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Abstract
Goal-conditioned Reinforcement Learning (RL)
aims at learning optimal policies, given goals en-
coded in special command inputs. Here we study
goal-conditioned neural nets (NNs) that learn to
generate deep NN policies in form of context-
specific weight matrices, similar to Fast Weight
Programmers and other methods from the 1990s.
Using context commands of the form “generate
a policy that achieves a desired expected return,”
our NN generators combine powerful exploration
of parameter space with generalization across
commands to iteratively find better and better poli-
cies. A form of weight-sharing HyperNetworks
and policy embeddings scales our method to gen-
erate deep NNs. Experiments show how a single
learned policy generator can produce policies that
achieve any return seen during training. Finally,
we evaluate our algorithm on a set of continuous
control tasks where it exhibits competitive perfor-
mance.

1. Introduction
General reinforcement learning (RL) is about training agents
to execute action sequences that maximize cumulative re-
wards (Kaelbling et al., 1996; van Hasselt, 2012; Schmid-
huber, 1990). Goal-conditioned RL agents can learn to
solve many different tasks, where the present task is en-
coded by special command inputs (Schmidhuber & Huber,
1991; Schaul et al., 2015). Upside-down RL (UDRL) (Sri-
vastava et al., 2019; Schmidhuber, 2019) and related meth-
ods (Ghosh et al., 2019), however, use supervised learning
to train goal-conditioned RL agents. UDRL agents receive
command inputs of the form "act in the environment and
achieve a desired return within so much time" (Schmidhu-
ber, 2019). Typically, hindsight learning (Andrychowicz
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et al., 2017; Rauber et al., 2018) is used to transform the RL
problem into the problem of predicting actions, given reward
commands. This is quite powerful. Consider a command-
based agent interacting with an environment, given a random
command c, and achieving return r. Its behavior would have
been optimal if the command had been r. Hence the agent’s
parameters can be learned by maximizing the likelihood of
the agent’s behavior, given command r. Unfortunately, in
the episodic setting, many behaviors may satisfy the same
command. Hence the function to be learned may be highly
multimodal, and a simple maximum likelihood approach
may fail to capture the variability in the data.1

To overcome this limitation, we introduce PoliGen, a novel
method for return-conditioned generation of policies eval-
uated in parameter space. First, we use a Fast Weight Pro-
grammer (FWP) (Schmidhuber, 1992; 1993; Ha et al., 2016)
to generate the parameters of a desired policy, given a “de-
sired return” command. Then, we evaluate the policy using
a parameter-based value function (Harb et al., 2020; Faccio
et al., 2020). This allows for end-to-end optimization of the
return-conditioned generator producing deep NN policies by
matching the commands (desired returns) to the evaluated
returns.

2. Background
We consider a Markov Decision Process (MDP) (Puterman,
2014) M = (S,A, P,R, γ, µ0). At each time step t, an
artificial agent observes a state st ∈ S, chooses an action
at ∈ A, obtains a reward rt = R(st, at) and transitions
to a new state with probability P (st+1|st, at). The ini-
tial state of the agent is chosen with probability µ0. The
behavior of the agent is expressed through its stochastic
policy πθ : S → ∆(A), where θ ∈ Θ are the policy
parameters. If for each state s there is an action a such
that πθ(a|s) = 1, we will call the policy deterministic.
The agent interacts with the environment through episodes,
starting from the initial states, and ending either when the
agent reaches a set of particular states—these can be fail-
ing states or goal states—or when it hits a time horizon
H . We define a trajectory τ ∈ T as the sequence of state-

1Note that in stochastic environments with episodic resets,
certain UDRL variants will fail to maximize the probability of
satisfying their commands (Štrupl et al., 2022).
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action pairs that an agent encounters during an episode in
the MDP τ = (sτ,0, aτ,0, sτ,1, aτ,1, . . . , sτ,T , aτ,T ), where
T denotes the time-step at the end of the episode (T ≤ H).
The return of a trajectory R(τ) is defined as the cumula-
tive discounted sum of rewards over the trajectory R(τ) =∑T

t=0 γ
tR(sτ,t, aτ,t), where γ ∈ (0, 1] is the discount fac-

tor. The RL problem consists in finding the policy πθ∗ that
maximizes the expected return obtained from the environ-
ment, i.e. πθ∗ = argmaxπθ

J(θ):

J(θ) =

∫
T
p(τ |θ)R(τ) dτ, (1)

where p(τ |θ) = µ0(s0)
∏T

t=0 πθ(at|st)P (st+1|st, at) is
the distribution over trajectories induced by πθ in the MDP.

In parameter-based methods (Sehnke et al., 2010; 2008;
Salimans et al., 2017; Mania et al., 2018), at the begin-
ning of each episode, the weights of a policy are sampled
from a distribution νρ(θ), called the hyperpolicy, which
is parametrized by ρ. Typically, the stochasticity of the
hyperpolicy is sufficient for exploration, and deterministic
policies are used. The RL problem translates into finding
the hyperpolicy parameters ρ maximizing expected return,
i.e. νρ∗ = argmaxνρ

J(ρ):

J(ρ) =

∫
Θ

νρ(θ)

∫
T
p(τ |θ)R(τ) dτ dθ. (2)

This objective is maximized by taking the gradient of J(ρ)
with respect to the hyperpolicy parameters. It is intuitive to
observe that, when the hyperpolicy becomes deterministic
and the policy is stochastic, the dependency on ρ is lost and
the policy parameters θ can be directly maximized using
Equation 1. Since the optimization problem is episodic, we
can set the discount factor γ to 1.

3. Fast Weight Programmers
Fast Weight Programmers (FWPs) (Schmidhuber, 1992;
1993) are NNs that generate changes of weights of another
NN conditioned on some contextual input. In our UDRL-
like case, the context is the desired return to be obtained
by a generated policy. The outputs of the FWP are the
policy parameters θ ∈ Θ. Formally, our FWP is a function
Gρ : Rnc −→ Θ, where c ∈ Rnc is the context-input
and ρ ∈ P are the FWP parameters. Here, we consider a
probabilistic FWP of the form gρ(θ|c) = Gρ(c) + ϵ, with
ϵ ∼ N (0, σ2I) and σ is fixed. In this setting, the FWP
conditioned on context c induces a probability distribution
over the parameter space, similar to the one induced by the
hyperpolicy in Section 2. Using the FWP to generate the
weights of a policy, we can rewrite the RL objective, making
it context-dependent:

J(ρ, c) =

∫
Θ

gρ(θ|c)
∫

T
p(τ |θ)R(τ) dτ dθ. (3)

Compared to Eq. 2, J(ρ, c) induces a set of optimization
problems that now are context-specific 2. Here, J(ρ, c) is
the expected return for generating a policy with a genera-
tor parametrized by ρ, when observing context c. Instead
of optimizing Eq. 2 using policy gradient methods, we are
interested in learning a good policy through pure supervised
learning by following a sequence of context-commands of
the form “generate a policy that achieves a desired expected
return.” Under such commands, for any c, the objective
J(ρ, c) can be optimized with respect to ρ to equal c. FWPs
offer a suitable framework for this setting, since the genera-
tor network can learn to create weights of the policy network
so that it achieves what the given context requires.

4. Deep Policy Generators (PoliGen)
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Figure 1. PoliGen generates policies using a Fast Weight Program-
mer (hypernetwork) conditioned on a desired return and evaluates
the resulting policy using a parameter-based value function based
on fingerprinting. This enables training using supervised learning.

Here we develop PoliGen, our algorithm to generate poli-
cies that achieve any desired return. In the supervised
learning scenario, it is straightforward to learn the pa-
rameters of the FWP that minimize the error LG(ρ) =
Ec∈D,θ∼gρ(·|c)[(J(θ)−c)2], where the context c comes from
some set of possible commands D. This is because in super-
vised learning J(θ), the expected return, is a differentiable
function of the policy parameters, unlike in general RL.
Therefore, to make the objective differentiable, we learn
an evaluator function Vw : Θ −→ R parametrized by w
that estimates J(θ) using supervised learning (Faccio et al.,

2Note the generality of Eq. 3. In supervised learning, common
FWP applications include the case where g is deterministic, θ are
the weights of an NN (possibly recurrent), p(τ |θ) is the output of
the NN given a batch of input data, R(τ) is the negative supervised
loss.
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2020). This function is a map from the policy parameters to
the expected return. Once V is learned, the objective LG(ρ)
can be optimized end-to-end, like in the supervised learning
scenario, to directly learn the generator’s parameters. Con-
cretely, we minimize LG(ρ) = Ec∈D[(Vw(Gρ(c)) − c)2]
to learn the parameters ρ. Our method is described in Al-
gorithm 1 and consists of three steps. First, in each it-
eration, a command c is chosen following some strategy.
Ideally, to ensure that the generated policies improve over
time, the generator should be instructed to produce larger
and larger returns. We discuss command strategies in the
next section. The generator observes c and produces pol-
icy πθ which is run in the environment. The return and
the policy (r, θ) are then stored in a replay buffer. Sec-
ond, the evaluator function is trained to predict the return
of the policies observed during training. This is achieved
by minimizing MSE loss LV (w) = E(r,θ)∈B [(r−Vw(θ))

2].
Third, we use the learned evaluator to directly minimize
LG(ρ) = Er∈B [(r − Vw(Gρ(r)))

2].

Scaling to deep policies Both generating and evaluating
the weights of a deep feedforward MLP-based policy is
difficult for large policies. The sheer number of policy
weights, as well as their lack of easily recognizable structure,
requires special solutions for generator and evaluator. To
scale FWPs to deep policies, we rely on the relaxed weight-
sharing of hypernetworks (Ha et al., 2016) for the generator,
and on parameter-based value functions (Faccio et al., 2020)
using a fingerprinting mechanism (Harb et al., 2020) for the
evaluator. We discuss these two approaches in Appendix B.

5. Experiments
We empirically evaluate PoliGen as follows: First, we show
competitive performance on common continuous control
problems. Then we use the the learned fingerprinting mech-
anism to visualize the policies created by the generator over
the course of training, and investigate its learning behavior.

5.1. Results on continuous control RL environments

We evaluate our method on continuous control tasks from
the MuJoCo (Todorov et al., 2012) suite. Parameter-based
Augmented Random Search (ARS) (Mania et al., 2018)
serves as a strong baseline. We also compare our method
to the Deep Deterministic Policy Gradient (DDPG) algo-
rithm (Silver et al., 2014), another popular method for con-
tinuous control tasks. In the experiments, all policies are
MLPs with two hidden layers, each having 256 neurons.
Our method uses the same set of hyperparameters in all
environments. For ARS, we tune step size, population size,
and noise independently for each environment. For DDPG,
we use the established set of default hyperparameters. De-
tails can be found in Appendix B. We find that while always
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Figure 2. Performance of policies created with PoliGen (our
method), ARS and DDPG over the course of training. Curves
show the mean return and 95% bootstrapped confidence intervals
from 20 runs as a function of total environment interactions.

asking to generate a policy with return equal to the best
return ever seen, there is a slight advantage when asking
for more than that. In particular, we demonstrate that a
simple strategy such as “produce a policy whose return is
20 above the one of the best policy seen so far” can be very
effective. We present an ablation showing that this strategy
is slightly better than the strategy “produce a policy whose
return equal to the one of the best policy seen so far” in
Appendix C.4. This suggests that our method’s success is
partially due to its ability to learn to explore performance
improvements. For our method and ARS, we use observa-
tion normalization (see (Mania et al., 2018; Faccio et al.,
2020)). Furthermore, following ARS, the survival bonus of
+1 for every timestep is removed for the Hopper-v3 envi-
ronment, since for parameter-based methods it leads to the
local optimum of staying alive without any movement.

In tasks without fixed episode length, quickly failing bad
policies from the early stages of training tend to dominate
the replay buffer. To counteract this, we introduce a recency
bias when sampling training batches from the buffer, as-
signing higher probability to newer policies. It is treated
as an additional hyperparameter. In Appendix C.2 we pro-
vide an ablation showing the importance of this component.
Figure 2 shows our main experimental result. Our Algo-
rithm 1 performs competitively in the tested environments.
In Swimmer and Hopper environments, our method learns
faster than ARS, while eventually reaching the same asymp-
totic performance. In MountainCarContinuous, DDPG is
unable to explore the action space, and parameter-based
methods quickly learn the optimal policy. For a comparison
to UDRL with episodic resets, see Appendix C.1.

5.2. Analyzing the generator’s learning process

The probing actions created by the fingerprinting mecha-
nism of the value function Vw can be seen as a compact
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Figure 3. Policies generated by the generator during different
stages of training. The generator is able to produce policies across
the whole performance spectrum. To visualize this, each generator
is given 20 return commands ranging from the minimum to the
maximum possible return in the environment. The color shows
the achieved return of each policy. The positions are determined
by the probing actions (obtained by the final critic Vw). The back-
ground shows the policies in the buffer, i.e., policies observed
during training, and total reward. Probing actions are reduced to
two dimensions by applying PCA to the buffer policies.

meaningful policy embedding useful to visualize policies
for a specific environment. In Figure 3 we apply PCA to
probing actions to show all policies in the buffer after train-
ing, as well as policies created by the generator at different
stages of training when given the same range of return com-
mands. Policies are colored in line with achieved return.
The generator’s objective can be seen as finding a trajectory
through policy space, defined by the return commands, con-
necting the lowest with the highest return. In Figure 3, this
corresponds to a trajectory going from a dark to a bright
area. Indeed, we observe that the generator starts out being
confined to the dark region (producing only bad policies)
and over the course of training finds a trajectory leading
from the darkest (low return) to the brightest (high return)
regions. Figure 4 shows the the returns achieved by policies
that are created by a fully trained generator when given
a range of return commands. This highlights a feature of
the policy generator: while most RL algorithms generate
only the best-performing policy, our generator is in princi-
ple able to produce by command policies across the whole
performance spectrum. For the environments Swimmer and
Hopper, this works in a relatively reliable fashion. In Hop-
per the return used does not include survival bonus. A return
of 2000 without survival bonus corresponds roughly to a
return of 3000 with survival bonus. It is worth noting, how-
ever, that in some environments it is hard or even impossible
to achieve every given intermediate return. This might be

the case, for example, if the optimal policy is much simpler
than a slightly sub-optimal one, or if a large reward is given
once a goal state is reached. We can observe this effect
for the environments InvertedPendulum and MountainCar.
There the generator struggles to produce the desired identity
of return command and achieved return—instead we get
something closer to a step function. However, this does not
prevent our method from quickly finding optimal policies
in these environments. More details in Appendix C.3.
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Figure 4. Achieved returns (mean of 10 episodes) of policies cre-
ated by fully trained generators as a function of the given return
command. A perfect generator would produce policies that lie on
the diagonal identity line (if the environment permits such returns).
For each environment, results of five independent runs are shown.

6. Conclusion and Future Work
Our PoliGen is an RL framework for generating policies
yielding given desired returns. Hypernetworks in conjunc-
tion with fingerprinting-based value functions can be used to
train a Fast Weight Programmer through supervised learning
to directly generate parameters of a policy that achieves a
given return. By iteratively asking for higher returns than
those observed so far, our algorithm trains the generator
to produce highly performant policies from scratch. Em-
pirically, PoliGen is competitive with ARS and DDPG on
continuous control tasks, and able to generate policies with
any desired return. Future work will consider context com-
mands other than those asking for particular returns, as well
as generators based on latent variable models (e.g., con-
ditional variational autoencoders) allowing for capturing
diverse sets of policies, to improve exploration of complex
RL environments.
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Algorithm 1 PoliGen with return commands

Input: Differentiable generator Gρ : R → Θ with parameters ρ; differentiable evaluator Vw : Θ → R with parameters
w; empty replay buffer D
Output : Learned Vw ≈ V (θ)∀θ, learned Gρ s.t. V (Gρ(r)) ≈ r∀r
Initialize generator and critic weights ρ,w, set initial return command c = 0
repeat

Sample policy parameters θ ∼ gρ(θ, c)
Generate an episode s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT with policy πθ

Compute return r =
∑T

k=1 rk
Store (r, θ) in the replay buffer D
for many steps do

Sample a batch B = {(r, θ)} from D
Update evaluator by stochastic gradient descent: ∇w E(r,θ)∈B [(r − Vw(θ))

2]
end for
for many steps do

Sample a batch B = {r} from D
Update generator by stochastic gradient descent: ∇ρ Er∈B [(r − Vw(Gρ(r)))

2]
end for
Set next return command c using some strategy

until convergence

A. Related Work
Policy conditioned value functions Compared to standard value functions that are conditioned on a specific policy, policy
conditioned value functions can generate values across several policies (Faccio et al., 2020; Harb et al., 2020). This has been
used to directly maximize the value using gradient ascent in the policy parameters. In the context of the present work, this
can be used to evaluate any policy generated by our policy generator. In contrast to previous work, this allows for generating
policies of an arbitrary quality in a zero-shot manner, without any gradient-based iterative training procedure.

Hindsight and Upside Down RL Upside Down RL (UDRL) transforms the RL problem into a supervised learning
problem by conditioning the policy on commands such as the instruction to achieve a desired return (Schmidhuber,
2019; Srivastava et al., 2019). The required dataset of states, actions, and rewards can be collected online with iterative
improvements to the policy (Srivastava et al., 2019), or offline (Janner et al., 2021; Chen et al., 2021). UDRL methods are
related to hindsight RL when the instructed commands correspond to desired goals in the environment (Schmidhuber, 1991;
Kaelbling, 1993; Andrychowicz et al., 2017; Rauber et al., 2018). Instead of optimizing the policy to achieve a desired
reward in action space, our method PoliGen evaluates the generated policies in command space. This is done by generating
a command-conditioned policy that is then evaluated using a parameter-based value function and trained to match the
command to the evaluated return.

Fast Weight Programmers and Hyper Networks The idea of using a neural network (NN) to generate weights for
another NN dates back to Fast Weight Programmers (FWPs) (Schmidhuber, 1992; 1993), later scaled up to deeper neural
networks under the name of HyperNetworks (Ha et al., 2016). While in traditional NNs the weight matrix remains fixed
after training, FWPs make these weights context dependent. More generally, FWPs can be viewed as a neural function
that involves multiplicative interactions and parameter sharing (Kirsch & Schmidhuber, 2021). When updated in recurrent
fashion, FWPs can be used as memory mechanisms. Linear transformers are a type of FWP where information is stored
through outer products of keys and values (Schlag et al., 2021). FWPs are used in the context of memory-based meta
learning (Schmidhuber, 1993; Miconi et al., 2018; Gregor, 2020; Kirsch & Schmidhuber, 2021; Irie et al., 2021; Kirsch
et al., 2022), predicting parameters for varying architectures (Knyazev et al., 2021), and reinforcement learning (Gomez &
Schmidhuber, 2005; Najarro & Risi, 2020; Kirsch et al., 2022). In contrast to all of these approaches, ours uses FWPs to
generate policies conditioned on a command (target return).
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B. Implementation details
B.1. HyperNetwork

The idea behind certain feed-forward FWPs called hypernetworks (Ha et al., 2016) is to split the parameters of the generated
network θ into smaller slices sl. A shared NN H with parameters ξ receives as input a learned embedding zl and outputs the
slice sl, i.e. sl = Hξ(zl) for each l. Following (von Oswald et al., 2020), further context information can be given to H
in form of an additional conditioning input c, which can be either either scalar or vector-valued: sl = Hξ(zl, c). Then the
weights are combined by concatenating all generated slices:

θ =
[
s1 s2 s3 . . .

]
. (4)

The splitting of θ into slices and the choice of H depend on the specific architecture of the generated policy. Here we are
interested in generating MLP policies whose parameters θ consist of weight matrices Kj with j ∈ {1, 2, . . . , nK}, where
nK is the policy’s number of layers. We use an MLP Hξ to generate each slice of each weight matrix: the hypernetwork
generator Gρ splits each weight matrix into slices sjmn ∈ Rf×f , where j is the policy layer, and m,n are indexes of the
slice in weight matrix of layer l. For each of these slices, a small embedding vector zjmn ∈ Rd is learned. Our network Hξ

is an MLP, followed by a reshaping operation that turns a vector of size f2 into an f × f matrix:

sjmn = Hξ(z
j
mn, c). (5)

The slices are then concatenated over two dimensions to obtain the full weight matrices:

Kj =


sj11 sj12 . . .

sj21 sj22
...

. . .

 . (6)

The full hypernetwork generator Gρ consists of the shared network Hξ, as well as all embeddings zjmn. Its learnable
parameters are ρ = {ξ, zjmn∀m,n, j}.

MLP
re-

shape

Figure 5. Generating a weight matrix K by concatenat-
ing slices that are generated from learned embeddings
z and return conditioning r using a shared network H .

Generator Gρ is supposed to dynamically generate policy parameters,
conditioned on the total return these policies should achieve. The con-
ditioning input c is simply this scalar return command. It is appended
to each learned slice embedding zjmn. The resulting vectors are the
inputs to the network H . Figure 5 shows a diagram of this process.

For the the slicing to work, the widths and heights of the weight ma-
trices have to be multiples of f . For the hidden layers of an MLP, this
is easily achieved since we can freely choose the numbers of neurons.
For the input and output layers, however, we are constrained by the
dimensions of environmental observations and actions. To accom-
modate any number of input and output neurons, we use dedicated
networks Hi and Ho for the input and output layers. The generated
slices have the shape f × ni for the input layer (ni is the number of
input neurons) and no × f for the output layer (no is the number of
output neurons).

B.2. Policy Fingerprinting

We use a policy fingerprinting mechanism (Harb et al., 2020) as an
effective method to evaluate the performance of multiple NNs through
a single function. Policy fingerprinting works by giving a set of
learnable probing states as input to the policy πθ. The resulting outputs of the policy—called probing actions—are
concatenated and given as input to an MLP U that computes the prediction Vw(θ). Here the set of parameters w of this
evaluator consists of the MLP parameters ϕ and all the parameters of the probing states. When training Vw, the probing
states learn to query the policy in meaningful situations, so that the policy’s success can be judged by its probing actions.
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Fingerprinting is similar to a previous technique (Schmidhuber, 2015) where an NN learns to send queries (sequences
of activation vectors) into another already trained NN, and learns to use the answers (sequences of activation vectors) to
improve its own performance. Figure 1 shows a diagram of our method with a hypernetwork generator and a fingerprinting
value function.

The benefits of policy fingerprinting over directly observing policy weights become apparent as soon as we have at least
one hidden layer in an MLP policy: the weights then have a large number of symmetries, i.e., many different weight
configurations that are entirely equivalent in terms of the input-output mapping of the network. The main symmetries reflect
possible permutations of hidden neurons and scalings of the weight matrices (Kůrková & Kainen, 1994).

The probing actions of the fingerprinting mechanism are invariant with respect to such symmetries. In fact, they are invariant
even with respect to the general policy architecture. This entails advantages not only for the value function Vw, but also
for the generator: the gradients w.r.t. the generator’s weights ρ are obtained by backpropagating through Vw. If Vw is
fingerprinting-based, these gradients will point only in directions which, when followed, actually change the generated
policy’s probing actions. Consequently, the generator will ignore potential policy weight changes that have no effect on the
policy’s probing actions (which are proxies for the policy’s general behavior in the environment).

B.3. Hyperparameters

Here we report the hyperparameters used for PoliGen and the baselines. For DDPG, we use the spinning-up RL implementa-
tion (Achiam, 2018), whose results are on par with the best reported results. For ARS, we use the implementation of the
authors (Mania et al., 2018), adapted to Deep NN policies.

Shared hyperparameters The table below shows hyperparameters relevant to at least two of the three methods. They stay
fixed across environments.

Hyperparameter ARS PoliGen DDPG

Policy Architecture MLP, 2 hidden layers, 256 neurons each, with bias

Policy Nonlinearity tanh ReLU

Value Function Architecture MLP, 2 hidden layers, 256 neurons each, with bias

Value Function Nonlinearity ReLU

Initialization MLPs PyTorch default (for value
function)

PyTorch default (for ac-
tor & critic)

Batch Size 16 128

Optimizer Adam

Learning Rate Actor/Generator 2e-6 1e-3

Learning Rate Value Function 5e-3 1e-3

Exploration Noise Scale tuned (see below) 0.1 in parameter space 0.1 in action space

Update Frequency Actor/Generator every batch every episode every 50 time steps

Update Frequency Value Function every episode every 50 time steps

Number of Actor/Generator Updates 20 50

Number of Value Function Updates 5 50

Replay Buffer Size 10k 100k

Discount Factor 1 0.99

Survival Reward Adjustment True (for Hopper) False

Observation Normalization True False

Environmental interactions 100k for InvertedPendulum and MountCarContinuous, 3M for all other environ-
ments

Hyperparameters for specific algorithms Fixed across environments:
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PoliGen:

• Architecture of the networks H in the generator: MLP with bias, two hidden layers of size 256, ReLU nonlinearity, no
output activation function

• Size of learnable hypernetwork embeddings zjmn: 8

• Size of slices sjmn produced by the hypernetwork: 16× 16

• Number of probing states: 200

• Initialization of probing states: Uniformly random in [0, 1)

• Priority sampling from replay buffer: True, with weights 1/x1.1, where x is the number of episodes since the data was
stored in the buffer

DDPG:

• Start-steps (random actions): 10000 time steps

• Update after (no training): 1000 time steps

• Polyak parameter: 0.995

Tuned hyperparameters For ARS, we tune the following hyperparameters for each environment separately using grid
search:

• Step size for ARS: tuned with values in {1e− 2, 1e− 3, 1e− 4}

• Number of directions and elite directions for ARS: tuned with values in
{[1, 1], [8, 4], [8, 8], [32, 4], [32, 16], [64, 8], [64, 32]}, where the first element denotes the number of directions
and the second element the number of elite directions

• Noise for exploration in ARS: tuned with values in {0.1, 0.05, 0.025}

Here we report the best hyperparameters found for each environment:

ARS Hyperparameter Swimmer Hopper Inverted-
Pendulum

MountainCar-
Continuous

Step Size 0.01 0.01 0.001 0.01

Number of Directions, Number of Elite
Directions

(8, 4) (8, 4) (1, 1) (1, 1)

Exploration Noise Scale 0.05 0.05 0.025 0.05

UDRL For UDRL we use a previous implementation (Srivastava et al., 2019) for discrete control environments, and
implemented additional classes to use it in continuous control tasks with episodic resets (although the original UDRL
report (Schmidhuber, 2019) focused on continuous control in single-life settings without resets). We use the previous
hyperparameters (Srivastava et al., 2019) and tune learning rate (in {1e− 3, 1e− 4, 1e− 5}), activation (ReLU, tanh), and
their “last_few” parameter (1, 10, 100), which is used to select the command for exploration. For Swimmer, we are not able
to reproduce the performance with the original reported hyperparameters. Like for the other algorithms, we use an NN with
2 hidden layers and 256 neurons per layer. Below we report the best hyperparameters found for UDRL.

UDRL Hyperparameter Swimmer Hopper Inverted-
Pendulum

MountainCar-
Continuous

Nonlinearity ReLU ReLU tanh ReLU

Learning Rate 1e-3 1e-5 1e-3 1e-5

Last Few 10 10 1 1
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Figure 6. Performance of policies created with PoliGen (our method), ARS, DDPG and UDRL over the course of training. Curves show
the mean return and 95% bootstrapped confidence intervals from 20 runs as a function of total environmental interactions.

B.4. Generator implementation details

Generating bias vectors Here we describe how to generate the bias vectors of the policies, which is not explicitly
mentioned in section B.1. Analogously to Equations 5 and 6, the embeddings zjmn are fed to a dedicated bias-generating
network Hχ that produces slices of the shape f × 1, and those slices are concatenated. Since we have a two-dimensional
grid of learned embeddings z (see Figure 5), we take the mean across the input dimensions of the concatenated slices so that
we end up with a bias vector (and not a matrix).

B.5. GPU usage / compute

We use cloud computing resources for our experiments. Our nodes have an Intel Xeon 12 core CPU and an NVIDIA Tesla
P100 GPU with 16GB of memory. We were able to run four PoliGen experiments on one node in parallel. Our estimate of
computation time for the main results is 40 node hours.

C. Experimental details
C.1. Additional experimental results

In Figure 6 we provide additional results to compare our method to UDRL with episodic resets. We confirm that UDRL is
not sample efficient for continuous control in environments with episodic resets (Schmidhuber, 2019), in line with previous
experimental results. We argue that the multimodality issue discussed in the introduction is the main issue with UDRL.

C.2. Main experiments on MuJoCo

For ARS and UDRL, the best hyperparameters for each environment are determined by running the algorithm with each
hyperparameter configuration across 5 random seeds. The best configurations are those reported in section B.3 We use them
for the final 20 evaluation runs shown in our main results. For DDPG and PoliGen, we use the same hyperparameters for all
environments. For 10 episodes, Figures 2 and 6 evaluate each run every 10000 time steps for Swimmer and Hopper, every
1000 steps for InvertedPendulum and MountainCarContinuous. Table 1 shows the final return and standard deviation of
each algorithm.
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Table 1. Final return (average over final 20 evaluations)
Environment PoliGen ARS DDPG UDRL
Swimmer-v3 334± 16 342± 21 129± 25 78± 17
MountainCarContinuous-v0 93± 1 55± 33 −1± 0.01 −3± 0.3
Hopper-v3 2589± 300 2340± 199 1634± 1036 1010± 78
InvertedPendulum-v2 980± 40 936± 42 960± 175 219± 299

Obtaining suitable policies from the start Randomly initialized policy generators produce weights far from those
of typical initialization schemes. In particular, the standard PyTorch (Paszke et al., 2019) initialization is uniform
in [−1/

√
n, 1/

√
n], where n is the number of neurons in the previous layer, resulting in a distribution uniform in

[−0.0625, 0.0625] in the second and last layers. Our network tends to generate much larger weights, roughly uniform in
every NN layer. We therefore scale our output such that it is close to the default initialization. Concretely, we multiply for
each layer the output of the generator by 2/

√
n, where n is the number of neurons in the previous layer. Here we provide

an ablation showing that this choice is crucial. Figure 7 shows the importance of scaling the output of the generator in
Swimmer and Hopper. We compare this with and without weighted sampling from the replay buffer. We observe that in
Swimmer, output scaling is very important, while in Hopper, most of the performance gain is due to weighted sampling.
This choice of output scaling is rather heuristic and does not match the standard PyTorch initialization for all environments.
It might happen that a randomly initialized generator produces policies that are difficult to perturb. This exploration issue
seems to cause some difficulties for InvertedDoublePendulum, highlighting a possible limitation of our method.
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Figure 7. Comparison between our algorithm with/without weighted sampling from the replay buffer and output scaling. “No weight”
denotes uniform sampling from the replay buffer. Average over 5 independent runs and 95% bootstrapped confidence intervals.

C.3. Details on generated policy visualization

To create Figure 3, we perform Principal Component Analysis (PCA) on the probing actions of all policies in the buffer after
training. The first two principal components indicate a policy’s position in our visualization. Using Delaunay triangulation,
we assign an area to every policy and color it according to its achieved return. We then take the generator at different stages
of training (of the same run). Each of these generators is given a set of 20 commands, evenly spaced across the range of
possible returns ([−100, 365] for Swimmer, [−100, 3000] for Hopper, [0, 1000] for InvertedPendulum and [−100, 100] for
MountainCarContinuous). The resulting policies are plotted using probing actions on the probing states of the fully trained
value function Vw (and the same PCA).

C.4. Command strategies

In early experiments, we tried an alternative approach using Importance Sampling (Hesterberg, 1988) estimators. Given
a mixture of weights βi(θ), we considered estimators of the form Ĵ(c′, w′) =

∑N
i=1 βi(θi)

p(θi|c′;w′)
p(θi|ci;wi)

ri, which provides
an unbiased estimate of the performance of a policy produced by a generator with parameters w′ and command c′, using
past data derived from old generators with different commands. Maximizing Ĵ(c′, w′) with respect to the command c′

should yield commands encouraging the generator to produce highly performant policies. We tested this using the Balance
Heuristic (Veach & Guibas, 1995) estimator for βk, which is known to have small variance (Papini et al., 2019). However, in
our experiments we observed that generators using such command strategies did not significantly outperform the simple
strategy mentioned earlier.
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Ablation command Figure 8 shows that when choosing the command for exploration there is a slight advantage for
asking the generator for a policy whose return exceeds the best return so far by 20. However, just asking for the maximum
return (drive parameter = 0) is also competitive.
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Figure 8. Comparison of variants of our algorithm with/without drive parameter for command exploration. Average over 5 independent
runs and 95% bootstrapped confidence intervals.

D. Environment details
MuJoCo (Todorov et al., 2012) is licensed under Apache 2.0.


