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Abstract

The rapid advancement and widespread adoption of machine learning-driven1

technologies have underscored the practical and ethical need for creating in-2

terpretable artificial intelligence systems. Feature importance, a method that3

assigns scores to the contribution of individual features on prediction outcomes,4

seeks to bridge this gap as a tool for enhancing human comprehension of these5

systems. Feature importance serves as an explanation of predictions in diverse6

contexts, whether by providing a global interpretation of a phenomenon across7

the entire dataset or by offering a localized explanation for the outcome of a8

specific data point. Furthermore, feature importance is being used both for9

explaining models and for identifying plausible causal relations in the data,10

independently from the model. However, it is worth noting that these various11

contexts have traditionally been explored in isolation, with limited theoretical12

foundations.13

This paper presents an axiomatic framework designed to establish coherent14

relationships among the different contexts of feature importance scores. Notably,15

our work unveils a surprising conclusion: when we combine the proposed16

properties with those previously outlined in the literature, we demonstrate the17

existence of an inconsistency. This inconsistency highlights that certain essential18

properties of feature importance scores cannot coexist harmoniously within a19

single framework.20

1 Introduction21

Feature Importance scores gauge the contribution of each feature to an outcome of a model.22

Most model-agnostic feature importance scores use a two-step process: in the first step, value is23

assigned to subsets of the features. In the second step, the score of individual features is derived24

from the values of subsets. This two-step process allows for a discussion about the expected25

behavior of the value function and the feature importance score. Many feature importance scores26

have been proposed in the literature: the bivariate-association [1] evaluates a feature’s importance27

based on its conditional attributes, independent of other features, ablation-studies [2, 3, 4]28

quantify a feature’s significance by assessing its contribution when removed from the entire29

feature set, SHAP [5] computes feature importance as the mean of its contributions across30

various subsets of features, and MCI [6] determines importance as the maximal contribution31

among all possible feature subsets (see Table 1). SHAP and MCI use an axiomatic approach in32

which the expected behaviors are defined as properties, and the functions are derived to satisfy33

these properties.34

Feature importance scores can be categorized by two main attributes: the scope, i.e. local35

vs global, and the objective, i.e. data vs model. Methods focusing on local interpretations36

seek to explain individual predictions (e.g., the role of each feature in a patient’s diagnosis [7]).37
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Table 1: Examples of common feature importance scores. φ denotes the importance function,
which takes ν, the value function, and a feature f ∈ F as inputs, and assigns an importance
score.

Name Feature importance score: φ(ν, f)

Bivariate ν({f})

Ablation ν(F) − ν(F \ {f})

Shapley
∑

S⊆F\{f}
|S|!(|F|−|S|−1)!

|F|! · (ν(S ∪ {f}) − ν(S))

MCI maxS⊆F\{f}(ν(S ∪ {f}) − ν(S))

Conversely, methods focusing on global interpretation try to understand how each feature affects38

a phenomenon (e.g., the role of each gene in a particular disease [8, 9]). Along the second axis,39

the data and the model are distinguished by the type of conclusion required. The objective of40

explaining the data is to infer conclusions about the world that are encoded in the data, as the41

scientist does in his research [10, 11, 12]. The objective of explaining the model, however, is to42

use an explanation to monitor and debug a model, to ensure it is working as intended (e.g., as43

the engineer does for security purposes [13, 14]).44

Table 2 maps feature importance research according to the local vs. global and data vs. model45

settings. Most feature importance scores thus far have focused on explaining models, although46

the data scenario has also been gaining increased attention in recent years. However, the quadrant47

of the data-local setting is still unexplored in the field of explainable AI. Perhaps this is due to48

the challenge of providing an accurate explanation as to why a specific outcome (rather than49

an average result) came into being (rather than being calculated by a model). For example,50

which characteristic of John Doe is responsible for the fact that he did, or did not, suffer a51

stroke? These types of questions pertain to individual causal effects that are notoriously difficult52

to estimate [15, 16].53

Several studies have examined the relations between the different settings: Lundberg et al. [17]54

presented a global score that is computed by combining local scores, hence indicating that at55

least the local and the global settings are not independent. Covert et al. [1] proposed a method56

of assigning global importance to features, which draws a connection with the local feature57

importance score of SHAP [5]. Chen et al. [18] defined distinctions between the data and the58

model and argued that the nature of an explanation depends on what one seeks to explain – the59

data or the model. Nevertheless, most studies focus solely on one setting. The studies that do60

consider multiple settings, often do not present an explicit set of expectations for the relations61

between importance scores under the different settings.62

In this work, we establish the expected behavior of feature importance scores across diverse63

contexts. Our objective is to formalize a set of properties that capture the anticipated consistency64

between local and global interpretations, as well as the alignment between data-driven and65

model-based assessments. An intriguing extension of this framework is the introduction of the66

data-local scenario, which, in theory, can be achieved by integrating our properties with axiomatic67

methods, wherein expected behaviors are rigorously defined, and functions are derived accordingly.68

In the global-data scenario, we employ a set of properties introduced by Catav et al. [6], implying69

the MCI importance score. Leveraging our proposed local-global relation, one can derive the70

expected data-local importance score. Conversely, in the local-model scenario, Lundberg and71

Lee [5] present the SHAP importance score as the only function that satisfies their proposed72

set of properties. Here, utilizing our proposed data-model relation, one can similarly obtain the73

expected data-local importance score. However, to our surprise, in both cases, even a modest set74

of requirements leads to contradictions.75

The paper is structured as follows: Section 2 consists of a formulation of the framework that76

generalizes the two-step process of feature importance to all settings. In Section 3 we focus77

on the local-global consistency: we present its properties and then demonstrate that they are78

incompatible with a previous result that defined the data-global setting. At the end of the79

section, we provide a brief discussion of the nature of the contradiction. Section 4 follows a80

similar structure as the latter, except addressing the case of the data-model consistency, which81
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Table 2: Examples of feature importance scores and their categorization according to the
global/local and data/model settings.

Global Local

Model Additive-Importance-Measures [1]
Bivariate-Association [1] Ablation-
Studies [2, 3, 4] FIRM [19] Tree-
Shap [17]

SHAP [5] Lime [20] Gradient-
Based-Localization [21] Relevance-
Propagation [22] TreeEx-
plainer [17]

Data True-To-Data [18] MCI [6]
UMFI [23]

contradicts a previous result that defined the model-local setting. Due to space constraints, we82

provide supporting proofs for our claims in the Appendix, along with an extended version of83

Theorem 1 that allows a clear demarcation between local and global importance scores.84

This work makes two key contributions: (1) We introduce a unified axiomatic framework that85

encompasses feature importance analysis in diverse settings, including global vs. local and86

model vs. data contexts. (2) We rigorously demonstrate inconsistencies within these settings,87

shedding light on disparities between global and local interpretations and between model-based88

and data-centric evaluations. These findings enhance our understanding of the nuances and89

challenges in the theory of feature importance analysis within machine learning interpretability.90

2 Framework91

We begin by introducing some notation: the setting consists of an input space X , an output92

space Y, so that given a pair (x, y) ∼ (X × Y), the learning task is to predict y by observing x.93

Without loss of generality, X ⊆ R|F|, where F is the set of available features. The explanation94

task is aimed to assign a score to each feature, based on its contribution to prediction. It consists95

of a two-step process: a value function is a function ν : {x, X } × 2F → R that assigns a scalar96

to each subset of features S ⊆ F , where ν(x, S) denotes the local value of a subset of features S97

for a given pair (x, y) and ν(X , S) denotes the global value of this subset. A feature importance98

function is a function φ : 2F × F → R that receives the output of a value function and assigns a99

feature importance score to each feature. For simplicity, we denote the importance of the feature100

f for both the global and the local importance functions as φ(ν(z), f) for z ∈ {x, X }, where the101

actual input for the value function differs between them. An elaborated version of this notation102

appears in Section C.1 of the Appendix. For the data-model discussion, we add several notations:103

the data itself, D, which is a probability measure over X × Y; M, which is a predictor over D;104

and νD, νM which are indicators for the current mode of evaluation in the value function.105

We say that ν is a valid value function if it satisfies: ν(X , ∅) = 0, and in the global setting,106

we further require that monotonicity, i.e. for any subset S ⊆ T ⇒ ν(X , S) ≤ ν(X , T ). This107

reflects the intuition that adding features to a model can not decrease the amount of information108

regarding the target variable, and thus can not decrease the prediction ability of a model. These109

two properties imply that ∀S ⊆ F , ν(X , S) ≥ 0 in the global setting. We do not assume these110

conditions generally hold for the local setting, implying that ν(x, S) may be negative for some111

x ∈ X . Finally, E denotes the expected value function with respect to D.112

3 The Local-Global relation113

It is natural to anticipate that a global phenomenon is an aggregate of local phenomena. This114

anticipated consistency can be illustrated intuitively: we find it confusing if a model that predicts115

loan repayment by lenders considers the age of the lenders to be a crucial factor in the global116

sense, yet at the same time declares that age is not a factor in predicting repayment for any117

specific lender. To avoid such scenarios, we require a small set of properties that ensure a118

meaningful relation between local and global settings in the framework of feature importance.119
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3.1 Expected properties120

In this section, we formulate two consistency properties that we require to hold between the local121

and the global settings. We use these properties to prove the first inconsistency theorem.122

Property 1 (Value Consistency). ν is Value Consistent if
∀S ⊆ F , ν (X , S) = E [ν (x, S)]

In property 1, to establish the relation between the local and the global value functions, the123

global value of each subset is constrained to be the expectancy taken over the inputs of the local124

value on this subset.125

Property 2 (Importance Consistency). A tuple {ν, φ} is Importance Consistent if
∀f ∈ F , φ(ν(X ), f) = E[φ(ν(x), f)]

In property 2, to establish the local-global relations of the importance score, a consistency126

requirement analogous to the one above is made for the feature importance function: the global127

importance of a feature is the expected value of the local feature importance of this feature.128

The two properties above define the expected relations between feature importance in local and129

global settings. We say that a tuple {ν, φ} is local-global consistent to denote that the Value130

Consistency and Importance Consistency properties hold.131

3.2 The local-global inconsistency132

We use the MCI function [6] to demonstrate the discrepancy between local and global settings.
This function relies on a pre-defined set of properties which the importance score is expected
to maintain. Apparently, the only function that satisfied these properties is the MCI function,
defined as follows:

MCI(ν, f) = max
S⊆F\{f}

(ν(S ∪ {f}) − ν(S))

Remarkably, the MCI score is the only function that uniquely satisfies the MCI properties, detailed133

in Section A.1. Our analysis leads us to demonstrate the following inconsistency:134

Theorem 1. properties 1,2, and MCI properties do not hold simultaneously.135

Proof sketch. Let {ν, φ} be local-global consistent tuple such that ν is non-decreasing. Assume
that MCI properties hold, i.e. φ is the MCI function. From the local-global consistency, we get
that ∀f ∈ F :

MCI(E[(ν(x)], f) = MCI(ν(X ), f) = E[MCI(ν(x), f)]
This leads to a contradiction since MCI uses the max operator and therefore is a non-linear136

function of the value function. A proof by counterexample is attached in Section B.1. □137

The proof sketch presented here is a simplified version, in which the local importance function138

and the global importance function are identical. A more detailed version of the proof, which139

does not assume that, can be found in Section C.140

3.3 Discussion of the local-global relation141

While the global-data setting is defined by Marginal Contribution Importance (MCI), the local-data142

setting (as the fourth quadrant in Table 2 demonstrates) is much harder to interpret and define.143

To tackle this issue, the approach adopted in this study was to use MCI’s definition of global-data144

and define the local-global expected relation. However, this led to an inconsistency theorem. The145

source of inconsistency lies in the different considerations of ambiguous information: MCI ensures146

that meaningful information is not missed by attributing the maximum contribution to each147

feature, regardless of the contribution of other correlated features. This differs from methods148

such as SHAP [5], where contributions are split between correlated features.149

4 The Data-Model relation150

When explaining data, the focus is on understanding the underlying process generating them; while151

when explaining the model, the focus is on understanding how the model is making predictions152
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based on the data. However, these settings are intertwined – models are often used as proxies by153

which nature can be explored. In cases where the model predictions are identical to the data, we154

expect conclusions reached from analyzing the model to hold with regard to the data. Therefore,155

we expect that the data and model will agree on each feature’s importance. Nonetheless, this156

expected property implies a degenerate case where νD ≡ 0, which implies that for any importance157

function, the importance score of all features becomes zero, rendering them insignificant.158

4.1 Expected properties159

In this section, we formulate another consistency property, that expresses the expected relations160

between the data and the model settings. Then, we show that fulfillment of this property, along161

with known previous results, is only possible in a degenerate case.162

Property 3 (Data-Model Consistency). Let M be a model that predicts over D. A tuple
{D, M, ν, φ} is Data-Model Consistent if ∀x, y ∼ D, M(x) = y and ∀z ∈ {x, X } it holds that

∀f ∈ F , φ(νD(z), f) = φ(νM(z), f)

The Data-Model Consistency property 3 states that if a model predicts the target perfectly, then163

the data and model importance scores of each feature are identical.164

4.2 The data-model inconsistency165

We use the SHAP function [5] to demonstrate the discrepancy between model and data settings.
This function relies on a pre-defined set of properties which the importance score is expected
to maintain. Apparently, the only function that satisfied these properties is the SHAP function,
defined as follows:

SHAP(ν, f) =
∑

S⊆F\{f}

|S|!(|F| − |S| − 1)!
|F|! · (ν(S ∪ {f}) − ν(S))

Notably, the SHAP score implies additional properties, detailed in Section A.2. This introduction166

leads us to the following inconsistency:167

Theorem 2. If a tuple {D, M, ν, φ} satisfies Data-Model Consistency (property 3) and SHAP168

properties, then νD ≡ 0.169

Our proof is based on a difference between models and the real world. Specifically, when the170

data contain correlated features, e.g. height measured in centimeters and inches, a model may171

learn based on only one of the features, resulting in different feature importance scores for each172

feature in the model. However, in the real world, both features are equally important. A detailed173

proof of the theorem is attached in Section B.2.174

4.3 Discussion of the data-model relation175

The need to link the data and model settings is not only theoretical. It is motivated by the need176

to use models to understand how the world works. Feature importance is often used, even if not177

stated explicitly, as a proxy for causal analysis. Unfortunately, the known limitations of trying to178

establish causal relations from observational data apply to feature importance too. The example179

we used to prove the inconsistency of the data-model often appears in real-world problems. Two180

features can be highly similar because a common, unobserved variable, caused them, or one of181

them caused the other. For example, when continuously measuring a variable of interest but182

only recording its mean and maximum values as observed variables. This problem of lacking183

information to disentangle the effect of two variables is known as unidentifiability.184

To illustrate this in our context, consider two penalized regression models that are trained on185

two identical features. The first model employs an L1 regularization (lasso regression), and the186

second model employs an L2 regularization (ridge regression). The predictions of the two models187

are identical. However, assigning feature importance may lead to different results between the188

models - lasso regression will result in assigning all the importance to one of the features, whereas189

ridge regression will result in assigning equal importance to both features.190
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Smoking
(unobserved) Gum Earache

Cancer

Figure 1: An example of a directed acyclic graph with a collider variable Gum.

Another situation that may lead to unexpected outcomes from feature importance scores is when191

a collider (also known as an inverted fork) exists in the data [15, 16]. For example consider192

the situation illustrated in Figure 1: Smoking cigarettes (Smoking) causes cancer (Cancer),193

but also increases chewing gum consumption (Gum). Assume also that doctors recommend194

people with earaches (Earache) to chew gum. Now, imagine scenarios in which a researcher is195

developing a model to predict Cancer using different subsets of the features Gum and Earache,196

but lacks information on Smoking. In the first scenario, the researcher uses only the Earache197

feature. Since earache and cancer are independent, any value-based feature importance score198

will assign zero importance to Earache. In the second scenario, where only the Gum feature is199

present, the researcher will conclude that Gum is an important feature since it is correlated with200

Cancer. In the third scenario, where a model that contains both Earache and Gum is considered,201

the researcher will infer that Earache has non-zero importance. This results from conditioning202

on Gum, creating an association between Earache and Cancer due to the presence of a collider.203

Intuitively, a person who chews gum and does not have an earache is more likely to be a smoker204

(notice that the smoking feature is unobserved), and hence at high risk of cancer. Therefore,205

the feature importance score might mislead a naïve researcher into thinking that earaches are206

predictive of cancer and that gum chewing is a cure for the disease.207

The situations described here have been studied in the causality literature and there is no recipe208

for overcoming them that does not involve additional information about the world [15, 16].209

5 Conclusion210

In this work, we investigated the possibility to create a unified framework of feature importance211

scores, by defining their expected properties. Surprisingly, we found that it is impossible to define212

feature importance scores that are consistent between different settings. Specifically, the expected213

consistency between local and global scores contradicts properties of the data-global setting.214

Furthermore, there is no guarantee that feature importance scores of a model that perfectly215

predicts the data will reflect the feature importance of the data themselves.216

Our inconsistency result is reminiscent of Kleinberg [24], which proves a similar result for clustering.217

Analogously, we do not argue that we have defined the only possible set of relevant properties218

for the various settings. We did, however, attempt to define a set of properties that we believe219

are essential. Yet, even these requirements led to inconsistencies. Future research can tackle220

which further assumptions can be made about feature importance scores, or other explainability221

methods, that are meaningful and yet can still be consistent.222

In the meantime, our results show that feature importance scores should be used cautiously,223

aligning with recent research that has attempted to measure the quality and usefulness of224

explainability tools for different applications [25, 26, 27]. As such, our work tries to promote225

substantive discussions and accurate definitions of explainability, as previously advocated, for226

example, by Lipton [28] and Kumar et al. [29]. Hence, we hope that our work will contribute to227

stimulating additional research that will result in a solid theoretical foundation for explainable AI.228
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A Additional Properties315

In this section, we present the additional properties mentioned in the local-global section and the316

data-model section.317

A.1 MCI properties318

Catav et al. [6] introduced the following three properties to define the expected behavior of319

feature importance scores in the global-data setting:320

Property 4 (Marginal Contribution). A tuple {ν, φ} satisfies the Marginal Contribution property321

when the importance of a feature is equal to or higher than the increase in the value function322

when adding it to all the other features, i.e. φ(ν(X , f)) ≥ ν(X /, F) − ν(X , F \ f)).323

The Marginal Contribution property states that the importance of a feature is at least its324

contribution to the value function when adding the latter to the set of all other features.325

Property 5 (Elimination). A tuple {ν, φ} satisfies the Elimination property when eliminating
features from F can only decrease the importance of each feature. i.e., if T ⊆ F and ν̄ is the
value function which is obtained by eliminating T from F then

∀f ∈ F \ T, φ(ν(X , f)) ≥ φ(ν̄(X , f))

The Elimination property states that the importance of a feature does not become smaller when326

other features are removed from the calculation. The process of elimination is defined as follows:327

Definition. (Elimination operation) Let F be a set of features and ν be a value function.
Eliminating the set T ⊂ F creates a new set of features F ′ = F \ T and a new value function
ν′ : 2F ′ → R such that

∀S ⊆ F ′, ν′(S) = ν(S)
Property 6 (Minimalism). A tuple {ν, φ} satisfies the Minimalism property when for every
function φ̄ : R2F → RF for which properties 4 and 5 hold, then

∀f ∈ F , φ(ν(X , f)) ≤ φ̄(ν(X , f))

The Minimalism property states that among all the functions that satisfy properties 4 and 5, the328

feature importance scoring function should be minimal.329

Using these properties, Catav et al. [6] prove the following:330

Theorem 3. The MCI feature importance score (see Table 1) is the only score for which the331

Marginal Contribution property, the Elimination property, and the Minimalism property (Properties332

4,5,6) hold simultaneously.333

A.2 SHAP properties334

The following properties stem naturally from the SHAP function, which is the only function that335

satisfies the SHAP properties proposed in Lundberg and Lee [5]:336

Property 7 (Triviality). A tuple {ν, φ} satisfies the Triviality Property if the following conditions337

hold:338

1. For all S ⊆ F , if ν(x, S) ̸= 0, then there exists a feature f ∈ S such that φ(ν(x), f) ̸= 0.339

2. If φ(ν(x), f) ̸= 0, then there exists a subset S ⊆ F such that ν(x, S ∪ {f}) ̸= ν(x, S).340

The Triviality Property establishes a non-trivial relationship between the value and the importance341

functions. It requires that if a subset of features has any value, it will be reflected in the342

importance of at least one feature from this subset. Conversely, it demands that if any feature is343

important (i.e., has non-zero importance), it must be included in some valuable subset. Notably,344

if a feature f satisfies ν(x, S) = ν(x, S ∪ {f}) for any subset of features, then f has zero345

importance.346
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Property 8 (Dummy Feature). Let M be a model that predicts over D. A tuple {ν, φ} satisfies347

the Dummy Feature Property if, for all f ∈ F and for all x, x′ ∈ X such that x differs from x′348

only by the f ’th feature M(x) = M(x′), then349

φ(νM, f) = 0
The Dummy Feature Property implies that if changing the value of a feature has no effect on350

a model’s output, then the importance of that feature is zero. This property also had been351

recognized in previous works such as Friedman [30] and Sundararajan et al. [31].352

B Inconsistencies Proofs353

In this section, we present proofs for the inconsistency theorems.354

B.1 Theorem 1355

Let {ν, φ} be local-global consistent tuple such that ν is non-decreasing. Assume that MCI
properties hold, i.e. φ is the MCI function. From the local-global consistency, we get that
∀f ∈ F :

MCI(E[(ν(x)], f) = MCI(ν(X ), f) = E[MCI(ν(x), f)]
This leads to a contradiction since MCI uses the max operator, and therefore is a non-linear356

function of the value function.357

Now, we aim to demonstrate, by way of a counter-example, that the MCI function is not linear.358

This will lead to a contradiction between the properties of the data-global, as defined in [6]359

setting and {ν, φ} Consistency properties. Formally, we contradict the following equality:360

For any ν which is a valid value function,361

α · MCI(ν(x0)) + (1 − α) · MCI(ν(x1)) = MCI(α · ν(x0) + (1 − α) · ν(x1)) (1)

Counter-example. Let X be a dataset consisting of two samples: x0 and x1, over the feature362

space F = {f0, f1}. We define the value function ν as follows:363

ν =


x0 x1 X

{∅} : 0 0 0
{f0} : 0 1 1.5
{f1} : 1 1 1

{f0, f1} : 2 1 1.5


Now, let α = 1

2 . We will evaluate the left-hand side of equation (1) and the right-hand side364

separately.365

Left-hand side evaluation:366

α · MCI(ν(x0)) + (1 − α) · MCI(ν(x1))

= 1
2 · MCI


0

0
1
2


 + 1

2 · MCI


0

1
1
1




= 1
2 ·

(
1

1.5

)
+ 1

2 ·
(

1
1

)
=

(
1

1.25

)
Right-hand side evaluation:367

MCI (α · ν(x0) + (1 − α) · ν(x1))
= MCI (ν(X ))

= MCI


 0

0.5
1

1.5


 =

(
0.5
1

)
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Hence, we have found a counter-example for equation (1), which contradicts the claimed linearity368

of the MCI function. This concludes the proof. □369

370

B.2 Theorem 2371

We establish that any tuple {ν, φ} satisfying the Triviality, Dummy-Feature, and Data-Model372

Consistency properties (Properties 7, 8, 3) inevitably encounters a scenario where νD ≡ 0. This373

scenario implies that for any importance function that considers the value, the importance score374

of all features becomes zero, rendering them insignificant.375

Proof. Let D be a probability measure over X such that its feature space contains two376

duplicate features of a random variable, which solely dictate the target. Formally, ρ ∈ [0, 1],377

{f0, f1} ⊆ F , and ∀x ∈ X , f0(x) = f1(x) = ρ. The target is defined as D(x) = h(ρ), where378

h is some function of ρ. Let M0, M1 be two models s.t each model focuses on one feature and379

neglects the other:380

∀i ∈ {0, 1}, Mi(x) = h(fi(x))
Let the tuple {ν, φ} satisfy Triviality, Dummy-Feature and Data-Model Consistency (properties381

7, 8, 3). By definition, M0, M1 predict the data perfectly, and therefore by the Data-Model382

Consistency, it holds that383

∀i ∈ {0, 1} and ∀f ∈ F , φ(νD, f) = φ(νMi , f)
The Dummy Feature Axiom implies that384

∀i ∈ {0, 1}, φ
(
νMi , f1−i

)
= 0

Combining the last two implies that385

∀f ∈ F , φ
(
νD, f

)
= 0

By the Triviality Axiom, the only value function that satisfies the above is νD ≡ 0. □386

387

C Distinguish between the local and global importance functions388

In this section, we will reformulate our properties to distinguish between the local and global389

importance functions.390

C.1 Framework391

Before proceeding, we will provide a more detailed definition of the value and importance functions392

to ensure precision in describing these functions:393

A value function is represented as ν : (D × {x, X } × 2F ) → R. It assigns a scalar to each394

subset of features S ⊆ F . Here, ν(D, x, S) signifies the value of a feature subset S for the local395

instance x, drawn from a probability measure D. Additionally, ν(D, X , S) represents the value of396

the same feature subset over the entire sample space.397

On the other hand, a feature importance function is denoted as φ : ({local, global} × 2F ) → RF . It398

takes an indicator specifying whether it operates in the local or global context and the output399

of the value function. This function assigns feature importance scores to individual features.400

Specifically, φ(local, ν(D, x), f) indicates the importance of feature f for the instance x, while401

φ(global, ν(D, X ), f) signifies the importance of the same feature across the entire sample space.402

Note that the monotonicity property of ν holds in the global setting, but not necessarily in the403

local setting. For example, consider the case where the prediction target is whether a person404

has cancer and one of the features is whether the person carries a lighter in their pocket. This405

feature may be globally important, since it may correlate with smoking. However, it is possible406

that some people carry lighters but do not smoke, in which case this feature might lead to an407

erroneous prediction and hence has a negative local contribution. Globally admissible denotes408

a case where an instance x has only a non-negative contribution. Formally, ν(D, x) is globally409

admissible if ν(D, x) is monotonic non-decreasing and ν(D, x, ∅) = 0.410
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Figure 2: consistency diagram: In local-global consistency the global value is the expectation
of the local values, while the global importance is the expected value of local importances.

ν(x) φ(x, ν(x))

ν(X )

E

φ(X , ν(X ))

E

C.2 Expected properties411

Property 9 (Value Consistency). ν is Value Consistent if for every D412

1. ∀S ⊆ F , ν (D, X , S) = E [ν (D, x, S)]413

2. ∃x∗ and ∃D∗ such that D∗ is a Dirac measure and ν(D∗, x∗) = ν(D, x)414

To establish the relation between the local and the global value functions, two complementary415

conditions are required: First, the global value of each subset is constrained to be the expectancy416

taken over the inputs of the local value on this subset. Second, the local value is constrained to417

be able to realize the global value.418

Property 10 (Importance Consistency). A tuple {ν, φ} is Importance Consistent for every D419

1. ∀f ∈ F , φ (global, ν(D, X ), f) = E [φ (local, ν (D, x) , f)]420

2. ν is Value Consistent.421

To establish the local-global relations of the importance score, a consistency requirement analogous422

to the one above is made for the feature importance function: The global importance of a feature423

is the expected value of the local feature importance of this feature.424

Consistency implies a commutative diagram, which is presented in Figure 2.425

C.3 Detailed proof for Theorem 1426

The proof uses the following two lemmas. Combining these lemmas implies that φ is a linear427

function, and the rest of the proof is identical to the abbreviated version that appears above.428

Lemma 1. Let D be a probability measure over X . If {ν, φ} is importance consistent and x ∈ X
such that ν(D, x) is globally admissible, then

φ(global, ν(D, x)) = φ(local, ν(D, x))

Proof. [of Lemma 1] Let {ν, φ} be important consistent tuple. Let D be a probability measure429

over X and let x ∈ X be a globally admissible instance. Denote D′ as the corresponding430

probability measure, i.e ν(D, x) = ν(D′, X ′). By the Value Consistency property there exist a431

Dirac measure D∗ such that ν(D′, X ′) = ν(D∗, x∗). Hence,432

φ (global, ν(D, x)) = φ (global, ν(D′, X ′)) (2)
= φ (global, ν(D∗, X ∗)) (3)
= φ (local, ν(D∗, x∗)) (4)
= φ (local, ν(D′, x′)) (5)
= φ (local, ν(D, x)) (6)

where (3) is from the global admissibility of ν(D, x), (4) follows from the consistency and from433

the fact that D∗ is Dirac, and the following equations follow from the definition of D′. □434

435

Lemma 2. Let D be a probability measure over X and let ν be a monotonic non-decreasing
value function (i.e. ∀x ∈ X , ν(D, x) is globally admissible). If {ν, φ} is local-global consistent
then

φ (global,E[(ν(D, x)])) = E[φ (global, ν(D, x))]

12



Proof. [of Lemma 2] Let {ν, φ} be a local-global consistent tuple and let D be such that ν(D, x)436

is globally admissible for every x in the support of D. Therefore,437

E[φ (global, ν(D, x)))] (7)
= E[φ (local, ν(D, x)))] (8)
= φ (global, ν(D, X )) (9)
= φ (global,E[ν(D, x)]) (10)

where (8) is valid by Lemma 1,and (9) and (10) are valid by the importance consistency 2. □438

439
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