LV-IDA obtain the same set. When d ≥
10, the sets are different because usually LV-IDA cannot
enumerate all the MAGs within the limited time. When d
grows, the number of returned causal effects by LV-IDA
tends to 0. We give a rough analysis for this phenomenon.
Suppose within the limited time we can enumerate N MAGs
at most. 2d is the rough number of causal effects and 3d

2/2

is the rough number of MAGs. As d grows, the expected
number of returned causal effects N × 2d/3d

2/2 tends to 0.

6. Conclusion
In this paper, we present the method to determine the set of
possible causal effects obtainable via covariate adjustment
in all the DAGs corresponding to a given PAG. We show
that even if the causal effect is not identifiable in a MAG via
covariate adjustment, there could exist DAGs represented
by the MAG associated with an identifiable causal effect.
Hence DAG needs to be considered in the task of deter-
mining the set of possible causal effects. By introducing

new graphical conditions, our method can circumvent the
enumerations of DAGs and MAGs, and output the same set
as the enumerations methods with super-exponentially less
complexity. Experiments validate the effectiveness and the
significant improvement in efficiency of our approach.

Despite the efficient set determination of causal effects via
covariate adjustment in a PAG achieved, it is important to
note that accurate causal relations learned with observa-
tional data are a prerequisite for causal effect identification
methods. The task of learning causal relations, however, is
quite challenging in practice. Misinterpreted relations can
result in inaccurate estimations, thereby highlighting the
fragility of decision methods based on causal effect identifi-
cation. This raises the question of whether learning causal
relations is actually more challenging than decisions.

Recently, Zhou (2022) proposed to rethink the relation be-
tween prediction, decision, and causality, and indicated that
correlation is crucial for prediction, causation is fundamen-
tal for scientific discovery, while decision-making requires
something in-between, which is called rehearsation. This
new perspective offers a fresh view for future study of deci-
sion methods.
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A. Detailed Preliminary
A.1. Some definitions about graph

A graph G is mixed if the edges in the graph are either directed→ or bi-directed↔. The two ends of an edge are called marks
and have two types arrowhead or tail. A graph is a partial mixed graph (PMG) if it contains directed edges, bi-directed
edges, and edges with circles (◦). The circle implies that the mark here could be either arrowhead or tail but is indeterminate.
An edge Vi ◦−◦ Vj is a circle edge. The circle component in G is the subgraph consisting of all the ◦−◦ edges in G. Vi is
adjacent to Vj in G if there is an edge between Vi and Vj . Denote the set of vertices adjacent to Vi in G by Adj(Vi, G). A
vertex Vi is a parent/child of a vertex Vj if there is Vi → Vj/Vi ← Vj . A path in a graph G is a sequence of distinct vertices
⟨V0, · · · , Vn⟩ such that for 0 ≤ i ≤ n− 1, Vi and Vi+1 are adjacent in G. A directed path from Vi to Vj is a path comprised
of directed edges pointing to the direction of Vj . A possible directed path from Vi to Vj is a path without arrowhead at the
mark near Vi on every edge. Vi is an ancestor/possible ancestor of Vj if there is a directed path/possible directed path from
Vi to Vj or Vi = Vj . Vi is a descendant/possible descendant of Vj if there is a directed path/possible directed path from Vj to
Vi or Vj = Vi. Denote the set of parents/children/ancestors/possible ancestors/descendants/possible descendants of Vi in G
by Pa(Vi, G)/Chd(Vi, G)/Anc(Vi, G)/PossAn(Vi, G)/De(Vi, G)/PossDe(Vi, G). If Vi ∈ Anc(Vj , G) and Vi ← Vj /Vi ↔ Vj ,
it forms a directed cycle/almost directed cycle. ∗ is a wildcard that denotes any of arrowhead, tail, or circle. We make a
convention that if an edge is ◦−∗, the ∗ here cannot be a tail for otherwise the circle can be replaced by an arrowhead due to
the assumption of no selection bias (there is not an edge with two tails).

A non-endpoint vertex Vi is a collider on a path if the path contains ∗→ Vi ←∗. A path p from Vi to Vj is a collider path if
Vi and Vj are adjacent or all the passing vertices are colliders on p. p is a minimal path if there are no edges between any
two non-consecutive vertices. A path p from Vi to Vj is a minimal collider path if p is a collider path and there is not a
proper subset V′ of the vertices in p such that there is a collider path from Vi to Vj comprised of V′. A triple ⟨Vi, Vj , Vk⟩
on a path is unshielded if Vi and Vk are not adjacent. p is an uncovered path if every consecutive triple on p is unshielded. A
path p is a minimal possible directed path if p is minimal and a possible directed path. A graph is a directed acyclic graph
(DAG) if it contains only directed edges and has no directed cycles, denoted by D.

Definition 6 (Active path; (Richardson et al., 2002; Zhang, 2008a)). In a mixed graph, a path p between vertices X and Y
is active (m-connecting) relative to a (possibly empty) set of vertices Z (X,Y ̸∈ Z) if (1) every non-collider on p is not a
member of Z; (2) every collider on p has a descendant in Z.

X and Y are m-separated by Z if there is no active path between any vertex in X and any vertex in Y relative to Z. A
mixed graph is an ancestral graph if there is no directed or almost directed cycle (since we assume no selection bias, we do
not consider undirected edges in this paper). An ancestral graph is a maximal ancestral graph (MAG, denoted byM) if it is
maximal, i.e., for any two non-adjacent vertices, there is a set of vertices that m-separates them. A path p between X and
Y in an ancestral graph G is an inducing path if every non-endpoint vertex on p is a collider and meanwhile an ancestor
of either X or Y . An ancestral graph is maximal if and only if there is no inducing path between any two non-adjacent
vertices (Richardson et al., 2002).

In a MAG, a path p = ⟨X, · · · ,W, V, Y ⟩ is a discriminating path for V if (1) X and Y are not adjacent, and (2) every
vertex between X and V on the path is a collider on p and a parent of Y . Two MAGs are Markov equivalent if they share
the same m-separations. A class comprised of all the Markov equivalent MAGs is a Markov equivalence class (MEC). A
partial ancestral graph (PAG, denoted by P) represents an MEC, where a tail/arrowhead occurs if the corresponding mark
is tail/arrowhead in all the Markov equivalent MAGs, and a circle occurs otherwise. We say a MAGM is consistent with
a PAG P if P is a PAG that denotes the Markov equivalence class ofM. In a mixed graph G, a directed edge A→ B is
visible if there a vertex C not adjacent to B, such that there is an edge C → A, or there is a collider path between C and A
that is into A and every non-endpoint is a parent of B (Zhang, 2008b). Otherwise A→ B is said to be invisible.

We introduce two definitions of Zhang (2008b); Maathuis et al. (2009) with slight modifications. For a MAGM, letMX

denote the graph obtained fromM by removing all visible directed edges out of X inM. For a PAG P , letM be any
MAG consistent with P that has the same number of edges into X as P , and let PX denote the graph obtained fromM by
removing all directed edges out of X that are visible inM (it is not required to be unique).MX˜ denotes the graph obtained
fromM by deleting the directed edges out of X .

We also introduce some graph theory and terminology referring to Maathuis et al. (2009). A graph is chordal if any cycle of
length four or more has a chord, which is an edge joining two vertices that are not adjacent in the cycle. If G = (V,E) is
chordal, then all subgraphs of G induced by V′ ⊆ V are chordal.
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A vertex A of G is called simplicial if its adjacency set Adj(A,G) induces a complete subgraph of G. As shown by Dirac
(1961); Golumbic (2004), there are at least two non-adjacent simplicial vertices in any a non-complete chordal graph with
more than one vertex. A perfect elimination order of a graph G is an ordering σ = (V1, · · · , Vn) of its vertices, so that each
vertex Vi is a simplicial vertex in the induced subgraph GVi,··· ,Vn

.

A.2. The algorithm to obtain a MAG based on a DAG

Next, we present the algorithm to obtain a MAG comprised of observable vertices O with a DAG comprised of both
observable vertices O and latent vertices L. Due to the assumption of the absence of selection bias, we do not consider the
selection variable. We first present a more detailed definition of inducing path involving latent variables in Def. 7.

Definition 7 (Inducing path; Spirtes et al. (2000)). In an ancestral graph, let X,Y be any two vertices. And L,S be two
disjoint sets of vertices not containing X,Y . A path p between X and Y is called an inducing path relative to ⟨L,S⟩ if every
non-endpoint vertex on p is either in L or a collider, and every collider on p is an ancestor of either X,Y , or a member of S.

The construction of MAG comprised of observable vertices O based on a DAG D comprised of vertices O∪L is as follows:
Input: a DAG D over V = O ∪ L;
Output: a MAGM over O.
(1) for each pair of variables A,B ∈ O, A and B are adjacent inM if and only if there is an inducing path relative to ⟨L, ∅⟩
between them in D;
(2) for each pair of adjacent vertices A,B inM, orient the edge between them as follows:

(a) orient it as A→ B inM if A ∈ Anc(B,G) and B ̸∈ Anc(A,G);

(b) orient it as A← B inM if B ∈ Anc(A,G) and A ̸∈ Anc(B,G);

(c) orient it as A↔ B inM if A ̸∈ Anc(B,G) and B ̸∈ Anc(A,G).

A.3. Some proposed orientation rules

Zhang (2008a) proposed the sound and complete orientation rules for learning a PAG. We show the rules as follows. There
are eleven rulesR0 −R10. Since selection bias is not considered in this paper, we do not show the cases (R5 −R7) that
happen only when there is selection bias. R0 is triggered according to the conditional independence relationship at the
beginning of learning a PAG. It is evidently not triggered after, hence we do not show it as well.

R1: If A∗→ B ◦−∗R, and A and R are not adjacent, then orient the triple as A∗→ B → R.

R2: If A→ B∗→ R or A∗→ B → R, and A ∗−◦R, then orient A ∗−◦R as A∗→ R.

R3: If A∗→ B ←∗R, A ∗−◦D ◦−∗R, A and R are not adjacent, and D ∗−◦B, then orient D ∗−◦B as D∗→ B.

R4: If ⟨K, . . . , A,B,R⟩ is a discriminating path between K and R for B, and B ◦−∗ R; then if B ∈ Sepset(K,R),
orient B ◦−∗R as B → R; otherwise orient the triple ⟨A,B,R⟩ as A↔ B ↔ R.

R8: If A→ B → R, and A◦→ R, orient A◦→ R as A→ R.

R9: If A◦→ R, and p = ⟨A,B,D, . . . , R⟩ is an uncovered possible directed path from A to R such that R and B are
not adjacent, then orient A◦→ R as A→ R.

R10: Suppose A◦→ R, B → R← D, p1 is an uncovered possible directed path from A to B, and p2 is an uncovered
possible directed path from A to D. Let U be the vertex adjacent to A on p1 (U could be B), and W be the vertex
adjacent to A on p2 (W could be D). If U and W are distinct, and are not adjacent, then orient A◦→ R as A→ R.

Further, Wang et al. (2022b) presented the sound and complete orientation rules when local background knowledge is
incorporated. We call the background knowledge by BK for short. BK is local, if when the BK contains the causal
information with respect to a variable X , for each variable adjacent to X in the PAG, the BK implies whether X causes it or
not. When the BK is local, the additional orientation rules are as follows:
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R′
4: If ⟨K, · · · , A,B,R⟩ is a discriminating path between K and R for B, and B ◦−∗R, then orient B ◦−∗R as B → R.

R11: If A−∗B, then A→ B.

Note that R′
4 is triggered only when we incorporate the local BK into a PAG, while R4 is triggered in the process of

obtaining the PAG P .

A.4. Adjustment criterion

Definition 8 (Adjustment criterion; Shpitser et al. (2010); VanderWeele & Shpitser (2011); van der Zander et al. (2014)).
Let X, Y, and Z be pairwise disjoint sets of vertices in a DAG D. Let Forb(X,Y,D) denote the set of all descendants in
D of any W ̸∈ X which lies on a proper causal path from X to Y , i.e., only the first node is in X, in D. Then Z satisfies
adjustment criterion relative to (X,Y) in D if the following two conditions hold:

(Forbidden set) Z ∩ Forb(X,Y,D) = ∅, and

(Blocking) all proper non-causal paths from X to Y in D are blocked by Z.

B. Connection with Previous Works
In this part, we clarify the difference between our method PAGcauses and many previous related studies.

B.1. Malinsky & Spirtes (2016)

Both the input of LV-IDA and PAGcauses are a PAG P . And both the methods aim to output the set of possible causal
effects of some decision variable X on outcome Y . Compared to LV-IDA, we improve the efficiency super-exponentially,
by building and exploiting the corresponding graphical properties. In addition, there is a bit difference for the output set
of the two methods. In the method of LV-IDA, they enumerate all the MAGs consistent with P in a subspace of Markov
equivalence represented by the PAG. For a MAG consistent with P , they return the causal effect when the causal effect is
identifiable inM, while return NA when it is unidentifiable. For our method, PAGcauses returns the causal effect if there
exists a DAG represented by the MAGM which is associated with the causal effect. The difference is not due to technical
reasons. We argue that our definition of set of possible causal effects is more reasonable. When the causal effect cannot be
uniquely identifiable in a PAG P , we need to determine the set of possible causal effects. Our target of finding the set is
to output what causal effects are possible, which can help decisions. MAG is a tool to represent a series of causal graphs
(DAGs) in the presence of latent variables (Richardson et al., 2002). When the causal effect is not identifiable in a MAG, it
does not mean that the causal effect is not identifiable in any DAGs represented by MAG. If we only return the causal effect
when it is identifiable inM, there are some possible causal effects that are left out, which could be the causal effect in the
true underlying causal graph. This phenomenon is detailed in Sec. 4.1. For example, the causal effect of X on Y is not
identifiable in the MAG in Fig. 1(b) according to Prop. 1. In this case, if we only return an NA, then we will left out the
causal effect identified by adjusting for {A}, since there are DAGs as Fig. 1(c) and Fig. 1(e) where the causal effect can be
identified by adjusting for {A}. Compared to LV-IDA, our method can output more possible causal effects.

B.2. Cheng et al. (2020)

The method of Cheng et al. (2020) introduces some additional assumptions, such that amenable assumption and pretreatment
assumption. The pretreatment assumption says that any other variables V ∈ V(P)\{X,Y } are not descendants of X . In
our method, we do not introduce these assumptions.

B.3. Maathuis et al. (2009)

Maathuis et al. (2009) determines the set of possible causal effects of X on Y under the assumption of no latent variables.
Under this assumption, the possible causal effects can be determined by considering all possible local structures at X . In
our paper, we consider the set determination in the presence of latent variables. The main difference between PAGcauses
and Maathuis et al. (2009) in techniques is that, when there exists latent variables, determining the local structures at X is
not sufficient for determining the only causal effect, which is shown by the examples in Fig. 2(c) and Fig. 2(d). Hence after
determining the local structures at X , we also need to further present a graphical characterizations for the adjustment sets in
Thm. 2 and Thm. 3.
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B.4. Entner et al. (2013); Hyttinen et al. (2015); Maathuis et al. (2015); Perkovic et al. (2017); Jaber et al. (2022)

Maathuis et al. (2015); Perkovic et al. (2017); Jaber et al. (2022) present some graphical conditions for the causal effect
identifiability given a MAG or a PAG, and they return the causal effect when the causal effect is identifiable and return
unidentifiable when it is not. In our paper, if the causal effect is identifiable in P , then we return the causal effect according
to their results. However, the main focus of our method is the case when it is unidentifiable. Different from the methods
above which return unidentifiable, we need to return a set of possible causal effect which includes the causal effect if there
exists some DAG represented by a MAG consistent with P associated with it. Hence the focus of our method and Maathuis
et al. (2015); Perkovic et al. (2017); Jaber et al. (2022) are totally different.

Entner et al. (2013); Hyttinen et al. (2015) present the data-driven method to identify the causal effect without learning
a PAG first which takes a huge cost. Similar to the methods ofMaathuis et al. (2015); Perkovic et al. (2017); Jaber et al.
(2022), they return the causal effect when it is identifiable.

The causal effect identification method of Hyttinen et al. (2015); Jaber et al. (2022) is by do-calculus, which possibly identify
some causal effects which are not identifiable via covariate adjustment. We leave the set determination of possible causal
effects by do-calculus for future work.

C. Worst-case Complexity Analysis
We present a worst-case complexity analysis of our method and the baseline method LV-IDA (Malinsky & Spirtes, 2016) to
determine the set of possible causal effects of X on Y in a complete graph including d vertices (in this case the PAG is a
complete circle component without any arrowheads or tails). For LV-IDA, there are 3(d

2−d)/2 MAGs enumerated. For each
MAG, we need to first judge whether the enumerated MAG is consistent with P , it spendsO(d3) at least (Hu & Evans, 2020;
Wienöbst et al., 2022). Then if the MAG is consistent with P , we find D-SEP(X,Y,MX˜ ) in O(d) at least. Hence, the total

complexity is O(d43(d2−d)/2). Another method of LV-IDA is obtaining the MAG consistent with P by valid transformation
which guarantees that the obtained MAG is always consistent with P (Zhang & Spirtes, 2005; Tian, 2005). If we adopt this
method, it is hard to analyze the complexity accurately as it is unavoidable that many repeatable MAGs are obtained in the
process and it is hard to know when the transformation should stop. Anyway, even if we suppose that we will never obtain a
repeatable MAG in the transformation process and there is an oracle tell us the point of time that we obtain all the MAGs
consistent with P , we could obtain a lower bound of computational complexity as Ω(d3(d

2−d)/2)× d2 = Ω(d33(d
2−d)/2),

where the extra d2 is the complexity of judging the transformation characterization, which is shown by Lemma 1 of Zhang
& Spirtes (2005).

Next we consider the complexity of our method. Note the first and second conditions of Thm. 2 can be determined in O(d3)
for a given block set S. For the determination of the third condition, we exploit Lemma 5 to achieve it. The orientation
in Alg. 2 and the testing of whether there are edges oriented with different directions or new unshielded colliders can be
achieved in O(d3). Hence the complexity of judging the three conditions of Thm. 2 given a maximal local MAG and a
block set S is O(d3).

As our method first determines all valid local structures at X , then finds adjustment sets in the MAGs valid to each maximal
local MAG, we analyze the complexity of finding adjustment sets in the MAGs valid to a given maximal local MAG at
first. Suppose in a maximal local MAG M which is obtained from P and C which dictates a local structure of X , there
are i vertices with edges ∗→ X and d− i− 1 vertices with edges ∗−X . In this case, the complexity T (i) of finding all
adjustment sets in M is

T (i) ≤
i∑

k=0

Ck
i 2

k+d−i−1O(d3) = 2d−i−13iO(d3),

where k denotes the number of vertices in W and Ck
i is because there are Ck

i sets W such that there are k vertices in W.
When there is k number of vertices in W, since every vertex is adjacent to X , there must be i − k vertex in W̄. Hence
there are at most d − 1 − i + k vertices in each block set S and thus there are at most 2k+d−i−1 sets of S. O(d3) is the
complexity of judging the conditions in Thm. 2.

Next we consider the complexity C(d) of finding adjustment sets in the MAGs consistent with P by our method. According
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to the result above, it directly conclude that the complexity is

C(d) ≤
d−1∑
i=0

Ci
d−1O(d3)(2d−i−13iO(d3)) = 2d−1

d−1∑
i=0

(3/2)iO(d6) = O(5dd6),

where Ci
d−1 is because there are Ci

d−1 sets C which dictates a local structure at X such that there are i vertices with edges
∗→ X , the first O(d3) is the complexity of judging Prop. 2.

D. Proofs
D.1. Proof of Theorem 1

Proof. The proof of “if” statement is not hard. We could construct a DAG D by remaining the directed edges inM and
adding a sub-structure Vi ← Lij → Vj with a latent variable Lij if there is Vi ↔ Vj inM. The paths from X to Y inMX˜are totally same as the back-door paths from X to Y in D, i.e., the paths from X to Y in DX . Since X is an ancestor of
Y , it is evident that X and Y are not adjacent inMX˜ . AndMX˜ is also a MAG according to Prop. 3.5 and Corollary 4.6
of Richardson et al. (2002). By Lemma 4.1 of Maathuis et al. (2015), X and Y are m-separated by D-SEP(X,Y,MX˜ )inMX˜ . It is direct that X and Y are d-separated by D-SEP(X,Y,MX˜ ) in DX . The reason is that the only difference
betweenMX˜ and DX is that the bi-directed edges Vi ↔ Vj inMX˜ are Vi ← Lij → Vj in DX , thus all the paths from X

to Y inMX˜ and DX have the same colliders and non-colliders, and each latent variable Li,j in DX is a non-collider so that
it does not influence whether a path is active or d-separated by D-SEP(X,Y,MX˜ ) in DX . Hence the Blocking condition of
adjustment criterion in Def. 8 is fulfilled in D by D-SEP(X,Y,MX˜ ). Due to D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅, the
Forbidden set condition is evidently fulfilled. Hence D-SEP(X,Y,MX˜ ) is an adjustment set in D.

For the “only if” statement, we will first prove that D-SEP(X,Y,MX˜ ) can block all non-causal paths from X to Y in DAG
D. And then we show D-SEP(X,Y,MX˜ ) ∩ De(X,M) = ∅.

Denote D-SEP(X,Y,MX˜ ) by D. For contradiction, suppose in D there is a non-causal active path p as X ←
· · ·S1, · · · , S2, · · · , Si, · · · , Sn, · · · , Y relative to D, where only S0(= X), S1, S2, S3, · · · , Si, · · · , Sn, Sn+1(= Y ) de-
notes the vertices in V(M) and there could be vertices except for S0(= X), S1, S2, S3, · · · , Si, · · · , Sn, Sn+1(= Y ) in
the path that do not belong to V(M).

⊕
denotes the concatenation of paths. For a path p, let p[Vi, Vj ] denote the sub-path

of p from Vi to Vj .

We first present some facts given the conditions above.

Fact 1. All the colliders in p belongs to D, and non-colliders belong to V(M)\D.

Proof of Fact 1. It is directly concluded according to the definition of active path.

Fact 2. All the vertices in D are ancestors of either X or Y inMX˜ .

Proof of Fact 2. It is concluded according to the definition of D-SEP(X,Y,MX˜ ).
Fact 3. If in D there exists a directed path from V to V ′ where V ∈ V(M), V ′ ∈ D, then V is ancestor of either X or Y
inMX˜ .

Proof of Fact 3. It is concluded directly by Fact 2 and the algorithm to obtain a MAG based on D in Appendix A.2.

Fact 4. Suppose in p there is a sub-path X ← · · · → S1 ← · · · → S2 ← · · · · · · → Sk−1 ← · · ·Sk where
S1, S2, · · · , Sk−1 ∈ D, if Sk is an ancestor of X or Y inMX˜ , then X cannot be an ancestor of Sk in D.

Proof of Fact 4. Suppose X is an ancestor of Sk in D. According to the condition, Sk is an ancestor of Y inMX˜ . Hence
there is a directed path from X to Y across Sk in D. Denote the directed path from Sk to Y in D by p1. According
the adjustment criterion, if there exists an adjustment set W comprised of some vertices in V(M), W cannot contain
the vertices in p1. We consider the path p[X,Sk]

⊕
p1, where S1, S2, · · · , Sk−1 in p[X,Sk] are colliders and Sk is non-

colliders due to the directed path from Sk to Y . W is required to block this path, hence there exists some vertex V in
S1, S2, · · · , Sk−1 such that all the descendants of V does not belong to W. Suppose the nearest vertex to X in p[X,Sk]
whose descendants do not belong to W is Sj . If there is a directed path p2 from Sj to Y in D that does not go through
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X , then p[X,Sj ]
⊕

p2 is active relative to W, contradiction with the blocking condition of adjustment criterion; if there
is not a directed path from Sj to Y in D that does not go through X , there must be a directed path p3 from Sj to X in D
since Sj is an ancestor of either X or Y in D. In this case we consider a new path p3

⊕
p[Sj , Sk]

⊕
p2. To block this path,

there is another vertex V in Sj+1, Sj+2, · · · , Sk−1 such that all the descendants of V does not belong to W. Suppose the
nearest vertex to Sj whose descendants do not belong to W in p[Sj , Sk] is St. If there is a directed path p4 from St to
Y that does not go through X , there is an active path p3

⊕
p[Sj , St]

⊕
p4 relative to W, contradicting with the blocking

condition of adjustment criterion, hence there is directed path p5 from St to X where each vertex does not belong to W. As
the process above, we consider p5

⊕
p[St, Sk]

⊕
p2 instead. Repeat the process above, if there is not a contradiction, there

must be a vertex Sm such that there is a directed path p6 from Sm to X where each vertex does not belong to W, and for
each non-endpoint vertex V in p[Sm, Sk] there is at least one descendant of V belonging to W. In this case we have an
active non-causal path p6

⊕
p[Sm, Sk]

⊕
p2, contradicting with the blocking condition of adjustment criterion. Hence, X

cannot be an ancestor of Sk.

Fact 5. If S1, S2, · · · , Sk are colliders in p, then there is a collider path from X to Sk+1 beginning with an arrowhead at X
inM, i.e., in the form of X ↔ · · · ↔←∗Sk+1.

Proof of Fact 5. According to fact 1, S1, · · · , Sk ∈ D. We consider the sub-path p[X,Sk+1]. Note the sub-path
p[Si, Si+1],∀0 ≤ i ≤ k is an inducing path relative to ⟨V(D)\V(M), ∅⟩. Hence we can always find a longest inducing
path relative to ⟨V(D)\V(M), ∅⟩ which is a sub-path of p starting by X . Denote the longest inducing path by p[X,Si].
If i = k + 1, there is evidently X ←∗Sk+1 because p[X,Sk+1] is an inducing path and fact 4 (there cannot be an edge
X → Sk+1 inM according to fact 4), the result holds. Hence we only consider i ≤ k below. We will prove there is (a)
X ↔ Si; (b) Si+1∗→ Si inM.

For the proof of (a), X ←∗Si inM can be directly concluded because p[X,Si] is an inducing path and fact 4. If Si → X
in M, Si is an ancestor of X in D, thus p[X,Si]

⊕
p[Si, Si+1] is also an inducing path because Si is a collider in p,

contradicting with the premise that p[X,Si] is the longest inducing path staring by X . Hence there can only be X ↔ Si

inM. For the proof of (b), suppose Si+1 ← Si inM, hence Si+1 is a descendant of Si in D. Considering the inducing
path p[X,Si], each collider is an ancestor of either X or Si, thus each collider is an ancestor of either X or Si+1. Hence
p[X,Si]

⊕
p[Si, Si+1] is also an inducing path because Si is a collider in p, contradicting with the premise that p[X,Si] is

the longest inducing path staring by X . Hence Si+1 is not a descendant of Si in D, thus inM there is Si ←∗Si+1.

According to the result above, if i = k, there is X ↔ Sk ←∗Sk+1 inM, we get the desired result. Hence we consider i < k
below.

Then, we could find the longest inducing path relative to ⟨V(D)\V(M), ∅⟩ which is a sub-path of p[Si, Sk+1] starting by
Si. Suppose the path is p[Si, Sj ]. Si and Sj is adjacent inM due to the inducing path. We first prove there is not Si → Sj

inM. Otherwise, all the vertices in p[Si, Sj ] are ancestors of Sj according to the definition of inducing path. Since all the
vertices in p[X,Si] are ancestors of X or Si, we have a new inducing path p[X,Sj ] since each vertex is an ancestor of X or
Sj and meanwhile a collider because S1, S2, · · · , Sk are ancestors in p. It contradicts the fact that p[X,Si] is the longest
inducing path starting by X . Hence there is Si ←∗Sj inM. If j = k + 1, we get the desired result. If j < k + 1, we will
prove there is Si ↔ Sj inM. Otherwise, if it is Sj → Si inM, Sj is an ancestor of Si inD, hence p[Si, Sj ]

⊕
p[Sj , Sj+1]

is an inducing path relative to ⟨V(D)\V(M), ∅⟩, contradicting with the fact that p[Si, Sj ] is the longest inducing path that
is a sub-path of p[Si, Sk+1] starting by Si. Hence, there is X ↔ Si ↔ Sj inM. Similarly, we can find a longest inducing
path p[Sj , St] starting by Sj such that Sj ←∗St (otherwise p[Si, Sj ]

⊕
p[Sj , St] is an inducing path), and inM there is

X ↔ Si ↔ Sj ←∗Sk+1 if t = k + 1 and there is X ↔ Si ↔ Sj ↔ St if t < k + 1. Repeat the process above, we could
always find a collider path X ↔ · · · ←∗Sk+1 inM.

With the five facts above, we first prove that all of S0, S1, S2, · · · , Sn are colliders in p by mathematical induction. Since p
is active relative to W, where only S0, S1, S2, · · · , Sn, Sn+1 are observed variables inM. It is evident that there is an edge
between Si and Si+1 inM, for ∀0 ≤ i ≤ n.

We first prove that S1 is a collider on the path. If not, the path is either X ← · · · ← S1 ← · · ·Y or X ← · · · → S1 → · · ·Y .
For the first case, it is evident that S1 is an ancestor of X inMX˜ ; for the second case, if the path from S1 to Y is directed,
S1 is ancestor of Y , otherwise there is a directed path from S1 to a collider in p, according to fact 1 and fact 2 the collider is
an ancestor of either X or Y inMX˜ , hence S1 is an ancestor of either X or Y inMX˜ . That is, S1 is always an ancestor of
X or Y inMX˜ . Note X is adjacent to S1 inM. According to fact 4, S1 cannot be a descendant of X in D. Hence there is
X ←∗S1 inM. According to the definition of D = D-SEP(X,Y,MX˜ ), we conclude S1 ∈ D. In this case if S1 is not a
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collider in p, it does not belong to D by fact 1, contradicting with S1 ∈ D. Hence S1 is a collider in p. Since the path p is
active relative to D, there is S1 ∈ D.

Then we suppose any vertex Si in S1, S2, · · · , Sk, k ≥ 2 is a collider in p and Si ∈ D. We could prove Sk+1 is a collider in
p and Sk+1 ∈ D. If not, the sub-path from Sk to Y in p is either Sk ← · · · ← Sk+1 ← · · ·Y or Sk ← · · · → Sk+1 → · · ·Y .
For the first case, Sk+1 is an ancestor of X or Y inMX˜ according to fact 3; for the second case, if the path from Sk+1

to Y is directed, Sk+1 is ancestor of Y , otherwise there is a directed path from Sk+1 to a collider in p, according to fact 1
and fact 2 the collider is an ancestor of either X or Y inMX˜ , hence Sk+1 is an ancestor of either X or Y inMX˜ . Hence
in both cases, Sk+1 is an ancestor of X or Y inMX˜ . By fact 5, there is a collider path X ↔ · · · ←∗Sk+1 inM. Hence
Sk+1 ∈ D according to the definition of D = D-SEP(X,Y,MX˜ ). In this case if Sk+1 is not a collider in p, it does not
belong to D by fact 1, contradicting with Sk+1 ∈ D. Hence Sk+1 is a collider in p. Since the path p is active relative to D,
there is Sk+1 ∈ D. The induction step completes.

By induction, we conclude that S1, S2, · · · , Sn are colliders in p. With fact 4, X cannot be an ancestor of Sn+1(= Y )
in D, thus X is not an ancestor of Y inM, contradicting with the condition X ∈ Anc(Y,M). Hence there is always a
contradiction if there is an active non-causal path p relative to D from X to Y . Hence, we conclude that there is not an
active non-causal path relative to D from X to Y in DAG D.

Next we prove D-SEP(X,Y,MX˜ ) does not contain a vertex in De(X,D). Suppose V ∈ D-SEP(X,Y,MX˜ ) ∩ De(X,D),
suppose there is X(= V0) ↔ V1 ↔ · · · ↔ Vt−1 ←∗V (= Vt) in MX˜ where each non-endpoint is an ancestor of X
or Y inMX˜ . Evidently each non-endpoint is an ancestor of either X or Y in D, and there is a path p1 in the form of
X ← · · · → V1 ← · · · → Vt−1 ← · · ·V in D where each sub-path p1[Vi, Vi+1], 0 ≤ i ≤ t− 1 is an inducing path relative
to ⟨V(D)\V(M), ∅⟩ and p2 is a directed path from V to Y . If there exists an adjustment set by adjustment criterion, the set
W does not contain the vertex in p2. To block the path p1

⊕
p2, there exists some vertex in p1 that does not belong to W.

Similar to the part of fact 4, we could prove there is always a path unblocked by W, contradicting the Blocking condition
of adjustment criterion. Hence we prove D-SEP(X,Y,MX˜ ) ∩ De(X,D) = ∅, the Forbidden set condition in adjustment
criterion is evidently fulfilled. Hence D-SEP(X,Y,MX˜ ) fulfills adjustment criterion in D. We get the desired result.

D.2. Proof of Theorem 2

We first show some facts before presenting the proof for Thm. 2.

Lemma 1. Given a maximal local MAG M of X , the following properties are satisfied:

(Closed) M is closed under the orientation rules;

(Invariant) The arrowheads and tails in M are invariant in all the MAGs consistent with P with the local marks at X .

(Chordal) the circle component in M is chordal;

(Balanced) for any three vertices A,B,C, if A∗→ B ◦−∗C, then there is an edge between A and C with an arrowhead
at C, namely, A∗→ C. Furthermore, if the edge between A and B is A→ B, then the edge between A and C is either
A→ C or A◦→ C (i.e., it is not A↔ C);

(Complete) For each circle at vertex A on any edge A ◦−∗B in Ms, there exist MAGsM1 andM2 consistent with P
and BK regarding V1, . . . , Vs with A←∗B ∈ E(M1) and A→ B ∈ E(M2);

(P6) We can always obtain a MAG consistent with M by transforming the circle component into a DAG without
unshielded colliders and transforming A◦→ B as A→ B.

Proof. The first five properties directly follow Thm.1 of Wang et al. (2022b). The property P6 follows Lemma 16.1 of Wang
et al. (2022b).

Since the proof of existence of MAGs is involved in Thm. 2, we first present an algorithm to obtain a MAG valid to M in
Alg. 2, with the proof for the validity of MAG construction in Lemma 7.

At first, we present Lemma 2, 3 and 4 following Wang et al. (2022b).
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Algorithm 2: Orient a maximal local MAG of X as a MAG

input: Maximal local MAG M, potential adjustment set W and corresponding W̄ according to Def. 4, block set S
1: for ∀K ∈ PossDe(W̄,M[−S]) and ∀T ∈ S such that K ◦−∗ T in M, orient it as K ←∗T (the mark at T remains);
2: update the subgraph M[PossDe(W̄,M[−S])] as follows until no feasible updates: for any two vertices Vi and Vj such

that Vi ◦−◦ Vj , orient it as Vi → Vj if (1) FVi\FVj ̸= ∅ or (2) FVi = FVj as well as there is a vertex
Vk ∈ PossDe(W̄,M[−S]) not adjacent to Vj such that Vk → Vi ◦−◦ Vj , where FVi

= {V ∈ S | V ∗−◦ Vi in M};
3: orient the circles on the remaining ◦→ edges as tails;
4: in subgraph M[PossDe(W̄,M[−S])], orient the circle component into a DAG without new unshielded colliders;
5: in subgraph M[−PossDe(W̄,M[−S])], orient the circle component into a DAG without new unshielded colliders.

output: A MAGM

Lemma 2. Consider a maximal local MAG M. If there is a possible directed path from A to B in M, then there is a minimal
possible directed path from A to B in M.

Proof. Suppose the possible directed path p = ⟨V0(= A), V1, . . . , Vm(= B)⟩. If p is minimal, the result trivially holds. If
not, we can always find a subpath ⟨Vi, Vi+1, . . . , Vj⟩, j − i ≥ 2 such that any non-consecutive vertices are not adjacent
except for an edge between Vi and Vj . We will show the impossibility of Vi ←∗Vj in M. Suppose Vi ←∗Vj in M. Note there
is a circle/tail at Vi on the edge between Vi and Vi+1 due to the possible directed path p. If j − i = 2, there is always an
edge Vi+1 ←∗Vi+2(= Vj) due to the balance/closed property of M, contradicting the possible directed path p. If j − i > 2,
due to the non-adjacency of the Vj and Vi+1, there is either Vi → Vi+1 → . . . Vj or Vi ←∗Vi+1 identified in P . The latter
case is impossible due to the possible directed path p. For the former case, there is an almost directed or directed cycles,
contradiction. Hence, the edge between Vi and Vj is either Vi → Vj or Vi ◦−∗ Vj , we thus find a shorter possible directed
path ⟨V0, V1, . . . , Vi, Vj , Vj+1, . . . , Vm⟩ in M. Repeat this process until obtaining a possible directed path such that there is
not a proper sub-structure where any non-consecutive vertices are not adjacent except for an edge between endpoints. This
path is a minimal possible directed path.

Lemma 3. Consider a maximal local MAG M. If there is A∗→ B in M, then there is an edge as A∗→ V for any V in a
connected circle component with B in M, and A and B are not in a connected circle component.

Proof. It is a direct conclusion of the balanced property of M. We first consider any vertex V1 that has a circle edge with B,
there is A∗→ B ◦−◦V1 in M. According to the balanced property, there is A∗→ V1. Similarly, we can conclude that the result
holds for all the vertices in a circle component with B. Hence A and B cannot be in a connected circle component.

Lemma 4. Consider a maximal local MAG M of X and a block set S. Denote FVi = {V ∈ S | V ∗−◦ Vi in M} for
∀Vi ∈ PossDe(W̄,M[−S]). For an edge J ◦−◦K in M[PossDe(W̄,M[−S])], if it is oriented as J → K in the second
step of Alg. 2, then there is a vertex Vm ∈ PossDe(W̄,M[−S]) such that there is a minimal path Vm ◦−◦ . . . ◦−◦ V1(=
J) ◦−◦ V0(= K),m ≥ 1 in M[PossDe(W̄,M[−S])] where FVm

⊃ FVm−1
= · · · = FV0

.

Proof. A directed edge J → K is oriented in the second step only if in two situations: (1) FK ⊂ FJ ; (2) FK = FJ and
there is another vertex L ∈ PossDe(W̄,M[−S]) that is not adjacent to K and there is L → J . Note L → J can only be
oriented in the second step since (1) the edges connecting PossDe(W̄,M[−S]) and S is not oriented in the first step; (2)
L→ J cannot appear in M for otherwise either J → K or J ←∗K is identified in M due to the closed property of M.

If FV0
⊂ FV1

, there is a desired path where m = 1. If FV0
= FV1

, we could find V2 ∈ PossDe(W̄,M[−S]) that is not
adjacent to V0 and there is V2 → V1 oriented in the second step. Similarly, we conclude either FV1 ⊂ FV2 , in which case
there is a desired path where m = 2; or FV1 = FV2 , in which case there is V3 ∈ PossDe(W̄,M[−S]) that is not adjacent
to V1 and there is V3 → V2 oriented in the second step. Repeat the process and we can always find an uncovered path
Vm ◦−◦ . . . ◦−◦ V1(= J) ◦−◦ V0(= K),m ≥ 1 in M[PossDe(W̄,M[−S])] where FV0

= · · · = FVm−1
⊂ FVm

. Finally, it
suffices to prove that the path is minimal. If not, there exists a sub-structure Vi ◦−◦ Vi+1 ◦−◦ · · · ◦−◦ Vj , j > i+ 2 where
any two non-consecutive vertices are not adjacent except for an edge between Vi and Vj . Since only the edges containing
vertices in S are transformed in the first step, if there is a non-circle edge between Vi and Vj before the second step, the edge
is non-circle in M, in which case Vi and Vj cannot be in a circle component according to Lemma 3, contradicting with the
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circle path comprised of Vi, Vi+1, . . . , Vj . Hence there is Vi ◦−◦ Vj in M, in which case the chordal property of M is not
fulfilled. Thus the path can only be minimal.

Lemma 5. Given the first two conditions of Thm. 2 fulfilled, there are neither edges oriented with different directions nor
new unshielded colliders generated in the second step of Alg. 2 if and only if M[PossDe(W̄,M[−S])] is bridged relative to
S in M.

Proof. We first prove the “if” statement. We prove that there are neither edges oriented with different directions nor new
unshielded colliders generated in the second step of Alg. 2, respectively. For simplicity, denote M[PossDe(W̄,M[−S])] by
M1.

Suppose we orient both J → K and J ← K in the second step. According to Lemma 4, if we orient J → K in the second
step, there is a minimal circle path V0 ◦−◦ V1 ◦−◦ · · ·Vm−1(= J) ◦−◦ Vm(= K) where FV0

⊃ FV1
= · · · = FVm

. If we also
orient J ← K in the second step, there is another minimal circle path Vm−1(= J) ◦−◦ Vm(= K) ◦−◦ · · · ◦−◦ Vn, n > m
in M1 where FVm−1 = FVm = · · · = FVn−1 ⊂ Fn. Note Vm+1 is adjacent to Vm but not adjacent to Vm−1, while Vm−2

is adjacent to Vm−1 but not adjacent to Vm, hence Vm−2, Vm−1, Vm, Vm+1 are distinct vertices. According to Lemma 3,
there cannot be non-circle edge between the variables in the circle path. Also note no circle edges in M1 are oriented in
the first step. Hence the circle component in M1 after the first step is still chordal. Hence V0 ◦−◦ V1 ◦−◦ · · · ◦−◦ Vn is
also a minimal circle path, otherwise there is a circle cycle whose length is larger than 3 without a chord because this
cycle must contain Vm−2, Vm−1, Vm, Vm+1 where Vm−2 is not adjacent to Vm and Vm−1 is not adjacent to Vm+1. Since
V0, · · · , Vn ∈ PossDe(W̄,M[−S]), V0 and Vn are not bridged relative to S, contradicting with that M[PossDe(W̄,M[−S])]
is bridged relative to S in M.

Suppose there is a new unshielded collider A → B ← C generated in the second step. According to Lemma 4 there is
a minimal path F1 → · · · ,→ Fm(= A) → B,m ≥ 2 and a minimal path V1 → · · ·Vn(= C) → B,n ≥ 2 such that
FF1

⊃ FF2
= · · · = FB and FV1

⊇ FV2
= · · · = FB . A and C are evidently different vertices that are not adjacent.

In this case there is a circle path p : F1 ◦−◦ · · · ◦−◦ Fm(= A) ◦−◦ B ◦−◦ Vn(= C) ◦−◦ · · · ◦−◦ V1 in M such that
FF1
⊃ FF2

= · · · = FB = · · · = FV2
⊂ FV1

. According to Lemma 3, there are no non-circle edges between the variables
in p. In this case, there is always a minimal circle path from F1 to V1 such that F1 and V1 are not bridged relative to S in M,
contradiction.

We then prove the “only if” statement. Suppose M[PossDe(W̄,M[−S])] is not bridged relative to S in M.

If M[PossDe(W̄,M[−S])] is not bridged relative to S in M, we will prove the result by showing that there are either edges
oriented with difference direction or new unshielded colliders generated in the second step of Alg. 2.

Suppose two vertices J,K in M[PossDe(W̄,M[−S])] are not bridged relative to S due to the minimal circle path J(=
V0) ◦−◦ V1 · · ·Vn ◦−◦ K(= Vn+1) in M[PossDe(W̄,M[−S])]. There are two possible cases (they possibly happen
simultaneously). One is that there exists 0 ≤ s ≤ n such that FVs

̸⊆ FVs+1
and FVs+1

̸⊆ FVs
. The other is that there exists

1 ≤ s ≤ n such that FVs ⊂ FVs−1 and FVs ⊂ FVs+1 .

For the first case, suppose there are two vertices T1, T2 ∈ S such that T1 ∈ FVs
\FVs+1

and T2 ∈ FVs+1
\FVs

. In the second
step of Alg. 2, we will orient both Vi → Vj and Vi ← Vj . For the second case, suppose a vertex T1 ∈ FVs−1

\FVs
and a

vertex T2 ∈ FVs+1\FVs . In the second step of Alg. 2, there is Vs−1 → Vs ← Vs+1 oriented. As the path is minimal, a new
unshielded collider is generated.

Lemma 6. Given the three conditions in Thm. 2 fulfilled with S, for any K ∈ PossDe(W̄,M[−S]) and any T1, T2 ∈ S
such that there is T1 ∗−◦K ◦−∗ T2 in M, T1 is adjacent to T2.

Proof. If K ∈ W̄, according to Def. 4, T1, T2 ∈ SK . According to the second condition of Thm. 2, T1 is adjacent to T2. It
suffices to prove the result for K ∈ PossDe(W̄,M[−S])\W̄.

According to the definition of PossDe(W̄,M[−S])\W̄, we can always find a minimal possible directed path p1 from a
vertex in W̄ to K in M[−S] where each non-endpoint vertex does not belong to W̄. We suppose p1 is from Ft ∈ W̄
to K comprised of V0(= Ft), V1, · · · , Vs(= K). And according to the definition of W̄, there is a collider path as
X(= F0)↔ · · ·Ft−1 ←◦( or ↔)Ft, where each non-endpoint belongs to W. Next we will prove that there is always an
edge V0(= Ft) ◦−∗ T1. At first, we name a fact. For any vertex Vi, 0 ≤ i ≤ s, there is not an edge as Vi → T1 in M due to
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the first condition of Thm. 2. We discuss the possible edge between Ft and V1: (1). Ft → V1; (2). Ft ◦−◦ V1; (3). Ft◦→ V1.
We will prove that for any case, there is T1 ∗−◦ V0(= Ft).

(1). If there is Ft → V1 in M, there is Ft → V1 → · · · → Vs(= K) in M since p1 is a minimal possible directed path in M
and the closed property of M. Note there is Vs(= K) ◦−∗ T1 in M, T1 is adjacent to Vs−1 because there is not a structure as
A→ B ◦−∗ C in M where A and C are not adjacent as a result of closed property of M. Since there is T1 ∗−◦ Vs(= K) in
M and due to P2 of M in Lemma 1, there must be T1 ← Vs−1 or T1 ∗−◦ Vs−1. Since for any vertex Vi, 0 ≤ i ≤ s there is
not an edge as T1 ← Vi in M, the edge can only be T1 ∗−◦ Vs−1. Repeat this process for Vs−1, Vs−2, · · · , Ft(= V0), we can
prove that there is T1 ∗−◦ V0(= Ft).

(2). If there is Ft ◦−◦ V1 in M, p1 must be in the form of V0(Ft) ◦−◦ V1 ◦−◦ · · · ◦−◦ Vj◦→ Vj+1 → · · · → Vs, 1 ≤ j ≤ s.
Note there is a possible directed path p1[V1, Vs]

⊕
Vs ◦−∗ T1 from V1 to T1, V1 is a possible ancestor of T1 in M. And

according to the definition of S, V1 is a possible ancestor of Y in M. At first, V1 cannot be adjacent to Ft−1. Otherwise,
there is Ft−1 ←∗V1 due to the balanced property of M and Ft−1 ←∗Ft ◦−◦ V1. And since V1 is a possible ancestor of Y in
M, V1 ∈W ∪ W̄. However, V1 cannot belong to W for otherwise V1 ∈ S according to Def. 4 and thus V1 cannot be in
PossDe(W̄,M[−S])\W̄. V1 cannot belong to W̄ since p1 does not go through any vertex in W̄ except for the endpoints.
Hence V1 cannot belong to W ∪ W̄, contradiction. Hence V1 is not adjacent to Ft−1. In this case, according to the third
condition of Thm. 2, there is Ft ◦−∗ T1 in M, otherwise Ft and K are not bridged relative to S in light of the facts that (1)
p1[Ft, Vs] is a minimal circle path; (2) V1 is not adjacent to Ft−1 ∈ S; (3) there is Vs ◦−∗ T1 ∈ S in M.

(3). If there is Ft◦→ V1, p1 is as Ft◦→ V1 → · · ·Vs due to the closed property of M. We can conclude that there is
V0(= Ft) ◦−∗ T1 with the same proof for the case (1).

Hence, we conclude that there is always V0(= Ft) ◦−∗T1. Similarly, there is always V0(= Ft) ∗−◦T2. In this case, according
to Def. 4, there is T1, T2 ∈ SFt

. Hence that T1 is adjacent to T2 directly follows the second condition of Thm. 2.

Lemma 7. Given the three conditions in Thm. 2 fulfilled with S, we can obtain a MAG consistent with M by Alg. 2.

Proof. The whole proof in this part is comprised of two parts. A. we can obtain a unique graphH without circles by Alg. 2.
B.H is a MAG consistent with M. The unique graph means that we will not orient an edge with two directions.

A. We can obtain a unique graphH without circles by Alg. 2.

We have shown in Lemma 5 that there are neither edges oriented with different directions nor new unshielded collid-
ers generated in the second step of Alg. 2. In the following, we will first prove that A.1. there are not circle edges
connecting M[PossDe(W̄,M[−S])] and M[−PossDe(W̄,M[−S])]. Then, we prove that A.2. the circle component in
M[PossDe(W̄,M[−S])] and A.3. the circle component in M[−PossDe(W̄,M[−S])] are chordal, respectively. Given these
results, the fourth and fifth steps can be executed since every chordal graph has a perfect elimination order, through which
we can orient the chordal graph as a DAG without unshielded colliders. We conclude that we can obtain a unique graphH
without circles by Alg. 2.

A.1. Suppose there is a circle edge A ◦−◦B, where A ∈ PossDe(W̄,M[−S]) and B ̸∈ PossDe(W̄,M[−S]), after the first
third steps of Alg. 2. There must be B ∈ S for otherwise there is B ∈ PossDe(W̄,M[−S]) due to A ◦−◦B. However, for
such a case, the circle edge should have been transformed to A←◦B in the first step of Alg. 2, contradiction.

A.2. Denote M̄ the obtained graph after the first three steps of Alg. 2. We will prove that the circle component in
M̄[PossDe(W̄,M[−S])] is chordal.

Suppose the circle component in M̄[PossDe(W̄,M[−S])] is not chordal, there is V0 ◦−◦ V1 ◦−◦ · · · ◦−◦ Vn ◦−◦ V0, n ≥ 3,
where there is not a circle edge between every two unconsecutive vertices. There must exist non-circle edges between the
unconsecutive vertices in this cycle, otherwise it is a cycle of length four or more without a chord in M, contradicting with the
chordal property of M. Hence, we can always find a minimal sub-structure Vk ◦−◦Vk+1 ◦−◦· · ·◦−◦Vm ← Vk, 0 ≤ k < m ≤ n
without other directed edges between any two vertices among Vk, · · · , Vm except for a directed edge between Vm and Vk

(we suppose it Vm ← Vk without loss of generality), and there is not a proper sub-structure satisfying the conditions above.
According to Lemma 3, Vk → Vm can only be a circle edge in M. Hence in M there is Vk ◦−◦ Vk+1 ◦−◦ · · · ◦−◦ Vm ◦−◦ Vk.
Since the circle component in M in chordal, the length of the sub-structure can only be three. Hence it holds m = k+ 2 and
there is Vk ◦−◦ Vk+1 ◦−◦ Vk+2 ← Vk in M̄[PossDe(W̄,M[−S])]. Next, we will prove its impossibility.

We first prove that the edge Vk+2 ← Vk cannot be oriented by the first step of Alg. 2. If it is, then there is Vk+2 ∈
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PossDe(W̄,M[−S]) and Vk ∈ S. Note there is Vk+1 ◦−◦ Vk+2 in M, there must be Vk+1 ∈ S for otherwise there is
Vk+1 ∈ PossDe(W̄,M[−S]) and thus Vk+1 ← Vk is oriented in the first step of Alg. 2. However, when Vk+1 ∈ S, there is
Vk+2 ← Vk+1 oriented in the first step of Alg. 2. Hence that Vk+2 ← Vk is oriented in the first step of Alg. 2 is impossible
to obtain a sub-structure Vk ◦−◦ Vk+1 ◦−◦ Vk+2 ← Vk in M̄[PossDe(W̄,M[−S])].

Thus Vk+2 ← Vk is only possible oriented in the second step. Due to Vk ◦−◦Vk+1 ◦−◦Vk+2 in M̄[PossDe(W̄,M[−S])], there
is FVk

= FVk+1
= FVk+2

. As Vk → Vk+2 is oriented in the second step, according to Lemma 4, there exists a minimal path
Ft ◦−◦ · · ·F1(= Vk) ◦−◦ F0(= Vk+2) in M[PossDe(W̄,M[−S])] such that FFt

⊃ FFt−1
= · · · = FF1

= FF0
. Evidently

F2 is adjacent to Vk+1, otherwise Vk → Vk+1 is also oriented. Since (1) FF1
(FVk

) = FF2
= FVk+1

, (2) there is not an
edge oriented as different directions in the second step of Alg. 2 according to Lemma 5, and (3) F2 is not adjacent to Vk+2,
there can only be F2 ◦−◦ Vk+1 in M[PossDe(W̄,M[−S])]. We find a sub-structure F2 ◦−◦ Vk+1 ◦−◦ Vk ← F2 such that
FF2 = FVk+1

= FVk
. Similar to the previous proof, there is F3 ◦−◦ Vk+1 in M[PossDe(W̄,M[−S])] where FF3 = FVk+1

.
Repeat this process until Ft and we conclude that there must be Ft ◦−◦ Vk+1. Since FFt ⊃ FFt−1 = · · · = FF1 = FF0 , it
is oriented as Ft → Vk+1 in the second step of Alg. 2, in which case Vk+1 → Vk+2 is also oriented in the second step of
Alg. 2 due to the non-adjacency of Ft and Vk+2, contradiction.

A.3. In the first four steps of Alg. 2, the circle edges in M[−PossDe(W̄,M[−S])] is never transformed. Due to
the chordal property of M and the fact that the subgraph of a chordal graph is also chordal, the circle component in
M[−PossDe(W̄,M[−S])] is chordal.

According the three parts above, it is guaranteed that a graph could be output without different orientations on one edge by
Alg. 2.

B.H is a MAG consistent with M.

It evidently follows thatH has the non-circle marks in M. Hence, it suffices to prove thatH is a MAG consistent with P . To
prove it, we construct an auxiliary graph H0 by transforming all the bi-directed edges K ↔ T in H which are K◦→ T
in M to K → T . According to Alg. 2 to obtain H from M, there is K ∈ PossDe(W̄,M[−S]) and T ∈ S. We first show
that (B.1.) H0 is a MAG consistent with P . Then we show that (B.2.) H can be obtained fromH0 by transformation that
preserves the property being a MAG consistent with P .

B.1. We will prove H0 is a MAG consistent with P by showing that H0 can be seen as a graph obtained from M by
transforming ◦→ to→ and transforming the circle component into a DAG without unshielded colliders, through which we
can get the desired result by Property (P6) of M according to Lemma 1.

It is direct that H0 has the non-circle marks in M and there are no new bi-directed edges in H0 relative to M since all
additional bi-directed edges in H relative to M are possibly introduced in only the first step of orientation process of H,
which have been transformed to directed edges inH0. Besides, all the circles on ◦→ edges in M are oriented as tails inH0.
In the following it suffices to show thatH0 is also a graph oriented from M by orienting the circle component in M into a
DAG without unshielded colliders.

Hence, we only consider the circle component in M. We divide it into two parts, one is the circle component in
M[PossDe(W̄,M[−S])], denoted by CC1; and the other is the circle component in M[−PossDe(W̄,M[−S])], denoted by
CC2. Evidently, the set of vertices in CC2 is V(M)\PossDe(W̄,M[−S]). In the following we will prove that inH0 both
CC1 and CC2 are oriented to DAGs without new unshielded colliders and there are no new unshielded colliders or directed
or almost directed cycles comprised of the vertices in both CC1 and CC2.

We first consider the orientation inH0 of the edges in CC1 in the process of obtainingH from M and transformingH toH0.
In Step 3, if there is an edge ◦→, then the two vertices cannot be connected in the circle component, hence the edges in
CC1 cannot be oriented in Step 3. Hence, according to Alg. 2, the edges in CC1 can only be oriented by either Step 2 or
Step 4. There are no new unshielded colliders or directed or almost directed cycles oriented in the edges of CC1 by the
three following facts. (1). There are no new unshielded colliders or directed or almost directed cycles in the edges of CC1

oriented by Step 2 according to Lemma 5. (2). There are no unshielded colliders or directed or almost directed cycles in the
edges of CC1 oriented in Step 4. (3). There are no new unshielded colliders or directed or almost directed cycles in edges of
CC1 oriented by both Step 2 and Step 4 due to the balanced property of M and the impossibility of the transformation of
circle edges to bi-directed edges.

Then we consider the orientation in H0 of the edges in CC2. The edges in CC2 totally follows Step 5 of Alg. 2, which
evidently does not introduce new unshielded colliders or directed or almost directed cycles.
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Finally, we consider the circle edges in M connecting K ∈ PossDe(W̄,M[−S]) and T ∈ V(M)\PossDe(W̄,M[−S]).
Suppose K ◦−◦ T where K ∈ PossDe(W̄,M[−S]) and T ∈ V(M)\PossDe(W̄,M[−S]). In this case there can only be
T ∈ S, otherwise there is also T ∈ PossDe(W̄,M[−S]) due to K ◦−◦ T where K ∈ PossDe(W̄,M[−S]), contradicting
with T ∈ V(M)\PossDe(W̄,M[−S]). Thus for all the circle edges in M connecting K ∈ PossDe(W̄,M[−S]) and
T ∈ V(M)\PossDe(W̄,M[−S]), in Step 1 of Alg. 2 we will orient it as K ← T due to T ∈ S, and we remain this
directed edge when obtainingH0 fromH. Hence there cannot be a directed or almost directed cycle containing the vertices
in both PossDe(W̄,M[−S]) and V(M)\PossDe(W̄,M[−S]) in H0. Next we prove that there is not a new unshielded
collider containing the vertices in both PossDe(W̄,M[−S]) and V(M)\PossDe(W̄,M[−S]). According to the construction
process, for any circle edge K ◦−◦ T where K ∈ PossDe(W̄,M[−S]) and T ∈ S, there is K ← T oriented. Hence, it
there is a new unshielded collider, it is as T → K1 ← K2 or T1 → K ← T2. We will prove the impossibility of both the
cases. T → K1 ← K2 is evidently impossible for otherwise there is K1 → K2 oriented in Step 2, which contradicts with
Lemma 5 that one edge cannot be oriented as different direction. The impossibility of T1 → K ← T2 is due to Lemma 6.
Hence there are not new unshielded colliders or directed or almost directed cycles comprised of the verttices in both CC1

and CC2.

Hence, we prove that the graphH0 constructed based onH can also be seen as a graph obtained from M by transforming
all edges ◦→ to→ and orienting the circle component into a DAG without unshielded colliders. By Property P6 of M
according to Lemma 1,H0 is a MAG consistent with P .

B.2. We will prove thatH can be obtained fromH0 by transformation that preserves the property being a MAG consistent
with P .

Note that the only difference betweenH andH0 is that for ∀K ∈ PossDe(W̄,M[−S]) and ∀T ∈ S such that K◦→ T in
M, there is K → T inH0 but K ↔ T inH. Denote the set of different edges inH0 by Edge(H0) = {K → T inH | K ∈
PossDe(W̄,M[−S]), T ∈ S,K◦→ T in M}. We could obtainH fromH0 by transforming these edges to bi-directed edges.
We transform one edge one time. At first, we select the edge K → T in Edge(H0) according to the selection criterion that
(1) we select K that is not an ancestor of any other V1 such that there is an edge V1 → V2 in Edge(H0); and (2) given
K selected in the first step, we select T that is not a descendant of any other V2 such that there is an edge K → V2 in
Edge(H0). Then we obtain Edge(H1) by deleting K → T from Edge(H0). By such operation, we obtain a new graph
H1 and Edge(H1). Repeat the process above and we could obtain a series of graphsH0,H1, · · · ,Hm,Hm+1(= H). We
prove the desired result by induction. GivenH0 is a MAG consistent with P , we will show that for anyHi andHi+1, where
0 ≤ i ≤ m, ifHi is a MAG, thenHi+1 is a MAG Markov equivalent toHi. Suppose the edge that will be transformed in
Hi is K → T . According to Lemma 1 of Zhang & Spirtes (2005), given Hi is a MAG, it suffices to show that (1) there
is no directed path from K to T in Hi other than K → T ; (2) for any A → K in Hi, A → T is also in Hi; and for any
B ↔ K in Hi, either B → T or B ↔ T is in Hi; (3) there is no discriminating path for K on which T is the endpoint
adjacent to K inHi.

(1) For the sake of contradiction, suppose there is a directed path from K to T in Hi other that K → T , we suppose
the minimal directed path of this path is K(= F0) → F1 → · · · → Fm → T (= Fm+1). Since we only transform
directed edges to bi-directed edges in the whole process, the directed path is also in H0. We first prove that there must
be a vertex Fn, 1 ≤ n ≤ m such that Fn ∈ S. Otherwise, all of F1, · · · , Fm belong to PossDe(W̄,M[−S]) since
F0 ∈ PossDe(W̄,M[−S]) and there is a possible directed path comprised of F0, F1, · · · , Fm in M. (i.) If there is Fm → T
in M, it contradicts with the first condition of Thm. 2. (ii.) If there is Fm ◦−◦ T in M, there is Fm ← T oriented in the first
step of Alg. 2. Since we never reverse an edge in the process fromH0 toH, there cannot be an edge Fm → T inHi. (iii.)
If there is Fm◦→ T in M, there is Fm → T in H0 and Hi. According to the edge selection criterion, when there is both
Fm → T and K → T in Hi, we transform Fm → T ahead of K → T due to K → F1 → · · · → Fm, contradiction. For
the other situations for the edge between Fm and T in M, there cannot form an edge Fm → T inHi. Hence we conclude
there is a vertex Fn, 1 ≤ n ≤ m such that Fn ∈ S.

Without loss of generality, we suppose Fn ∈ S and Fl ̸∈ S,∀1 ≤ l ≤ n − 1. We first prove there is not a vertex
Fl, 1 ≤ l ≤ n− 1 adjacent to T . If there is, since Fl → · · · → Fm → T inH0, there is Fl → T inH0 due to the ancestral
property. In this case there is a directed path F1 → · · ·Fl → T without vertices in S in H0, which implies that there is
a possible directed path where the sub-path from F1 to Fl is minimal and any variables on the path do not belong to S,
contradicting the result we prove above. Hence Fl cannot be adjacent to T for ∀1 ≤ l ≤ n− 1. (i.) If n ≥ 2, (i.a.) if there
Fn ◦−∗ T or Fn → T in M, there is an uncovered possible directed path comprised of K,F1, · · · , Fn, T in M where F1 is
not adjacent to T . In this case K◦→ T has been oriented as K → T in M byR9 since M is closed under the orientation
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rules, contradiction. (i.b.) If there is Fn ←∗T in M, note the non-adjacency of T and Fn−1. Due to the edge T∗→ Fn

and the complete property of M, the mark at Fn on the edge between Fn−1 and Fn is identifiable in M. And due to the
possible directed path, there is Fn−1 → Fn in H0, there can only be Fn−1 → Fn or Fn−1◦→ Fn in M. The former case
contradicts with the first condition of Thm. 2 due to Fn−1 ∈ PossDe(W̄,M[−S]) and Fn ∈ S. For the latter case, the edge
Fn−1 → Fn should be transformed to bi-directed edge ahead of K → T , hence there cannot be an edge Fn−1 → Fn in
Hi, contradiction. (ii.) If n = 1, there is K → T ′ → T in H, where T ′ ∈ S. In this case if there is not K◦→ T ′ in M,
there cannot be an edge K → T ′ inHi; if there is K◦→ T ′ in M, there is thus both K → T ′ and K → T inH0, K◦→ T ′

is transformed to bi-directed ahead of K → T due to T ′ → T , thereby there is not an edge K → T ′ in Hi. Hence there
cannot be a sub-structure K → T ′ → T inHi, contradiction. Hence, there is always a contradiction if there is a directed
path from K to T inHi.

(2) In this part, we prove that if there is an edge A → K in Hi, there is A → T in Hi; if there is B ↔ K in Hi, either
B → T or B ↔ T is inHi. Note there is K◦→ T in M, where K ∈ PossDe(W̄,M[−S]) and T ∈ S.

It suffices to show that for A such that A→ K or A↔ K inHi, A is adjacent to T . According to the ancestral property of
Hi, we get the desired result due to K → T inHi.

We discuss the possible cases of the edge between A and K in M. If there is A∗→ K◦→ T in M, due to the closed property
of M, A is adjacent to T . Hence the result evidently holds.

If there is A◦−◦K in M, we discuss whether A ∈ S. If not, then A ∈ PossDe(W̄,M[−S]) due to K ∈ PossDe(W̄,M[−S]).
Suppose T is not adjacent to A for contradiction. In this case, we orient K → A in the second step due to T ∈ FK\FA,
there is thus K → A inH0. Considering we never reverse a directed edge in the whole procedure, there is not A→ K inHi.
And since only the directed edge connecting a vertex in S and a vertex in PossDe(W̄,M[−S]) is possibly converted to a bi-
directed edge in the process fromH0 toHi, A← K cannot be transformed to A↔ K due to A,K ∈ PossDe(X,Mi[−S]),
so that A ↔ K is not in Hi. Hence when A ◦−◦K in Mi and A ̸∈ S, there is not an edge A → K or A ↔ K in Hi. If
A ∈ S, according to Alg. 2 to obtainH from M, there is A← K inH. And since in the process of transformingH0 toH
we only transform directed edges to bi-directed edges, there is A← K inHi, in which case there is not A→ K or A↔ K
inHi.

If there is A←◦K in M, there is A← K inH0. Since we never reverse a directed edge in the whole process, and only the
directed edge connecting a vertex in S and a vertex in PossDe(W̄,M[−S]) is possibly converted to a bi-directed edge in the
process from H0 to H, we only need to consider there is A ↔ K in Hi, where A ∈ S. In this case, there is A, T ∈ SK .
According to Lemma 6, A is adjacent to T . The result holds.

For the other cases for the edge between A and K in M except for A∗→ K, A ◦−◦K, and A←◦K, there cannot be an edge
A→ K or A↔ K inHi. We thus have considered all the possible cases and conclude that if there is A→ K inHi, there
is A→ T inHi; if there is A↔ K inHi, either A→ T or A↔ T is inHi according to the balanced property.

(3) In this part, we prove that there is no discriminating path for K on which T is the endpoint adjacent to K inHi. The
proof of this part refers to the proof of (T3) of Theorem 3 by Zhang (2008a) with some modifications.

Suppose a path p = (V0, V1, · · · , Vn = K,T ) in Hi which is a discriminating path for K. Without loss of generality,
suppose p is the shortest path. According to the construction of Edge(Hi), there is K◦→ T in M. We derive a contradiction
by showing that p is already a discriminating path in M. Hence there cannot be an edge K◦→ T in M, otherwise if i ≥ 1
(there is local BK) it will be oriented as K → T by R′

4 due to the closed property of M. There is Vn−1 ↔ K in Hi, for
otherwise there would be a directed path K → Vn−1 → T from K to T other than the edge K → T inHi, contradiction. It
follows that every edge on the subpath from V1 to K is bi-directed inHi.

Next we will prove that there is an edge V0∗→ V1 in M. Suppose for contradiction, the edge is either V0 ◦−◦ V1 or V0 ←◦V1.

(i). Suppose V0 ◦−◦ V1 in M. There cannot be an edge V1 ↔ V2 in M, for otherwise there is V0 ↔ V2 in M due to the
balanced property of M, which contradicts with the shortest discriminating path p. Since we do not transform a circle
edge in M to a bi-directed edge, the edge between V1 and V2 are either V1◦→ V2 or V1 ←◦V2. For the former case, V0

is adjacent to V2, for otherwise V0∗→ V1 ←∗V2 is identifiable in P and M since V0∗→ V1 ↔ V2 in Hi and Hi is a
MAG Markov equivalent toH0 which is consistent with P , contradicting with V0 ◦−◦ V1 in M. According to the balanced
property of M, there is V0∗→ V2 in M thus there is V0∗→ V2 in Hi, in which case there is a shorter discriminating path
without V1, contradiction. For the latter case, there is V0 ◦−◦ V1 ←◦V2 in M. As shown by the orientation procedure, we
only add an arrowhead at the vertex in PossDe(W̄,M[−S]), and we never orient an edge connecting two vertices from
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PossDe(W̄,M[−S]) as bi-directed, hence V0∗→ V1 and V1 ↔ V2 cannot be oriented at the same time in the process of
obtainingH fromH0.

(ii). Suppose V0 ←◦V1. Due to the fact that a bi-directed edge is oriented in Hi compared to M only if the edge
connects a vertex in PossDe(W̄,M[−S]) and a vertex in S, and the fact that an arrowhead is added only at the vertex in
PossDe(W̄,M[−S]), there is V0 ∈ S and V1 ∈ PossDe(W̄,M[−S]). According to the first condition of Thm. 2, there is
not V1 → T in M(= H). In light of the fact that we never transform an edge to a directed edge in the process fromH0 toH,
there can only be V1◦→ T in M. According to Def. 4, V0, T ∈ SV1

. According to the definition of discriminating path, V0 is
not adjacent to T , which contradicts with Lemma 6. Hence V0 ←◦V1 in M is impossible.

We conclude that there is V0∗→ V1 in M. The remaining part is to prove by induction that for every 1 ≤ i ≤ n− 1, Vi is a
collider and a parent of T in M. V1 → T is evident due to the non-adjacency of V0 and T . Note T ∈ C and V1 → T in
M, thus V1 ̸∈ PossDe(X,M[−C]) due to PossDe(W̄,M[−S]) ∩ Pa(S,M) = ∅ according to the first condition of Thm. 2.
Hence, there cannot be an edge V1 → V2 in M since the edge cannot be oriented as V1 ↔ V2 inHi. If there is not a collider
at V1 in M, there is V1◦→ V2. It is impossible because we never transform it to bi-directed in the process from M to H0

i

as V1 ̸∈ PossDe(X,M[−C]). Hence the collider is identifiable in M. Similarly, we could prove V2 → T in M. Then we
prove there is V2 ←∗V3 in M. If the edge is a circle edge, then there must be V1 ◦−◦ V3 according to the balance property, in
which case there is a shorter discriminating path, contradiction. Then we consider the edge is V2∗→ V3. Due to T ∈ C
and PossDe(X,M[−C]) ∩ Pa(C,M) = ∅, V2 ̸∈ PossDe(X,M[−C]). Hence V2∗→ V3 in M can never be transformed to
bi-directed since arrowhead is added at only the vertex in PossDe(X,M[−C]). Thus V1 ↔ V2 ←∗V3 is identifiable in M.
By such way, we prove that the path is a discriminating path for K in M. Thus there cannot be an edge K◦→ T in M,
otherwise it will be oriented as K → T byR′

4 if i ≥ 1 and oriented as K → T or K ↔ T if i = 0 since M is closed under
the orientation rules, contradicting with K◦→ T in Mi.

Hence, we conclude thatH is a MAG Markov equivalent toH0. Since we have proven in B.1. thatH0 is a MAG consistent
with P ,H is a MAG consistent with P . And according to Alg. 2 to obtainH,H has the non-circle marks in M. HenceH is
a MAG consistent with M.

We then show two results of Wang & Zhou (2021), which are used in the main proof.

Definition 9 (Critical vertex for (X,Y ); Wang & Zhou (2021)). In a maximal local MAG M, Ft is called a critical vertex for
(X,Y ) if there is a path X ↔ F1 ↔ · · · ↔ Ft−1 ↔ Ft or X ↔ F1 ↔ · · · ↔ Ft−1 ←◦Ft, t ≥ 1, where each non-endpoint
variable is an ancestor of X or Y in M, and there is a non-empty variable set S relative to Ft defined as follows: S ∈ S if
and only if in M (1) S is a child of X,F1, · · · , Ft−1, (2) there is one minimal possible directed path from Ft to Y in the
form of Ft ◦−∗ S · · ·Y .

Proposition 3 (Wang & Zhou (2021)). Let M be a maximal local MAG of X based on a PAG P , supposeM a MAG valid
to M. Denote D-SEP(X,Y,MX˜ ) by D. If Ft is not a critical vertex in M and Ft ̸∈ Anc(Y,M), then Ft ⊥ Y | D, X in
M.

Note Proposition 3 is the part 1 of Theorem 3 of Wang & Zhou (2021). There are two modifications. One is in their paper
they consider local MAG. Here the maximal local MAG is a special case of local MAG, hence the result holds also. The
other is that a new notion PD-SEP(X,Y,M) is used in their paper for their settings. Such a notion is redundant here. Hence
we do not mention that.

Lemma 8. Suppose a maximal local MAG M and a MAGM consistent with M. There is PossDe(X,M) = De(X,M).

Proof. It is evident that PossDe(X,M) ⊇ De(X,M). It suffices to show PossDe(X,M) ⊆ De(X,M). Suppose a vertex
V ∈ PossDe(X,M). Then there is a possible directed path from X to V in M. According to Lemma 2, there is a minimal
possible directed path p1 from X to V in M. Since the mark at X is definite in M, p1 starts with a directed edge out of
X . According to the completeness property of M, p1 can only be a directed path in M. Hence V ∈ De(X,M). We thus
conclude PossDe(X,M) ⊆ De(X,M). The proof completes.

Lemma 9. Given a maximal local MAG M where X ∈ Anc(Y,M) and a potential adjustment set W. Suppose the
three conditions in Theorem 2 are satisfied and we obtain a MAGM according to Algorithm 2. If there is some vertex
V ∈W ∪ W̄, there always exists a collider path from X to V beginning with an arrowhead at X where each non-endpoint
belongs to D-SEP(X,Y,MX˜ ).
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Proof. Denote the constructed MAG byM. According to the definition of potential adjustment set W and W̄, there is
a collider path as X(= F0) ↔ F1 ↔ · · · ↔ Ft−1 ←∗V , where F1, F2, · · · , Ft−1 ∈W. If each vertex in this path is an
ancestor of Y inM, the result evidently holds. Hence we consider if there exists a vertex that is not an ancestor of Y in the
collider path X ↔ F1 ↔ · · · ↔ Ft−1 ←∗V . We prove that in this case, we could always find another collider path from X
to Y beginning with an arrowhead at X where each non-endpoint is an ancestor of Y .

Without loss of generality, suppose Fi, 1 ≤ i ≤ t − 1 be the first vertex from X to V that is not an ancestor of Y inM.
According to Def. 5, (1) there cannot be an edge as X → Fs, 1 ≤ s ≤ i− 1, (2) there exists one minimal possible directed
path p from Fi to Y that do not go through the vertex in W̄. Suppose p = ⟨Fi, V1, · · · , Y ⟩. We first show that there is
Fi ◦−∗ V1 in M. It is evidently not in the form of Fi ←∗V1 since p is a minimal possible directed path. If it is Fi → V1 in M,
since p is minimal possible directed and M is closed under orientation rules, there must be Fi → V1 → · · · → Y in M, thus
Fi is an ancestor of Y inM, contradiction. Hence the edge can only be Fi ◦−∗ V1 in M.

Considering Fi−1 ↔ Fi ◦−∗ V1 and Fi+1∗→ Fi ◦−∗ V1 in M, there is Fi−1∗→ V1 and Fi+1∗→ V1 in M according to the
balance property of M. At first, we prove that Fi is not a critical vertex here. Otherwise, suppose a minimal possible directed
path from Fi to Y comprised of Fi, V1, · · · , Vk−1, Y where V1 ∈ Chd(X,M). By Alg. 2, we only transform K◦→ T as
K ↔ T when K ∈ PossDe(W̄,M[−S]) and T ∈ S. Since there is Fi◦→ V1 in M and Fi ∈W, Fi◦→ V1 is transformed
to Fi → V1 inM. In this case, there must be Fi → V1 → · · · → Y inM since the path is a minimal path, otherwise there
will be new unshielded colliders inM relative to M, impossibility. There is thus Fi ∈ Anc(Y,M), contradiction. Fi cannot
be a critical vertex here. It is easy to prove that there exists Fj , 0 ≤ j ≤ i − 1 such that there is an edge Fj ↔ V1, and
a vertex Fk, i < k ≤ t − 1 such that there is an edge V1 ↔ Fk or an edge Ft∗→ V1 (otherwise there is a discriminating
path for Fi, hence the circle at Fi ◦−∗ V1 should be identified in P , we do not show the details). In this case, if V1 ̸∈W,
then V1 ∈ W̄, contradiction. Hence V1 could only belong to W. Then we consider whether V1 ∈ Anc(Y,M), in which
case V1 ∈ D-SEP(X,Y,MX˜ ). If it is, we find a new collider path X ↔ · · · ↔ Fj ↔ V1 ↔ Fk ↔ · · ·Ft−1 ←∗Ft or
X ↔ · · · ↔ Fj ↔ V1 ←∗Ft. If V1 ̸∈ Anc(Y,M), we conclude that V1 is not a critical vertex as the process above. And
similarly, we conclude V2 ∈W and further consider V2. By such way, we could always find a vertex Vt, 1 ≤ t ≤ k − 1
such that there is a collider path X ↔ · · · ↔ Vt ↔ · · · ←∗Ft and the first possible vertex that is not ancestor of Y inM is
only possible in the sub-path from Fi+1 to Ft. If such a vertex exists, Fu, i+ 1 ≤ u ≤ t for example, repeat the process
above and we could find a new collider path. Repeat the process above and we could always find a collider path beginning
with arrowhead at X satisfying that each non-endpoint is an ancestor of Y inM. It is evident that each non-endpoint in this
path belongs to D. Hence there is a collider path from X to V beginning with an arrowhead at X where each non-endpoint
belongs to D.

Lemma 10. If there exists a minimal collider path in a MAGM consistent with a PAG P , then it is also a collider path in
P .

Proof. Suppose a minimal collider path p inM, we consider its corresponding path in P . If there exists a circle or tail at
the non-endpoint vertex on this path, according to the completeness of FCI (Zhang, 2008a), there exists a MAG Markov
equivalent toM that has a tail there, which contradicts Theorem 2.1 of Zhao et al. (2005) that Markov equivalent MAGs
have the same minimal collider paths. Hence the corresponding path of p in P is also a collider path.

Theorem 2. Given a maximal local MAG M, for any potential adjustment set W, there exists a MAGM valid to M such
that W is an adjustment set inM if there exists a block set S such that

(1) PossDe(W̄,M[−S]) ∩ Pa(S,M) = ∅;

(2) M[SV ] is a complete graph for any V ∈ W̄, where SV = {V ′ ∈ S|V ◦−∗ V ′ in M};

(3) M[PossDe(W̄,M[−S])] is bridged relative to S in M.

Proof. We will prove that W is an adjustment set relative to (X,Y ) in the MAGM obtained by Alg. 2.

The whole proof process is comprised of three parts: (1) for ∀V ∈W, there is V ∈ D or V ⊥ Y | D, X; (2) for ∀V ∈ W̄,
V ̸∈ Anc(Y,M); (3) If V ∈ D, then V ∈W. Then by the first and third parts, we could get the desired results.

(1) For ∀V ∈W, there is V ∈ D or V ⊥ Y | D, X .
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In this part, we first prove that if V ∈W, there is either V ∈ Anc(Y,M) or V ⊥ Y | D, X . According to Def. 5 and
Lemma 8, V ̸∈ De(X,M).

If V ∈ Anc(Y,M), it is evident that V ∈ Anc(Y,M). Hence we only consider V ̸∈ Anc(Y,M) in the following. According
to the condition of W, by Lemma 9, there is a collider path as X(= F0) ↔ F1 ↔ · · · ↔ Ft−1 ←∗V where each
non-endpoint belongs to D.

If the edge between Ft−1 and V is as Ft−1 ←◦V in M, by Alg. 2, there is Ft−1 ← V inM, thereby V ∈ Anc(Y,M). If
the edge is Ft−1 ↔ V in M, according to Def. 5, there exist some minimal possible directed paths from V to Y in M. (i).
If V is a critical vertex, suppose a minimal possible directed path from V to Y comprised of V, V1, · · · , Vk−1, Y where
V1 ∈ Chd(X,M). In this case there must be V ◦→ V1 in M due to the balanced as well as closed property of M and
the definition of critical vertex. By Alg. 2, we orient V ◦→ V1 as V → V1, in this case there is V ∈ Anc(Y,M) (a new
bi-directed edge is additionally introduced only if V ∈ PossDe(W̄,M[−S]), V1 ∈ S, and there is V ◦→ V1 in M. However,
when V ∈ W, V ̸∈ PossDe(W̄,M[−S]), hence the edge can only be oriented as V → V1.). (ii). If V is not a critical
vertex, if V ∈ Anc(Y,M), there is V ∈ D. If V ̸∈ Anc(Y,M), by Proposition 3, it holds V ⊥ Y | D, X .

(2) for ∀V ∈ W̄, V ̸∈ Anc(Y,M).

Suppose there is a vertex V ∈ W̄ ∩Anc(Y,M) such that V ∈ Anc(Y,M) for contradiction. According to the definition of
W̄, for ∀V ∈ W̄, there exists a collider path X(= F0)↔ F1 ↔ · · · ↔ Ft−1 ←∗V where each non-endpoint belongs to
W. If there exists one directed path from V to Y inM, thus there is a minimal directed path from V to Y inM. According
to the condition W̄ ∩ Anc(Y,M) = ∅, there does not exist one directed path from V to Y in M, hence the minimal directed
path inM is not a directed path in M.

If there exists some vertex V ′ ∈ W̄ that does not go through the vertex in W̄ except for V ′ in the path, there is
V ′ ∈ Anc(Y,M). We consider V ′ instead of V . By such operations we could always find a vertex in W̄ that has a minimal
possible directed path to Y inM where each non-endpoint does not belong to W̄. Hence, we suppose there does not exist a
vertex in W̄ in the minimal possible directed path from V to Y without loss of generality. That is, each non-endpoint in the
path does not belong to W̄.

Then there is a minimal directed path from V to Y in M. We consider its corresponding path p in M. Suppose p =
⟨V, V1, · · · , Vk(= Y )⟩, k ≥ 1. p must be a minimal possible directed path from V to Y . Note p is not a directed path in
M, for otherwise it contradicts with the third condition of Def. 5. In light of the closed property of M, there is a vertex
Vs, 1 ≤ s ≤ k in p which is an ancestor of Y in M and any vertex in V, V1, · · · , Vs−1 is not an ancestor of Y in M. If for
any Vi in V1, · · · , Vs−1 there is Vi ̸∈ S, then there is Vs ∈ S according to Def. 4. According to the first step of Alg. 2, there
is Vs−1 ←∗Vs oriented inM, which contradicts with the fact that the corresponding path of p inM is a directed path. If
there is some Vi in V1, · · · , Vs−1 such that Vi ∈ S. Without loss of generality, suppose V1, V2, · · · , Vj−1 ̸∈ S. In this case
there is Vj−1 ← Vj oriented in the first step of Alg. 2 thus there is Vj−1 ← Vj inM, which contradicts with the fact that
the corresponding path of p inM is a directed path. Hence both of the cases are impossible. Hence for any V ∈ W̄, there is
V ̸∈ Anc(Y,M).

(3)D ⊆W. Suppose V ∈ D\W, then there exists a minimal collider path p = X ↔ F1 · · · ↔ Ft−1 ←∗V (= Ft) where
each vertex is an ancestor of Y inM. Without loss of generality, we suppose F1, · · · , Ft−1 ∈ W and V ∈ D\W (if
Fi ̸∈W, we consider Fi instead of V ), we will prove the result by showing V ∈W, which contradicts with V ∈ D\W.
If there is not an edge as X → V , due to the minimal collider path, the collider path p is identifiable in P by Lemma 10.
According to V ∈ D, it follows V ∈ PossAn(Y,M). Since F1, · · · , Ft−1 ∈W, there is V ∈W ∪ W̄. Hence if V ̸∈W,
there is V ∈ W̄. However, as we have shown in the previous part, for V ∈ W̄, V ̸∈ Anc(Y,M), contradiction.

If there is X → V , due to F1, · · · , Ft−1 ∈W and W∩PossDe(X,M) = ∅, there is not an edge as X → Fi, 1 ≤ i ≤ t−1.
Note in Alg. 2 we never orient an edge A◦→ B where A,B ∈W ∪ {X} as bi-directed, thus if X ↔ F1 ↔ · · · ↔ Ft−1

inM is obtained by Alg. 2, there is X ↔ F1 ↔ · · · ↔ Ft−1 in M. Also note we never add an arrowhead at a vertex
in W in a non-circle edge connecting a vertex in W and a vertex not in W. Hence if Ft−1 ←∗V inM, there is either
Ft−1 ←∗V in M, or Ft−1 ◦−◦ V in M. For the former case, since X ↔ F1 · · · ↔ Ft−2 ↔ Ft−1 ←∗V is in M, there is
V ∈W ∪ W̄. And since V ∈ D\W, there is V ∈ W̄ ∩D. However, as we have shown in the previous part, for V ∈ W̄,
V ̸∈ Anc(Y,M), contradiction. For the latter case, since circle edge will only be transformed to directed edge by Alg. 2,
and there is Vt−1 ←∗Vt inM, there is Ft−1 ← V inM. Due to X → V in M, there is Ft−1 ∈ PossDe(X,M). Hence
Ft−1 ∈W ∩ PossDe(X,M), contradiction with the second condition of Def. 5. Hence both of the cases are impossible.
We thus conclude D ⊆W.

26



Estimating Possible Causal Effects with Latent Variables via Adjustment

Combining the first the third results, D ⊆W; and for V ∈W\D, there is V ⊥ Y | D, X . Since W ∩ De(X,M) = ∅,
there is D ∩ De(X,M) = ∅, hence in this case D is an adjustment set relative to (X,Y ) inM. And since V ⊥ Y | D, X
for V ∈W\D, W is also an adjustment set relative to (X,Y ) inM by the following equations∫

W

f(W)f(Y |W, X) dW =

∫
W

f(W)f(Y | D, X) dW

=

∫
D

f(D)f(Y | D, X) dD (∵ W\D ⊥ Y | D, X)

= f(Y | do(X)). (∵ Thm. 1 and (1))

D.3. Proof of Theorem 3

Theorem 3. Given a maximal local MAG M, suppose a MAGM valid to M such that there exists an adjustment set relative
to (X,Y ). Let W be D-SEP(X,Y,MX˜ ). Then W is a potential adjustment set in M and there exists a block set S such
that

(1) PossDe(W̄,M[−S]) ∩ Pa(S,M) = ∅;

(2) M[SV ] is a complete graph for any V ∈ W̄, where SV = {V ′ ∈ S|V ◦−∗ V ′ in M};

(3) M[PossDe(W̄,M[−S])] is bridged relative to S in M.

Proof. Since there exists an adjustment set relative to (X,Y ) inM, there is D-SEP(X,Y,MX˜ )∩De(X,M) = ∅ according
to Thm. 1.

At first, we show that W = D-SEP(X,Y,MX˜ ) is a potential adjustment set as Definition 5 in M, by proving W =

D-SEP(X,Y,MX˜ ) satisfied the three conditions in Def. 5. Note W ∩ W̄ cannot be a non-empty set according to the
definition of W and W̄.

For the first condition, consider V ∈W = D-SEP(X,Y,MX˜ ). According to the definition of D-SEP(X,Y,MX˜ ), there is
a collider path from X to V where each non-endpoint belongs to D-SEP(X,Y,MX˜ ). Since V ∈W, there is a directed
path from V to Y . Thus there is a possible directed path from V to Y in M. If there exists a minimal possible directed path
from V to Y in M which does not go through the vertex in W̄, then there is V ∈W. If not, it follows that for each possible
directed path from V to Y in M, the path goes through the vertex in W̄. Since there is at least one minimal possible directed
path in M is directed inM, there exists some vertex V ′ ∈ W̄ which is an ancestor of Y . According to Def. 4, there is
V ′ ∈W, thus it holds that V ′ ∈W ∩ W̄, contradiction.

For the second condition, suppose V ∈W ∩ PossDe(X,M). According to Lemma 8, there is V = W ∩ De(X,M) ̸= ∅,
contradicting with Thm. 1.

For the third condition, suppose V ∈ W̄ ∩ Anc(Y,M). There is V ∈ Anc(Y,M). According to the definition of W̄, there
is a collider path in the form of X ↔ · · · ←∗V in M, hence there is V ∈ D(= W) due to V ∈ Anc(Y,M), thus it holds
W ∩ W̄ ̸= ∅, contradiction.

Hence W is a potential adjustment set. Then we set S = Anc(Y ∪W,M) ∩ [PossDe(W̄,M)\W̄] which evidently fulfills
that Anc(Y ∪W,M)∩ [PossDe(W̄,M)\W̄] ⊆ S ⊆ PossAn(Y ∪W,M)∩ [PossDe(W̄,M)\W̄]. It suffices to show that
the three conditions in Thm. 3 are satisfied for such S.

For the first condition, suppose V ∈ PossDe(W̄,M[−S]) ∩ Pa(S,M). Suppose V → S where S ∈ S. According to the
selected S and D = W, there is V ∈ Anc(Y,M). In this case, there can only be V ∈ W̄, for otherwise there is V ∈ S,
which contradicts with V ∈ PossDe(W̄,M[−S]). Note V is an ancestor of Y inM, hence V ∈W. Thus V ∈W ∩ W̄,
contradiction.

For the second condition, if for V ∈ W̄, M[SV ] is not a complete graph, to generate no new unshielded colliders inM
relative to M, there is a directed edge V → V ′ where V ′ ∈ SV , in this case there must be a directed path from V to Y
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inM and thus V ∈ Anc(Y,M). According to the definition of W̄, there is V ∈ W, thus it holds that V ∈ W ∩ W̄,
contradiction. Hence the second condition is satisfied.

For the third condition, if it is not bridged, then there must be vertice V ∈ PossDe(W̄,M[−S]) and S ∈ S such that there is
V → S inM. Note S = Anc(Y ∪W,M) ∩ [PossDe(W̄,M)\W̄]. Hence there can only be V ∈ W̄, for otherwise there
is V ∈ S, which contradicts with V ∈ PossDe(W̄,M[−S]). Similar to the proof of the first condition, in this case there is
V ∈W ∩ W̄, contradiction.

The proof completes.
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