

A CLOSE LOOK AT NEGATIVE LABEL GUIDED OUT-OF-DISTRIBUTION DETECTION IN PRE-TRAINED VISION-LANGUAGE MODELS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Advances in pre-trained vision-language models have enabled zero-shot out-of-
 014 distribution (OOD) detection using only in-distribution (ID) labels. Recent meth-
 015 ods in this direction expand the label space with negative labels to enhance the dis-
 016 crimination between ID and OOD inputs. Despite their promising progress, there
 017 remains a limited understanding of their empirical effectiveness in open-world
 018 scenarios, where negative labels can arbitrarily diverge from real OOD ones. This
 019 paper bridges this research gap with the helm of a novel energy-based framework,
 020 where the energy function is built upon the margin between the similarity of an
 021 input to ID labels and that to negative labels. Guided by this framework, we prove
 022 that the inherent tolerance of such methods to the sampling bias essentially stems
 023 from estimating the worst-case energy function over a KL-constrained set of po-
 024 tential distributions centered on the negative label distribution. Furthermore, our
 025 theoretical analysis reveals that existing methods suffer from over-pessimism and
 026 consequently high sensitivity to outliers. Provably, we can alleviate these prob-
 027 lems by leveraging Rényi divergence to refine potential distributions. Extensive
 028 experiments empirically manifest that our method establishes a new state-of-the-
 029 art across a variety of OOD detection settings.

1 INTRODUCTION

030 Despite the significant progress in machine learning that has facilitated a broad spectrum of classi-
 031 fication tasks (Masana et al., 2022; Zhao et al., 2019; Caruana & Niculescu-Mizil, 2006), models
 032 often operate under a *closed-world* scenario, where test data stems from the same distribution as
 033 the training data. However, real-world applications often entail *open-world* scenarios in which de-
 034 ployed models may encounter unseen classes of data during training, giving rise to what is known as
 035 out-of-distribution (OOD) data. These OOD data can potentially undermine a model’s stability and,
 036 in certain cases, inflict severe damage on its performance. Accordingly, a reliable discriminative
 037 model should not only correctly classify known in-distribution (ID) data but also flag any OOD data
 038 as unknown. This directly motivates OOD detection (Lang et al., 2023; Salehi et al., 2021; Yang
 039 et al., 2021), which makes significant differences in ensuring the safety of decision-critical applica-
 040 tions, e.g., autonomous driving (Huang et al., 2020), medical diagnosis (Zimmerer et al., 2022), and
 041 cyber-security (Nguyen et al., 2022).

042 This paper focuses on post-hoc OOD detection, which is more practical than learning-based meth-
 043 ods that require resource-intensive retraining. Earlier studies (Liang et al., 2017; Liu et al., 2020;
 044 Huang et al., 2021; Sun et al., 2022; Peng et al., 2025; Zhang et al., 2024b) primarily utilized the
 045 single modality of pre-trained models, but the success of contrastive language-image pre-training
 046 (CLIP) (Radford et al., 2021a) has recently shifted research toward expanding post-hoc OOD detec-
 047 tion from single-modal to multi-modal methods. The pioneering work, MCM (Ming et al., 2022),
 048 defines textual features as the concept for each ID class and uses the scaled distance between visual
 049 features and the closest ID prototype to measure OOD uncertainty. This method has paved the way
 050 for using pre-trained vision-language models (VLMs) in post-hoc OOD detection. However, MCM
 051 relies only on textual information from the ID label space, leaving the text interpretation capabili-
 052 ties of VLMs underutilized. To address this, NegLabel (Jiang et al., 2024) selects negative labels
 053 from large-scale lexical databases, such as WordNet (Miller, 1995), based on their similarities to

054 the ID label space, which equips the model with stronger ability to distinguish OOD data. Despite
 055 promising potential of negative labels, there remains a limited theoretical understanding of their
 056 effectiveness in open-world scenarios, where real OOD data, due to its open-ended nature, can be
 057 arbitrarily different from the observed negative labels (Wang et al., 2023b;c).

058 To mitigate this research gap, this paper delivers a close look at CLIP-based post-hoc OOD detec-
 059 tion with negative labels from the perspective of density estimation. We argue that this standpoint
 060 is well-suited for studying OOD detection, since OOD data, by definition, diverges from ID data
 061 in terms of their underlying density distributions. Following prior works (Liu et al., 2020), our an-
 062 alytical framework models ID data by resorting to the energy-based model (LeCun et al., 2006).
 063 However, we find that it is non-trivial to extend the energy function from a uni-modal to a multi-
 064 modal setting. Drawing inspiration from triplet-based metric learning (Sohn, 2016; Hermans et al.,
 065 2017), we propose to build the energy function upon the margin between the similarity of a given
 066 test-time input to ID labels and to negative labels. Guided by this framework, we theoretically show
 067 that NegLabel essentially augments the negative label distribution by constructing a distribution
 068 set contained within a Kullback–Leibler (KL) ball centered on it. Estimating the energy function
 069 against the worst-case distribution in this set ensures performance guarantees under all possible (or
 070 constrained) distribution shifts. This provides a theoretical explanation for why NegLabel remains
 071 effective when faced with unseen OOD data.

072 In addition, our theoretical analysis reveals that the paradigm of NegLabel is prone to induce an
 073 overly conservative worst-case distribution, as it assigns disproportionately large weights (governed
 074 by an exponential function) to negative labels that exhibit high similarity to the test-time input. In
 075 response, we transcend the boundary of KL divergence, but exploring a broader family of distribu-
 076 tion divergence metrics — Rényi divergence (Rényi, 1961). As a generalization of KL divergence,
 077 Rényi divergence introduces an additional parameter, the order, which offers flexible control over
 078 the weighting distribution. We show the use of Rényi divergence enables to retain the aforemen-
 079 tioned strengths while mitigating the conservativeness by shaping a milder, polynomial-bounded
 080 worst-case distribution with adaptively tunable order. Extensive experiments empirically manifest
 081 that our method establishes a new state-of-the-art in a variety of OOD detection setups.

082 2 RELATED WORK

083 The core of CLIP-based OOD detection lies in how to leverage texture supervision with pre-trained
 084 VLMs to assist OOD detection on the visual domain. On the one hand, the pioneering work,
 085 MCM (Ming et al., 2022), defines textual features as concept proto-types for each ID class and
 086 uses the scaled distance between visual features and the closest ID prototype to measure OOD un-
 087 certainty. Instead of relying on textual information from only ID label space, ZOC (Esmailpour
 088 et al., 2022) applies VLMs to discern OOD instances by training a captioner that generates potential
 089 OOD labels. Nevertheless, this captioner often fails to produce effective OOD labels, particularly
 090 for ID datasets containing many classes. Differently, NegLabel (Jiang et al., 2024) incorporates ad-
 091 ditional negative class names mined from available data sources as negative proxies. Considering the
 092 nonalignment between target visual OOD distribution and the generated negative textual OOD dis-
 093 tribution, AdaNeg (Zhang & Zhang, 2024) leverages the benefits of test-time adaptation to generate
 094 adaptive proxies by exploring potential OOD images during testing. More recently, Peng et al. un-
 095 derstand CLIP-based post-hoc OOD detection from an information-theoretical perspective. On the
 096 other hand, CLIP-based OOD detection can also be improved by prompt representation learning.
 097 In particular, LoCoOp (Miyai et al., 2024) learns ID text prompts by pushing them away from the
 098 portions of CLIP local features that have ID-irrelevant nuisances (e.g., backgrounds). CLIPN (Wang
 099 et al., 2023a) and LSN (Nie et al., 2024) design a learnable “no” prompt and a “no” text encoder
 100 to capture negation semantics within images. Differently, LAPT (Zhang et al., 2025) initializes
 101 prompts with negative labels (Jiang et al., 2024), followed by tuning prompts with cross-modal and
 102 cross-distribution mixing. *Due to space limitation, more related works are discussed in Appendix A.*

103 3 PRELIMINARY

104 **Notation.** Let \mathcal{X} and \mathcal{Y} be the input space and the label space, respectively. Given a random
 105 variable $Y \in \mathcal{Y}$, we write \mathbb{P}_Y as the marginal distribution defined over \mathcal{Y} , and use $y \sim \mathbb{P}_Y$ to

108 indicate a sample y drawn from \mathbb{P}_Y . Considering K -way classification as a case study, we write
 109 $\mathcal{Y}_1 \triangleq \{y_1, \dots, y_K\} \subset \mathcal{Y}$ as the *known* ID label space. The joint ID distribution, represented as
 110 $\mathbb{P}_{X_1 Y_1}$, is a joint distribution defined over $\mathcal{X} \times \mathcal{Y}_1$. During testing, there are some unknown OOD
 111 joint distributions $\mathbb{P}_{X_0 Y_0}$ defined over $\mathcal{X} \times \mathcal{Y}_0$, where $\mathcal{Y}_0 \subseteq \mathcal{Y} \setminus \mathcal{Y}_1$ is the *unknown* OOD label space.
 112

113 **Post-hoc OOD Scoring.** Existing methods (Hendrycks & Gimpel, 2016; Liang et al., 2017; Liu
 114 et al., 2020; Huang et al., 2021; Sun et al., 2022) tend to adopt a post-hoc strategy to detect OOD
 115 data, *i.e.*, given a pre-trained ID classification model f and a scoring function $S(\cdot; f) : \mathcal{X} \rightarrow \mathbb{R}$, then
 116 \mathbf{x} is detected as ID data if and only if $S(\mathbf{x}; f) \geq \lambda$, for some given threshold λ :
 117

$$g(\mathbf{x}) = \text{ID}, \text{ if } S(\mathbf{x}; f) \geq \lambda; \text{ otherwise, } g(\mathbf{x}) = \text{OOD}. \quad (1)$$

118 Typically, λ is chosen to ensure a high fraction (e.g., 95%) of ID data to be correctly classified.
 119

120 **CLIP-based Models** adopt a dual-stream architecture (Radford et al., 2021b) with one text encoder
 121 f_T and one image encoder f_X to map inputs of two modalities into a uni-modal hyper-spherical
 122 space $\mathbb{S}^{d-1} \triangleq \{\mathbf{z} \in \mathbb{R}^d \mid \|\mathbf{z}\|_2 = 1\}$. Zero-shot image classification based on a pre-trained CLIP-
 123 like model is to classify images into one of known ID classes by computing $\arg \max_{j=1, \dots, K} h(\mathbf{x}, y_j)$
 124 where $h(\mathbf{x}, y_j) \triangleq f_X(\mathbf{x})^\top f_T(\Delta(y_j))$ with $\Delta(\cdot)$ producing the text prompt for the input label.
 125

126 **CLIP-based OOD Detection with Negative Labels.** CLIP-based models, thanks to their remarkable
 127 effectiveness (Radford et al., 2021b) and provable guarantees (Chen et al., 2023), are recently
 128 extended to the task of zero-shot OOD detection where there is no need to train on ID data. A popular
 129 pipeline is to leverage a L -sized set of negatives labels¹ $\hat{\mathcal{Y}} \triangleq \{\hat{y}_1, \dots, \hat{y}_L\}$ to formulate the OOD
 130 scoring function of \mathbf{x} as the model's prediction confidence that \mathbf{x} belongs to \mathcal{Y}_1 , *i.e.*,
 131

$$S_{\text{NegLabel}}(\mathbf{x}; f) \triangleq \sum_{i=1}^K \frac{\exp [h(\mathbf{x}, y_i)/T]}{\sum_{j=1}^K \exp [h(\mathbf{x}, y_j)/T] + \sum_{j=1}^L \exp [h(\mathbf{x}, \hat{y}_j)/T]}, \quad (2)$$

132 where $T > 0$ is a temperature hyper-parameter.
 133

134 *Due to space limitation, detailed proofs of theorems in this paper are provided in Appendix B.*
 135

4 A CLOSE LOOK AT CLIP-BASED OUT-OF-DISTRIBUTION DETECTION WITH NEGATIVE LABELS

141 While NegLabel (Jiang et al., 2024) has empirically emerged to be an effective post-hoc OOD
 142 detector, there is limited prior work providing a comprehensive explanation for its efficacy from a
 143 rigorous mathematical point of view. This paper fills this research gap from the perspective of
 144 *distributionally-augmented density estimation*. Inspired by Liu et al. (2020), we consider modeling
 145 the unknown true ID density function p_{X_1} of ID input marginal distribution \mathbb{P}_{X_1} by resorting to the
 146 energy-based model (LeCun et al., 2006). In particular, let $\hat{p}_{X_1}(\mathbf{x}; \theta)$ be an estimator of the modeled
 147 ID data density $\hat{p}_{X_1}(\mathbf{x})$ using the pre-trained CLIP-based model parameters θ , we have:
 148

$$\hat{p}_{X_1}(\mathbf{x}; \theta) = \frac{\exp [E(\mathbf{x}; \theta)]}{Z(\theta)} \propto \exp [E(\mathbf{x}; \theta)], \quad (3)$$

150 where $Z(\theta) = \int \exp [E(\mathbf{x}; \theta)] d\mathbf{x}$ is an *input-independent* normalization function with
 151

$$E(\mathbf{x}; \theta) = T \log \sum_{i=1}^K \exp [E(\mathbf{x}, y_i; \theta)/T].$$

155 The behavior of $E(\mathbf{x}; \theta)$ is largely determined by the formulation of $E(\mathbf{x}, y_i; \theta)$. A naive choice
 156 of $E(\mathbf{x}, y_i; \theta)$ is the CLIP-based zero-shot classifier logit $h(\mathbf{x}, y_i)$, which aligns with traditional
 157 energy-based OOD detection (Liu et al., 2020). However, Table 1 shows that Energy (zero-shot)
 158 achieves considerably far-from-satisfactory performance (79.57% AUROC and 82.21% FPR95 in
 159 average), which implies that it is non-trivial to extend energy function $E_\theta(\mathbf{x})$ from single-modal to
 160

161 ¹In accordance to Jiang et al. (2024), *negative* labels are defined as those semantically *irrelevant/dissimilar*
 162 to *all* ID labels.

162 multi-modal settings. Let $\mathbb{P}_{\hat{Y}}$ be the sampling distribution of negative labels, drawing inspiration
 163 from triplet-based metric learning (Sohn, 2016; Hermans et al., 2017), we define $E(\mathbf{x}, y_i; \theta)$ as:
 164

$$165 \quad E(\mathbf{x}, y_i; \theta) \triangleq \mathbb{E}_{\hat{y} \in \mathbb{P}_{\hat{Y}}} [h(\mathbf{x}, y_i) - h(\mathbf{x}, \hat{y})] = h(\mathbf{x}, y_i) - \mathbb{E}_{\hat{y} \in \mathbb{P}_{\hat{Y}}} [h(\mathbf{x}, \hat{y})], \quad (4)$$

166 where the expectation can be effectively estimated using the observed negative labels \hat{Y} . Table 1
 167 shows that Eq. (4) achieves significantly better performance (93.65% AUROC and 28.82% FPR95
 168 in average) than Energy (zero-shot), which empirically validates our design.
 169

170 Intuitively, if negative labels are semantically similar to unseen ground-truth OOD labels, Eq. (4)
 171 will perform well when facing real OOD data. However, the two kinds of labels could be arbitrarily
 172 distinct from each other in practice (Wang et al., 2023b;c), posing us to suspect that the power of
 173 negative labels in Eq. (4) has yet to be fully unleashed. To verify this, we consider the situation
 174 where ground-truth OOD labels are accessible and considered as negative labels to estimate the the
 175 expectation in Eq. (4). We find in Table 1 that this oracle case contributes to a more satisfactory
 176 results, with AUROC of 97.11% and FPR95 of 15.38% in average.
 177

178 In view of this, we further extend the formulation of $E(\mathbf{x}, y_i; \theta)$ in Eq. (4) beyond the given distri-
 179 bution $\mathbb{P}_{\hat{Y}}$ to a broader family of potential distributions with perturbations. To be specific, we are
 180 interested in the worst case of $E(\mathbf{x}, y_i; \theta)$ in Eq. (4) over a set of potential distributions $\mathbb{Q}_{\hat{Y}}$, which
 181 are centered on $\mathbb{P}_{\hat{Y}}$ and constrained by a metric function $D(\mathbb{Q}_{\hat{Y}} \parallel \mathbb{P}_{\hat{Y}})$ within a radius $\eta > 0$, i.e.,
 182

$$183 \quad \hat{E}(\mathbf{x}, y_i; \theta) = h(\mathbf{x}, y_i) - \max_{\mathbb{Q}_{\hat{Y}}} \mathbb{E}_{\hat{y} \in \mathbb{Q}_{\hat{Y}}} [h(\mathbf{x}, \hat{y})] \quad s.t. \quad D(\mathbb{Q}_{\hat{Y}} \parallel \mathbb{P}_{\hat{Y}}) \leq \eta, \quad (5)$$

184 where $D(\mathbb{Q} \parallel \mathbb{P})$ measures the distribution discrepancy between \mathbb{Q} and \mathbb{P} . Intuitively, $\mathbb{Q}_{\hat{Y}}$ acts as an
 185 “adversary”, probing the hardest possible negative distribution. This makes $\hat{E}(\mathbf{x}, y_i; \theta)$ inherently
 186 more conservative and thus more reliable when real OOD labels differ from negatives labels.
 187

188 **Theorem 1.** *By choosing $D(\cdot \parallel \cdot)$ as KL divergence, i.e., $D(\mathbb{Q}_{\hat{Y}} \parallel \mathbb{P}_{\hat{Y}}) = \int q_{\hat{Y}}(y) \log \frac{q_{\hat{Y}}(y)}{p_{\hat{Y}}(y)} dy$, we
 189 can rewrite $\hat{E}(\mathbf{x}, y_i; \theta)$ in Eq. (5) as follows:*

$$190 \quad \hat{E}(\mathbf{x}, y_i; \theta) = \alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}}) \log \frac{e^{h(\mathbf{x}, y_i)/\alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}})}}{\mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} [e^{h(\mathbf{x}, \hat{y})/\alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}})}]} - \alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}}) \cdot \eta, \quad (6)$$

192 where $\alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}}) = \arg \min_{\alpha \geq 0} \{ \alpha \eta + \alpha \log \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} [e^{h(\mathbf{x}, \hat{y})/\alpha}] \}.$
 193

194 **Theorem 2** (Lemma 5 of Faury et al. (2020)). *The optimal $\alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}})$ can be approximated as*

$$196 \quad \alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}}) \approx \sqrt{\mathbb{V}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} [h(\mathbf{x}, \hat{y})]/2\eta}, \quad (7)$$

198 where $\mathbb{V}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} [h(\mathbf{x}, \hat{y})]$ denotes the variance of $h(\mathbf{x}, \hat{y})$ over the distribution $\mathbb{P}_{\hat{Y}}$.
 199

200 If the assumption of homoscedasticity (uniform variance) holds for each input $\mathbf{x} \in \mathcal{X}$ given a
 201 fixed $\mathbb{P}_{\hat{Y}}$, Theorem 2 implies that we can find a $\eta > 0$ to have $\alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}}) \approx T$. Combining this
 202 with Theorem 1 implies that we can approximate the distributionally augmented energy function
 203 $\hat{E}(\mathbf{x}; \theta) = T \log \sum_{i=1}^K \exp [\hat{E}(\mathbf{x}, y_i; \theta)/T]$ as follows:
 204

$$205 \quad \hat{E}(\mathbf{x}; \theta) \approx T \log \sum_{i=1}^K \frac{e^{h(\mathbf{x}, y_i)/T}}{\mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} [e^{h(\mathbf{x}, \hat{y})/T}]} - T\eta$$

$$206 \quad \approx T \log \underbrace{\sum_{i=1}^K \frac{e^{h(\mathbf{x}, y_i)/T}}{\sum_{j=1}^L e^{h(\mathbf{x}, \hat{y}_j)/T}}}_{\hat{S}_{\text{NegLabel}}(\mathbf{x}; f)} + \underbrace{T \log L - T\eta}_{\text{constant}}. \quad (8)$$

212 **Discussion.** While $\hat{S}_{\text{NegLabel}}(\mathbf{x}; f)$ differs from $S_{\text{NegLabel}}(\mathbf{x}; f)$ in that the term $\sum_{j=1}^L e^{h(\mathbf{x}, \hat{y}_j)/T}$ is
 213 excluded in its denominator, Table 1 shows that $\hat{S}_{\text{NegLabel}}(\mathbf{x}; f)$ performs on par with $S_{\text{NegLabel}}(\mathbf{x}; f)$,
 214 which implies the functional equivalence between $\hat{S}_{\text{NegLabel}}(\mathbf{x}; f)$ and $S_{\text{NegLabel}}(\mathbf{x}; f)$. The theoreti-
 215 cal connection between $\hat{S}_{\text{NegLabel}}(\mathbf{x}; f)$ and $S_{\text{NegLabel}}(\mathbf{x}; f)$ can be found in Appendix J.1. Since the

216 Table 1: OOD detection results on ImageNet-1K with VIT B/16 CLIP as encoder. \uparrow indicates larger
 217 values are better and vice versa. The best results in the last two columns are shown in bold. \dagger : the
 218 baseline operates under the oracle setting where ground-truth OOD labels are known.

Dataset	iNaturalist		Sun		Places		Textures		Average	
	Metric	AUROC \uparrow	FPR95 \downarrow	AUROC \uparrow						
Energy (zero-shot)	85.09	81.08	84.24	79.02	83.38	75.08	65.56	93.65	79.57	82.21
Energy (Eq. (4))	98.49	7.11	94.72	25.93	90.35	41.35	91.02	40.89	93.65	28.82
Energy (Eq. (4)) \dagger	99.62	2.35	98.23	8.65	95.16	25.97	95.46	24.55	97.11	15.38
$S_{\text{NegLabel}}(\mathbf{x}; f)$ (Eq. (2))	99.30	2.65	95.06	23.11	90.90	40.35	89.76	46.63	93.76	28.19
$\hat{S}_{\text{NegLabel}}(\mathbf{x}; f)$ (Eq. (8))	99.29	2.67	95.02	23.22	90.93	40.30	89.85	46.31	93.77	28.13
$S_{\text{ours}}(\mathbf{x}; f)$ (Eq. (13))	99.64	1.29	95.71	17.94	91.90	33.98	90.79	39.45	94.51	23.17

226
 227 function $\log(\cdot)$ is monotonically increasing, Eq. (8) admits the merit of $S_{\text{NegLabel}}(\mathbf{x}; f)$ as it is equiv-
 228 alent to augmenting the negative label distribution $\mathbb{P}_{\hat{Y}}$ by crafting a distribution set containing all the
 229 distributions in a KL ball centered on $\mathbb{P}_{\hat{Y}}$. This allows the energy-based density estimation via Eq.
 230 (4) to perform uniformly across various potential distributions of negative labels, thereby conferring
 231 inherent tolerance to distribution discrepancy between negative labels and real OOD labels.
 232

233 Despite theoretical and empirical advantages of $\hat{E}(\mathbf{x}; \theta)$ over $E(\mathbf{x}; \theta)$, it is worth noting that the
 234 use of KL divergence to measure distribution discrepancy suffers from being overly pessimistic. To
 235 illustrate this, let us start from exploring the worst case of negative label distribution as follows.

236 **Theorem 3.** *Let us define*

$$\mathbb{Q}_{\hat{Y}}^* = \arg \max_{\mathbb{Q}_{\hat{Y}}} \mathbb{E}_{\hat{y} \sim \mathbb{Q}_{\hat{Y}}} [h(\mathbf{x}, \hat{y})] \quad \text{s.t. } D(\mathbb{Q}_{\hat{Y}}^* \parallel \mathbb{P}_{\hat{Y}}) \leq \eta.$$

237 If we choose $D(\cdot \parallel \cdot)$ as KL divergence, then we have $q_{\hat{Y}}^*(\hat{y}) = \omega_{KL}(\mathbf{x}, \hat{y}) p_{\hat{Y}}(\hat{y})$ where

$$\omega_{KL}(\mathbf{x}, \hat{y}) \triangleq \frac{e^{h(\mathbf{x}, \hat{y}) / \alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}})}}{\mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} [e^{h(\mathbf{x}, \hat{y}) / \alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}})}]} \propto e^{h(\mathbf{x}, \hat{y}) / \alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}})}. \quad (9)$$

238 Theorem 3 implies that the use of KL divergence leads to assigning a weight $\omega_{KL}(\mathbf{x}, \hat{y})$ to each
 239 negative label $\hat{y} \sim \mathbb{P}_{\hat{Y}}$, with the weight $\omega_{KL}(\mathbf{x}, \hat{y})$ proportional to the exponential of the scaled
 240 cosine similarity. However, the explosive nature of the exponential function would make the resulting
 241 weight distribution tend to be highly skewed so that the worst-case expectation in Eq. (5) can be
 242 dominated by outliers, i.e., those exhibiting excessively high cosine similarity to the input \mathbf{x} , which
 243 could greatly degrade the ability of $\hat{E}(\mathbf{x}; \theta)$ in Eq. (3) to detect OOD inputs especially when the
 244 outliers contain false negative labels². We note that our theoretical analysis is consistent with em-
 245 pirical observations in Table 1: $\hat{S}_{\text{NegLabel}}(\mathbf{x}; f)$ performs marginally better than Energy (Eq. (4)) in
 246 average and even worse than Energy (Eq. (4)) on Textures³.

247 5 METHODOLOGY

248 Our goal is to refine the worst-case distribution, aiming to assign more reasonable weights to neg-
 249 ative labels. To this end, we propose to use Rényi divergence, a generalization of KL divergence
 250 that is defined with an additional parameter called an order, to measure distribution discrepancy. In
 251 particular, we focus on the Cressie-Read family of Rényi divergence (Duchi & Namkoong, 2021;
 252 Rényi, 1961) due to its analytical benefits that can be reflected by the following theorem:

253 **Theorem 4.** *By choosing $D(\cdot \parallel \cdot)$ as the Cressie-Read family of Rényi divergence, i.e.,*

$$D(\mathbb{Q}_{\hat{Y}} \parallel \mathbb{P}_{\hat{Y}}) = \int q_{\hat{Y}}(y) \phi_{\gamma} \left(\frac{q_{\hat{Y}}(y)}{p_{\hat{Y}}(y)} \right) dy, \quad (10)$$

254²Prior works filter negative labels from a unlabeled wild corpus database with a cosine similarity-based
 255 strategy. However, there is no theoretical guarantees that cosine similarity could correctly capture semantic
 256 relationships so that the observed negative labels are inevitably contaminated by false negative labels.

257³While $\hat{S}_{\text{NegLabel}}(\mathbf{x}; f)$ and $S_{\text{NegLabel}}(\mathbf{x}; f)$ can be enhanced by the grouping strategy as described in Jiang
 258 et al. (2024), existing works are fall short in providing theoretical justification for this heuristic trick.

270 where $\phi_\gamma(t) = \frac{1}{\gamma(\gamma-1)}(t^\gamma - \gamma t + \gamma - 1)$ with $\gamma > 1$, we can rewrite $\hat{E}(\mathbf{x}, y_i; \boldsymbol{\theta})$ in Eq. (5) as:
 271

$$272 \hat{E}(\mathbf{x}, y_i; \boldsymbol{\theta}) = h(\mathbf{x}, y_i) - \left\{ c_\gamma(\eta) \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} \left[(h(\mathbf{x}, \hat{y}) - \beta_{\mathbf{x}}^*)_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}} + \beta_{\mathbf{x}}^* \right\}, \quad (11)$$

275 where $\gamma^* = \gamma/(\gamma-1)$, $c_\gamma(\eta) = (1 + \gamma(\gamma-1)\eta)^{\frac{1}{\gamma}}$, $(a)_+ = \max\{a, 0\}$, and
 276

$$277 \beta_{\mathbf{x}}^* = \arg \min_{\beta} \left\{ c_\gamma(\eta) \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} \left[(h(\mathbf{x}, \hat{y}) - \beta)_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}} + \beta \right\}. \quad (12)$$

280 Note that Rényi divergence in Eq. (10) introduces an order parameter γ to adjust the polynomial
 281 relationships of the probability distance measure with the probability ratio. This provides enhanced
 282 flexibility in measuring distribution discrepancy by re-framing the metric function design as a search
 283 for the optimal γ within a narrow range. A similar spirit is also witnessed in Peng et al. (2024).
 284 Since Rényi divergence recovers KL divergence as $\gamma \rightarrow 1$ (Van Erven & Harremos, 2014), one can
 285 intuitively believe that Eq. (11) should perform at least not worse than Eq. (8).

286 Based on Theorem 4, we can formulate the distributionally augmented energy function $\hat{E}(\mathbf{x}; \boldsymbol{\theta}) =$
 287 $T \log \sum_{i=1}^K \exp \left[\hat{E}(\mathbf{x}, y_i; \boldsymbol{\theta})/T \right]$ under Rényi divergence as follows:
 288

$$289 \hat{E}(\mathbf{x}; \boldsymbol{\theta}) = T \log \sum_{i=1}^K \frac{\exp \left\{ \frac{1}{T} \cdot [h(\mathbf{x}, y_i) - \beta_{\mathbf{x}}^*] \right\}}{\exp \left\{ \frac{c_\gamma(\eta)}{T} \cdot \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} \left[(h(\mathbf{x}, \hat{y}) - \beta_{\mathbf{x}}^*)_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}} \right\}} \\ 290 \approx S_{\text{ours}}(\mathbf{x}; \boldsymbol{\theta}) \\ 291 \triangleq T \log \sum_{i=1}^K \frac{\exp \left\{ \frac{1}{T} \cdot [h(\mathbf{x}, y_i) - \beta_{\mathbf{x}}^*] \right\}}{\exp \left\{ \frac{c_\gamma(\eta)}{T} \cdot \left[\frac{1}{L} \sum_{j=1}^L (h(\mathbf{x}, \hat{y}_j) - \beta_{\mathbf{x}}^*)_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}} \right\}}, \quad (13)$$

299 In realization of $S_{\text{ours}}(\mathbf{x}; \boldsymbol{\theta})$ in Eq. (13), one requires to obtain $\beta_{\mathbf{x}}^*$ via solving the optimization
 300 problem in Eq. (12). While Eq. (12) does not have a closed-form solution, the convexity of Eq. (12)
 301 with regard to $\beta_{\mathbf{x}}$ (as proved in Appendix C) motivates us to find $\beta_{\mathbf{x}}^*$ via stochastic gradient descent
 302 (SGD) with a given learning rate lr , i.e.,

$$303 \beta_{\mathbf{x}} \leftarrow \beta_{\mathbf{x}} - lr \cdot \frac{\partial}{\partial \beta_{\mathbf{x}}} \left\{ c_\gamma(\eta) \left[\frac{1}{L} \sum_{j=1}^L (h(\mathbf{x}, \hat{y}_j) - \beta_{\mathbf{x}})_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}} + \beta_{\mathbf{x}} \right\}. \quad (14)$$

308 In the following, we disclose why Eq. (13) can be less vulnerable to the over-pessimism issue.

309 **Theorem 5.** Let us define

$$311 \mathbb{Q}_{\hat{Y}}^* = \arg \max_{\mathbb{Q}_{\hat{Y}}} \mathbb{E}_{\hat{y} \sim \mathbb{Q}_{\hat{Y}}} [h(\mathbf{x}, \hat{y})] \quad \text{s.t. } D(\mathbb{Q}_{\hat{Y}}^* \parallel \mathbb{P}_{\hat{Y}}) \leq \eta.$$

313 If we choose $D(\cdot \parallel \cdot)$ as the Cressie-Read family of Rényi divergence defined in Eq. (10), then we
 314 have $q_{\hat{Y}}^*(\hat{y}) = \omega_\gamma(\mathbf{x}, \hat{y}) p_{\hat{Y}}(\hat{y})$, where
 315

$$316 \omega_\gamma(\mathbf{x}, \hat{y}) \triangleq c_\gamma(\eta) \frac{(h(\mathbf{x}, \hat{y}) - \beta_{\mathbf{x}}^*)_+^{\frac{1}{\gamma-1}}}{\mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} [(h(\mathbf{x}, \hat{y}) - \beta_{\mathbf{x}}^*)_+^{\gamma^*}]^{\frac{1}{\gamma}}} \propto (h(\mathbf{x}, \hat{y}) - \beta_{\mathbf{x}}^*)_+^{\frac{1}{\gamma-1}}. \quad (15)$$

320 It can be found that the weight $\omega_\gamma(\mathbf{x}, \hat{y})$ in Eq. (15) acts as a polynomial function, therefore being
 321 relatively milder than $\omega_{KL}(\mathbf{x}, \hat{y})$ in Eq. (9). This tempers pessimism by flattening the effect of
 322 outliers: those with high cosine similarity to the input \mathbf{x} still matter, but not disproportionately.
 323 Table 1 shows that the theoretical superiority (c.f. Theorem 5) indeed translates into strong empirical
 324 performance, where $S_{\text{ours}}(\mathbf{x}; \boldsymbol{\theta})$ significantly outperforms $\hat{S}_{\text{NegLabel}}(\mathbf{x}; f)$ and Energy (Eq. (4)).

324 Table 2: OOD detection results on ImageNet-1K with VIT B/16 CLIP as encoder. \uparrow indicates larger
 325 values are better and vice versa. The best results in the last two columns are shown in bold.
 326

327 Dataset	328 iNaturalist		329 Sun		330 Places		331 Textures		332 Average	
333 Metric	AUROC \uparrow	FPR95 \downarrow								
Methods requiring training (or fine-tuning)										
MSP	87.44	58.36	79.73	73.72	79.67	74.41	79.69	71.93	81.63	69.61
ODIN	94.65	30.22	87.17	54.04	85.54	55.06	87.85	51.67	88.80	47.75
Energy	95.33	26.12	92.66	35.97	91.41	39.87	86.76	57.61	91.54	39.89
GradNorm	72.56	81.50	72.86	82.00	73.70	80.41	70.26	79.36	72.35	80.82
VIM	93.16	32.19	87.19	54.01	83.75	60.67	87.18	53.94	87.82	50.20
KNN	94.52	29.17	92.67	35.62	91.02	39.61	85.67	64.35	90.97	42.19
VOS	94.62	28.99	92.57	36.88	91.23	38.39	86.33	61.02	91.19	41.32
NPOS	96.19	16.58	90.44	43.77	89.44	45.27	88.80	46.12	91.22	37.93
LSN	95.83	21.56	94.35	26.32	91.25	34.48	90.42	38.54	92.96	30.22
CLIPN	95.27	23.94	93.93	26.17	92.28	33.45	90.93	40.83	93.10	31.10
LoCoOp	96.86	16.05	95.07	23.44	91.98	32.87	90.19	42.28	93.52	28.66
LAPT	99.63	1.16	96.01	19.12	92.01	33.01	91.06	40.32	94.68	23.40
Zero-Shot Training-free Methods										
Mahalanobis	55.89	99.33	59.94	99.41	65.96	98.54	64.23	98.46	61.50	98.94
Energy	85.09	81.08	84.24	79.02	83.38	75.08	65.56	93.65	79.57	82.21
ZOC	86.09	87.30	81.20	81.51	83.39	73.06	76.46	98.90	81.79	85.19
MCM	94.59	32.20	92.25	38.80	90.31	46.20	86.12	58.50	90.82	43.93
NegLabel	99.49	1.91	95.49	20.53	91.64	35.59	90.22	43.56	94.21	25.40
Ours	99.64	1.29	95.71	17.94	91.90	33.98	90.79	39.45	94.51	23.17
NegLabel+AdaNeg	99.71	0.59	97.44	9.50	94.55	34.34	94.93	31.27	96.66	18.92
Ours+AdaNeg	99.75	0.47	98.01	8.69	95.63	30.24	95.86	27.28	97.31	16.67
NegLabel+CSP	99.60	1.54	96.66	13.66	92.90	29.32	93.86	25.52	95.76	17.52
Ours+CSP	99.70	1.32	97.52	11.35	94.89	24.98	94.16	23.65	96.57	15.33

347 6 EXPERIMENTS

348
 349 **Implementation.** Unless otherwise specified, we employ CLIP-B/16 for zero-shot OOD detection.
 350 Following prior works (Jiang et al., 2024; Zhang & Zhang, 2024), we adopt the text prompt of 'The
 351 nice <label>.' and select $L = 10000$ negative labels from WordNet (Miller, 1995) using the same
 352 NegMining algorithm as NegLabel (Jiang et al., 2024). Notably, we show in Section 6.3 that our
 353 method can generalize well to various CLIP architectures and corpus sources. Regarding hyper-
 354 parameters, we set $T = 0.01$, $\gamma = 1.05$ and $c_\gamma(\eta) = 1.2$. We learn each input-specific constant β_x^*
 355 by performing SGD for only 15 steps with learning rate $lr = 1e - 2$, which results in negligible
 356 computational overhead. Notably, we do not leverage the heuristic grouping strategy as described
 357 in Jiang et al. (2024). The reported results of our method are averaged over 5 independent runs.
 358

359 **Baselines.** We compare our method with MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al.,
 360 2017), Energy (Liu et al., 2020), Gradnorm (Huang et al., 2021), Vim (Du et al., 2022), KNN (Sun
 361 et al., 2022), VOS (Tao et al., 2023), NPOS (Wang et al., 2023a), ZOC (Esmaeilpour et al., 2022),
 362 CLIPN (Wang et al., 2023a), LoCoOp (Miyai et al., 2024), LSN (Nie et al., 2024), LAPT (Zhang
 363 et al., 2025), Mahalanobis (Lee et al., 2018), MCM (Ming et al., 2022), NegLabel (Jiang et al.,
 364 2024), AdaNeg (Zhang & Zhang, 2024) and CSP (Chen et al., 2024).

365 6.1 MAIN RESULTS

366
 367 Following prior work (Ming et al., 2022; Jiang et al., 2024; Chen et al., 2024; Zhang & Zhang,
 368 2024), We evaluate our method on the popular ImageNet-1K benchmark (Deng et al., 2009), where
 369 the validation set of ImageNet-1K is designated as the ID dataset while iNaturalist (Van Horn et al.,
 370 2018), SUN (Xiao et al., 2010), Places365 (Zhou et al., 2017), and Textures (Cimpoi et al., 2014)
 371 are considered as OOD datasets. The methods listed in the upper section of Table 2, ranging from
 372 MSP (Hendrycks & Gimpel, 2016) to VOS (Tao et al., 2023), represent traditional visual OOD
 373 detection methods. Conversely, the methods in the lower section, extending from ZOC (Esmaeilpour
 374 et al., 2022) to NegLabel (Jiang et al., 2024), employ pre-trained VLMs like CLIP. Our method
 375 achieves the state-of-the-art on the ImageNet-1k benchmark, which highlights its superior perfor-
 376 mance in the zero-shot setting. Furthermore, our method can surpass traditional methods with a
 377 finetuned CLIP, demonstrating CLIP's strong OOD detection capabilities in zero-shot scenarios.
 378 This is because CLIP can parse images in a fine-grained manner, which is achieved through its
 379 pre-training on a large-scale image-text dataset.

378
379
380
Table 3: Evaluation on domain-generalizable OOD detection with VIT B/16 as encoder. \uparrow indicates
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
larger values are better and vice versa. The best results in the last two columns are shown in bold.

ID Dataset	Method	iNaturalist		SUN		Places		Textures		Average	
		AUROC \uparrow	FPR95 \downarrow								
ImageNet-S	MCM	87.74	63.06	85.35	67.24	81.19	70.64	74.77	79.59	82.26	70.13
	NegLabel	99.34	2.24	94.93	22.73	90.78	38.62	89.29	46.10	93.59	27.42
	Ours	99.15	2.93	95.58	16.82	92.69	26.92	89.94	38.33	94.34	24.25
ImageNet-A	MCM	79.50	76.85	76.19	79.78	70.95	80.51	61.98	86.37	72.16	80.88
	NegLabel	98.80	4.09	89.83	44.38	82.88	60.10	80.25	64.34	87.94	43.23
	Ours	99.03	3.09	90.04	40.83	82.79	58.42	80.25	63.83	88.03	41.54
ImageNet-R	MCM	83.22	71.51	80.31	74.98	75.53	76.67	67.66	83.72	76.68	76.72
	NegLabel	99.58	1.60	96.03	15.77	91.97	29.48	90.60	35.67	94.54	20.63
	Ours	99.74	1.01	96.63	12.5	92.90	27.25	92.06	32.42	95.33	18.30
ImageNetV2	MCM	91.79	45.90	89.88	50.73	86.52	56.25	81.51	69.57	87.43	55.61
	NegLabel	99.40	2.47	94.46	25.69	90.00	42.03	88.46	48.90	93.08	29.77
	Ours	99.64	1.35	94.72	23.20	89.93	42.05	44.77	89.43	93.44	27.84

392
393
394
395
Table 4: Evaluation on hard OOD detection, where a VIT B/16 CLIP encoder is adopted. \uparrow indicates
396
397
398
399
399
larger values are better and vice versa. The best results are shown in bold.

ID dataset OOD dataset	ImageNet-10 ImageNet-20		ImageNet-20 ImageNet-10		ImageNet-100 ImageNet-10		ImageNet-10 ImageNet-100	
	AUROC \uparrow	FPR95 \downarrow	AUROC \uparrow	FPR95 \downarrow	AUROC \uparrow	FPR95 \downarrow	AUROC \uparrow	FPR95 \downarrow
MCM	98.60	6.00	98.09	13.04	87.20	60.00	98.39	2.50
NegLabel	98.86	5.10	98.81	4.60	90.19	40.20	99.51	1.68
Ours	99.12	3.75	99.27	2.35	91.64	34.36	99.65	1.17

402
403
404
6.2 EXTENSIONS
405406
407
408
409
410
411
412
413
Domain-generalizable OOD Detection. With ImageNet-1K as a case study, we, following [Jiang et al. \(2024\)](#), consider ImageNet-A ([Hendrycks et al., 2021b](#)), ImageNet-R ([Hendrycks et al., 2021a](#)) and ImageNetV2 ([Recht et al., 2019](#)) as ID data respectively. The experiment results on four OOD datasets are shown in Table 3. It is apparent that the performance of MCM significantly deteriorates across diverse domain shifts, indicating the difficulty of OOD detection under such conditions. NegLabel achieves remarkably better performances than MCM, thus demonstrating the significance of introducing negative labels for OOD detection. Our method consistently outperform NegLabel cross diverse ID datasets, which implies stronger robustness of our method against domain shifts.414
415
416
417
418
Hard OOD Detection. Following prior works ([Ming et al., 2022](#); [Jiang et al., 2024](#)), we alternate using ImageNet-10 and ImageNet-20 as ID and OOD data, as well as using ImageNet-10 and ImageNet-100 to mimic the setting in [Fort et al. \(2021\)](#) with high-resolution images. The results in Table 4 show that our method consistently outperforms MCM and NegLabel in all settings, demonstrating that our method has strong discriminative power for semantically hard OOD data.419
420
421
Table 5: OOD detection results with different CLIP architectures on ImageNet-1k as ID. \uparrow indicates
422
423
424
425
426
427
428
429
430
larger values are better and vice versa. The best results in the last two columns are shown in bold.

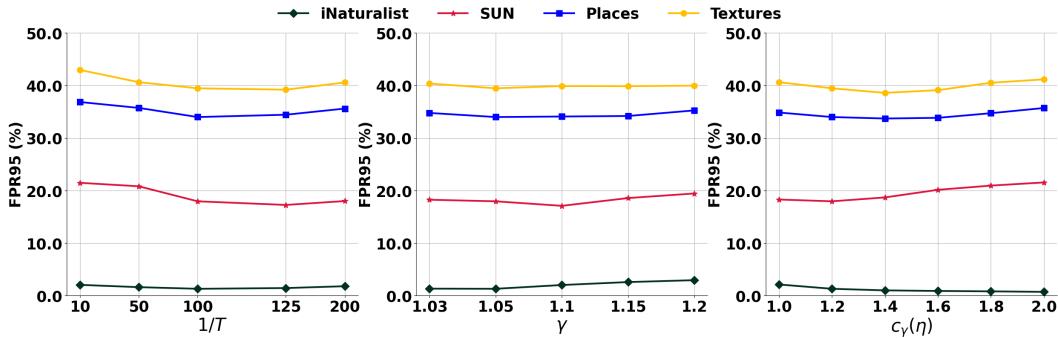
Backbone	Method	iNaturalist		SUN		Places		Textures		Average	
		AUROC \uparrow	FPR95 \downarrow								
ViT-B/32	MCM	92.68	40.49	89.95	47.83	88.10	51.47	85.98	60.04	89.96	49.96
	NegLabel	99.11	3.73	95.27	22.48	91.72	34.94	88.57	50.51	93.67	27.92
	Ours	99.47	2.10	95.60	19.36	91.94	32.83	89.62	44.87	94.16	24.79
ViT-L/14	MCM	93.58	36.80	92.80	36.77	90.90	41.35	85.05	61.70	90.58	44.16
	NegLabel	99.53	1.77	95.63	22.33	93.01	32.22	89.71	42.92	94.47	24.81
	Ours	99.67	1.22	96.06	19.15	93.16	30.57	90.42	38.32	94.83	22.31
ResNet50	MCM	91.88	42.97	89.31	52.84	84.12	65.75	85.55	62.15	87.71	55.93
	NegLabel	99.24	2.88	94.54	26.51	89.72	42.60	88.40	50.80	92.97	30.70
	Ours	99.54	1.48	94.61	24.58	89.69	41.64	90.23	42.70	93.52	27.60

432 Table 6: OOD detection results with different input resolution on ImageNet-1k as ID, where a ViT
 433 L/14 CLIP encoder is adopted. \uparrow indicates larger values are better and vice versa. The best results
 434 in the last two columns are shown in bold.

436 Resolution	437 Method	iNaturalist		SUN		Places		Textures		Average	
		AUROC \uparrow	FPR95 \downarrow								
336 \times 336	NegLabel	99.71	1.12	95.68	21.84	93.15	31.79	90.55	40.46	94.77	23.80
	Ours	99.72	1.09	96.17	18.24	93.39	29.62	90.67	37.68	94.99	21.66

439
 440 Table 7: OOD detection results with different corpus sources on ImageNet-1k as ID, where a ViT
 441 B/16 CLIP encoder is adopted. \uparrow indicates larger values are better and vice versa. The best results
 442 in the last two columns are shown in bold.

444 Corpus	445 Method	iNaturalist		SUN		Places		Textures		Average	
		AUROC \uparrow	FPR95 \downarrow								
Common	NegLabel	86.91	65.43	95.03	24.22	91.52	34.83	83.69	67.75	89.29	48.06
	Ours	88.77	57.76	94.46	25.57	91.70	34.18	85.15	60.04	90.02	44.64
Part-of-Speech	NegLabel	99.23	3.25	94.20	25.93	90.17	43.09	87.77	50.11	92.84	30.59
	Ours	99.42	2.46	94.82	23.29	91.75	39.48	91.59	41.86	94.40	26.77



462 Figure 1: Hyper-parameter analysis on ImageNet-1K w.r.t T (left), γ (middle), and $c_\gamma(\eta)$ (right).

466 6.3 ABLATION STUDY

467 **Architectures.** In principle, our method is generic to the choice of visual encoder. We evaluate our
 468 method with different visual encoder architectures, including ViT-B/32, ViT-L/14 and ResNet-50,
 469 and report the corresponding OOD detection results in Table 5. On the one hand, the performance of
 470 OOD detection can be enhanced by more powerful visual encoders. On the other hand, our method
 471 consistently outperforms the most recent NegLabel regardless of the backbone architecture used,
 472 which implies the better generalization of our method over NegLabel.

473 **Input Size.** In principle, our method is generic to the input resolution. We evaluate our method with
 474 a larger input size, i.e., 336 \times 336, and report the corresponding OOD detection results in Table 6.
 475 On the one hand, the performance of OOD detection can be enhanced by a larger input size. On the
 476 other hand, our method consistently outperforms the most recent NegLabel regardless of the input
 477 resolution, which implies the better generalization of our method over NegLabel.

478 **Corpus Sources.** The role of the corpus is to provide a larger and more comprehensive semantic
 479 space. While our method is generic to the input resolution, we also conduct ablative analysis with
 480 different corpus sources, including Part-of-Speech Tags and Common-20K. As for Part-of-Speech
 481 Tags, we, following NegLabel (Jiang et al., 2024), randomly sample 70000 words to constitute the
 482 corpus source. It can be found that Table 7 that our method consistently outperforms NegLabel on
 483 multiple corpora, which implies the flexibility of our method.

484 **Hyper-parameter Analysis.** We evaluate the hyper-parameters most essential to our design, in-
 485 cluding the temperature T , the order γ , and $c_\gamma(\eta)$. The corresponding results are plotted in Figure 1.

486 7 CONCLUSION
487488 This work presents a distributionally-augmented energy-based framework to provide a novel per-
489 spective on CLIP-based OOD detection with Negative labels. We show that existing methods in
490 this direction essentially estimate the energy function against a worst-case distribution within a KL-
491 divergence ball, thereby tolerating sampling bias between observed negative labels and real OOD
492 labels. We also identify the inherent over-pessimism of KL-based formulations. In response, we pro-
493 pose a Rényi-divergence-based refinement for a more flexible and balanced worst-case distribution,
494 achieving state-of-the-art results in various setups of OOD detection.495
496 ETHICS STATEMENT
497498 Our study relies solely on publicly available datasets and models. No private or personally iden-
499 tifiable information was used. The work aims to advance the scientific understanding of spectral
500 clustering while upholding principles of transparency, fairness, and responsible research.501
502 REPRODUCIBILITY STATEMENT
503504 All the pre-trained CLIP-based models used in this paper are publicly accessible. We provide de-
505 tailed proofs in the appendix. We believe that the implementation details provides in the main
506 content is sufficient for reproduction. The code of this paper will be released upon acceptance.507
508 REFERENCES
509510 Amirhossein Ansari, Ke Wang, and Pulei Xiong. Negrefine: Refining negative label-based zero-shot
511 ood detection. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 573–582, 2025.
512
513 Aharon Ben-Tal and Marc Teboulle. An old-new concept of convex risk measures: the optimized
514 certainty equivalent. *Mathematical Finance*, 17(3):449–476, 2007.
515
516 Julian Bitterwolf, Maximilian Mueller, and Matthias Hein. In or out? fixing imagenet out-of-
517 distribution detection evaluation. *arXiv preprint arXiv:2306.00826*, 2023.
518
519 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.
520
521 Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning
522 algorithms. In *Proceedings of the 23rd international conference on Machine learning*, pp. 161–
523 168, 2006.
524
525 Mengyuan Chen, Junyu Gao, and Changsheng Xu. Conjugated semantic pool improves ood de-
526 tection with pre-trained vision-language models. *Advances in Neural Information Processing
527 Systems*, 37:82560–82593, 2024.
528
529 Zixiang Chen, Yihe Deng, Yuanzhi Li, and Quanquan Gu. Understanding transferable representation
530 learning and zero-shot transfer in clip. *arXiv preprint arXiv:2310.00927*, 2023.
531
532 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
533 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and
534 pattern recognition*, pp. 3606–3613, 2014.
535
536 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
537 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
538 pp. 248–255. Ieee, 2009.
539
540 Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
541 web]. *IEEE signal processing magazine*, 29(6):141–142, 2012.
542
543 Akshay Raj Dhamija, Manuel Günther, and Terrance Boult. Reducing network agnostophobia.
544 *Advances in Neural Information Processing Systems*, 31, 2018.

540 Xuefeng Du, Zhaoning Wang, Mu Cai, and Sharon Li. Towards unknown-aware learning with
 541 virtual outlier synthesis. In *International Conference on Learning Representations*, volume 1, pp.
 542 5, 2022.

543 Xuefeng Du, Zhen Fang, Ilias Diakonikolas, and Yixuan Li. How does wild data provably help ood
 544 detection? In *The Twelfth International Conference on Learning Representations*, 2024a.

545 Xuefeng Du, Yiyou Sun, and Yixuan Li. When and how does in-distribution label help out-of-
 546 distribution detection? *arXiv preprint arXiv:2405.18635*, 2024b.

547 John C Duchi and Hongseok Namkoong. Learning models with uniform performance via distribu-
 548 tionally robust optimization. *The Annals of Statistics*, 49(3):1378–1406, 2021.

549 Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei Shu. Zero-shot out-of-distribution detec-
 550 tion based on the pre-trained model clip. In *Proceedings of the AAAI conference on artificial*
 551 *intelligence*, volume 36, pp. 6568–6576, 2022.

552 Zhen Fang, Yixuan Li, Jie Lu, Jiahua Dong, Bo Han, and Feng Liu. Is out-of-distribution detection
 553 learnable? In *NeurIPS*, 2022.

554 Zhen Fang, Yixuan Li, Feng Liu, Bo Han, and Jie Lu. On the learnability of out-of-distribution
 555 detection. *Journal of Machine Learning Research*, 25, 2024.

556 Louis Faury, Ugo Tanielian, Elvis Dohmatob, Elena Smirnova, and Flavian Vasile. Distributionally
 557 robust counterfactual risk minimization. In *AAAI*, pp. 3850–3857. AAAI Press, 2020.

558 Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution
 559 detection. *Advances in neural information processing systems*, 34:7068–7081, 2021.

560 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 561 examples in neural networks. *arXiv preprint arXiv:1610.02136*, 2016.

562 Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
 563 exposure. *arXiv preprint arXiv:1812.04606*, 2018.

564 Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joe Kwon, Mohammadreza Mostajabi,
 565 Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings.
 566 *arXiv preprint arXiv:1911.11132*, 2019.

567 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 568 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A criti-
 569 cal analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international*
 570 *conference on computer vision*, pp. 8340–8349, 2021a.

571 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 572 examples. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
 573 tion*, pp. 15262–15271, 2021b.

574 Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person re-
 575 identification. *arXiv preprint arXiv:1703.07737*, 2017.

576 Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. *Fundamentals of convex analysis*. Springer
 577 Science & Business Media, 2004.

578 Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distribu-
 579 tional shifts in the wild. *Advances in Neural Information Processing Systems*, 34:677–689, 2021.

580 Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min
 581 Wu, and Xinping Yi. A survey of safety and trustworthiness of deep neural networks: Verification,
 582 testing, adversarial attack and defence, and interpretability. *Computer Science Review*, 37:100270,
 583 2020.

584 Xue Jiang, Feng Liu, Zhen Fang, Hong Chen, Tongliang Liu, Feng Zheng, and Bo Han. Neg-
 585 ative label guided ood detection with pretrained vision-language models. *arXiv preprint*
 586 *arXiv:2403.20078*, 2024.

594 Julian Katz-Samuels, Julia B Nakhleh, Robert Nowak, and Yixuan Li. Training ood detectors in their
 595 natural habitats. In *International Conference on Machine Learning*, pp. 10848–10865. PMLR,
 596 2022.

597 Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes
 598 overconfidence in relu networks. In *International conference on machine learning*, pp. 5436–
 599 5446. PMLR, 2020.

600 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 601 2009.

602 Hao Lang, Yinhe Zheng, Yixuan Li, Jian Sun, Fei Huang, and Yongbin Li. A survey on out-of-
 603 distribution detection in nlp. *arXiv preprint arXiv:2305.03236*, 2023.

604 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

605 Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-
 606 based learning. *Predicting structured data*, 1(0), 2006.

607 Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers
 608 for detecting out-of-distribution samples. *arXiv preprint arXiv:1711.09325*, 2017.

609 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
 610 out-of-distribution samples and adversarial attacks. *Advances in neural information processing
 611 systems*, 31, 2018.

612 Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
 613 image detection in neural networks. *arXiv preprint arXiv:1706.02690*, 2017.

614 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
 615 tion. *Advances in neural information processing systems*, 33:21464–21475, 2020.

616 Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. *Advances in
 617 neural information processing systems*, 31, 2018.

618 Andrey Malinin and Mark Gales. Reverse kl-divergence training of prior networks: Improved un-
 619 certainty and adversarial robustness. *Advances in Neural Information Processing Systems*, 32,
 620 2019.

621 Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost
 622 Van De Weijer. Class-incremental learning: survey and performance evaluation on image clas-
 623 sification. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5513–5533,
 624 2022.

625 George A Miller. Wordnet: a lexical database for english. *Communications of the ACM*, 38(11):
 626 39–41, 1995.

627 Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyu Sun, Wei Li, and Yixuan Li. Delving into out-of-
 628 distribution detection with vision-language representations. *Advances in neural information pro-
 629 cessing systems*, 35:35087–35102, 2022.

630 Atsuyuki Miyai, Qing Yu, Go Irie, and Kiyoharu Aizawa. Locoop: Few-shot out-of-distribution
 631 detection via prompt learning. *Advances in Neural Information Processing Systems*, 36, 2024.

632 Peyman Morteza and Yixuan Li. Provable guarantees for understanding out-of-distribution detec-
 633 tion. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 7831–7840,
 634 2022.

635 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
 636 Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep
 637 learning and unsupervised feature learning*, volume 2011, pp. 7. Granada, 2011.

638 Andre T Nguyen, Fred Lu, Gary Lopez Munoz, Edward Raff, Charles Nicholas, and James Holt.
 639 Out of distribution data detection using dropout bayesian neural networks. In *Proceedings of the
 640 AAAI Conference on Artificial Intelligence*, volume 36, pp. 7877–7885, 2022.

648 Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confi-
 649 dence predictions for unrecognizable images. In *Proceedings of the IEEE conference on computer*
 650 *vision and pattern recognition*, pp. 427–436, 2015.

651

652 Jun Nie, Yonggang Zhang, Zhen Fang, Tongliang Liu, Bo Han, and Xinmei Tian. Out-of-distribution
 653 detection with negative prompts. In *The Twelfth International Conference on Learning Represen-*
 654 *tations*, 2024.

655 Bo Peng, Jie Lu, Guangquan Zhang, and Zhen Fang. An information-theoretical framework for un-
 656 derstanding out-of-distribution detection with pretrained vision-language models. In *The Thirty-*
 657 *ninth Annual Conference on Neural Information Processing Systems*.

658

659 Bo Peng, Yadan Luo, Yonggang Zhang, Yixuan Li, and Zhen Fang. Conjnorn: Tractable density
 660 estimation for out-of-distribution detection. In *The Twelfth International Conference on Learning*
 661 *Representations*, 2024.

662 Bo Peng, Jie Lu, Yonggang Zhang, Guangquan Zhang, and Zhen Fang. Distributional prototype
 663 learning for out-of-distribution detection. In *Proceedings of the 31st ACM SIGKDD Conference*
 664 *on Knowledge Discovery and Data Mining V. 1*, pp. 1104–1114, 2025.

665

666 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 667 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 668 models from natural language supervision. In *International conference on machine learning*, pp.
 669 8748–8763. PMLR, 2021a.

670

671 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 672 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 673 models from natural language supervision. In *International conference on machine learning*, pp.
 674 8748–8763. PmLR, 2021b.

675

676 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 677 generalize to imagenet? In *International conference on machine learning*, pp. 5389–5400. PMLR,
 678 2019.

679

680 Alfréd Rényi. On measures of entropy and information. In *Proceedings of the fourth Berkeley*
 681 *symposium on mathematical statistics and probability, volume 1: contributions to the theory of*
 682 *statistics*, volume 4, pp. 547–562. University of California Press, 1961.

683

684 Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks, Yixuan Li, Mohammad Hossein Ro-
 685 hban, and Mohammad Sabokrou. A unified survey on anomaly, novelty, open-set, and out-of-
 686 distribution detection: Solutions and future challenges. *arXiv preprint arXiv:2110.14051*, 2021.

687

688 Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. *Advances in*
 689 *neural information processing systems*, 29, 2016.

690

691 Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
 692 neighbors. In *International Conference on Machine Learning*, pp. 20827–20840. PMLR, 2022.

693

694 Leitian Tao, Xuefeng Du, Xiaojin Zhu, and Yixuan Li. Non-parametric outlier synthesis. *arXiv*
 695 *preprint arXiv:2303.02966*, 2023.

696

697 Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. *IEEE*
 698 *Transactions on Information Theory*, 60(7):3797–3820, 2014.

699

700 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
 701 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
 702 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 8769–8778,
 703 2018.

704

705 Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good
 706 closed-set classifier is all you need? 2021.

702 Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
 703 logit matching. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 704 *recognition*, pp. 4921–4930, 2022.

705 Hualiang Wang, Yi Li, Huifeng Yao, and Xiaomeng Li. Clipn for zero-shot ood detection: Teaching
 706 clip to say no. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 707 pp. 1802–1812, 2023a.

708 Qizhou Wang, Zhen Fang, Yonggang Zhang, Feng Liu, Yixuan Li, and Bo Han. Learning to augment
 709 distributions for out-of-distribution detection. *Advances in neural information processing systems*,
 710 36:73274–73286, 2023b.

711 Qizhou Wang, Junjie Ye, Feng Liu, Quanyu Dai, Marcus Kalander, Tongliang Liu, Jianye Hao,
 712 and Bo Han. Out-of-distribution detection with implicit outlier transformation. *arXiv preprint*
 713 *arXiv:2303.05033*, 2023c.

714 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 715 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on*
 716 *computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.

717 Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
 718 A survey. *arXiv preprint arXiv:2110.11334*, 2021.

719 Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou
 720 Sun, Xuefeng Du, Yixuan Li, Ziwei Liu, Yiran Chen, and Hai Li. OpenOOD v1.5: En-
 721 hanced benchmark for out-of-distribution detection. *Journal of Data-centric Machine Learning*
 722 *Research*, 2024a. ISSN XXXX-XXXX. URL <https://openreview.net/forum?id=cnnTnJQigs>. Dataset Certification.

723 Yabin Zhang and Lei Zhang. Adaneg: Adaptive negative proxy guided ood detection with vision-
 724 language models. *Advances in Neural Information Processing Systems*, 37:38744–38768, 2024.

725 Yabin Zhang, Wenjie Zhu, Chenhang He, and Lei Zhang. Lapt: Label-driven automated prompt
 726 tuning for ood detection with vision-language models. In *European Conference on Computer*
 727 *Vision*, pp. 271–288. Springer, 2025.

728 Yonggang Zhang, Jie Lu, Bo Peng, Zhen Fang, and Yiu-ming Cheung. Learning to shape in-
 729 distribution feature space for out-of-distribution detection. *Advances in Neural Information Pro-*
 730 *cessing Systems*, 37:49384–49402, 2024b.

731 Zihan Zhang and Xiang Xiang. Decoupling maxlogit for out-of-distribution detection. In *Proceed-*
 732 *ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3388–3397,
 733 2023.

734 Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection with deep learning:
 735 A review. *IEEE transactions on neural networks and learning systems*, 30(11):3212–3232, 2019.

736 Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
 737 million image database for scene recognition. *IEEE transactions on pattern analysis and machine*
 738 *intelligence*, 40(6):1452–1464, 2017.

739 David Zimmerer, Peter M Full, Fabian Isensee, Paul Jäger, Tim Adler, Jens Petersen, Gregor Köhler,
 740 Tobias Ross, Annika Reinke, Antanas Kascenas, et al. Mood 2020: A public benchmark for out-
 741 of-distribution detection and localization on medical images. *IEEE Transactions on Medical*
 742 *Imaging*, 41(10):2728–2738, 2022.

751 A RELATED WORK ON TRADITIONAL OOD DETECTION

752 The popularity of OOD detection is motivated by the empirical observation (Nguyen et al., 2015)
 753 that neural networks tend to be over-confident in OOD data.

One line of work performs OOD detection by devising post-hoc scoring functions, including confidence-based methods (Hendrycks et al., 2019; Ming et al., 2022; Zhang & Xiang, 2023), energy-based methods (Liu et al., 2020), distance-based approaches (Lee et al., 2018; Sun et al., 2022; Sohn, 2016; Morteza & Li, 2022; Peng et al., 2024), gradient-based approaches (Huang et al., 2021), and Bayesian approaches (Kristiadi et al., 2020; Malinin & Gales, 2019). Another line of work addresses OOD detection by fine-tuning a pre-trained discrimination model with training-time regularizations that help the model learn ID/OOD discrepancy following the guideline of outlier exposure (Hendrycks et al., 2018). For instance, the discriminative model is regularized to produce lower confidence (Lee et al., 2017; Malinin & Gales, 2018), smaller feature magnitudes (Liu et al., 2020) or higher energy (Dhamija et al., 2018) for outlier points. More recently, some works have considered a practical scenario where the auxiliary outliers can be arbitrarily different from the real OOD data, therefore distributionally augmenting the observed OOD data. Besides, the given OOD samples tend to include unlabelled ID counterparts (Katz-Samuels et al., 2022). Because of this, WOOD (Katz-Samuels et al., 2022) formulates learning with noisy OOD samples as a constrained optimization problem while SAL (Du et al., 2024a) separates candidate outliers from the unlabeled data and then trains a binary classifier using the candidate outliers and the labelled ID data.

On the theoretical side, there are various attempts to explore the theoretical understanding of OOD detection. Fang et al. (2022; 2024) study the generalization of OOD detection by PAC learning and find a necessary condition for the learnability of OOD detection. Du et al. (2024a) provides a provable understanding of the OOD detection result by modeling the feature space as a mixture of multivariate Gaussian distributions. Peng et al. (2024) weakens distributional assumption from Gaussian distribution to exponential family distribution. Du et al. (2024b) studies the impact of ID labels on OOD detection.

B PROOFS OF MAIN THEOREMS

B.1 PROOF OF THEOREM 3

Proof. We consider the following optimization problem

$$\mathbb{Q}_{\hat{Y}}^* = \arg \max_{\mathbb{Q}_{\hat{Y}}} \mathbb{E}_{\hat{y} \in \mathbb{Q}_{\hat{Y}}} [h(\mathbf{x}, \hat{y})] \quad \text{s.t. } D_{KL}(\mathbb{Q}_{\hat{Y}}, \mathbb{P}_{\hat{Y}}) = \int q_{\hat{Y}}(\hat{y}) \log \frac{q_{\hat{Y}}(\hat{y})}{p_{\hat{Y}}(\hat{y})} d\hat{y} \leq \eta.$$

Introducing multipliers $\alpha \geq 0$ for the KL constraint and δ for normalization $\int q_{\hat{Y}}(\hat{y}) d\hat{y} = 1$:

$$\mathcal{L} = \int q_{\hat{Y}}(\hat{y}) h(\mathbf{x}, \hat{y}) d\hat{y} + \alpha \left(\eta - \int q_{\hat{Y}}(\hat{y}) \log \frac{q_{\hat{Y}}(\hat{y})}{p_{\hat{Y}}(\hat{y})} d\hat{y} \right) + \delta \left(1 - \int q_{\hat{Y}}(\hat{y}) d\hat{y} \right). \quad (16)$$

Note that \mathcal{L} both depend on $\mathbb{Q}_{\hat{Y}}, \mathbf{x}, \alpha, \delta$, but we suppress the dependence from the notation for simplicity.

Taking the functional derivative with respect to $q_{\hat{Y}}(\hat{y})$ gives

$$\frac{\partial \mathcal{L}}{\partial q_{\hat{Y}}(\hat{y})} = h(\mathbf{x}, \hat{y}) - \alpha \left(\log \frac{q_{\hat{Y}}(\hat{y})}{p_{\hat{Y}}(\hat{y})} + 1 \right) - \delta.$$

Stationarity requires $\frac{\partial \mathcal{L}}{\partial q_{\hat{Y}}(\hat{y})} = 0$, hence

$$\log \frac{q_{\hat{Y}}^*(\hat{y})}{p_{\hat{Y}}(\hat{y})} = \frac{h(\mathbf{x}, \hat{y}) - \delta - \alpha}{\alpha}.$$

Exponentiating yields

$$q_{\hat{Y}}^*(\hat{y}) = p_{\hat{Y}}(\hat{y}) \exp \left(\frac{h(\mathbf{x}, \hat{y}) - \delta - \alpha}{\alpha} \right) \propto p_{\hat{Y}}(\hat{y}) \exp \left(\frac{h(\mathbf{x}, \hat{y})}{\alpha} \right).$$

Replacing α with the optimal $\alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}}) = \arg \min_{\alpha \geq 0} \{ \alpha \eta + \alpha \log \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} [e^{h(\mathbf{x}, \hat{y})/\alpha}] \}$ yields

$$q_{\hat{Y}}^*(\hat{y}) \propto p_{\hat{Y}}(\hat{y}) \exp \left(\frac{h(\mathbf{x}, \hat{y})}{\alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}})} \right).$$

□

810 B.2 PROOF OF THEOREM 1
811812 *Proof.* Let $\ell(\hat{y}) = q_{\hat{Y}}(\hat{y})/p_{\hat{Y}}(\hat{y})$ and $\varphi(a) = a \log a - a + 1$, then we have

813
$$\int q_{\hat{Y}}(\hat{y})h(\mathbf{x}, \hat{y}) d\hat{y} = \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[h(\mathbf{x}, \hat{y})\ell(\hat{y})]$$

814
$$\int q_{\hat{Y}}(\hat{y}) \log \frac{q_{\hat{Y}}(\hat{y})}{p_{\hat{Y}}(\hat{y})} d\hat{y} = \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[\varphi(\ell(\hat{y}))]$$

815
$$\int q_{\hat{Y}}(\hat{y}) d\hat{y} = \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[\ell(\hat{y})]$$

816
817
818
819

820 According to Eq. (16), we can rewrite $\hat{E}(\mathbf{x}, y_j; \boldsymbol{\theta})$ in Eq. (5) as follows:

821
$$\hat{E}(\mathbf{x}, y_j; \boldsymbol{\theta}) = h(\mathbf{x}, y_j) - \min_{\alpha \geq 0, \delta} \max_{\mathbb{Q}_{\hat{Y}}} \mathcal{L}$$

822
$$= h(\mathbf{x}, y_j) - \min_{\alpha \geq 0, \delta} \max_{\mathbb{Q}_{\hat{Y}}} \{\mathbb{E}_{\mathbb{P}_{\hat{Y}}}[h(\mathbf{x}, \hat{y})\ell(\hat{y})] - \alpha[\mathbb{E}_{\mathbb{P}_{\hat{Y}}}[\varphi(\ell(\hat{y}))] - \eta] + \delta(\mathbb{E}_{\mathbb{P}_{\hat{Y}}}[\ell(\hat{y})] - 1)\}$$

823
824
$$= h(\mathbf{x}, y_j) - \min_{\alpha \geq 0, \delta} \{\alpha\eta - \delta + \alpha \max_{\mathbb{Q}_{\hat{Y}}} \{\mathbb{E}_{\mathbb{P}_{\hat{Y}}}[\frac{h(\mathbf{x}, \hat{y}) + \delta}{\alpha} \ell(\hat{y}) - \varphi(\ell(\hat{y}))]\}\} \quad (17)$$

825
826
827
$$= h(\mathbf{x}, y_j) - \min_{\alpha \geq 0, \delta} \{\alpha\eta - \delta + \alpha \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[\max_{\ell(\hat{y})} \{\frac{h(\mathbf{x}, \hat{y}) + \delta}{\alpha} \ell(\hat{y}) - \varphi(\ell(\hat{y}))\}]\} \quad (18)$$

828
829
$$= h(\mathbf{x}, y_j) - \min_{\alpha \geq 0, \delta} \{\alpha\eta - \delta + \alpha \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[\varphi^*(\frac{h(\mathbf{x}, \hat{y}) + \delta}{\alpha})]\} \quad (19)$$

830
831
$$= h(\mathbf{x}, y_j) - \min_{\alpha \geq 0, \delta} \{\alpha\eta - \delta + \alpha \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[e^{\frac{h(\mathbf{x}, \hat{y}) + \delta}{\alpha}} - 1]\} \quad (20)$$

832
833
$$= h(\mathbf{x}, y_j) - \min_{\alpha \geq 0} \{\alpha\eta + \alpha \log \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[e^{\frac{h(\mathbf{x}, \hat{y})}{\alpha}}]\} \quad (21)$$

834
835
836

837 where $\alpha^*(\mathbf{x}, \mathbb{P}_{\hat{Y}}) = \arg \min_{\alpha \geq 0} \{\alpha\eta + \alpha \log \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}}[e^{h(\mathbf{x}, \hat{y})/\alpha}]\}.$ 838 We kindly note that 1) Eq. (17) holds due to the strong duality (Boyd & Vandenberghe, 2004);
839 2) Eq. (18) is derived via a re-arrangement for optimizing over $\mathbb{P}_{\hat{Y}}$; 3) the derivation of Eq. (19)
840 follows by Ben-Tal & Teboulle (2007); 4) Eq. (20) is established based on the definition of convex
841 conjugate (Hiriart-Urruty & Lemaréchal, 2004), i.e., $\varphi^*(a) = e^a - 1$.842 To prove Eq. (21), Fix $\alpha > 0$ and minimize Eq. (20) over δ gives

843
$$\min_{\delta} \left[\alpha\eta - \delta + \alpha \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[e^{(h(\mathbf{x}, \hat{y}) + \delta)/\alpha} - 1] \right].$$

844 Expand and separate δ gives

845
$$\alpha\eta - \delta + \alpha \left(e^{\delta/\alpha} \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[e^{h(\mathbf{x}, \hat{y})/\alpha}] - 1 \right) = \alpha\eta - \alpha + \underbrace{(\alpha R e^{\delta/\alpha} - \delta)}_{=:g(\delta)},$$

846

847 where $R := \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[e^{h(\mathbf{x}, \hat{y})/\alpha}] > 0$ (for simplicity, we omit the dependence on \mathbf{x} , $\mathbb{P}_{\hat{Y}}$ and α).848 Compute the derivative of $g(\delta)$ w.r.t. δ and set it to zero:

849
$$g'(\delta) = R e^{\delta/\alpha} - 1 = 0 \rightarrow \delta^* = -\alpha \log R.$$

850 Since $g''(\delta) = \frac{1}{\alpha} R e^{\delta/\alpha} > 0$, δ^* gives the minimum, i.e.,

851
$$\min_{\delta} g(\delta) = g(\delta^*) = \alpha R \cdot \frac{1}{R} - (-\alpha \log R) = \alpha + \alpha \log R.$$

852

853 Therefore, for fixed α ,

854
$$\min_{\delta} \left[\alpha\eta - \delta + \alpha \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[e^{(h(\mathbf{x}, \hat{y}) + \delta)/\alpha} - 1] \right] = \alpha\eta - \alpha + (\alpha + \alpha \log R) = \alpha\eta + \alpha \log \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[e^{h(\mathbf{x}, \hat{y})/\alpha}],$$

855

856 such that

857
$$h(\mathbf{x}, y_j) - \min_{\alpha \geq 0, \delta} \left[\alpha\eta - \delta + \alpha \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[e^{\frac{h(\mathbf{x}, \hat{y}) + \delta}{\alpha}} - 1] \right] = h(\mathbf{x}, y_j) - \min_{\alpha \geq 0} \left[\alpha\eta + \alpha \log \mathbb{E}_{\mathbb{P}_{\hat{Y}}}[e^{h(\mathbf{x}, \hat{y})/\alpha}] \right]$$

858

 \square

864 B.3 PROOF OF THEOREM 4
865866 *Proof.* We consider the following optimization problem
867

868
$$\mathbb{Q}_{\hat{Y}}^* = \arg \max_{\mathbb{Q}_{\hat{Y}}} \mathbb{E}_{\hat{y} \in \mathbb{Q}_{\hat{Y}}} [h(\mathbf{x}, \hat{y})] \quad \text{s.t. } D_{\gamma}(\mathbb{Q}_{\hat{Y}}, \mathbb{P}_{\hat{Y}}) = \int q_{\hat{Y}}(\hat{y}) \phi_{\gamma} \left(\frac{q_{\hat{Y}}(\hat{y})}{p_{\hat{Y}}(\hat{y})} \right) d\hat{y} \leq \eta, \quad (22)$$

869

870 where $\phi_{\gamma}(t) = \frac{1}{\gamma(\gamma-1)}(t^{\gamma} - \gamma t + \gamma - 1)$ with $\gamma > 1$.
871872 Introducing multipliers $\alpha \geq 0$ for the Rényi constraint and δ for normalization $\int q_{\hat{Y}}(\hat{y}) d\hat{y} = 1$:
873

874
$$\mathcal{L}_{\gamma} = \int q_{\hat{Y}}(\hat{y}) h(\mathbf{x}, \hat{y}) d\hat{y} + \alpha \left(\eta - \int q_{\hat{Y}}(\hat{y}) \phi_{\gamma} \left(\frac{q_{\hat{Y}}(\hat{y})}{p_{\hat{Y}}(\hat{y})} \right) d\hat{y} \right) + \delta \left(1 - \int q_{\hat{Y}}(\hat{y}) d\hat{y} \right) \quad (23)$$

875
876
$$= \mathbb{E}_{\mathbb{P}_{\hat{Y}}} [h(\mathbf{x}, \hat{y}) \ell(\hat{y})] + \alpha \left(\eta - \mathbb{E}_{\mathbb{P}_{\hat{Y}}} [\phi_{\gamma}(\ell(\hat{y}))] \right) + \delta \left(1 - \mathbb{E}_{\mathbb{P}_{\hat{Y}}} [\ell(\hat{y})] \right),$$

877 where $\ell(\hat{y}) = q_{\hat{Y}}(\hat{y})/p_{\hat{Y}}(\hat{y})$. Note that \mathcal{L}_{γ} both depend on $\mathbb{Q}_{\hat{Y}}, \mathbf{x}, \alpha, \delta$, but we suppress the dependence from the notation for simplicity.
878879 Then solving Eq. (22) is equivalent to solving the following problem:
880

881
$$\begin{aligned} & \min_{\alpha \geq 0, \delta} \max_{\mathbb{Q}_{\hat{Y}}} \mathcal{L}_{\gamma} \\ 882 &= \min_{\alpha \geq 0, \delta} \max_{\mathbb{Q}_{\hat{Y}}} \mathbb{E}_{\mathbb{P}_{\hat{Y}}} [h(\mathbf{x}, \hat{y}) \ell(\hat{y})] + \alpha \left(\eta - \mathbb{E}_{\mathbb{P}_{\hat{Y}}} [\phi_{\gamma}(\ell(\hat{y}))] \right) + \delta \left(1 - \mathbb{E}_{\mathbb{P}_{\hat{Y}}} [\ell(\hat{y})] \right) \\ 883 &= \min_{\alpha \geq 0, \delta} \left\{ \alpha \eta + \delta + \alpha \max_{\mathbb{Q}_{\hat{Y}}} \mathbb{E}_{\mathbb{P}_{\hat{Y}}} \left[\frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \ell(\hat{y}) - \phi_{\gamma}(\ell(\hat{y})) \right] \right\} \quad (24) \\ 884 &= \min_{\alpha \geq 0, \delta} \left\{ \alpha \eta + \delta + \alpha \mathbb{E}_{\mathbb{P}_{\hat{Y}}} \left[\max_{\ell(\hat{y})} \left(\frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \ell(\hat{y}) - \phi_{\gamma}(\ell(\hat{y})) \right) \right] \right\} \\ 885 &= \min_{\alpha \geq 0, \delta} \left\{ \alpha \eta + \delta + \alpha \mathbb{E}_{\mathbb{P}_{\hat{Y}}} \left[\phi_{\gamma}^* \left(\frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \right) \right] \right\} \end{aligned}$$

886 Note that $\max_{\ell(\hat{y})} \left\{ \frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \ell(\hat{y}) - \phi_{\gamma}(\ell(\hat{y})) \right\} = \phi_{\gamma}^* \left(\frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \right)$ is the Fenchel Conjugate Function of
887 $\phi_{\gamma} \left(\frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \right)$, then we have $\phi_{\gamma}^*(a) = \frac{1}{\gamma} ((\gamma-1)a + 1)^{\frac{1}{\gamma}} - \frac{1}{\gamma}$ with $\gamma^* = \frac{\gamma}{\gamma-1}$. Please refer to
888 [Duchi & Namkoong \(2021\)](#) for more details. Then Eq. (24) can be rewritten as follows:
889

890
$$\begin{aligned} & \min_{\alpha \geq 0, \delta} \left\{ \alpha \eta + \delta + \alpha \mathbb{E}_{\mathbb{P}_{\hat{Y}}} \left[\max_{\ell(\hat{y})} \left(\frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \ell(\hat{y}) - \phi_{\gamma}(\ell(\hat{y})) \right) \right] \right\} \\ 891 &= \min_{\alpha \geq 0, \delta} \left\{ \alpha \eta + \delta + \alpha \mathbb{E}_{\mathbb{P}_{\hat{Y}}} \left[\phi_{\gamma}^* \left(\frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \right) \right] \right\}. \end{aligned} \quad (25)$$

892 Following [Duchi & Namkoong \(2021\)](#), with $\beta = \delta - \frac{\alpha}{\gamma-1}$, we can arrive at the closed-form formulation of the optimal α^* that minimizes Eq. (25) as follows:
893

894
$$\alpha^* = (\gamma-1)(\gamma(\gamma-1)\eta + 1)^{-\frac{1}{\gamma^*}} \mathbb{E}_{\mathbb{P}_{\hat{Y}}} \left[(h(\mathbf{x}, \hat{y}) - \beta)^{\frac{1}{\gamma^*}} \right]^{\frac{1}{\gamma^*}}, \quad (26)$$

895

896 By substituting α^* , β and $\phi_{\gamma}^* \left(\frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \right)$ into Eq. (25), we have:
897

898
$$\max_{\mathbb{Q}_{\hat{Y}}: D_{\gamma}(\mathbb{Q}_{\hat{Y}} \parallel \mathbb{P}_{\hat{Y}}) \leq \eta} \mathbb{E}_{\hat{y} \in \mathbb{Q}_{\hat{Y}}} [h(\mathbf{x}, \hat{y})] = \min_{\alpha \geq 0, \delta} \max_{\mathbb{Q}_{\hat{Y}}} \mathcal{L}_{\gamma} = \min_{\beta} \left\{ c_{\gamma}(\eta) \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} \left[(h(\mathbf{x}, \hat{y}) - \beta)^{\frac{1}{\gamma^*}} \right]^{\frac{1}{\gamma^*}} + \beta \right\}, \quad (27)$$

899 where $c_{\gamma}(\eta) = (\gamma(\gamma-1)\eta + 1)^{\frac{1}{\gamma}}$, such that
900

901
$$\begin{aligned} \hat{E}(\mathbf{x}, y_j; \boldsymbol{\theta}) &= h(\mathbf{x}, y_j) - \max_{\mathbb{Q}_{\hat{Y}}: D_{\gamma}(\mathbb{Q}_{\hat{Y}} \parallel \mathbb{P}_{\hat{Y}}) \leq \eta} \mathbb{E}_{\hat{y} \in \mathbb{Q}_{\hat{Y}}} [h(\mathbf{x}, \hat{y})] \\ 902 &= h(\mathbf{x}, y_j) - \left\{ c_{\gamma}(\eta) \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} \left[(h(\mathbf{x}, \hat{y}) - \beta_{\mathbf{x}}^*)^{\frac{1}{\gamma^*}} \right]^{\frac{1}{\gamma^*}} + \beta_{\mathbf{x}}^* \right\}, \end{aligned} \quad (28)$$

903

904 where
905

906
$$\beta_{\mathbf{x}}^* = \arg \min_{\beta} \left\{ c_{\gamma}(\eta) \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} \left[(h(\mathbf{x}, \hat{y}) - \beta)^{\frac{1}{\gamma^*}} \right]^{\frac{1}{\gamma^*}} + \beta \right\}. \quad (29)$$

907

□

918 B.4 PROOF OF THEOREM 5
919920 *Proof.* Taking the functional derivative of $\frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \ell(\hat{y}) - \phi_\gamma(\ell(\hat{y}))$ in Eq. (24) w.r.t. $q_{\hat{Y}}(\hat{y})$ gives
921

922
$$\begin{aligned} & \frac{\partial}{\partial \ell(\hat{y})} \left\{ \frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \ell(\hat{y}) - \phi_\gamma(\ell(\hat{y})) \right\} \\ &= \frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} - \frac{\partial \phi_\gamma(\ell(\hat{y}))}{\partial \ell(\hat{y})} \\ &= \frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} - \frac{1}{\gamma - 1} [\ell(\hat{y})^{\gamma-1} - 1]. \end{aligned} \tag{30}$$

923

924 Stationarity requires
925

926
$$\frac{\partial}{\partial \ell(\hat{y})} \left\{ \frac{h(\mathbf{x}, \hat{y}) - \delta}{\alpha} \ell(\hat{y}) - \phi_\gamma(\ell(\hat{y})) \right\} = 0,$$

927

928 hence
929

930
$$h(\mathbf{x}, \hat{y}) - \delta = \frac{\alpha}{\gamma - 1} [\ell^*(\hat{y})]^{\gamma-1},$$

931

932 where $\ell^*(\hat{y}) = q_{\hat{Y}}^*(\hat{y})/p_{\hat{Y}}(\hat{y})$. Replacing α with the optimal α^* , then we have:
933

934
$$\ell^*(\hat{y}) = c_\gamma(\eta) \frac{(h(\mathbf{x}, \hat{y}) - \beta_{\mathbf{x}}^*)_+^{\frac{1}{\gamma-1}}}{\mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} [(h(\mathbf{x}, \hat{y}) - \beta_{\mathbf{x}}^*)_+^{\gamma^*}]^{\frac{1}{\gamma}}},$$

935

936 such that
937

938
$$q_{\hat{Y}}^*(\hat{y}) = c_\gamma(\eta) \frac{(h(\mathbf{x}, \hat{y}) - \beta_{\mathbf{x}}^*)_+^{\frac{1}{\gamma-1}}}{\mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} [(h(\mathbf{x}, \hat{y}) - \beta_{\mathbf{x}}^*)_+^{\gamma^*}]^{\frac{1}{\gamma}}} p_{\hat{Y}}(\hat{y}) \propto (h(\mathbf{x}, \hat{y}) - \beta_{\mathbf{x}}^*)_+^{\frac{1}{\gamma-1}} p_{\hat{Y}}(\hat{y}).$$

939

940 \square
941942 C CONVEXITY WITH REGARD TO β
943944 Let $\zeta(\beta) = c_\gamma(\eta) \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} \left[(h(\mathbf{x}, \hat{y}) - \beta)_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}} + \beta$, then we have:
945

946
$$\begin{aligned} & \zeta(\delta\beta_1 + (1 - \delta)\beta_2) \\ &= \delta\beta_1 + (1 - \delta)\beta_2 + c_\gamma(\eta) \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} \left[\left(\delta(h(\mathbf{x}, \hat{y}) - \beta_1) + (1 - \delta)(h(\mathbf{x}, \hat{y}) - \beta_2) \right)_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}} \end{aligned} \tag{31}$$

947

948 According to Minkowski's inequality, we have:
949

950
$$\begin{aligned} & \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} \left[\left(\delta \cdot (h(\mathbf{x}, \hat{y}) - \beta_1) + (1 - \delta) \cdot (h(\mathbf{x}, \hat{y}) - \beta_2) \right)_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}} \\ & \leq \delta \cdot \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} \left[(h(\mathbf{x}, \hat{y}) - \beta_1)_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}} + (1 - \delta) \cdot \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} \left[(h(\mathbf{x}, \hat{y}) - \beta_2)_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}}, \end{aligned} \tag{32}$$

951

952 such that
953

954
$$\zeta(\delta\beta_1 + (1 - \delta)\beta_2) \leq \delta\zeta(\beta_1) + (1 - \delta)\zeta(\beta_2). \tag{33}$$

955

956 D BROADER IMPACTS
957958 Our project aims to improve the reliability and safety of modern machine learning models, which
959 leads to benefits and societal impacts, particularly for safety-critical applications such as au-
960 tonomous driving. Our study does not involve any human subjects or violation of legal compliance.
961 We do not anticipate any potentially harmful consequences to our work.
962

972
973

E LIMITATION

974
975
976

Our framework only provides a theoretical explanation for CLIP-based OOD detection with negative labels, leaving a crucial gap in the success of methods in other directions.

977
978

F EVALUATION METRIC

979
980
981
982
983
984

The performance of OOD detection is evaluated via two widely used metrics: 1) the false positive rate of OOD data is measured when the true positive rate of ID data reaches 95% (FPR95); 2) the area under the receiver operating characteristic curve (AUROC) is computed to quantify the probability of the ID case receiving a higher score than the OOD case. The reported results of our method are averaged over 5 independent runs.

985
986

G USAGE CLAIM OF LLMs

987
988

We use ChatGPT for grammar and spelling checks only, with the prompt "Proofread the sentences".

989
990
991

H ALGORITHMIC SUMMARY

992
993
994

For clarity, we summarize our algorithmic details in Algorithm 1.

995
996
997
998
999

Input : Test-time input \mathbf{x} , ID labels $\mathcal{Y}_I = \{y_1, \dots, y_K\}$, Negative labels $\hat{\mathcal{Y}} = \{\hat{y}_1, \dots, \hat{y}_L\}$, learning rate lr , critic $h(\cdot, \cdot)$, maximum iteration M , hyper-parameters γ^* , $c_\gamma(\eta)$

Output: OOD scoring function $S_{\text{ours}}(\mathbf{x}; \theta)$

// Step 1: Optimizing β_x

1000
1001
1002
1003
1004

1 for $iter = 1$ to M do

2

$$\beta_x \leftarrow \beta_x - lr \cdot \frac{\partial}{\partial \beta_x} \left\{ c_\gamma(\eta) \left[\frac{1}{L} \sum_{j=1}^L (h(\mathbf{x}, \hat{y}_j) - \beta_x)_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}} + \beta_x \right\}.$$

1005
1006
1007
1008
1009
1010

// Step 2: OOD Scoring

3

$$S_{\text{ours}}(\mathbf{x}; \theta) = T \log \sum_{i=1}^K \frac{\exp \left\{ \frac{1}{T} \cdot [h(\mathbf{x}, y_i) - \beta_x] \right\}}{\exp \left\{ \frac{c_\gamma(\eta)}{T} \cdot \left[\frac{1}{L} \sum_{j=1}^L (h(\mathbf{x}, \hat{y}_j) - \beta_x)_+^{\gamma^*} \right]^{\frac{1}{\gamma^*}} \right\}}$$

1011

I QUANTITATIVE ANALYSIS ON COMPUTATION TIME

1012
1013
1014
1015
1016

As shown in Algorithm 1, our method consists of two stages: 1) Optimizing β_x and 2) OOD scoring.

As for the first stage, we start with deriving the specific form of the gradient w.r.t β_x as follows:

1017
1018
1019

$$1 - c_\gamma(\eta) \phi(\beta)^{\frac{1}{\gamma^*} - 1} \frac{1}{L} \sum_{j=1}^L \mathbf{1}(h(\mathbf{x}, \hat{y}_j) > \beta) (h(\mathbf{x}, \hat{y}_j) - \beta)_+^{\gamma^* - 1},$$

1020
1021

where $\phi(\beta) = \frac{1}{L} \sum_{j=1}^L (h(\mathbf{x}, \hat{y}_j) - \beta)_+^{\gamma^*}$.

1022
1023
1024
1025

Clearly, the time complexity of gradient computation is $O(L)$, which, same as NegLabel, linearly grows with the number of negative labels. Here we omit the complexity introduced by the dot-product computation, as it is orthogonal to our algorithmic design. Therefore, the time complexity of the first stage which involve M -step SGD is $O(M \cdot L)$, where the maximum iteration M is usually set to a relative small value (e.g., $M = 15$ in this paper)

R#gfTd

R#GfTd,
R#GPbo,
R#44Et,
R#KbNX

1026 Table 8: Detailed OOD detection results of our method on the OpenOOD benchmark, where
 1027 ImageNet-1K is adopted as ID dataset.
 1028

Ours (Stage 1)	Ours (Stage 2)	Ours (Stage 1+2)	NegLabel (with grouping strategy)
1.51ms	0.12ms	1.63ms	0.14ms

1032
 1033 As for the second step, one can easily check that the time complexity of our proposed scoring
 1034 function $S_{\text{ours}}(\mathbf{x}; \boldsymbol{\theta})$ is $O(K + L)$, which is same as that of $S_{\text{NegLabel}}(\mathbf{x}; \boldsymbol{\theta})$ in Eq. (2).
 1035

1036 Table 8 reports the average computation time of our method and NegLabel per test-time input on
 1037 a single NVIDIA A100. Note that we omit the computation cost introduced by extracting features
 1038 from pre-trained CLIP, as our method keeps the same feature extraction procedure as NegLabel.

1039 Although the optimization process adds roughly 1.5 ms per test-time input, this cost is small in
 1040 absolute terms. Therefore, both theoretically and empirically, the additional computation is limited
 1041 and does not contradict our claim that the extra cost is negligible in practice.

J MORE DISCUSSIONS

J.1 CONNECTION BETWEEN $S_{\text{NEGLABEL}}(\mathbf{x}; f)$ AND $\hat{S}_{\text{NEGLABEL}}(\mathbf{x}; f)$

1047 For any $\alpha \in [0, 1]$, the α -skew negative label distribution $\hat{\mathbb{P}}_{\hat{Y}}$ is defined as

$$\hat{\mathbb{P}}_{\hat{Y}} = \alpha \mathbb{P}_{Y_1} + (1 - \alpha) \mathbb{P}_{\hat{Y}},$$

1050 where \mathbb{P}_{Y_1} is the ID label distribution. Replacing $\hat{\mathbb{P}}_{\hat{Y}}$ with $\mathbb{P}_{\hat{Y}}$ in Eq. (8) gives

$$\begin{aligned} & T \log \sum_{i=1}^K \frac{e^{h(\mathbf{x}, y_i)/T}}{\mathbb{E}_{\hat{y} \sim \hat{\mathbb{P}}_{\hat{Y}}} [e^{h(\mathbf{x}, \hat{y})/T}]} - T\eta \\ &= T \log \sum_{i=1}^K \frac{e^{h(\mathbf{x}, y_i)/T}}{\alpha \mathbb{E}_{\hat{y} \sim \mathbb{P}_{Y_1}} [e^{h(\mathbf{x}, \hat{y})/T}] + (1 - \alpha) \mathbb{E}_{\hat{y} \sim \mathbb{P}_{\hat{Y}}} [e^{h(\mathbf{x}, \hat{y})/T}]} - T\eta \\ &\approx T \log \sum_{i=1}^K \frac{\exp [h(\mathbf{x}, y_i)/T]}{\underbrace{\frac{\alpha}{K} \sum_{j=1}^K \exp [h(\mathbf{x}, y_j)/T] + \frac{1-\alpha}{L} \sum_{j=1}^L \exp [h(\mathbf{x}, \hat{y}_j)/T]}_{S_{\text{NegLabel}}(\mathbf{x}; f)} - T\eta}. \end{aligned}$$

1061 With $\alpha = \frac{K}{K+L}$, we have

$$\begin{aligned} & \log \sum_{i=1}^K \frac{\exp [h(\mathbf{x}, y_i)/T]}{\underbrace{\frac{\alpha}{K} \sum_{j=1}^K \exp [h(\mathbf{x}, y_j)/T] + \frac{1-\alpha}{L} \sum_{j=1}^L \exp [h(\mathbf{x}, \hat{y}_j)/T]}_{S_{\text{NegLabel}}(\mathbf{x}; f)}} \\ &= \log \sum_{i=1}^K \frac{\exp [h(\mathbf{x}, y_i)/T]}{\underbrace{\sum_{j=1}^K \exp [h(\mathbf{x}, y_j)/T] + \sum_{j=1}^L \exp [h(\mathbf{x}, \hat{y}_j)/T]}_{1^L} + \log(K+L)} + \log(K+L) \end{aligned} \quad (34)$$

1071 The above implies that $S_{\text{NegLabel}}(\mathbf{x}; f)$ essentially estimates a worst-case energy function over
 1072 a KL-divergence-constrained set, therefore being functionally equivalent to $\hat{S}_{\text{NegLabel}}(\mathbf{x}; f)$ in a
 1073 broader sense. In a narrow sense, $S_{\text{NegLabel}}(\mathbf{x}; f)$ can be considered as a slightly noisy version
 1074 of $\hat{S}_{\text{NegLabel}}(\mathbf{x}; f)$ (up to a constant) with the noise level $\alpha = \frac{1000}{1000+10000} \approx 0.09$.
 1075

J.2 COMPARISON WITH TEST-TIME ADAPTATION OOD DETECTION

1078 We notice that, superficially, the use of 15-step SGD in test-time somewhat resembles the idea
 1079 of test-time adaptation (TTA). However, we draw a conceptual distinction based on what is being
 updated and what the goal is:

1080 Table 9: OOD detection results on the OpenOOD benchmark, where CIFAR-100 is adopted as ID
 1081 dataset. Full results are provided in Table 10.

Methods	FPR95 ↓		AUROC ↑	
	Near-OOD	Far-OOD	Near-OOD	Far-OOD
MCM	75.20	59.32	71.00	76.00
NegLabel	71.44	40.92	70.58	89.68
Ours	68.12	34.81	72.84	92.95

1089 Table 10: Detailed OOD detection results of our method on the OpenOOD benchmark, where
 1090 CIFAR-100 is adopted as ID dataset.

Settings	Datasets	FPR95 ↓	AUROC ↑
Near-OOD	CIFAR-10	69.59	64.76
	TIN	66.65	80.92
	Average	68.12	72.84
Far-OOD	MNIST	10.05	96.84
	SVHN	13.24	96.97
	Texture	35.32	93.74
	Places	80.63	84.25
	Average	34.81	92.95

1103 TTA OOD DETECTION (E.G., ADANEG)

- 1105 • **What is updated:** Negative proxies that are shared by test-time inputs.
- 1106 • **Scope of update:** Updation is based on test-time inputs and can **accumulate over time**.
- 1107 • **Goal:** Explicitly **adapt the negative proxies** to the test distribution.
- 1108 • **Statefulness:** The negative proxies and/or their internal state after processing earlier test-
 1109 time inputs **influence predictions on future test-time inputs**.

1112 OUR METHOD

- 1113 • **What is updated:** We **only optimize a scalar variable** β_x **per input**, which is *not* shared
 1114 across test-time inputs.
- 1115 • **Scope of update:** The optimization is **strictly local and input-dependent**. For each x , β_x
 1116 is reinitialized and optimized from scratch. There is no cross-sample sharing.
- 1117 • **Goal:** We are **not** adapting negative labels to a new distribution. Instead, we are computing
 1118 an **input-specific optimum** of a fixed energy function that was fully specified by the pre-
 1119 trained CLIP model and the pre-computed negative labels.
- 1120 • **Statefulness:** There is **no persistent state** that changes over time. OOD scoring for x_1 and
 1121 x_2 are independent since optimizing β_{x_1} does not influence β_{x_2} or any future β_x .

1124 K EXPERIMENT ON CIFAR-100 BENCHMARK

1125 Besides ImageNet, we also assess our method on the smaller CIFAR-100 dataset (Krizhevsky et al.,
 1126 2009) under the OpenOOD setup (Zhang et al., 2024a). Specifically, we utilize Near-OOD datasets
 1127 including CIFAR-10 (Krizhevsky et al., 2009) and Tiny-ImageNet (TIN) (Le & Yang, 2015), and
 1128 Far-OOD datasets including MNIST (Deng, 2012), SVHN (Netzer et al., 2011), Texture (Cimpoi
 1129 et al., 2014), and Places (Zhou et al., 2017). As illustrated in Table 9, our advantage still holds.

1133 L MORE EXPERIMENT ON IMAGENET-1K BENCHMARK

R#gfTd,
 R#GPbo

R#GPbo,
 R#44Et

1134 Table 11: OOD detection results on the OpenOOD benchmark, where ImageNet-1K is adopted as
 1135 ID dataset. Full results are provided in Table 12.

Methods	FPR95 ↓		AUROC ↑	
	Near-OOD	Far-OOD	Near-OOD	Far-OOD
MCM	79.02	68.54	60.11	84.77
NegLabel	69.45	23.73	75.18	94.85
Ours	68.09	21.50	75.65	95.35

1143 Table 12: Detailed OOD detection results of our method on the OpenOOD benchmark, where
 1144 ImageNet-1K is adopted as ID dataset.

Settings	Datasets	FPR95 ↓	AUROC ↑
Near-OOD	SSB-hard	70.11	76.04
	NINCO	66.07	75.26
	Average	68.09	75.65
Far-OOD	iNaturalist	1.29	99.64
	Texture	39.45	90.79
	OpenImage-O	23.75	95.62
Average		21.50	95.35

1157 Our method is extensively evaluated against a range of OOD datasets on the OpenOOD bench-
 1158 mark. Specifically, with ImageNet-1K as the ID dataset, we utilize Near-OOD datasets including
 1159 SSB-hard (Vaze et al., 2021) and NINCO (Bitterwolf et al., 2023), and Far-OOD datasets including
 1160 iNaturalist (Van Horn et al., 2018), Textures (Cimpoi et al., 2014), and OpenImage-O (Wang et al.,
 1161 2022). As illustrated in Table 11, our advantage still holds. Moreover, as shown in Table 13, our
 1162 method not only demonstrates high distinguish ability against semantic shifts but also exhibits strong
 1163 robustness to covariate shifts.

M ABLATION STUDY ON TEXT PROMPTS

R#44Et

1164 We evaluate our method with different prompt templates on the ImageNet-1k benchmark, as shown
 1165 in Table 15.

N ABLATION STUDY ON NEGATIVE LABELS

R#44Et

1166 We explore the impact of the number of selected negative labels on OOD detection. The results
 1167 shown in Table 16 demonstrate that our method consistently outperforms NegLabel with different
 1168 number of negative labels and therefore is not sensitive with the number of negative labels.

1169 We also investigate the impact the strategy of mining negative labels on OOD detection. The results
 1170 shown in Table 17 demonstrate that our method consistently outperforms NegLabel with mining
 1171 negative and therefore is not sensitive with the the quality of negative-label mining.

1172 Table 13: Full-spectrum OOD detection results on the OpenOOD benchmark, where ImageNet-1K
 1173 is adopted as ID dataset. Full results are provided in Table 14.

Methods	FPR95 ↓		AUROC ↑	
	Near-OOD	Far-OOD	Near-OOD	Far-OOD
MCM	85.37	69.87	58.97	77.11
NegLabel	76.25	33.30	72.77	92.02
Ours	73.78	29.65	74.18	93.61

1188 Table 14: Detailed full-spectrum OOD detection results of our method on the OpenOOD benchmark,
 1189 where ImageNet-1K is adopted as ID dataset.

1190

Settings	Datasets	FPR95 ↓	AUROC ↑
Near-OOD	SSB-hard	75.29	73.92
	NINCO	72.27	74.44
	Average	73.78	74.18
Far-OOD	iNaturalist	2.32	99.35
	Texture	48.36	88.40
	OpenImage-O	38.27	93.08
	Average	29.65	93.61

1195

1200 Table 15: OOD detection results with different prompt templates on ImageNet-1k as ID. ↑ indicates
 1201 larger values are better and vice versa. The best results in the last two columns are shown in bold.

1202

Prompt	Method	iNaturalist		SUN		Places		Textures		Average	
		AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓
A photo of a <label>.	NegLabel	99.59	1.74	94.83	26.35	90.17	46.92	80.79	72.11	91.34	36.78
	Ours	99.59	1.62	95.18	22.94	91.09	41.87	83.70	65.76	92.39	33.05
<label>.	NegLabel	99.52	1.91	95.77	19.32	92.43	32.79	86.89	59.34	93.65	28.34
	Ours	99.60	1.51	96.02	17.17	93.59	29.65	89.35	55.90	94.71	26.06

1203

1204

O MORE ABLATION STUDY ON BACKBONES

1205

1206

1207

1208 Table 18 assesses the performance of our method using ResNet50x16 as the backbone to examine
 1209 whether performance gains diminish when the base model already separates ID/OOD well.

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

R#44Et

1242

1243

1244

1245

1246

Table 16: Impact of the number of negative labels L selected by NegMining (Jiang et al., 2024) from WordNet on ImageNet-1k benchmark. \uparrow indicates larger values are better and vice versa. The best results in the last two columns are shown in bold.

1249

1250

1251

L	Method	iNaturalist		SUN		Places		Textures		Average	
		AUROC \uparrow	FPR95 \downarrow								
5000	NegLabel	99.64	1.39	94.83	23.28	91.28	37.58	89.97	44.26	93.93	26.63
	Ours	99.54	1.74	95.34	19.51	91.82	34.05	90.47	41.76	94.30	24.26
20000	NegLabel	99.18	3.16	95.24	21.47	91.16	37.23	89.83	44.40	93.85	26.56
	Ours	99.47	2.78	95.55	19.23	92.19	34.62	90.59	42.07	94.45	24.68

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Table 17: Impact of mining strategy of $L = 10000$ negative labels from WordNet on ImageNet-1k benchmark. \uparrow indicates larger values are better and vice versa. The best results in the last two columns are shown in bold.

1266

1267

1268

Strategy	Method	iNaturalist		SUN		Places		Textures		Average	
		AUROC \uparrow	FPR95 \downarrow								
Random Selection	NegLabel	97.96	9.11	93.93	28.67	89.54	45.10	86.62	55.87	92.01	34.69
	Ours	98.40	7.60	94.91	24.78	92.23	38.59	89.42	50.26	93.74	30.31
NegRefine (Ansari et al., 2025)	NegLabel	99.57	1.51	94.64	22.93	90.42	39.10	94.69	21.15	94.83	21.17
	Ours	99.70	1.03	95.28	16.13	91.78	36.53	95.09	20.39	95.46	18.52

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

Table 18: OOD detection results with ResNet50x16 or ViT-G/14 as the backbone on ImageNet-1k. \uparrow indicates larger values are better and vice versa. The best results in the last two columns are shown in bold.

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Backbone	Method	iNaturalist		SUN		Places		Textures		Average	
		AUROC \uparrow	FPR95 \downarrow								
ResNet50x16	NegLabel	99.48	2.00	94.18	29.11	88.85	48.14	91.23	38.74	93.43	29.50
	Ours	99.63	1.56	95.06	25.35	90.75	44.56	91.84	36.21	94.32	26.92
ViT-G/14	NegLabel	99.70	1.15	96.17	18.01	93.21	29.37	90.26	39.96	94.84	22.12
	Ours	99.78	0.82	96.59	15.13	93.96	26.53	91.07	36.54	95.35	19.75