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Abstract

It remains an open question whether incorpo-001
rating external knowledge benefits common-002
sense reasoning while maintaining the flexi-003
bility of pretrained sequence models. To in-004
vestigate this question, we develop generated005
knowledge prompting, which consists of gen-006
erating knowledge from a language model,007
then providing the knowledge as additional in-008
put when answering a question. Our method009
does not require task-specific supervision for010
knowledge integration, or access to a struc-011
tured knowledge base, yet it improves perfor-012
mance of large-scale, state-of-the-art models013
on four commonsense reasoning tasks, achiev-014
ing state-of-the-art results on numerical com-015
monsense (NumerSense), general common-016
sense (CommonsenseQA 2.0), and scientific017
commonsense (QASC) benchmarks. Gener-018
ated knowledge prompting highlights large-019
scale language models as flexible sources of020
external knowledge for improving common-021
sense reasoning. Our code is available at022
github.com/anonymous_repo.023

1 Introduction024

It remains an open research question whether exter-025

nal knowledge is needed for commonsense reason-026

ing. On one hand, a substantial body of prior work027

has reported that integrating external knowledge028

can help improve task performance (Mitra et al.,029

2019; Bian et al., 2021, inter alia), especially if the030

knowledge is high quality (e.g. hand-crafted by ex-031

perts). On the other hand, recent leaderboards are032

often dominated by large-scale pretrained models033

that are fine-tuned on a target benchmark (Khashabi034

et al., 2020; Lourie et al., 2021), suggesting that035

the benefits of external knowledge may wash away036

as the underlying models increase in size and are037

pretrained on ever larger amounts of raw text.038

Even if external knowledge is found to be ef-039

fective on a particular task, flexibility remains a040

fundamental hurdle to integrating external knowl-041

Figure 1: Generated knowledge prompting involves
(i) using few-shot demonstrations to generate question-
related knowledge statements from a language model;
(ii) using a second language model to make predic-
tions with each knowledge statement, then selecting the
highest-confidence prediction.

edge, as many benchmarks currently lack appropri- 042

ate knowledge bases with sufficient coverage. Fur- 043

thermore, prior methods often require task-specific, 044

custom supervision for knowledge integration (Mi- 045

tra et al., 2019; Chang et al., 2020), introducing a 046

burden for rapidly adapting new pretrained models 047

to a wide variety of tasks. 048

In this paper, we investigate whether external 049

knowledge can be helpful for commonsense rea- 050

soning, even on top of the largest state-of-the-art 051

pretrained models (e.g. T5-11b (Raffel et al., 2019) 052

and its variants), with a focus on four recent com- 053

monsense benchmarks. To facilitate easier adap- 054

tation with any zero-shot or finetuned models, we 055

propose an approach that does not require access 056

to a structured knowledge base or joint finetuning 057

for knowledge integration. 058

The key insight behind our method, Generated 059

Knowledge Prompting (sketched in Figure 1), is 060

that we can generate useful knowledge from a lan- 061

guage model, then provide the knowledge as an in- 062

put prompt that is concatenated with a question. To 063
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Dataset Question / Knowledge Prediction Score

NumerSense the word children means [M] or more kids. one 0.37 | 0.35
The word child means one kid. two 0.91

CSQA She was always helping at the senior center, it brought her what? feel better 0.97 | 0.02
People who help others are usually happier. happiness 0.98

CSQA2 Part of golf is trying to get a higher point total than others. yes 1.00 | 0.00
The player with the lowest score wins. no 1.00

QASC Sponges eat primarily cartilage 0.95 | 0.00
Sponges eat bacteria and other tiny organisms. krill and plankton 0.99

Table 1: Examples where prompting with generated knowledge rectifies model prediction. Each section shows the
correct answer in green, the incorrect answer in red, and the prediction scores from the inference model that only
sees the question (top) and the same model that sees the question prompted with the given knowledge (bottom).

support a variety of settings without finetuning, the064

quality and flexibility of knowledge is crucial. We065

propose a simple, yet effective, method that elicits066

knowledge statements (i.e. knowledge expressed067

as natural language statements) from generic lan-068

guage models in a few-shot setting. Compared to069

prior work that elicits knowledge via clarification070

questions (Shwartz et al., 2020) or contrastive ex-071

planations (Paranjape et al., 2021), our approach072

can generate knowledge flexibly, beyond the scope073

of pre-defined templates (Table 1).074

Experiments show that our method improves075

both zero-shot and finetuned models on numeri-076

cal commonsense (NumerSense (Lin et al., 2020)),077

general commonsense (CommonsenseQA (Talmor078

et al., 2019), CommonsenseQA 2.0 (Talmor et al.,079

2021)), and scientific commonsense (QASC (Khot080

et al., 2020)) benchmarks, setting a new state-of-081

the-art on three of these datasets. It outperforms082

the template-based knowledge generation method083

self-talk (Shwartz et al., 2020), while performing084

comparably to retrieval-based systems.085

We find three factors contribute to the perfor-086

mance of generated knowledge prompting: (i) the087

quality of knowledge, (ii) the quantity of knowl-088

edge where the performance improves with more089

knowledge statements, and (iii) the strategy for090

integrating knowledge during inference. Our quali-091

tative analysis suggests that the generated knowl-092

edge statements cover a variety of types, and can093

transform commonsense question answering to ex-094

plicit reasoning procedures, e.g. deduction, that are095

supported by off-the-shelf and finetuned language096

models.097

2 Generated Knowledge Prompting098

A multiple-choice commonsense reasoning task099

involves predicting an answer a ∈ Aq given a ques-100

tion q ∈ Q, where the set of choices Aq is finite 101

and can vary by question, and both questions and 102

answers are variable-length text sequences. Our 103

method answers commonsense questions in two 104

steps. 105

The first step is knowledge generation, where we 106

use a language model pG(k|q) to generate knowl- 107

edge statements conditioned on the question: 108

Kq = {km : km ∼ pG(k|q),m = 1 . . .M}, 109

where each knowledge statement km is a variable- 110

length text sequence. Intuitively, each statement 111

contains information that is helpful for answering 112

the question (e.g. Table 1). 113

The second step is knowledge integration, where 114

generated knowledge is integrated into the decision 115

process of a language model used for inference, 116

â = argmax
a∈Aq

pI(a|q,Kq) 117

In contrast, the vanilla setting of using the infer- 118

ence model without knowledge is represented by 119

â = argmaxa∈Aq
pI(a|q). 120

Next, we describe the knowledge generation and 121

integration steps in detail. 122

2.1 Knowledge Generation 123

We generate question-related knowledge state- 124

ments by prompting a language model. The prompt 125

consists of an instruction, a few demonstrations that 126

are fixed for each task, and a new-question place- 127

holder. The demonstrations are human-written, and 128

each consists of a question in the style of the task 129

and a knowledge statement that is helpful for an- 130

swering this question. For a given task, we write 131

five demonstrations using the format in Table 2. 132

We write questions (or select them from the train- 133

ing set, when available) that are representative of 134
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Task NumerSense QASC

Prompt Generate some numerical facts about objects. Examples: Generate some knowledge about the input. Examples:

Input: penguins have <mask> wings. Input: What type of water formation is formed by clouds?
Knowledge: Birds have two wings. Penguin is a kind of bird. Knowledge: Clouds are made of water vapor.

... ...

Input: a typical human being has <mask> limbs. Input: The process by which genes are passed is
Knowledge: Human has two arms and two legs. Knowledge: Genes are passed from parent to offspring.

Input: {question} Input: {question}
Knowledge: Knowledge:

Table 2: Prompts for knowledge generation for two of our tasks, NumerSense and QASC. The prompt consists of
an instruction, five demonstrations of question-knowledge pairs, and a new question placeholder. For full prompts
on all the tasks we evaluate on, see Appendix A.2.

challenges posed by the task (e.g. numerical com-135

monsense, scientific commonsense). We pair each136

question with a knowledge statement that turns the137

commonsense problem posed by the question into138

an explicit reasoning procedure, without directly139

answering the question. For example, the knowl-140

edge statement Birds have two wings. Penguin is a141

kind of bird. is helpful for the question Penguins142

have <mask> wings, because it turns the problem143

into deductive reasoning. Meanwhile, Penguins144

have two wings. would be a poor knowledge state-145

ment to demonstrate according to our guideline.146

When generating knowledge for a new question147

q, we plug the question into the placeholder, and148

repeatedly sample generated continuations of this149

prompt to obtain a set of knowledge statements150

Kq = {k1, k2, . . . , kM}. For full prompts on all151

the tasks we evaluate on, see Appendix A.2.152

2.2 Knowledge Integration via Prompting153

In the knowledge integration step, we use a lan-154

guage model – called the inference model – to155

make predictions with each generated knowledge156

statement, then select the highest-confidence pre-157

diction. Specifically, we use each knowledge state-158

ment to prompt the model, forming M knowledge-159

augmented questions:160

q0 = q, q1 = [k1||q], . . . , qM = [kM ||q]161

where [·||·] denotes text concatenation.162

We compute an aggregated score for each answer163

choice a using the augmented question that best164

supports it under the inference model:165

pI(a|q,Kq) ∝ max
0≤m≤M

pI(a|qm). (1)166

Intuitively, this favors knowledge statements that167

strongly support one of the choices.168

The predicted answer is then, 169

â = argmax
a∈Aq

max
0≤m≤M

pI(a|qm), 170

which is the choice that gets most support from one 171

of the knowledge statements. This prediction uses 172

a single knowledge statement, which we refer to as 173

the selected knowledge: 174

k̂ = km̂ where m̂ = argmax
0≤m≤M

max
a∈Aq

pI(a|qm). 175

The inference model may be any existing lan- 176

guage model taken off-the-shelf (i.e. zero-shot) or 177

finetuned on the task. We do not do any further 178

finetuning with knowledge prompting. 179

3 Experimental Setup 180

Here, we describe the implementation details of 181

our method and how they are adapted to each task. 182

For knowledge generation, we use GPT-3 183

(Brown et al., 2020) as the underlying language 184

model, where our few-shot prompting method is 185

most effective. We generate M = 20 knowledge 186

statements for each question with nucleus sampling 187

p = 0.5 (Holtzman et al., 2019), and discard repe- 188

titions and empty strings. Generation is terminated 189

when it exceeds 64 tokens or hits the \n token.1 190

For inference, we use off-the-shelf T5 (Raffel 191

et al., 2019) and GPT-3, as well as finetuned models 192

that are state-of-the-art on each dataset, including 193

UnifiedQA (UQA) (Khashabi et al., 2020) and Uni- 194

corn (Lourie et al., 2021). See details in the task 195

setup below. 196

3.1 Datasets and Task Setup 197

We evaluate our method on four commonsense rea- 198

soning datasets which cover a variety of challenges 199

and problem formats. 200

1An exception is with the CSQA2 dataset, where for the
best results we choose M = 5 and allow for up to 128 tokens
in each generation.
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NumerSense (Lin et al., 2020) consists of numer-201

ical statements about common objects and con-202

cepts where for each sentence we need to recover203

a masked number word. The choices are integers204

ranging from zero to ten, plus the word no, so205

the task can be framed as a multiple-choice prob-206

lem. Since NumerSense is a diagnostic dataset, we207

only use zero-shot inference models, which is the208

current SOTA. We follow Zhang (2021) who uses209

the state-of-the-art zero-shot T5 with text-infilling210

setup and select the choice with highest likelihood211

on its token(s). We also implement zero-shot GPT-212

3 inference, where we plug in each choice to the213

question and compute the choice probability as the214

generative probability of the entire sentence, nor-215

malized over all the choices.216

CommonsenseQA (CSQA) (Talmor et al., 2019)217

is a 5-way multiple-choice QA dataset about com-218

mon world scenarios. We do inference with the219

zero-shot and finetuned T5 models. For zero-shot220

T5, we format the question as text-infilling, and pre-221

dict the choice with highest sequence-to-sequence222

language modeling probability. For finetuned T5223

(including UnifiedQA which is SOTA), we use the224

same setup as Khashabi et al. (2020).225

CommonsenseQA 2.0 (CSQA2) (Talmor et al.,226

2021) is a binary classification dataset where we227

need to judge whether commonsense statements are228

true or false. We only do inference with the fine-229

tuned model, due to poor calibration of zero-shot230

models on this dataset. We use finetuned Unicorn231

(Lourie et al., 2021), which is the current SOTA,232

following the setup in Talmor et al. (2021).233

QASC (Khot et al., 2020) is an 8-way multiple-234

choice QA dataset about grade school science. This235

dataset also includes two pieces of background236

knowledge per question, whose composition fully237

answers the question. We do inference with zero-238

shot T5 and finetuned T5 (including UnifiedQA239

which is SOTA), using the same setups as CSQA.240

3.2 Knowledge Generation Baselines241

We study the impact of our knowledge generation242

method (shorthanded as K) by comparing with the243

following baselines:244

No knowledge (∅) We refer to inference without245

any knowledge statements as the vanilla baseline.246

Random sentences (R) Sampling random sen-247

tences from the language model without condition-248

ing on the question. We use the same implementa-249

tion setup as our knowledge generation method (i.e.250

also using GPT-3, with the same hyperparameters). 251

Context sentences (C) Sampling sentences 252

from the context of the question. This is imple- 253

mented by sampling text continuations of the ques- 254

tion from the language model. We use the same 255

implementation setup as our knowledge generation 256

method. 257

Template-generated knowledge (T ) Self-talk 258

(Shwartz et al., 2020) uses manually-designed tem- 259

plates to elicit knowledge statements from language 260

models. For fair comparison, we use GPT-3 as the 261

knowledge generator in self-talk, and bound the 262

number of generations to M = 20 per question. 263

Templates and other hyperparameters are kept the 264

same as their original paper. 265

Retrieval-based knowledge (IR) Instead of be- 266

ing generated, knowledge can be retrieved from 267

appropriate sources. We consider the following 268

retrieval-based methods. For NumerSense, knowl- 269

edge is retrieved from sentences in Wikipedia and 270

GenericsKB. For CSQA2, we use snippets returned 271

by Google when querying the question. For QASC, 272

we use the associated fact sentences that are used 273

to create each question. 274

4 Experimental Results 275

As we will show, our generated knowledge prompt- 276

ing method sets new state-of-the-art results on most 277

datasets we evaluate on, and works well under both 278

zero-shot and finetuned settings. In particular, our 279

knowledge generation outperforms naive baselines 280

as well as template-based knowledge generation, 281

and is on-par with retrieval-based systems. 282

4.1 Overall Performance 283

Table 3 shows the results on zero-shot and finetuned 284

models following our task setups. 285

New state-of-the-art. We apply our method on 286

top of the same inference model used in the previ- 287

ous state-of-the-art. On NumerSense, we achieve a 288

6% (66.18→ 72.47) improvement over the previ- 289

ous best method based on the zero-shot T5 model. 290

The previous state-of-the-art among non-retrieval 291

methods on CSQA2 is based on the finetuned Uni- 292

corn model, upon which we improve by 2% (70.2 293

→ 73.03). For QASC, the previous best is based 294

on the finetuned UnifiedQA model, upon which we 295

improve by 3% (76.74→ 80.33). 296

Zero-shot settings. Columns A, B1, and D1 297

in Table 3 show that our method substantially 298

improves zero-shot inference models, by 7% to 299
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A B1 B2 C D1 D2

Dataset NumerSense CSQA CSQA CSQA2 QASC QASC
Inference Model T5-11b T5-11b UQA-11b-ft Unicorn-ft T5-11b UQA-11b-ft

dev testcore testall dev dev dev test dev test dev test

K
no

w
le

dg
e

G
en

. (∅) Vanilla baseline 67.5 70.23 64.05 39.89 85.18 69.9 70.2† 48.16 44.89 81.75 76.74
(R) Random sentences 68.5 – – 21.79 85.42 70.37 – 49.35 – 82.18 –
(C) Context sentences 70.5 – – 42.51 85.34 70.92 – 55.83 – 82.61 –
(T ) Template-based – – – 45.37 – – – – – – –
(IR) Retrieval-based – 70.41 65.10∗∗ – – 74.0 73.3†† 76.89 – 90.06 –
(K) Ours 78.0 79.24 72.47 47.26 85.34 72.37 73.03 58.32 55.00 84.02 80.33

prev. SOTA (no IR) – 72.61 66.18∗ – 79.1 (test)# 69.9 70.2† – – 81.75 76.74‡

Table 3: Experimental results of applying different knowledge generation methods on various tasks and inference
models. T5-11b is the zero-shot inference model, whereas other inference models are finetuned based on T5-11b.
We bold the best and underline the second best numbers. Previous SOTA and retrieval-based methods are also
based on the inference model in their corresponding column: * T5-11b 1.1 +digits (Submission by ISI Waltham);
** T5-11b + IR (Yan, 2021); # UQA-11b-ft (Khashabi et al., 2020) (SOTA of single-model methods without
referencing ConceptNet); † Unicorn-ft (Talmor et al., 2021); †† Unicorn-ft + Google snippets (Talmor et al., 2021);
‡ UQA-11b-ft (Khashabi et al., 2020).

10% across NumerSense (64.05→ 72.47), CSQA300

(39.89→ 47.26), and QASC (44.89→ 55.00).301

Finetuned settings. Columns B2, C, and D2 in302

Table 3 indicate that our method consistently im-303

proves upon the vanilla baseline set by finetuned304

inference models (though by smaller margins than305

in the zero-shot settings).306

4.2 Knowledge Generation Methods307

Table 3 reports the performance with different308

knowledge generation baselines. Generally, ran-309

dom sentences barely help and even hurt the in-310

ference model, whereas context sentences of the311

question provide some gain. In contrast, knowl-312

edge generated by our method consistently leads313

to substantial performance improvements, which314

implies that our knowledge is of high quality.315

Our knowledge outperform template generated316

knowledge. We compare our knowledge gener-317

ation method with the template-based self-talk on318

the CSQA dev set. (CSQA is the only task we319

experiment with that has self-talk templates avail-320

able.) Our method leads to a larger improvement321

over the T5-11b baseline than self-talk (by 1.89%),322

showing that it is better at eliciting helpful knowl-323

edge from models.324

Our knowledge is comparable with retrieval-325

based knowledge. On NumerSense, the re-326

trieved knowledge only improves inference per-327

formance by 0.18% on test-core and 1.02% on328

test-all, while our method further outperforms it329

by 8.83% and 7.37%, respectively. This shows330

Figure 2: Performance with different number of gener-
ated knowledge statements per question. Measured on
QASC dev set with the T5-11b inference model.

that knowledge retrieved from a loosely-related 331

knowledge base can be far less useful than our 332

generated knowledge. On CSQA2, although we 333

are not able to beat the web-retrieved knowledge, 334

our method still bridges the performance gap with- 335

out referring to Google search. For QASC, the 336

“retrieved” knowledge is actually gold knowledge 337

from a knowledge base that was used to construct 338

the dataset. As a result, our generated knowledge 339

falls significantly short of the retrieved knowledge. 340

In summary, our generated knowledge is roughly 341

comparable with retrieved knowledge in terms of 342

downstream performance, and is most valuable 343

when there is no appropriate in-domain knowledge 344

base to retrieve from. 345

4.3 Analysis 346

Better performance with more knowledge. 347

We analyze the impact of the number of generated 348

knowledge statements, M , and show the results 349

in Figure 2. Generally, the performance increases 350
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Integration method QASC-dev

ours 58.32
Mixture-of-Experts 56.26
Product-of-Experts 55.94

Table 4: Performance with different knowledge integra-
tion methods (QASC dev set, T5-11b inference model).

Figure 3: Improvement on top of different sizes of in-
ference model. Measured on Numersense dev set.

with the quantity of knowledge statements. It satu-351

rates at M = 20 and begins to decline when more352

knowledge statements are introduced, which may353

be because more noisy knowledge is generated.354

The knowledge integration method. In addi-355

tion to the knowledge integration method described356

in §2.2, we experiment with two alternatives:357

Mixture-of-Experts (MoE) and Product-of-Experts358

(PoE) (Hinton, 2002). These make the following359

modifications to Equation 1, respectively:360

MoE: pI(a|q,Kq) ∝
∑

0≤m≤M
pI(a|qm), (2)361

PoE: pI(a|q,Kq) ∝
∏

0≤m≤M
pI(a|qm). (3)362

The results in Table 4 indicate that our knowledge363

integration method – i.e. adaptively choosing the364

best knowledge to rely on – is best among the three.365

Lightweight models and amplification. We366

found that the size of inference model affects the367

magnitude of improvement. Figure 3 shows the368

NumerSense performance gain on top of differ-369

ent sizes of inference model. As we use smaller370

inference models, the performance gain increases371

drastically. In particular, with our method the small-372

est T5 model is as powerful as the T5-3b baseline,373

and T5-large outperforms the GPT-3 baseline. This374

indicates that model-generated knowledge can en-375

able high performing, yet lightweight, inference376

models. Furthermore, the improvement does not377

diminish as the inference model becomes as big as 378

the knowledge generation model, as the inference 379

by GPT-3 can benefit by 9.0% from the knowl- 380

edge elicited from itself. This indicates that our 381

method can somewhat amplify the useful knowl- 382

edge already possessed by the model, leading to 383

better predictions. 384

4.4 Human Evaluation 385

We conduct a human evaluation on NumerSense 386

and QASC to study the quality of generated knowl- 387

edge and the interpretability of its impact on task 388

performance. 389

Evaluation. We report the quality of knowledge 390

statements along four axes: (1) Grammaticality: 391

whether it is grammatical; (2) Relevance: whether 392

it is relevant to the topic or concepts mentioned on 393

the question; (3) Factuality: whether it is (mostly) 394

factually correct; and (4) Helpfulness: whether it 395

helps answering the question in an either direct or 396

indirect way, and may fall into one of the three cat- 397

egories: helpful (i.e. supports the correct answer), 398

harmful (i.e. negates the correct answer or supports 399

an incorrect answer), or neutral (neither helpful nor 400

harmful). These metrics are adapted from Shwartz 401

et al. (2020) and are defined in Appendix A.3. 402

From each dataset, we sample up to 50 selected 403

knowledge (§2.2) that change the correctness of 404

T5-11b’s prediction (i.e. rectifies model prediction 405

from wrong to right, or misleads model prediction 406

from right to wrong). The knowledge are labeled 407

by two NLP experts and a moderate level of agree- 408

ment was reached (Fleiss Kappa κ = 0.57 (Landis 409

and Koch, 1977)). To ensure objectivity, it is not 410

revealed to the annotators whether the knowledge 411

rectifies or misleads the model prediction. 412

Results. Figure 4 summarizes the results. The 413

vast majority of selected knowledge are grammati- 414

cal and relevant to the question, and 83% of them 415

are factually correct. 72% are seen as being helpful 416

for answering the question according the human 417

evaluators, whereas 13% are harmful. Out of the 418

knowledge statements that rectify the model pre- 419

dictions, 93% are labeled as helpful by the human 420

evaluators; in contrast, when the knowledge state- 421

ment misleads the model, only 21% are labeled 422

as helpful, and 39% harmful. Of the knowledge 423

deemed helpful by human and rectifies model pre- 424

diction, 95% are factual, while of those deemed 425

harmful by human and misleads model prediction, 426

86% are non-factual, suggesting that improving 427
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Figure 4: Human evaluation of generated knowledge. Left: Percentage of good knowledge statements along each
axis. Right: Agreement between human and machine on helpfulness of selected knowledge.

knowledge factuality is a promising path towards428

more helpful knowledge. We also analyzed the non-429

selected knowledge and found that these statements430

have slightly lower factuality and helpfulness than431

the selected knowledge.432

4.5 Qualitative Examples433

Table 5 shows a few examples where the gener-434

ated knowledge rectifies model prediction. Due to435

space constraints we only show the selected knowl-436

edge (§2.2) for each question. In all examples,437

the model without prompted knowledge assigns a438

higher score to an incorrect answer than the cor-439

rect answer, while with knowledge prompting, the440

correct answer is assigned a much higher score.441

Prompting with generated knowledge can trans-442

form commonsense reasoning into explicit reason-443

ing procedures such as paraphrasing, induction,444

deduction, analogy, abductive reasoning, logical445

elimination, negation, and numerical reasoning.446

5 Related Work447

Knowledge can be elicited from pretrained lan-448

guage models. Numerous works have shown that449

pretrained language models implicitly contain large450

a amount of knowledge that can be queried via con-451

ditional generation (Davison et al., 2019; Petroni452

et al., 2019; Jiang et al., 2020). Consequently,453

these models can directly perform inference on454

tasks like commonsense reasoning (Trinh and Le,455

2018; Yang et al., 2020), text classification (Shin456

et al., 2020; Puri and Catanzaro, 2019), and natu-457

ral language inference (Shin et al., 2020; Schick458

and Schütze, 2021). Inspired by these observations,459

we elicit question-related knowledge in an explicit460

form from language models and use them to guide461

the inference.462

Leveraging external knowledge for common- 463

sense reasoning. Some work uses external com- 464

monsense knowledge bases to make improvements 465

on various NLP tasks, including commonsense rea- 466

soning. One approach is to inject commonsense 467

knowledge into language models, either by pretrain- 468

ing on knowledge bases (Ma et al., 2021; Chang 469

et al., 2020; Mitra et al., 2019; Zhong et al., 2019) 470

or finetuning the model so that it can reason with 471

additional retrieved knowledge (Chang et al., 2020; 472

Mitra et al., 2019; Bian et al., 2021). Another di- 473

rection is to ground the question into a knowledge 474

graph and do inference with graph-based reasoning 475

(Lin et al., 2019; Lv et al., 2020; Yasunaga et al., 476

2021). 477

A common prerequisite of these methods is a 478

high-quality, high-coverage, in-domain common- 479

sense knowledge base (Ma et al., 2019). Some 480

commonsense reasoning datasets are derived from 481

existing knowledge bases; for example, Common- 482

senseQA (Talmor et al., 2019) is derived from 483

ConceptNet (Speer et al., 2017), and Social IQA 484

(Sap et al., 2019b) is derived from ATOMIC (Sap 485

et al., 2019a). For such datasets, it is natural to 486

elicit related knowledge from the underlying knowl- 487

edge base that derived them, and typically this 488

would demonstrate considerable gains (Mitra et al., 489

2019; Chang et al., 2020). However, if there is 490

a domain mismatch between the dataset and the 491

knowledge base, such gains tend to diminish (Mi- 492

tra et al., 2019; Ma et al., 2019). This becomes a 493

bottleneck when encountering datasets that have 494

no suitable knowledge base (e.g. NumerSense (Lin 495

et al., 2020) and CommonsenseQA 2.0 (Talmor 496

et al., 2021)), or when the system needs to handle 497

commonsense queries that do not fit in any of the 498

commonsense domains represented by an existing 499

knowledge base. Our work overcomes this diffi- 500
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Dataset Question / Knowledge Prediction Score Reasoning

NumerSense clams have evolved to have [M] shells. no 0.37 | 0.18 Commonsense
Clams have a bivalve shell. two 0.89 Paraphrasing

NumerSense an easel can have [M] or four legs. two 0.45 | 0.45 Commonsense
A tripod is a kind of easel. three 0.46 Induction

CSQA Where does a heifer’s master live? slaughter house 0.89 | 0.01 Commonsense
The master of a heifer is a farmer. farm house 0.92 Deduction

CSQA Aside from water and nourishment what does your
dog need?

walked 0.55 | 0.04 Commonsense

Dogs need attention and affection. lots of attention 0.91 Elimination

CSQA I did not need a servant. I was not a what? in charge 0.47 | 0.32 Commonsense
People who have servants are rich. rich person 0.99 Abduction

CSQA2 Part of golf is trying to get a higher point total than
others.

yes 1.00 | 0.00 Commonsense

The player with the lowest score wins. no 1.00 Negation

CSQA2 Eighth plus eight is smaller than fifteen. yes 0.97 | 0.03 Commonsense
Eighth plus eight is sixteen, which is larger than

fifteen.
no 1.00 Numerical

QASC [M] is used for transportation. plastic 0.41 | 0.12 Commonsense
Bicycles are used for transportation. boats 0.74 Analogy

Table 5: More examples where prompting with generated knowledge reduces the reasoning type and rectifies the
prediction. The first row of each section is the original question and the inference results associated with it; the
second row is a model-generated knowledge statement that prompts the inference model. We show correct answers
in green, incorrect answers in red, and their corresponding scores assigned by the inference model.

culty by leveraging pretrained language models as501

the source of commonsense knowledge.502

Adding generated text during inference. Re-503

cently, several works show that model performance504

on commonsense reasoning can be boosted by aug-505

menting the question with model-generated text,506

such as clarifications, explanations, and implica-507

tions. Self-talk (Shwartz et al., 2020) elicits clari-508

fications to concepts in the question and appends509

them to the inference model input. Contrastive510

explanations (Paranjape et al., 2021) prompts infer-511

ence models with generated explanations that con-512

trast between two answer choices. The aforemen-513

tioned methods depend on task-specific templates514

to inquire the generator, which means they are only515

capable of eliciting a limited variety of knowledge516

and require careful hand-crafting to transfer to new517

tasks. Other explanation-based methods (Latcinnik518

and Berant, 2020; Rajani et al., 2019) finetune the519

generator model so that it produces explanations520

that are used for question augmentation. DynaGen521

(Bosselut et al., 2021) uses pretrained common-522

sense models to generate implications of a question523

and expands the inference input with these gener-524

ations. However, its usage of COMeT (Bosselut525

et al., 2019) as the generator confines its appli-526

cability to the social commonsense domain. Our527

work contributes to this general line of research, yet 528

different from these previous methods that elicit 529

knowledge with task-specific templates or from 530

finetuned knowledge generators, our method re- 531

quires only a few human-written demonstrations in 532

the style of the task, making it much more flexible, 533

easy-to-transfer, and engineering-efficient. 534

6 Conclusion 535

We introduce generated knowledge prompting, a 536

simple method to elicit and integrate knowledge 537

from language models so as to improve perfor- 538

mance on commonsense reasoning tasks. In partic- 539

ular, we generate knowledge statements by prompt- 540

ing a language model with task-specific, human- 541

written, few-shot demonstrations of question- 542

knowledge pairs. We show that knowledge can 543

be integrated by simply plugging it in at inference 544

time, with no need to finetune the model for knowl- 545

edge integration. Our method shows effectiveness 546

across multiple datasets, sets the new state-of-the- 547

art on three commonsense reasoning tasks, and 548

works under a variety of settings. The method’s 549

success highlights language models as sources of 550

flexible, high-quality knowledge for commonsense 551

reasoning. 552
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A Appendix782

A.1 Comparison with Prior Methods783

Table 6 summarizes the comparison between our784

generated knowledge prompting method and prior785

methods that add generated text to an inference786

model for commonsense reasoning tasks. Our787

method is unique because it uses few-shot demon-788

strations to prompt for knowledge generation, and789

can apply to finetuned inference models without790

joint finetuning with knowledge.791

A.2 Prompts for Knowledge Generation792

Table 7 through 10 shows the full prompts for793

knowledge generation that we use for each eval-794

uated task: NumerSense, CSQA, CSQA2, and795

QASC.796

A.3 Human Evaluation Guidelines797

Table 11 and 12 shows the detailed guidelines we798

use for human evaluation of generated knowledge.799

Method Knowledge Generator Inference Model

CAGE (Rajani et al., 2019) task-finetuned joint-finetuned
Latcinnik and Berant (2020) task-finetuned joint-finetuned

DynaGen (Bosselut et al., 2021) task-finetuned joint-finetuned
Self-talk (Shwartz et al., 2020) template-prompted 0-shot

Contrastive expl. (Paranjape et al., 2021) template-prompted 0-shot & joint-finetuned

Generated knowledge prompting (ours) demonstrations-prompted 0-shot & task-finetuned

Table 6: Comparison of methods that add generated text to an inference model. Knowledge Generator: task-
finetuned – a model finetuned to generate task-specific knowledge; template-prompted – an off-the-shelf LM from
which knowledge statements are elicited via templates; demonstration-prompted – an off-the-shelf LM from which
knowledge statements are elicited via few-shot demonstrations (§2.1). Inference Model: 0-shot – an off-the-shelf
LM that is set up to make predictions; task-finetuned – a model finetuned with task training data (and without
seeing extra knowledge); joint-finetuned – a model finetuned with task training data and generated knowledge.
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Task Prompt
NumerSense Generate some numerical facts about objects. Examples:

Input: penguins have <mask> wings.
Knowledge: Birds have two wings. Penguin is a kind of bird.

Input: a parallelogram has <mask> sides.
Knowledge: A rectangular is a parallelogram. A square is a parallelogram.

Input: there are <mask> feet in a yard.
Knowledge: A yard is three feet.

Input: water can exist in <mask> states.
Knowledge: There states for matter are solid, liquid, and gas.

Input: a typical human being has <mask> limbs.
Knowledge: Human has two arms and two legs.

Input: {question}
Knowledge:

Table 7: Prompt for knowledge generation on NumerSense. Demonstration examples are manually written and the
knowledge enables explicit reasoning procedures to answer the input question.

Task Prompt
CSQA Generate some knowledge about the concepts in the input. Examples:

Input: Google Maps and other highway and street GPS services have replaced what?
Knowledge: Electronic maps are the modern version of paper atlas.

Input: The fox walked from the city into the forest, what was it looking for?
Knowledge: Natural habitats are usually away from cities.

Input: You can share files with someone if you have a connection to a what?
Knowledge: Files can be shared over the Internet.

Input: Too many people want exotic snakes. The demand is driving what to carry them?
Knowledge: Some people raise snakes as pets.

Input: The body guard was good at his duties, he made the person who hired him what?
Knowledge: The job of body guards is to ensure the safety and security of the employer.

Input: {question}
Knowledge:

Table 8: Prompt for knowledge generation on CSQA. Demonstration examples are selected from the CSQA train-
ing set; we manually write relevant knowledge for each input question.
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Task Prompt
CSQA2 Generate some knowledge about the input. Examples:

Input: Greece is larger than mexico.
Knowledge: Greece is approximately 131,957 sq km, while Mexico is approximately 1,964,375
sq km, making Mexico 1,389% larger than Greece.

Input: Glasses always fog up.
Knowledge: Condensation occurs on eyeglass lenses when water vapor from your sweat, breath,
and ambient humidity lands on a cold surface, cools, and then changes into tiny drops of liquid,
forming a film that you see as fog. Your lenses will be relatively cool compared to your breath,
especially when the outside air is cold.

Input: A fish is capable of thinking.
Knowledge: Fish are more intelligent than they appear. In many areas, such as memory, their
cognitive powers match or exceed those of ’higher’ vertebrates including non-human primates.
Fish’s long-term memories help them keep track of complex social relationships.

Input: A common effect of smoking lots of cigarettes in one’s lifetime is a higher than
normal chance of getting lung cancer.
Knowledge: Those who consistently averaged less than one cigarette per day over their lifetime
had nine times the risk of dying from lung cancer than never smokers. Among people who smoked
between one and 10 cigarettes per day, the risk of dying from lung cancer was nearly 12 times
higher than that of never smokers.

Input: A rock is the same size as a pebble.
Knowledge: A pebble is a clast of rock with a particle size of 4 to 64 millimetres based on the
Udden-Wentworth scale of sedimentology. Pebbles are generally considered larger than granules
(2 to 4 millimetres diameter) and smaller than cobbles (64 to 256 millimetres diameter).

Input: {question}
Knowledge:

Table 9: Prompt for knowledge generation on CSQA2. Demonstration examples are selected from the CSQA2
training set; we use the annotated Google featured snippet as the knowledge.

Task Prompt
QASC Generate some knowledge about the input. Examples:

Input: What type of water formation is formed by clouds?
Knowledge: Clouds are made of water vapor.

Input: What can prevent food spoilage?
Knowledge: Dehydrating food is used for preserving food.

Input: The process by which genes are passed is
Knowledge: Genes are passed from parent to offspring.

Input: The stomach does what in the body?
Knowledge: The stomach is part of the digestive system.

Input: What can cause rocks to break down?
Knowledge: Mechanical weathering is when rocks are broken down by mechanical means.

Input: {question}
Knowledge:

Table 10: Prompt for knowledge generation on QASC. Demonstration examples are selected from the QASC
training set; we use one of the gold separate facts as the knowledge.
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Attribute Options Description and Examples

Grammaticality grammarical;
ungrammatical
but understand-
able; completely
gibberish

Whether the knowledge statement is grammatical. We are aware that some of
the statements are not fully grammatical. If you can still understand what the
statement says, even if it’s an incomplete sentence or slightly ungrammatical,
please select the "ungrammatical but understandable" option.

Relevance relevant; not rele-
vant

Whether a knowledge statement is relevant to the given question. A statement
is relevant if it covers one the same topics as the question, or contains a salient
concept that is same or similar to one in the question. Examples:

[Question] you may take the subway back and forth to work <mask> days a
week.
[Knowledge] You take the subway back and forth to work five days a week.
[Judgment] Relevant, because the question and knowledge are both about the
topic of business days.

[Question] a bradypus torquatus is native to brazil and has <mask> toes on each
limb.
[Knowledge] A bradypus torquatus is a kind of mammal. A mammal has four
limbs.
[Judgment] Relevant, because the question and knowledge share a common
salient concept "bradypus torquatus".

Factuality factual; not factual Whether a knowledge statement is (mostly) factually correct or not. If there are
exceptions or corner cases, it can still be considered factual if they are rare or
unlikely. Examples:

[Knowledge] A limousine has four doors.
[Judgment] Factual.

[Knowledge] A human hand has four fingers and a thumb.
[Judgment] Factual, despite that there are exceptions – people with disabilities
may have less or more fingers.

[Knowledge] A rectangle is a shape with two equal sides.
[Judgment] Not factual, because a rectangle has four sides.

Table 11: Human evaluation guidelines. Continued in Table 12.
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Attribute Options Description and Examples

Helpfulness helpful; neutral;
harmful

Whether a knowledge statement provides useful information in support OR
contradiction of the answer. A statement is helpful if it supports the answer
either directly or indirectly. More on indirect support – The statement might not
directly answer the question directly, yet it may support an indirect reasoning
path that reaches the answer. A statement is harmful if it negates the answer or
supports an alternative potential answer either directly or indirectly. A statement
is neutral if it is neither helpful nor harmful. Examples:

[Question] you may take the subway back and forth to work <mask> days a
week.
[Answer] five
[Knowledge] You take the subway back and forth to work five days a week.
[Judgment] Helpful. Because the statement directly supports the answer.

[Question] spiders have <mask> legs.
[Answer] eight
[Knowledge] Arachnids have eight legs.
[Judgment] Helpful. Although the statement does not directly refer to spiders,
together with the fact that "spiders are a kind of arachnids" it completes a
reasoning chain in deriving the answer.

[Question] a game of chess may have <mask> outcomes.
[Answer] three
[Knowledge] A game of chess has two outcomes.
[Judgment] Harmful. Since the statement supports answering "two" instead of
"three".

[Question] a bradypus torquatus is native to brazil and has <mask> toes on each
limb.
[Answer] three
[Knowledge] A bradypus torquatus is a kind of mammal. A mammal has four
limbs.
[Judgment] Neutral. The statement does not provide information in favor or
contrast of the answer.

Table 12: (continued) Human evaluation guidelines.
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