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ABSTRACT

Advances in pre-trained vision-language models have enabled zero-shot out-of-
distribution (OOD) detection using only in-distribution (ID) labels. Recent meth-
ods in this direction expand the label space with negative labels to enhance the dis-
crimination between ID and OOD inputs. Despite their promising progress, there
remains a limited understanding of their empirical effectiveness in open-world
scenarios, where negative labels can arbitrarily diverge from real OOD ones. This
paper bridges this research gap with the helm of a novel energy-based framework,
where the energy function is built upon the margin between the similarity of an
input to ID labels and that to negative labels. Guided by this framework, we prove
that the inherent tolerance of such methods to the sampling bias essentially stems
from estimating the worst-case energy function over a KL-constrained set of po-
tential distributions centered on the negative label distribution. Furthermore, our
theoretical analysis reveals that existing methods suffer from over-pessimism and
consequently high sensitivity to outliers. Provably, we can alleviate these prob-
lems by leveraging Rényi divergence to refine potential distributions. Extensive
experiments empirically manifest that our method establishes a new state-of-the-
art across a variety of OOD detection settings.

1 INTRODUCTION

Despite the significant progress in machine learning that has facilitated a broad spectrum of classi-
fication tasks (Masana et al., 2022; Zhao et al., 2019; Caruana & Niculescu-Mizil, 2006), models
often operate under a closed-world scenario, where test data stems from the same distribution as
the training data. However, real-world applications often entail open-world scenarios in which de-
ployed models may encounter unseen classes of data during training, giving rise to what is known as
out-of-distribution (OOD) data. These OOD data can potentially undermine a model’s stability and,
in certain cases, inflict severe damage on its performance. Accordingly, a reliable discriminative
model should not only correctly classify known in-distribution (ID) data but also flag any OOD data
as unknown. This directly motivates OOD detection (Lang et al., 2023; Salehi et al., 2021; Yang
et al., 2021), which makes significant differences in ensuring the safety of decision-critical applica-
tions, e.g., autonomous driving (Huang et al., 2020), medical diagnosis (Zimmerer et al., 2022), and
cyber-security (Nguyen et al., 2022).

This paper focuses on post-hoc OOD detection, which is more practical than learning-based meth-
ods that require resource-intensive retraining. Earlier studies (Liang et al., 2017; Liu et al., 2020;
Huang et al., 2021; Sun et al., 2022; Peng et al., 2025; Zhang et al., 2024b) primarily utilized the
single modality of pre-trained models, but the success of contrastive language-image pre-training
(CLIP) (Radford et al., 2021a) has recently shifted research toward expanding post-hoc OOD detec-
tion from single-modal to multi-modal methods. The pioneering work, MCM (Ming et al., 2022),
defines textual features as the concept for each ID class and uses the scaled distance between visual
features and the closest ID prototype to measure OOD uncertainty. This method has paved the way
for using pre-trained vision-language models (VLMs) in post-hoc OOD detection. However, MCM
relies only on textual information from the ID label space, leaving the text interpretation capabili-
ties of VLMs underutilized. To address this, NegLabel (Jiang et al., 2024) selects negative labels
from large-scale lexical databases, such as WordNet (Miller, 1995), based on their similarities to
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the ID label space, which equips the model with stronger ability to distinguish OOD data. Despite
promising potential of negative labels, there remains a limited theoretical understanding of their
effectiveness in open-world scenarios, where real OOD data, due to its open-ended nature, can be
arbitrarily different from the observed negative labels (Wang et al., 2023b;c).

To mitigate this research gap, this paper delivers a close look at CLIP-based post-hoc OOD detec-
tion with negative labels from the perspective of density estimation. We argue that this standpoint
is well-suited for studying OOD detection, since OOD data, by definition, diverges from ID data
in terms of their underlying density distributions. Following prior works (Liu et al., 2020), our an-
alytical framework models ID data by resorting to the energy-based model (LeCun et al., 2006).
However, we find that it is non-trivial to extend the energy function from a uni-modal to a multi-
modal setting. Drawing inspiration from triplet-based metric learning (Sohn, 2016; Hermans et al.,
2017), we propose to build the energy function upon the margin between the similarity of a given
test-time input to ID labels and to negative labels. Guided by this framework, we theoretically show
that NegLabel essentially augments the negative label distribution by constructing a distribution
set contained within a Kullback–Leibler (KL) ball centered on it. Estimating the energy function
against the worst-case distribution in this set ensures performance guarantees under all possible (or
constrained) distribution shifts. This provides a theoretical explanation for why NegLabel remains
effective when faced with unseen OOD data.

In addition, our theoretical analysis reveals that the paradigm of NegLabel is prone to induce an
overly conservative worst-case distribution, as it assigns disproportionately large weights (governed
by an exponential function) to negative labels that exhibit high similarity to the test-time input. In
response, we transcend the boundary of KL divergence, but exploring a broader family of distribu-
tion divergence metrics — Rényi divergence (Rényi, 1961). As a generalization of KL divergence,
Rényi divergence introduces an additional parameter, the order, which offers flexible control over
the weighting distribution. We show the use of Rényi divergence enables to retain the aforemen-
tioned strengths while mitigating the conservativeness by shaping a milder, polynomial-bounded
worst-case distribution with adaptively tunable order. Extensive experiments empirically manifest
that our method establishes a new state-of-the-art in a variety of OOD detection setups.

2 RELATED WORK

The core of CLIP-based OOD detection lies in how to leverage texture supervision with pre-trained
VLMs to assist OOD detection on the visual domain. On the one hand, the pioneering work,
MCM (Ming et al., 2022), defines textual features as concept proto-types for each ID class and
uses the scaled distance between visual features and the closest ID prototype to measure OOD un-
certainty. Instead of relying on textual information from only ID label space, ZOC (Esmaeilpour
et al., 2022) applies VLMs to discern OOD instances by training a captioner that generates potential
OOD labels. Nevertheless, this captioner often fails to produce effective OOD labels, particularly
for ID datasets containing many classes. Differently, NegLabel (Jiang et al., 2024) incorporates ad-
ditional negative class names mined from available data sources as negative proxies. Considering the
nonalignment between target visual OOD distribution and the generated negative textual OOD dis-
tribution, AdaNeg (Zhang & Zhang, 2024) leverages the benefits of test-time adaptation to generate
adaptive proxies by exploring potential OOD images during testing. More recently, Peng et al. un-
derstand CLIP-based post-hoc OOD detection from an information-theoretical perspective. On the
other hand, CLIP-based OOD detection can also be improved by prompt representation learning.
In particular, LoCoOp (Miyai et al., 2024) learns ID text prompts by pushing them away from the
portions of CLIP local features that have ID-irrelevant nuisances (e.g., backgrounds). CLIPN (Wang
et al., 2023a) and LSN (Nie et al., 2024) design a learnable “no” prompt and a “no” text encoder
to capture negation semantics within images. Differently, LAPT (Zhang et al., 2025) initializes
prompts with negative labels (Jiang et al., 2024), followed by tuning prompts with cross-modal and
cross-distribution mixing. Due to space limitation, more related works are discussed in Appendix A.

3 PRELIMINARY

Notation. Let X and Y be the input space and the label space, respectively. Given a random
variable Y ∈ Y , we write PY as the marginal distribution defined over Y , and use y ∼ PY to

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

indicate a sample y drawn from PY . Considering K-way classification as a case study, we write
YI ≜ {y1, . . . , yK} ⊂ Y as the known ID label space. The joint ID distribution, represented as
PXIYI , is a joint distribution defined over X × YI. During testing, there are some unknown OOD
joint distributions PXoYo defined over X ×Yo, where Yo ⊆ Y \YI is the unknown OOD label space.

Post-hoc OOD Scoring. Existing methods (Hendrycks & Gimpel, 2016; Liang et al., 2017; Liu
et al., 2020; Huang et al., 2021; Sun et al., 2022) tend to adopt a post-hoc strategy to detect OOD
data, i.e., given a pre-trained ID classification model f and a scoring function S(·; f) : X → R, then
x is detected as ID data if and only if S(x; f) ≥ λ, for some given threshold λ:

g(x) = ID, if S(x; f) ≥ λ; otherwise, g(x) = OOD. (1)

Typically, λ is chosen to ensure a high fraction (e.g., 95%) of ID data to be correctly classified.

CLIP-based Models adopt a dual-stream architecture (Radford et al., 2021b) with one text encoder
fT and one image encoder fX to map inputs of two modalities into a uni-modal hyper-spherical
space Sd−1 ≜

{
z ∈ Rd| ∥z∥2 = 1

}
. Zero-shot image classification based on a pre-trained CLIP-

like model is to classify images into one of known ID classes by computing argmaxj=1,...K h(x, yj)

where h(x, yj) ≜ fX (x)⊤fT
(
∆(yj)

)
with ∆(·) producing the text prompt for the input label.

CLIP-based OOD Detection with Negative Labels. CLIP-based models, thanks to their remark-
able effectiveness (Radford et al., 2021b) and provable guarantees (Chen et al., 2023), are recently
extended to the task of zero-shot OOD detection where there is no need to train on ID data. A popu-
lar pipeline is to leverage a L-sized set of negatives labels1 Ŷ ≜ {ŷ1, . . . , ŷL} to formulate the OOD
scoring function of x as the model’s prediction confidence that x belongs to YI, i.e.,

SNegLabel(x; f) ≜
K∑
i=1

exp [h(x, yi)/T ]∑K
j=1 exp [h(x, yj)/T ] +

∑L
j=1 exp [h(x, ŷj)/T ]

, (2)

where T > 0 is a temperature hyper-parameter.

Due to space limitation, detailed proofs of theorems in this paper are provided in Appendix B.

4 A CLOSE LOOK AT CLIP-BASED OUT-OF-DISTRIBUTION DETECTION
WITH NEGATIVE LABELS

While NegLabel (Jiang et al., 2024) has empirically emerged to be an effective post-hoc OOD de-
tector, there is limited prior work providing a comprehensive explanation for its efficacy from a
rigorous mathematical point of view. This paper fills this research gap from the perspective of
distributionally-augmented density estimation. Inspired by Liu et al. (2020), we consider modeling
the unknown true ID density function pXI

of ID input marginal distribution PXI
by resorting to the

energy-based model (LeCun et al., 2006). In particular, let p̂XI
(x;θ) be an estimator of the modeled

ID data density p̂XI
(x) using the pre-trained CLIP-based model parameters θ, we have:

p̂XI(x;θ) =
exp [E(x;θ)]

Z(θ)
∝ exp [E(x;θ)], (3)

where Z(θ) =
∫
exp [Eθ(x;θ)] dx is an input-independent normalization function with

E(x;θ) = T log

K∑
i=1

exp [E(x, yi;θ)/T ] .

The behavior of E(x;θ) is largely determined by the formulation of E(x, yi;θ). A naive choice
of E(x, yi;θ) is the CLIP-based zero-shot classifier logit h(x, yj), which aligns with traditional
energy-based OOD detection (Liu et al., 2020). However, Table 1 shows that Energy (zero-shot)
achieves considerably far-from-satisfactory performance (79.57% AUROC and 82.21% FPR95 in
average), which implies that it is non-trivial to extend energy function Eθ(x) from single-modal to

1In accordance to Jiang et al. (2024), negative labels are defined as those semantically irrelevant/dissimilar
to all ID labels.
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multi-modal settings. Let PŶ be the sampling distribution of negative labels, drawing inspiration
from triplet-based metric learning (Sohn, 2016; Hermans et al., 2017), we define E(x, yi;θ) as:

E(x, yi;θ) ≜ Eŷ∈PŶ
[h(x, yi)− h(x, ŷ)] = h(x, yi)− Eŷ∈PŶ

[h(x, ŷ)] , (4)

where the expectation can be effectively estimated using the observed negative labels Ŷ . Table 1
shows that Eq. (4) achieves significantly better performance (93.65% AUROC and 28.82% FPR95
in average) than Energy (zero-shot), which empirically validates our design.

Intuitively, if negative labels are semantically similar to unseen ground-truth OOD labels, Eq. (4)
will perform well when facing real OOD data. However, the two kinds of labels could be arbitrarily
distinct from each other in practice (Wang et al., 2023b;c), posing us to suspect that the power of
negative labels in Eq. (4) has yet to be fully unleashed. To verify this, we consider the situation
where ground-truth OOD labels are accessible and considered as negative labels to estimate the the
expectation in Eq. (4). We find in Table 1 that this oracle case contributes to a more satisfactory
results, with AUROC of 97.11% and FPR95 of 15.38% in average.

In view of this, we further extend the formulation of E(x, yi;θ) in Eq. (4) beyond the given distri-
bution PŶ to a broader family of potential distributions with perturbations. To be specific, we are
interested in the worst case of E(x, yi;θ) in Eq. (4) over a set of potential distributions QŶ , which
are centered on PŶ and constrained by a metric function D(QŶ ∥PŶ ) within a radius η > 0, i.e.,

Ê(x, yi;θ) = h(x, yi)−max
QŶ

Eŷ∈QŶ
[h(x, ŷ)] s.t. D(QŶ ∥PŶ ) ≤ η, (5)

where D(Q∥P) measures the distribution discrepancy between Q and P. Intuitively, QŶ acts as an
“adversary”, probing the hardest possible negative distribution. This makes Ê(x, yi;θ) inherently
more conservative and thus more reliable when real OOD labels differ from negatives labels.

Theorem 1. By choosing D(·∥·) as KL divergence, i.e., D(QŶ ∥PŶ ) =
∫
qŶ (y) log

qŶ (y)

pŶ (y)dy, we

can rewrite Ê(x, yi;θ) in Eq. (5) as follows:

Ê(x, yi;θ) = α∗(x,PŶ ) log
eh(x,yi)/α

∗(x,PŶ )

Eŷ∼PŶ
[eh(x,ŷ)/α

∗(x,PŶ )]
− α∗(x,PŶ ) · η, (6)

where α∗(x,PŶ ) = argminα≥0

{
αη + α logEŷ∼PŶ

[eh(x,ŷ)/α]
}

.

Theorem 2 (Lemma 5 of Faury et al. (2020)). The optimal α∗(x,PŶ ) can be approximated as

α∗(x,PŶ ) ≈
√
Vŷ∼PŶ

[h(x, ŷ)]/2η, (7)

where Vŷ∼PŶ
[h(x, ŷ)] denotes the variance of h(x, ŷ) over the distribution PŶ .

If the assumption of homoscedasticity (uniform variance) holds for each input x ∈ X given a
fixed PŶ , Theorem 2 implies that we can find a η > 0 to have α∗(x,PŶ ) ≈ T . Combining this
with Theorem 1 implies that we can approximate the distributionally augmented energy function
Ê(x;θ) = T log

∑K
i=1 exp

[
Ê(x, yi;θ)/T

]
as follows:

Ê(x;θ) ≈ T log

K∑
i=1

eh(x,yi)/T

Eŷ∼PŶ
[eh(x,ŷ)/T ]

− Tη

≈ T log

K∑
i=1

eh(x,yi)/T∑L
j=1 e

h(x,ŷj)/T︸ ︷︷ ︸
ŜNegLabel(x;f)

+T logL− Tη︸ ︷︷ ︸
constant

.
(8)

Discussion. While ŜNegLabel(x; f) differs from SNegLabel(x; f) in that the term
∑K

j=1 e
h(x,yj)/T is

excluded in its denominator, Table 1 shows that ŜNegLabel(x; f) performs on par with SNegLabel(x; f),
which implies the functional equivalence between ŜNegLabel(x; f) and SNegLabel(x; f). The theoreti- R#GPbo
cal connection between ŜNegLabel(x; f) and SNegLabel(x; f) can be found in Appendix J.1. Since the
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Table 1: OOD detection results on ImageNet-1K with VIT B/16 CLIP as encoder. ↑ indicates larger
values are better and vice versa. The best results in the last two columns are shown in bold. †: the
baseline operates under the oracle setting where ground-truth OOD labels are known.

Dataset iNaturalist Sun Places Textures Average

Metric AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
Energy (zero-shot) 85.09 81.08 84.24 79.02 83.38 75.08 65.56 93.65 79.57 82.21
Energy (Eq. (4)) 98.49 7.11 94.72 25.93 90.35 41.35 91.02 40.89 93.65 28.82
Energy (Eq. (4))† 99.62 2.35 98.23 8.65 95.16 25.97 95.46 24.55 97.11 15.38

SNegLabel(x; f) (Eq. (2)) 99.30 2.65 95.06 23.11 90.90 40.35 89.76 46.63 93.76 28.19
ŜNegLabel(x; f) (Eq. (8)) 99.29 2.67 95.02 23.22 90.93 40.30 89.85 46.31 93.77 28.13
Sours(x; f) (Eq. (13)) 99.64 1.29 95.71 17.94 91.90 33.98 90.79 39.45 94.51 23.17

function log(·) is monotonically increasing, Eq. (8) admits the merit of SNegLabel(x; f) as it is equiv-
alent to augmenting the negative label distribution PŶ by crafting a distribution set containing all the
distributions in a KL ball centered on PŶ . This allows the energy-based density estimation via Eq.
(4) to perform uniformly across various potential distributions of negative labels, thereby conferring
inherent tolerance to distribution discrepancy between negative labels and real OOD labels.

Despite theoretical and empirical advantages of Ê(x;θ) over E(x;θ), it is worth noting that the
use of KL divergence to measure distribution discrepancy suffers from being overly pessimistic. To
illustrate this, let us start from exploring the worst case of negative label distribution as follows.
Theorem 3. Let us define

Q∗
Ŷ
= argmax

QŶ

Eŷ∈QŶ
[h(x, ŷ)] s.t. D(QŶ ∥PŶ ) ≤ η.

If we choose D(·∥·) as KL divergence, then we have q∗
Ŷ
(ŷ) = ωKL(x, ŷ)pŶ (ŷ) where

ωKL(x, ŷ) ≜
eh(x,ŷ)/α

∗(x,PŶ )

Eỹ∼PŶ
[eh(x,ỹ)/α

∗(x,PŶ )]
∝ eh(x,ŷ)/α

∗(x,PŶ ). (9)

Theorem 3 implies that the use of KL divergence leads to assigning a weight ωKL(x, ŷ) to each
negative label ŷ ∼ PŶ , with the weight ωKL(x, ŷ) proportional to the exponential of the scaled co-
sine similarity. However, the explosive nature of the exponential function would make the resulting
weight distribution tend to be highly skewed so that the worst-case expectation in Eq. (5) can be
dominated by outliers, i.e., those exhibiting excessively high cosine simiarity to the input x, which
could greatly degrade the ability of Ê(x;θ) in Eq. (3) to detect OOD inputs especially when the
outliers contain false negative labels2. We note that our theoretical analysis is consistent with em-
pirical observations in Table 1: ŜNegLabel(x; f) performs marginally better than Energy (Eq. (4)) in
average and even worse than Energy (Eq. (4)) on Textures3.

5 METHODOLOGY

Our goal is to refine the worst-case distribution, aiming to assign more reasonable weights to neg-
ative labels. To this end, we propose to use Rényi divergence, a generalization of KL divergence
that is defined with an additional parameter called an order, to measure distribution discrepancy. In
particular, we focus on the Cressie-Read family of Rényi divergence (Duchi & Namkoong, 2021;
Rényi, 1961) due to its analytical benefits that can be reflected by the following theorem:
Theorem 4. By choosing D(·∥·) as the Cressie-Read family of Rényi divergence, i.e.,

D(QŶ ∥PŶ ) =

∫
qŶ (y)ϕγ

(
qŶ (y)

pŶ (y)

)
dy, (10)

2Prior works filter negative labels from a unlabeled wild corpus database with a cosine similarity-based
strategy. However, there is no theoretical guarantees that cosine similarity could correctly capture semantic
relationships so that the observed negative labels are inevitably contaminated by false negative labels.

3While ŜNegLabel(x; f) and SNegLabel(x; f) can be enhanced by the grouping strategy as described in Jiang
et al. (2024), existing works are fall short in providing theoretical justification for this heuristic trick.
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where ϕγ(t) =
1

γ(γ−1) (t
γ − γt+ γ − 1) with γ > 1, we can rewrite Ê(x, yi;θ) in Eq. (5) as:

Ê(x, yi;θ) = h(x, yi)−
{
cγ(η)Eŷ∼PŶ

[(
h(x, ŷ)− β∗

x

)γ∗

+

] 1
γ∗

+ β∗
x

}
, (11)

where γ∗ = γ/(γ − 1), cγ(η) = (1 + γ(γ − 1)η)
1
γ , (a)+ = max{a, 0}, and

β∗
x = argmin

β

{
cγ(η)Eŷ∼PŶ

[(
h(x, ŷ)− β

)γ∗

+

] 1
γ∗

+ β

}
. (12)

Note that Rényi divergence in Eq. (10) introduces an order parameter γ to adjust the polynomial
relationships of the probability distance measure with the probability ratio. This provides enhanced
flexibility in measuring distribution discrepancy by re-framing the metric function design as a search
for the optimal γ within a narrow range. A similar spirit is also witnessed in Peng et al. (2024).
Since Rényi divergence recovers KL divergence as γ → 1 (Van Erven & Harremos, 2014), one can
intuitively believe that Eq. (11) should perform at least not worse than Eq. (8).

Based on Theorem 4, we can formulate the distributionally augmented energy function Ê(x;θ) =

T log
∑K

i=1 exp
[
Ê(x, yi;θ)/T

]
under Rényi divergence as follows:

Ê(x;θ) = T log

K∑
i=1

exp
{

1
T · [h(x, yi)− β∗

x]
}

exp

{
cγ(η)
T · Eŷ∼PŶ

[(
h(x, ŷ)− β∗

x

)γ∗

+

] 1
γ∗
}

≈ Sours(x;θ)

≜ T log

K∑
i=1

exp
{

1
T · [h(x, yi)− β∗

x]
}

exp

{
cγ(η)
T ·

[
1
L

∑L
j=1

(
h(x, ŷj)− β∗

x

)γ∗

+

] 1
γ∗
} ,

(13)

In realization of Sours(x;θ) in Eq. (13), one requires to obtain β∗
x via solving the optimization

problem in Eq. (12). While Eq. (12) does not have a closed-form solution, the convexity of Eq. (12)
with regard to βx (as proved in Appendix C) motivates us to find β∗

x via stochastic gradient descent
(SGD) with a given learning rate lr, i.e.,

βx ← βx − lr · ∂

∂βx

cγ(η)

 1

L

L∑
j=1

(
h(x, ŷj)− βx

)γ∗

+

 1
γ∗

+ βx

 . (14)

In the following, we disclose why Eq. (13) can be less vulnerable to the over-pessimism issue.

Theorem 5. Let us define

Q∗
Ŷ
= argmax

QŶ

Eŷ∈QŶ
[h(x, ŷ)] s.t. D(QŶ ∥PŶ ) ≤ η.

If we choose D(·∥·) as the Cressie-Read family of Rényi divergence defined in Eq. (10), then we
have q∗

Ŷ
(ŷ) = ωγ(x, ŷ)pŶ (ŷ), where

ωγ(x, ŷ) ≜ cγ(η)
(h(x, ŷ)− β∗

x)
1

γ−1

+

Eỹ∼PŶ
[(h(x, ỹ)− β∗

x)
γ∗

+ ]
1
γ

∝ (h(x, ŷ)− β∗
x)

1
γ−1

+ . (15)

It can be found that the weight ωγ(x, ŷ) in Eq. (15) acts as a polynomial function, therefore being
relatively milder than ωKL(x, ŷ) in Eq. (9). This tempers pessimism by flattening the effect of
outliers: those with high cosine similarity to the input x still matter, but not disproportionately.
Table 1 shows that the theoretical superiority (c.f. Theorem 5) indeed translates into strong empirical
performance, where Sours(x;θ) significantly outperforms ŜNegLabel(x; f) and Energy (Eq. (4)).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: OOD detection results on ImageNet-1K with VIT B/16 CLIP as encoder. ↑ indicates larger
values are better and vice versa. The best results in the last two columns are shown in bold.

Dataset iNaturalist Sun Places Textures Average

Metric AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
Methods requiring training (or fine-tuning)

MSP 87.44 58.36 79.73 73.72 79.67 74.41 79.69 71.93 81.63 69.61
ODIN 94.65 30.22 87.17 54.04 85.54 55.06 87.85 51.67 88.80 47.75
Energy 95.33 26.12 92.66 35.97 91.41 39.87 86.76 57.61 91.54 39.89
GradNorm 72.56 81.50 72.86 82.00 73.70 80.41 70.26 79.36 72.35 80.82
ViM 93.16 32.19 87.19 54.01 83.75 60.67 87.18 53.94 87.82 50.20
KNN 94.52 29.17 92.67 35.62 91.02 39.61 85.67 64.35 90.97 42.19
VOS 94.62 28.99 92.57 36.88 91.23 38.39 86.33 61.02 91.19 41.32
NPOS 96.19 16.58 90.44 43.77 89.44 45.27 88.80 46.12 91.22 37.93
LSN 95.83 21.56 94.35 26.32 91.25 34.48 90.42 38.54 92.96 30.22
CLIPN 95.27 23.94 93.93 26.17 92.28 33.45 90.93 40.83 93.10 31.10
LoCoOp 96.86 16.05 95.07 23.44 91.98 32.87 90.19 42.28 93.52 28.66
LAPT 99.63 1.16 96.01 19.12 92.01 33.01 91.06 40.32 94.68 23.40

Zero-Shot Training-free Methods
Mahalanobis 55.89 99.33 59.94 99.41 65.96 98.54 64.23 98.46 61.50 98.94
Energy 85.09 81.08 84.24 79.02 83.38 75.08 65.56 93.65 79.57 82.21
ZOC 86.09 87.30 81.20 81.51 83.39 73.06 76.46 98.90 81.79 85.19
MCM 94.59 32.20 92.25 38.80 90.31 46.20 86.12 58.50 90.82 43.93
NegLabel 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
Ours 99.64 1.29 95.71 17.94 91.90 33.98 90.79 39.45 94.51 23.17
NegLabel+AdaNeg 99.71 0.59 97.44 9.50 94.55 34.34 94.93 31.27 96.66 18.92
Ours+AdaNeg 99.75 0.47 98.01 8.69 95.63 30.24 95.86 27.28 97.31 16.67
NegLabel+CSP 99.60 1.54 96.66 13.66 92.90 29.32 93.86 25.52 95.76 17.52
Ours+CSP 99.70 1.32 97.52 11.35 94.89 24.98 94.16 23.65 96.57 15.33

6 EXPERIMENTS

Implementation. Unless otherwise specified, we employ CLIP-B/16 for zero-shot OOD detection.
Following prior works (Jiang et al., 2024; Zhang & Zhang, 2024), we adopt the text prompt of ’The
nice <label>.’ and select L = 10000 negative labels from WordNet (Miller, 1995) using the same
NegMining algorithm as NegLabel (Jiang et al., 2024). Notably, we show in Section 6.3 that our
method can generalize well to various CLIP architectures and corpus sources. Regarding hyper-
parameters, we set T = 0.01, γ = 1.05 and cγ(η) = 1.2. We learn each input-specific constant β∗

x
by performing SGD for only 15 steps with learning rate lr = 1e − 2, which results in negligible
computational overhead. Notably, we do not leverage the heuristic grouping strategy as described
in Jiang et al. (2024). The reported results of our method are averaged over 5 independent runs.

Baselines. We compare our method with MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al.,
2017), Energy (Liu et al., 2020), Gradnorm (Huang et al., 2021), Vim (Du et al., 2022), KNN (Sun
et al., 2022), VOS (Tao et al., 2023), NPOS (Wang et al., 2023a), ZOC (Esmaeilpour et al., 2022),
CLIPN (Wang et al., 2023a), LoCoOp (Miyai et al., 2024), LSN (Nie et al., 2024), LAPT (Zhang
et al., 2025), Mahalanobis (Lee et al., 2018), MCM (Ming et al., 2022), NegLabel (Jiang et al.,
2024), AdaNeg (Zhang & Zhang, 2024) and CSP (Chen et al., 2024).

6.1 MAIN RESULTS

Following prior work (Ming et al., 2022; Jiang et al., 2024; Chen et al., 2024; Zhang & Zhang,
2024), We evaluate our method on the popular ImageNet-1K benchmark (Deng et al., 2009), where
the validation set of ImageNet-1K is designated as the ID dataset while iNaturalist (Van Horn et al.,
2018), SUN (Xiao et al., 2010), Places365 (Zhou et al., 2017), and Textures (Cimpoi et al., 2014)
are considered as OOD datasets. The methods listed in the upper section of Table 2, ranging from
MSP (Hendrycks & Gimpel, 2016) to VOS (Tao et al., 2023), represent traditional visual OOD de-
tection methods. Conversely, the methods in the lower section, extending from ZOC (Esmaeilpour
et al., 2022) to NegLabel (Jiang et al., 2024), employ pre-trained VLMs like CLIP. Our method
chieves the state-of-the-art on the ImageNet-1k benchmark, which highlights its superior perfor-
mance in the zero-shot setting. Furthermore, our method can surpass traditional methods with a
finetuned CLIP, demonstrating CLIP’s strong OOD detection capabilities in zero-shot scenarios.
This is because CLIP can parse images in a fine-grained manner, which is achieved through its
pre-training on a large-scale image-text dataset.
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Table 3: Evaluation on domain-generalizable OOD detection with VIT B/16 as encoder. ↑ indicates
larger values are better and vice versa. The best results in the last two columns are shown in bold.

ID Dataset Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ImageNet-S MCM 87.74 63.06 85.35 67.24 81.19 70.64 74.77 79.59 82.26 70.13
NegLabel 99.34 2.24 94.93 22.73 90.78 38.62 89.29 46.10 93.59 27.42
Ours 99.15 2.93 95.58 16.82 92.69 26.92 89.94 38.33 94.34 24.25

ImageNet-A
MCM 79.50 76.85 76.19 79.78 70.95 80.51 61.98 86.37 72.16 80.88
NegLabel 98.80 4.09 89.83 44.38 82.88 60.10 80.25 64.34 87.94 43.23
Ours 99.03 3.09 90.04 40.83 82.79 58.42 80.25 63.83 88.03 41.54

ImageNet-R
MCM 83.22 71.51 80.31 74.98 75.53 76.67 67.66 83.72 76.68 76.72
NegLabel 99.58 1.60 96.03 15.77 91.97 29.48 90.60 35.67 94.54 20.63
Ours 99.74 1.01 96.63 12.5. 92.90 27.25 92.06 32.42 95.33 18.30

ImageNetV2
MCM 91.79 45.90 89.88 50.73 86.52 56.25 81.51 69.57 87.43 55.61
NegLabel 99.40 2.47 94.46 25.69 90.00 42.03 88.46 48.90 93.08 29.77
Ours 99.64 1.35 94.72 23.20 89.93 42.05 44.77 89.43 93.44 27.84

Table 4: Evaluation on hard OOD detection, where a VIT B/16 CLIP encoder is adopted. ↑ indicates
larger values are better and vice versa. The best results are shown in bold.

ID dataset ImageNet-10 ImageNet-20 ImageNet-100 ImageNet-10
OOD dataset ImageNet-20 ImageNet-10 ImageNet-10 ImageNet-100

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

MCM 98.60 6.00 98.09 13.04 87.20 60.00 98.39 2.50
NegLabel 98.86 5.10 98.81 4.60 90.19 40.20 99.51 1.68
Ours 99.12 3.75 99.27 2.35 91.64 34.36 99.65 1.17

6.2 EXTENSIONS

Domain-generalizable OOD Detection. With ImageNet-1K as a case study, we, following Jiang
et al. (2024), consider ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a)
and ImageNetV2 (Recht et al., 2019) as ID data respectively. The experiment results on four OOD
datasets are shown in Table 3. It is apparent that the performance of MCM significantly deterio-
rates across diverse domain shifts, indicating the difficulty of OOD detection under such conditions.
NegLabel achieves remarkably better performances than MCM, thus demonstrating the significance
of introducing negative labels for OOD detection. Our method consistently outperform NegLabel
cross diverse ID datasets, which implies stronger robustness of our method against domain shifts.

Hard OOD Detection. Following prior works (Ming et al., 2022; Jiang et al., 2024), we alter-
nate using ImageNet-10 and ImageNet-20 as ID and OOD data, as well as using ImageNet-10 and
ImageNet-100 to mimic the setting in Fort et al. (2021) with high-resolution images. The results in
Table 4 show that our method consistently outperforms MCM and NegLabel in all settings, demon-
strating that our method has strong discriminative power for semantically hard OOD data.

Table 5: OOD detection results with different CLIP architectures on ImageNet-1k as ID. ↑ indicates
larger values are better and vice versa. The best results in the last two columns are shown in bold.

Backbone Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ViT-B/32 MCM 92.68 40.49 89.95 47.83 88.10 51.47 85.98 60.04 89.96 49.96
NegLabel 99.11 3.73 95.27 22.48 91.72 34.94 88.57 50.51 93.67 27.92
Ours 99.47 2.10 95.60 19.36 91.94 32.83 89.62 44.87 94.16 24.79

ViT-L/14 MCM 93.58 36.80 92.80 36.77 90.90 41.35 85.05 61.70 90.58 44.16
NegLabel 99.53 1.77 95.63 22.33 93.01 32.22 89.71 42.92 94.47 24.81
Ours 99.67 1.22 96.06 19.15 93.16 30.57 90.42 38.32 94.83 22.31

ResNet50 MCM 91.88 42.97 89.31 52.84 84.12 65.75 85.55 62.15 87.71 55.93
NegLabel 99.24 2.88 94.54 26.51 89.72 42.60 88.40 50.80 92.97 30.70
Ours 99.54 1.48 94.61 24.58 89.69 41.64 90.23 42.70 93.52 27.60
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Table 6: OOD detection results with different input resolution on ImageNet-1k as ID, where a VIT
L/14 CLIP encoder is adopted. ↑ indicates larger values are better and vice versa. The best results
in the last two columns are shown in bold.

Resolution Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

336×336 NegLabel 99.71 1.12 95.68 21.84 93.15 31.79 90.55 40.46 94.77 23.80
Ours 99.72 1.09 96.17 18.24 93.39 29.62 90.67 37.68 94.99 21.66

Table 7: OOD detection results with different corpus sources on ImageNet-1k as ID, where a VIT
B/16 CLIP encoder is adopted. ↑ indicates larger values are better and vice versa. The best results
in the last two columns are shown in bold.

Corpus Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Common NegLabel 86.91 65.43 95.03 24.22 91.52 34.83 83.69 67.75 89.29 48.06
Ours 88.77 57.76 94.46 25.57 91.70 34.18 85.15 60.04 90.02 44.64

Part-of-Speech NegLabel 99.23 3.25 94.20 25.93 90.17 43.09 87.77 50.11 92.84 30.59
Ours 99.42 2.46 94.82 23.29 91.75 39.48 91.59 41.86 94.40 26.77

Figure 1: Hyper-parameter analysis on ImageNet-1K w.r.t T (left), γ (middle), and cγ(η) (right).

6.3 ABLATION STUDY

Architectures. In principle, our method is generic to the choice of visual encoder. We evaluate our
method with different visual encoder architectures, including ViT-B/32, ViT-L/14 and ResNet-50,
and report the corresponding OOD detection results in Table 5. On the one hand, the performance of
OOD detection can be enhanced by more powerful visual encoders. On the other hand, our method
consistently outperforms the most recent NegLabel regardless of the backbone architecture used,
which implies the better generalization of our method over NegLabel.

Input Size. In principle, our method is generic to the input resolution. We evaluate our method with
a larger input size, i.e., 336×336, and report the corresponding OOD detection results in Table 6.
On the one hand, the performance of OOD detection can be enhanced by a larger input size. On the
other hand, our method consistently outperforms the most recent NegLabel regardless of the input
resolution, which implies the better generalization of our method over NegLabel.

Corpus Sources. The role of the corpus is to provide a larger and more comprehensive semantic
space. While our method is generic to the input resolution, we also conduct ablative analysis with
different corpus sources, including Part-of-Speech Tags and Common-20K. As for Part-of-Speech
Tags, we, following NegLabel (Jiang et al., 2024), randomly sample 70000 words to constitute the
corpus source. It can be found that Table 7 that our method consistently outperforms NegLabel on
multiple corpora, which implies that the flexibility of our method.

Hyper-parameter Analysis. We evaluate the hyper-parameters most essential to our design, in-
cluding the temperature T , the order γ, and cγ(η). The corresponding results are plotted in Figure 1.
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7 CONCLUSION

This work presents a distributionally-augmented energy-based framework to provide a novel per-
spective on CLIP-based OOD detection with Negative labels. We show that existing methods in
this direction essentially estimate the energy function against a worst-case distribution within a KL-
divergence ball, thereby tolerating sampling bias between observed negative labels and real OOD
labels. We also identify the inherent over-pessimism of KL-based formulations. In response, we pro-
pose a Rényi-divergence–based refinement for a more flexible and balanced worst-case distribution,
achieving state-of-the-art results in various setups of OOD detection.
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A RELATED WORK ON TRADITIONAL OOD DETECTION

The popularity of OOD detection is motivated by the empirical observation (Nguyen et al., 2015)
that neural networks tend to be over-confident in OOD data.
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One line of work performs OOD detection by devising post-hoc scoring functions, including
confidence-based methods (Hendrycks et al., 2019; Ming et al., 2022; Zhang & Xiang, 2023),
energy-based methods (Liu et al., 2020), distance-based approaches (Lee et al., 2018; Sun et al.,
2022; Sohn, 2016; Morteza & Li, 2022; Peng et al., 2024), gradient-based approaches (Huang et al.,
2021), and Bayesian approaches (Kristiadi et al., 2020; Malinin & Gales, 2019). Another line of
work addresses OOD detection by fine-tuning a pre-trained discrimination model with training-time
regularizations that help the model learn ID/OOD discrepancy following the guideline of outlier
exposure (Hendrycks et al., 2018). For instance, the discriminative model is regularized to produce
lower confidence (Lee et al., 2017; Malinin & Gales, 2018), smaller feature magnitudes (Liu et al.,
2020) or higher energy (Dhamija et al., 2018) for outlier points. More recently, some works have
considered a practical scenario where the auxiliary outliers can be arbitrarily different from the real
OOD data, therefore distributionally augmenting the observed OOD data. Besides, the given OOD
samples tend to include unlabelled ID counterparts (Katz-Samuels et al., 2022). Because of this,
WOOD (Katz-Samuels et al., 2022) formulates learning with noisy OOD samples as a constrained
optimization problem while SAL (Du et al., 2024a) separates candidate outliers from the unlabeled
data and then trains a binary classifier using the candidate outliers and the labelled ID data.

On the theoretical side, there are various attempts to explore the theoretical understanding of OOD
detection. Fang et al. (2022; 2024) study the generalization of OOD detection by PAC learning
and find a necessary condition for the learnability of OOD detection. Du et al. (2024a) provides
a provable understanding of the OOD detection result by modeling the feature space as a mixture
of multivariate Gaussian distributions. Peng et al. (2024) weakens distributional assumption from
Gaussian distribution to exponential family distribution. Du et al. (2024b) studies the impact of ID
labels on OOD detection.

B PROOFS OF MAIN THEOREMS

B.1 PROOF OF THEOREM 3

Proof. We consider the following optimization problem

Q∗
Ŷ
= argmax

QŶ

Eŷ∈QŶ
[h(x, ŷ)] s.t. DKL(QŶ ,PŶ ) =

∫
qŶ (ŷ) log

qŶ (ŷ)

pŶ (ŷ)
dŷ ≤ η.

Introducing multipliers α ≥ 0 for the KL constraint and δ for normalization
∫
qŶ (ŷ)dŷ = 1:

L =

∫
qŶ (ŷ)h(x, ŷ) dŷ + α

(
η −

∫
qŶ (ŷ) log

qŶ (ŷ)

pŶ (ŷ)
dŷ

)
+ δ

(
1−

∫
qŶ (ŷ) dŷ

)
. (16)

Note that L both depend on QŶ ,x, α, δ, but we suppress the dependence from the notation for
simplicity.

Taking the functional derivative with respect to qŶ (ŷ) gives

∂L
∂qŶ (ŷ)

= h(x, ŷ)− α
(
log

qŶ (ŷ)

pŶ (ŷ)
+ 1

)
− δ.

Stationarity requires ∂L
∂qŶ (ŷ) = 0, hence

log
q∗
Ŷ
(ŷ)

pŶ (ŷ)
=

h(x, ŷ)− δ − α

α
.

Exponentiating yields

q∗
Ŷ
(ŷ) = pŶ (ŷ) exp

(
h(x, ŷ)− δ − α

α

)
∝ pŶ (ŷ) exp

(
h(x, ŷ)

α

)
.

Replacing α with the optimal α∗(x,PŶ ) = argminα≥0

{
αη + α logEŷ∼PŶ

[eh(x,ŷ)/α]
}

yields

q∗
Ŷ
(ŷ) ∝ pŶ (ŷ) exp

(
h(x, ŷ)

α∗(x,PŶ )

)
.
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B.2 PROOF OF THEOREM 1

Proof. Let ℓ(ŷ) = qŶ (ŷ)/pŶ (ŷ) and φ(a) = a log a− a+ 1, then we have∫
qŶ (ŷ)h(x, ŷ) dŷ = EPŶ

[h(x, ŷ)ℓ(ŷ)]∫
qŶ (ŷ) log

qŶ (ŷ)

pŶ (ŷ)
dŷ = EPŶ

[φ(ℓ(ŷ))]∫
qŶ (ŷ) dŷ = EPŶ

[ℓ(ŷ)]

According to Eq. (16), we can rewrite Ê(x, yj ;θ) in Eq. (5) as follows:

Ê(x, yj ;θ) = h(x, yj)− min
α≥0,δ

max
Q
Ŷ

L

= h(x, yj)− min
α≥0,δ

max
Q
Ŷ

{EP
Ŷ
[h(x, ŷ)ℓ(ŷ)]− α[EP

Ŷ
[φ (ℓ(ŷ))]− η] + δ(EP

Ŷ
[ℓ(ŷ)]− 1)}

= h(x, yj)− min
α≥0,δ

{
αη − δ + αmax

Q
Ŷ

{EP
Ŷ
[
h(x, ŷ) + δ

α
ℓ(ŷ)− φ (ℓ(ŷ))]}

}
(17)

= h(x, yj)− min
α≥0,δ

{
αη − δ + αEP

Ŷ
[max
ℓ(ŷ)

{h(x, ŷ) + δ

α
ℓ(ŷ)− φ (ℓ(ŷ))}]

}
(18)

= h(x, yj)− min
α≥0,δ

{
αη − δ + αEP

Ŷ
[φ∗(

h(x, ŷ) + δ

α
)]
}

(19)

= h(x, yj)− min
α≥0,δ

{
αη − δ + αEP

Ŷ
[e

h(x,ŷ)+δ
α − 1]

}
(20)

= h(x, yj)−min
α≥0

{
αη + α logEP

Ŷ
[e

h(x,ŷ)
α ]

}
(21)

= α∗(x,PŶ ) log
eh(x,ŷ)/α

∗(x,P
Ŷ

)

EP
Ŷ
[eh(x,ŷ)/α

∗(x,P
Ŷ

)]
− α∗(x,PŶ )η,

where α∗(x,PŶ ) = argminα≥0

{
αη + α logEŷ∼PŶ

[eh(x,ŷ)/α]
}

.

We kindly note that 1) Eq. (17) holds due to the strong duality (Boyd & Vandenberghe, 2004);
2) Eq. (18) is derived via a re-arrangement for optimizing over PŶ ; 3) the derivation of Eq. (19)
follows by Ben-Tal & Teboulle (2007); 4) Eq. (20) is established based on the definition of convex
conjugate (Hiriart-Urruty & Lemaréchal, 2004), i.e., φ∗(a) = ea − 1.

To prove Eq. (21), Fix α > 0 and minimize Eq. (20) over δ gives R#gfTd

min
δ

[
αη − δ + αEPŶ

[e(h(x,ŷ)+δ)/α − 1]
]
.

Expand and separate δ gives

αη − δ + α
(
eδ/αEPŶ

[eh(x,ŷ)/α]− 1
)
= αη − α+ (αReδ/α − δ)︸ ︷︷ ︸

=:g(δ)

,

where R := EPŶ
[eh(x,ŷ)/α] > 0 (for simplicity, we omit the dependence on x, PŶ and α).

Compute the derivative of g(δ) w.r.t. δ and set it to zero:

g′(δ) = Reδ/α − 1 = 0→ δ∗ = −α logR.

Since g′′(δ) = 1
αReδ/α > 0, δ∗ gives the minimum, i.e.,

min
δ

g(δ) = g(δ∗) = αR · 1
R
− (−α logR) = α+ α logR.

Therefore, for fixed α,

min
δ

[
αη − δ + αEPŶ

[e(h(x,ŷ)+δ)/α − 1]
]
= αη−α+(α+α logR) = αη+α logEPŶ

[eh(x,ŷ)/α],

such that

h(x, yj)− min
α≥0,δ

[
αη − δ + αEPŶ

[e
h(x,ŷ)+δ

α − 1]
]
= h(x, yj)−min

α≥0

[
αη + α logEPŶ

[eh(x,ŷ)/α]
]
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B.3 PROOF OF THEOREM 4

Proof. We consider the following optimization problem

Q∗
Ŷ
= argmax

QŶ

Eŷ∈QŶ
[h(x, ŷ)] s.t. Dγ(QŶ ,PŶ ) =

∫
qŶ (ŷ)ϕγ

(
qŶ (ŷ)

pŶ (ŷ)

)
dŷ ≤ η, (22)

where ϕγ(t) =
1

γ(γ−1) (t
γ − γt+ γ − 1) with γ > 1.

Introducing multipliers α ≥ 0 for the Rényi constraint and δ for normalization
∫
qŶ (ŷ)dŷ = 1:

Lγ =

∫
qŶ (ŷ)h(x, ŷ) dŷ + α

(
η −

∫
qŶ (ŷ)ϕγ

(
qŶ (ŷ)

pŶ (ŷ)

)
dŷ

)
+ δ

(
1−

∫
qŶ (ŷ) dŷ

)
= EPŶ

[h(x, ŷ)ℓ(ŷ)] + α
(
η − EPŶ

[ϕγ (ℓ(ŷ))]
)
+ δ

(
1− EPŶ

[ℓ(ŷ)]
)
,

(23)

where ℓ(ŷ) = qŶ (ŷ)/pŶ (ŷ). Note that Lγ both depend on QŶ ,x, α, δ, but we suppress the depen-
dence from the notation for simplicity.

Then solving Eq. (22) is equivalent to solving the following problem:

min
α≥0,δ

max
QŶ

Lγ

= min
α≥0,δ

max
QŶ

EPŶ
[h(x, ŷ)ℓ(ŷ)] + α

(
η − EPŶ

[ϕγ (ℓ(ŷ))]
)
+ δ

(
1− EPŶ

[ℓ(ŷ)]
)

= min
α≥0,δ

{
αη + δ + αmax

QŶ

EPŶ

[
h(x, ŷ)− δ

α
ℓ(ŷ)− ϕγ (ℓ(ŷ))

]}
= min

α≥0,δ

{
αη + δ + αEPŶ

[
max
ℓ(ŷ)

(
h(x, ŷ)− δ

α
ℓ(ŷ)− ϕγ (ℓ(ŷ))

)]}
(24)

Note that max
ℓ(ŷ)

{
h(x,ŷ)−δ

α ℓ(ŷ)− ϕγ (ℓ(ŷ))
}
= ϕ∗

γ

(
h(x,ŷ)−δ

α

)
is the Fenchel Conjugate Function of

ϕγ(
h(x,ŷ)−δ

α ), then we have ϕ∗
γ(a) = 1

γ ((γ − 1)a+ 1)
γ∗

+ −
1
γ with γ∗ = γ

γ−1 . Please refer to
Duchi & Namkoong (2021) for more details. Then Eq. (24) can be rewritten as follows:

min
α≥0,δ

{
αη + δ + αEPŶ

[
max
ℓ(ŷ)

(
h(x, ŷ)− δ

α
ℓ(ŷ)− ϕγ (ℓ(ŷ))

)]}
= min

α≥0,δ

{
αη + δ + αEPŶ

[
ϕ∗
γ

(
h(x, ŷ)− δ

α

)]}
.

(25)

Following Duchi & Namkoong (2021), with β = δ − α
γ−1 , we can arrive at the closed-form formu-

lation of the optimal α∗ that minimizes Eq. (25) as follows:

α∗ = (γ − 1)(γ(γ − 1)η + 1)−
1
γ∗ EPŶ

[
(h(x, ŷ)− β)γ

∗

+

] 1
γ∗

, (26)

By substituting α∗, β and ϕ∗
γ

(
h(x,ŷ)−δ

α

)
into Eq. (25), we have:

max
Q
Ŷ

:Dγ(Q
Ŷ

∥P
Ŷ

)≤η
Eŷ∈Q

Ŷ
[h(x, ŷ)] = min

α≥0,δ
max
Q
Ŷ

Lγ = min
β

{
cγ(η)Eŷ∼P

Ŷ

[(
h(x, ŷ)− β

)γ∗

+

] 1
γ∗

+ β

}
,

(27)
where cγ(η) = (γ(γ − 1)η + 1)

1
γ , such that

Ê(x, yj ;θ) =h(x, yj)− max
QŶ :Dγ(QŶ ∥PŶ )≤η

Eŷ∈QŶ
[h(x, ŷ)]

=h(x, yj)−
{
cγ(η)Eŷ∼PŶ

[(
h(x, ŷ)− β∗

x

)γ∗

+

] 1
γ∗

+ β∗
x

}
,

(28)

where

β∗
x = argmin

β

{
cγ(η)Eŷ∼PŶ

[(
h(x, ŷ)− β

)γ∗

+

] 1
γ∗

+ β

}
. (29)
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B.4 PROOF OF THEOREM 5

Proof. Taking the functional derivative of h(x,ŷ)−δ
α ℓ(ŷ)− ϕγ (ℓ(ŷ)) in Eq. (24) w.r.t. qŶ (ŷ) gives

∂

∂ℓ(ŷ)

{
h(x, ŷ)− δ

α
ℓ(ŷ)− ϕγ (ℓ(ŷ))

}
=
h(x, ŷ)− δ

α
− ∂ϕγ (ℓ(ŷ))

∂ℓ(ŷ)

=
h(x, ŷ)− δ

α
− 1

γ − 1

[
ℓ(ŷ)γ−1 − 1

]
.

(30)

Stationarity requires
∂

∂ℓ(ŷ)

{
h(x, ŷ)− δ

α
ℓ(ŷ)− ϕγ (ℓ(ŷ))

}
= 0,

hence
h(x, ŷ)− δ =

α

γ − 1
[ℓ∗(ŷ)]

γ−1
,

where ℓ∗(ŷ) = q∗
Ŷ
(ŷ)/pŶ (ŷ). Replacing α with the optimal α∗, then we have:

ℓ∗(ŷ) = cγ(η)
(h(x, ŷ)− β∗

x)
1

γ−1

+

Eỹ∼PŶ
[(h(x, ỹ)− β∗

x)
γ∗

+ ]
1
γ

,

such that

q∗
Ŷ
(ŷ) = cγ(η)

(h(x, ŷ)− β∗
x)

1
γ−1

+

Eỹ∼PŶ
[(h(x, ỹ)− β∗

x)
γ∗

+ ]
1
γ

pŶ (ŷ) ∝ (h(x, ŷ)− β∗
x)

1
γ−1

+ pŶ (ŷ).

C CONVEXITY WITH REGARD TO β

Let ζ(β) = cγ(η)Eŷ∼PŶ

[(
h(x, ŷ)− β

)γ∗

+

] 1
γ∗

+ β, then we have:

ζ(δβ1 + (1− δ)β2)

=δβ1 + (1− δ)β2 + cγ(η)Eŷ∼PŶ

[(
δ(h(x, ŷ)− β1) + (1− δ)(h(x, ŷ)− β2)

)γ∗

+

] 1
γ∗ (31)

According to Minkowski’s inequality, we have:

Eŷ∼PŶ

[(
δ · (h(x, ŷ)− β1) + (1− δ) · (h(x, ŷ)− β2)

)γ∗

+

] 1
γ∗

≤δ · Eŷ∼PŶ

[
(h(x, ŷ)− β1)

γ∗

+

] 1
γ∗

+ (1− δ) · Eŷ∼PŶ

[
(h(x, ŷ)− β2)

γ∗

+

] 1
γ∗

,

(32)

such that
ζ(δβ1 + (1− δ)β2) ≤ δζ(β1) + (1− δ)ζ(β2). (33)

D BROADER IMPACTS

Our project aims to improve the reliability and safety of modern machine learning models, which
leads to benefits and societal impacts, particularly for safety-critical applications such as au-
tonomous driving. Our study does not involve any human subjects or violation of legal compliance.
We do not anticipate any potentially harmful consequences to our work.
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E LIMITATION

Our framework only provides a theoretical explanation for CLIP-based OOD detection with negative
labels, leaving a crucial gap in the success of methods in other directions.

F EVALUATION METRIC

The performance of OOD detection is evaluated via two widely used metrics: 1) the false positive
rate of OOD data is measured when the true positive rate of ID data reaches 95% (FPR95); 2) the area
under the receiver operating characteristic curve (AUROC) is computed to quantify the probability
of the ID case receiving a higher score than the OOD case. The reported results of our method are
averaged over 5 independent runs.

G USAGE CLAIM OF LLMS

We use ChatGPT for grammar and spelling checks only, with the prompt ”Proofread the sentences”.

H ALGORITHMIC SUMMARY
R#gfTd

For clarity, we summarize our algorithmic details in Algorithm 1.

Algorithm 1:

Input : Test-time input x, ID labels YI = {y1, . . . , yK}, Negative labels Ŷ = {ŷ1, . . . , ŷL},
learning rate lr, critic h(·, ·), maximum iteration M , hyper-parameters γ∗, cγ(η)

Output: OOD scoring function Sours(x;θ)
// Step 1: Optimizing βx

1 for iter = 1 to M do
2

βx ← βx − lr · ∂

∂βx

cγ(η)

 1

L

L∑
j=1

(
h(x, ŷj)− βx

)γ∗

+

 1
γ∗

+ βx

 .

// Step 2: OOD Scoring
3

Sours(x;θ) = T log

K∑
i=1

exp
{

1
T · [h(x, yi)− βx]

}
exp

{
cγ(η)
T ·

[
1
L

∑L
j=1

(
h(x, ŷj)− βx

)γ∗

+

] 1
γ∗
}

I QUANTITATIVE ANALYSIS ON COMPUTATION TIME
R#gfTd,
R#GPbo,
R#44Et,
R#KbNX

As shown in Algorithm 1, our method consists of two stages: 1) Optimizing βx and 2) OOD scoring.

As for the first stage, we start with deriving the specific form of the gradient w.r.t βx as follows:

1− cγ(η)ϕ(β)
1
γ∗ −1 1

L

L∑
j=1

1 (h(x, ŷj) > β) (h(x, ŷj)− β)γ
∗−1

+ ,

where ϕ(β) = 1
L

∑L
j=1(h(x, ŷj)− β)γ

∗

+ .

Clearly, the time complexity of gradient computation is O(L), which, same as NegLabel, linearly
grows with the number of negative labels. Here we omit the complexity introduced by the dot-
product computation, as it is orthogonal to our algorithmic design. Therefore, the time complexity
of the first stage which involve M -step SGD is O(M ·L), where the maximum iteration M is usually
set to a relative small value (e.g., M = 15 in this paper)
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Table 8: Detailed OOD detection results of our method on the OpenOOD benchmark, where
ImageNet-1K is adopted as ID dataset.

Ours (Stage 1) Ours (Stage 2) Ours (Stage 1+2) NegLabel (with grouping strategy)

1.51ms 0.12ms 1.63ms 0.14ms

As for the second step, one can easily check that the time complexity of our proposed scoring
function Sours(x;θ) is O(K + L), which is same as that of SNegLabel(x;θ) in Eq. (2).

Table 8 reports the average computation time of our method and NegLabel per test-time input on
a single NVIDIA A100. Note that we omit the computation cost introduced by extracting features
from pre-trained CLIP, as our method keeps the same feature extraction procedure as NegLabel.

Although the optimization process adds roughly 1.5 ms per test-time input, this cost is small in
absolute terms. Therefore, both theoretically and empirically, the additional computation is limited
and does not contradict our claim that the extra cost is negligible in practice.

J MORE DISCUSSIONS

J.1 CONNECTION BETWEEN SNEGLABEL(x; f) AND ŜNEGLABEL(x; f) R#GPbo

For any α ∈ [0, 1], the α-skew negative label distribution P̂Ŷ is defined as

P̂Ŷ = αPYI + (1− α)PŶ ,

where PYI is the ID label distribution. Replacing P̂Ŷ with PŶ in Eq. (8) gives

T log

K∑
i=1

eh(x,yj)/T

Eŷ∼P̂Ŷ
[eh(x,ŷ)/T ]

− Tη

=T log

K∑
i=1

eh(x,yj)/T

αEŷ∼PYI
[eh(x,ŷ)/T ] + (1− α)Eŷ∼PŶ

[eh(x,ŷ)/T ]
− Tη

≈T log

K∑
i=1

exp [h(x, yi)/T ]
α
K

∑K
j=1 exp [h(x, yj)/T ] +

1−α
L

∑L
j=1 exp [h(x, ŷj)/T ]

− Tη.

With α = K
K+L , we have

log

K∑
i=1

exp [h(x, yi)/T ]
α
K

∑K
j=1 exp [h(x, yj)/T ] +

1−α
L

∑L
j=1 exp [h(x, ŷj)/T ]

= log

K∑
i=1

exp [h(x, yi)/T ]∑K
j=1 exp [h(x, yj)/T ] +

∑
j = 1L exp [h(x, ŷj)/T ]︸ ︷︷ ︸

SNegLabel(x;f)

+ log(K + L)
(34)

The above implies that SNegLabel(x; f) essentially estimates a worst-case energy function over
a KL-divergence-constrained set, therefore being functionally equivalent to ŜNegLabel(x; f) in a
broader sense. In a narrow sense, SNegLabel(x; f) can be considered as a slightly noisy version
of ŜNegLabel(x; f) (up to a constant) with the noise level α = 1000

1000+10000 ≈ 0.09.

J.2 COMPARISON WITH TEST-TIME ADAPTATION OOD DETECTION R#GPbo

We notice that, superficially, the use of 15-step SGD in test-time somewhat resembles the idea
of test-time adaptation (TTA). However, we draw a conceptual distinction based on what is being
updated and what the goal is:
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Table 9: OOD detection results on the OpenOOD benchmark, where CIFAR-100 is adopted as ID
dataset. Full results are provided in Table 10.

Methods FPR95 ↓ AUROC ↑
Near-OOD Far-OOD Near-OOD Far-OOD

MCM 75.20 59.32 71.00 76.00
NegLabel 71.44 40.92 70.58 89.68
Ours 68.12 34.81 72.84 92.95

Table 10: Detailed OOD detection results of our method on the OpenOOD benchmark, where
CIFAR-100 is adopted as ID dataset.

Settings Datasets FPR95 ↓ AUROC ↑

Near-OOD
CIFAR-10 69.59 64.76
TIN 66.65 80.92
Average 68.12 72.84

Far-OOD

MNIST 10.05 96.84
SVHN 13.24 96.97
Texture 35.32 93.74
Places 80.63 84.25
Average 34.81 92.95

TTA OOD DETECTION (E.G., ADANEG)

• What is updated: Negative proxies that are shared by test-time inputs.

• Scope of update: Updation is based on test-time inputs and can accumulate over time.

• Goal: Explicitly adapt the negative proxies to the test distribution.

• Statefulness: The negative proxies and/or their internal state after processing earlier test-
time inputs influence predictions on future test-time inputs.

OUR METHOD

• What is updated: We only optimize a scalar variable βx per input, which is not shared
across test-time inputs.

• Scope of update: The optimization is strictly local and input-dependent. For each x, βx

is reinitialized and optimized from scratch. There is no cross-sample sharing.

• Goal: We are not adapting negative labels to a new distribution. Instead, we are computing
an input-specific optimum of a fixed energy function that was fully specified by the pre-
trained CLIP model and the pre-computed negative labels.

• Statefulness: There is no persistent state that changes over time. OOD scoring for x1 and
x2 are independent since optimizing βx1

does not influence βx2
or any future βx.

K EXPERIMENT ON CIFAR-100 BENCHMARK
R#gfTd,
R#GPboBesides ImageNet, we also assess our method on the smaller CIFAR-100 dataset (Krizhevsky et al.,

2009) under the OpenOOD setup (Zhang et al., 2024a). Specifically, we utilize Near-OOD datasets
including CIFAR-10 (Krizhevsky et al., 2009) and Tiny-ImageNet (TIN) (Le & Yang, 2015),and
Far-OOD datasets including MNIST (Deng, 2012), SVHN (Netzer et al., 2011), Texture (Cimpoi
et al., 2014), and Places (Zhou et al., 2017). As illustrated in Table 9, our advantage still holds.

L MORE EXPERIMENT ON IMAGENET-1K BENCHMARK
R#GPbo,
R#44Et
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Table 11: OOD detection results on the OpenOOD benchmark, where ImageNet-1K is adopted as
ID dataset. Full results are provided in Table 12.

Methods FPR95 ↓ AUROC ↑
Near-OOD Far-OOD Near-OOD Far-OOD

MCM 79.02 68.54 60.11 84.77
NegLabel 69.45 23.73 75.18 94.85
Ours 68.09 21.50 75.65 95.35

Table 12: Detailed OOD detection results of our method on the OpenOOD benchmark, where
ImageNet-1K is adopted as ID dataset.

Settings Datasets FPR95 ↓ AUROC ↑

Near-OOD
SSB-hard 70.11 76.04
NINCO 66.07 75.26
Average 68.09 75.65

Far-OOD

iNaturalist 1.29 99.64
Texture 39.45 90.79
OpenImage-O 23.75 95.62
Average 21.50 95.35

Our method is extensively evaluated against a range of OOD datasets on the OpenOOD bench-
mark. Specifically, with ImageNet-1K as the ID dataset, we utilize Near-OOD datasets including
SSB-hard (Vaze et al., 2021) and NINCO (Bitterwolf et al., 2023),and Far-OOD datasets including
iNaturalist (Van Horn et al., 2018), Textures (Cimpoi et al., 2014), and OpenImage-O (Wang et al.,
2022). As illustrated in Table 11, our advantage still holds. Moreover, as shown in Table 13, our
method not only demonstrates high distinguish ability against semantic shifts but also exhibits strong
robustness to covariate shifts.

M ABLATION STUDY ON TEXT PROMPTS
R#44Et

We evaluate our method with different prompt templates on the ImageNet-1k benchmark, as shown
in Table 15.

N ABLATION STUDY ON NEGATIVE LABELS
R#44Et

We explore the impact of the number of selected negative labels on OOD detection. The results
shown in Table 16 demonstrate that our method consistently outperforms NegLabel with different
number of negative labels and therefore is not sensitive with the number of negative labels.

We also investigate the impact the strategy of mining negative labels on OOD detection. The results
shown in Table 17 demonstrate that our method consistently outperforms NegLabel with mining
negative and therefore is not sensitive with the the quality of negative-label mining.

Table 13: Full-spectrum OOD detection results on the OpenOOD benchmark, where ImageNet-1K
is adopted as ID dataset. Full results are provided in Table 14.

Methods FPR95 ↓ AUROC ↑
Near-OOD Far-OOD Near-OOD Far-OOD

MCM 85.37 69.87 58.97 77.11
NegLabel 76.25 33.30 72.77 92.02
Ours 73.78 29.65 74.18 93.61
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Table 14: Detailed full-spectrum OOD detection results of our method on the OpenOOD benchmark,
where ImageNet-1K is adopted as ID dataset.

Settings Datasets FPR95 ↓ AUROC ↑

Near-OOD
SSB-hard 75.29 73.92
NINCO 72.27 74.44
Average 73.78 74.18

Far-OOD

iNaturalist 2.32 99.35
Texture 48.36 88.40
OpenImage-O 38.27 93.08
Average 29.65 93.61

Table 15: OOD detection results with different prompt templates on ImageNet-1k as ID. ↑ indicates
larger values are better and vice versa. The best results in the last two columns are shown in bold.

Prompt Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

A photo of a <label>. NegLabel 99.59 1.74 94.83 26.35 90.17 46.92 80.79 72.11 91.34 36.78
Ours 99.59 1.62 95.18 22.94 91.09 41.87 83.70 65.76 92.39 33.05

<label>. NegLabel 99.52 1.91 95.77 19.32 92.43 32.79 86.89 59.34 93.65 28.34
Ours 99.60 1.51 96.02 17.17 93.59 29.65 89.35 55.90 94.71 26.06

O MORE ABLATION STUDY ON BACKBONES
R#44Et

Table 18 assesses the performance of our method using ResNet50x16 as the backbone to examine
whether performance gains diminish when the base model already separates ID/OOD well.
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Table 16: Impact of the number of negative labels L selected by NegMining (Jiang et al., 2024) from
WordNet on ImageNet-1k benchmark. ↑ indicates larger values are better and vice versa. The best
results in the last two columns are shown in bold.

L Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

5000 NegLabel 99.64 1.39 94.83 23.28 91.28 37.58 89.97 44.26 93.93 26.63
Ours 99.54 1.74 95.34 19.51 91.82 34.05 90.47 41.76 94.30 24.26

20000 NegLabel 99.18 3.16 95.24 21.47 91.16 37.23 89.83 44.40 93.85 26.56
Ours 99.47 2.78 95.55 19.23 92.19 34.62 90.59 42.07 94.45 24.68

Table 17: Impact of mining strategy of L = 10000 negative labels from WordNet on ImageNet-
1k benchmark. ↑ indicates larger values are better and vice versa. The best results in the last two
columns are shown in bold.

Strategy Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Random Selection NegLabel 97.96 9.11 93.93 28.67 89.54 45.10 86.62 55.87 92.01 34.69
Ours 98.40 7.60 94.91 24.78 92.23 38.59 89.42 50.26 93.74 30.31

NegRefine (Ansari et al., 2025) NegLabel 99.57 1.51 94.64 22.93 90.42 39.10 94.69 21.15 94.83 21.17
Ours 99.70 1.03 95.28 16.13 91.78 36.53 95.09 20.39 95.46 18.52

Table 18: OOD detection results with ResNet50x16 or ViT-G/14 as the backbone on ImageNet-1k.
↑ indicates larger values are better and vice versa. The best results in the last two columns are shown
in bold.

Backbone Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ResNet50x16 NegLabel 99.48 2.00 94.18 29.11 88.85 48.14 91.23 38.74 93.43 29.50
Ours 99.63 1.56 95.06 25.35 90.75 44.56 91.84 36.21 94.32 26.92

ViT-G/14 NegLabel 99.70 1.15 96.17 18.01 93.21 29.37 90.26 39.96 94.84 22.12
Ours 99.78 0.82 96.59 15.13 93.96 26.53 91.07 36.54 95.35 19.75
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