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Abstract

We derive a new, (almost) guaranteed upper bound on the error of deep neural
networks under distribution shift using unlabeled test data. Prior methods are either
vacuous in practice or accurate on average but heavily underestimate error for a
sizeable fraction of shifts. In particular, the latter only give guarantees based on
complex continuous measures such as test calibration, which cannot be identified
without labels, and are therefore unreliable. Instead, our bound requires a simple,
intuitive condition which is well justified by prior empirical works and holds in
practice effectively 100% of the time. The bound is inspired by H∆H-divergence
but is easier to evaluate and substantially tighter, consistently providing non-
vacuous test error upper bounds. Estimating the bound requires optimizing one
multiclass classifier to disagree with another, for which some prior works have used
sub-optimal proxy losses; we devise a “disagreement loss” which is theoretically
justified and performs better in practice. We expect this loss can serve as a drop-in
replacement for future methods which require maximizing multiclass disagreement.
Across a wide range of natural and synthetic distribution shift benchmarks, our
method gives valid error bounds while achieving average accuracy comparable to—
though not better than—competitive estimation baselines.

1 Introduction

When deploying a model, it is important to be confident in how it will perform under inevitable
distribution shift. Standard methods for achieving this include data dependent uniform convergence
bounds [41, 6] (typically vacuous in practice) or assuming a precise model of how the distribution can
shift [57, 10]. Unfortunately, it is difficult or impossible to determine how severely these assumptions
are violated by real data [62], so practitioners usually cannot trust such bounds with confidence.

To better estimate test performance in the wild, some recent work instead tries to directly predict
accuracy of neural networks using unlabeled data from the test distribution of interest [21, 3, 40].
While these methods predict the test performance surprisingly well, they lack pointwise trustworthi-
ness and verifiability: their estimates are good on average over all distribution shifts, but they provide
no signal of the quality of any individual prediction (here, each point is a single test distribution, for
which a method predicts a classifier’s average accuracy). Because of the opaque conditions under
which these methods work, it is also difficult to anticipate their failure cases—indeed, it is reasonably
common for them to substantially overestimate test accuracy for a particular shift, which is prob-
lematic when optimistic deployment would be very costly. Worse yet, we find that this gap grows
with test error (Figure 1), making these predictions least reliable precisely when their reliability is
most important. Although it is clearly impossible to guarantee upper bounds on test error for all
shifts, there is still potential for error bounds that are intuitive and reasonably trustworthy.
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Figure 1: Our bound vs. three prior methods for estimation across a wide variety of distribution
shift benchmarks (e.g., WILDs, BREEDs, DomainNet) and training methods (e.g., ERM,
FixMatch, BN-adapt). Prior methods are accurate on average, but it is difficult or impossible to know
when a given prediction is reliable and why. Worse yet, they usually overestimate accuracy, with the
gap growing as test accuracy decreases—this is precisely when a reliable, conservative estimate is
most desirable. Instead, DIS2 maximizes the disagreement discrepancy to give a reliable error upper
bound which holds effectively 100% of the time. See Appendix F for stratification by training method.

In this work, we develop a method for (almost) provably bounding test error of classifiers under
distribution shift using unlabeled test points. Our bound’s only requirement is a simple, intuitive,
condition which describes the ability of a hypothesis class to achieve small loss on a particular
objective defined over the (unlabeled) train and test distributions. Inspired by H∆H-divergence
[41, 7], our method requires training a critic to maximize agreement with the classifier of interest on
the source distribution while simultaneously maximizing disagreement on the target distribution; we
refer to this joint objective as the Disagreement Discrepancy, and so we name the method DIS2. We
optimize this discrepancy over linear classifiers using deep features—or linear functions thereof—
finetuned on only the training set. Recent evidence suggests that such representations are sufficient
for highly expressive classifiers even under large distribution shift [61]. Experimentally, we find that
our bound is valid effectively 100% of the time,1 consistently giving non-trivial lower bounds on test
accuracy which are reasonably comparable to competitive baselines.

Additionally, our proof of the bound leads to a natural (post-hoc) hypothesis test of the validity of its
lone assumption. This provides an unusually strong positive signal: for more than half the datasets
we evaluate we prove with high probability that the assumption holds; the corresponding indicator
that it does not hold never occurs. We also show that it is possible to approximately test this bound’s
likelihood of being valid a priori using only unlabeled data: the optimization process itself provides
useful information about the bound’s validity, and we use this to construct a score which linearly
correlates with the tightness of the bound. This score can then be used to relax the original bound into
a sequence of successively tighter-yet-less-conservative estimates, interpolating between robustness
and accuracy and allowing a user to make estimates according to their specific risk tolerance.

While maximizing agreement is statistically well understood, our method also calls for maximizing
disagreement on the target distribution. This is not so straightforward in the multiclass setting, and
we observe that prior works use unsuitable losses which do not correspond to minimizing the 0-1 loss
of interest and are non-convex (or even concave) in the model logits [12, 50, 23]. To rectify this, we
derive a new “disagreement loss” which serves as an effective proxy loss for maximizing multiclass
disagreement. Experimentally, we find that minimizing this loss results in lower risk (that is, higher
disagreement) compared to prior methods, and we believe it can serve as a useful drop-in replacement
for any future methods which require maximizing multiclass disagreement.

Experiments across numerous vision datasets (BREEDs [65], FMoW-WILDs [35], Visda [51],
Domainnet [53], CIFAR10, CIFAR100 [36] and OfficeHome [69]) demonstrate the effectiveness of
our bound. Though DIS2 is competitive with prior methods for error estimation, we emphasize that
our focus is not on improving raw predictive accuracy—rather, we hope to obtain reliable (i.e.,

1The few violations are expected a priori, have an obvious explanation, and only occur for a specific type of
learned representation. We defer a more detailed discussion of this until after we present the bound.
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correct), reasonably tight bounds on the test error of a given classifier under distribution shift. In
particular, while existing methods tend to severely overestimate accuracy as the true accuracy drops,
our bound maintains its validity while remaining non-vacuous, even for drops in accuracy as large
as 70%. In addition to source-only training, we experiment with unsupervised domain adaptation
methods that use unlabeled target data and show that our observations continue to hold.

2 Related Work

Estimating test error with unlabeled data. The generalization capabilities of overparameterized
models on in-distribution data have been extensively studied using conventional machine learning
tools [46, 47, 45, 48, 17, 5, 73, 39, 42]. This research aims to bound the generalization gap by
evaluating complexity measures of the trained model. However, these bounds tend to be numerically
loose compared to actual generalization error [70, 43]. Another line of work instead explores the
use of unlabeled data for predicting in-distribution generalization [56, 55, 20, 44, 32]. More relevant
to our work, there are several methods that predict the error of a classifier under distribution shift
with unlabeled test data: (i) methods that explicitly predict the correctness of the model on individual
unlabeled points [14, 15, 8]; and (ii) methods that directly estimate the overall error without making
a pointwise prediction [9, 24, 12, 21, 3].

To achieve a consistent estimate of the target accuracy, several works require calibration on the target
domain [32, 24]. However, these methods often yield poor estimates because deep models trained
and calibrated on a source domain are not typically calibrated on previously unseen domains [49].
Additionally, [14, 24] require a subset of labeled target domains to learn a regression function that
predicts model performance—but thus requires significant a priori knowledge about the nature of
shift that, in practice, might not be available before models are deployed in the wild.

Closest to our work is [12], where the authors use domain-invariant predictors as a proxy for un-
known target labels. However, like other works, their method only estimates the target accuracy—the
actual error bounds they derive are not computable in practice. Second, even their estimate is compu-
tationally demanding and relies on multiple approximations, tuning of numerous hyperparameters,
e.g. lagrangian multipliers; as a result, proper tuning is difficult and the method does not scale to
modern deep networks. Finally, they suggest minimizing the (concave) negative cross-entropy loss,
but we show that this can be a poor proxy for maximizing disagreement, instead proposing a more
suitable replacement which we find performs much better.

Uniform convergence bounds. Our bound is inspired by classic analyses using H- and H∆H-
divergence [41, 6, 7]. These provide error bounds via a complexity measure that is both data- and
hypothesis-class-dependent. This motivated a long line of work on training classifiers with small
corresponding complexity, such as restricting classifiers’ discriminative power between source and
target data [18, 67, 38, 72]. Unfortunately, such bounds are often intractable to evaluate and are usually
vacuous in real world settings. We provide a more detailed comparison to our approach in Section 3.1.

3 Deriving an (Almost) Provable Error Bound

Notation. Let S, T denote the source and target (train and test) distributions, respectively, over
labeled inputs (x, y) ∈ X × Y , and let Ŝ, T̂ denote sets of samples from them with cardinalities
nS and nT (they also denote the corresponding empirical distributions). Recall that we observe
only the covariates x without the label y when a sample is drawn from T . We consider classifiers
h : X → R|Y| which output a vector of logits, and we let ĥ denote the particular classifier whose error
we aim to bound. Generally, we use H to denote a hypothesis class of such classifiers. Where clear
from context, we use h(x) to refer to the argmax logit, i.e. the predicted class. We treat these classifiers
as deterministic throughout, though our analysis can easily be extended to probabilistic classifiers and
labels. For a distribution D on X ×Y , let ϵD(h, h′) := ED[1{argmaxy h(x)y ̸= argmaxy h

′(x)y}]
denote the one-hot disagreement between classifiers h and h′ on D. Let y∗ represent the true labeling
function such that y∗(x) = y for all samples (x, y); with some abuse of notation, we write ϵD(h) to
mean ϵD(h, y

∗), i.e. the 0-1 error of classifier h on distribution D.

The bound we derive in this work is extremely simple and relies on one new concept:
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Definition 3.1. The disagreement discrepancy ∆(h, h′) is the disagreement between h and h′ on T
minus their disagreement on S:

∆(h, h′) := ϵT (h, h
′)− ϵS(h, h

′).

We leave the dependence on S, T implicit. Note that this term is symmetric in its arguments and
signed—it can be negative. With this definition, we now have the following lemma:
Lemma 3.2. For any classifier h, ϵT (h) = ϵS(h) + ∆(h, y∗).

Proof. By definition, ϵT (h) = ϵS(h) + (ϵT (h)− ϵS(h)) = ϵS(h) + ∆(h, y∗).

We cannot directly use Lemma 3.2 to estimate ϵT (ĥ) because the second term is unknown. However,
observe that y∗ is fixed. That is, while a learned ĥ will depend on y∗ and S—and therefore ∆(ĥ, y∗)

may be large under large distribution shift—y∗ is not chosen to maximize ∆(ĥ, y∗) in response to
the ĥ we have learned. This means that for a sufficiently expressive hypothesis class H, it should be
possible to identify an alternative labeling function h′ ∈ H for which ∆(ĥ, h′) ≥ ∆(ĥ, y∗) (we refer
to such h′ as the critic). In other words, we should be able to find an h′ ∈ H which, if it were the true
labeling function, would imply at least as large of a drop in accuracy from train to test as occurs in
reality. This key observation serves as the basis for our bound, and we discuss it in greater detail in
Section 3.1.

In this work we consider the class H of linear critics, with the features X defined as source-finetuned
neural representations or the logits output by the classifier ĥ. Prior work provides strong evidence
that this class has surprising capacity under distribution shift, including the possibility that functions
very similar to y∗ lie in H [61, 34, 33]. We formalize this intuition with the following assumption:

Assumption 3.3. Define h∗ := argmaxh′∈H ∆(ĥ, h′). We assume

∆(ĥ, y∗) ≤ ∆(ĥ, h∗).

Note that this statement is necessarily true whenever y∗ ∈ H; it only becomes meaningful when
considering restricted H, as we do here. Note also that this assumption is made specifically for ĥ, i.e.
on a per-classifier basis. This is important because while the above may not hold for every classifier
ĥ, it need only hold for the classifiers whose error we would hope to bound, which is in practice a
very small subset of classifiers (such as those which can be found by approximately minimizing the
empirical training risk via SGD). From Lemma 3.2, we immediately have the following result:

Proposition 3.4. Under Assumption 3.3, ϵT (ĥ) ≤ ϵS(ĥ) + ∆(ĥ, h∗).

Unfortunately, identifying the optimal critic h∗ is intractable, meaning this bound is still not
estimable—we present it as an intermediate result for clarity of presentation. To derive the practical
bound we report in our experiments, we need one additional step. In Section 4, we derive a “dis-
agreement loss” which we use to approximately maximize the empirical disagreement discrepancy
∆̂(ĥ, ·) = ϵT̂ (ĥ, ·)− ϵŜ(ĥ, ·). Relying on this loss, we instead make the assumption:
Assumption 3.5. Suppose we identify the critic h′ ∈ H which maximizes a concave surrogate to the
empirical disagreement discrepancy. We assume ∆(ĥ, y∗) ≤ ∆(ĥ, h′).

This assumption is slightly stronger than Assumption 3.3—in particular, Assumption 3.3 implies
with high probability a weaker version of Assumption 3.5 with additional terms that decrease with
increasing sample size and a tighter proxy loss.2 Thus, the difference in strength between these two
assumptions shrinks as the number of available samples grows and as the quality of our surrogate
objective improves. Ultimately, our bound holds without these terms, implying that the stronger
assumption is reasonable in practice. We can now present our main result:
Theorem 3.6 (Main Bound). Under Assumption 3.5, with probability ≥ 1− δ,

ϵT (ĥ) ≤ ϵŜ(ĥ) + ∆̂(ĥ, h′) +

√
(nS + 4nT ) log 1/δ

2nSnT
.

2Roughly, Assumption 3.3 implies ∆(ĥ, y∗) ≤ ∆(ĥ, h′) + O
(√

log 1/δ
min(nS ,nT )

)
+ γ, where γ is a data-

dependent measure of how tightly the surrogate loss bounds the 0-1 loss in expectation.
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Proof. Assumption 3.5 implies ϵT (ĥ) ≤ ϵS(ĥ) + ∆(ĥ, h′) = ϵS(ĥ, y
∗) + ϵT (ĥ, h

′)− ϵS(ĥ, h
′), so

the problem reduces to upper bounding these three terms. We define the random variables

rS,i =


1/nS, h′(xi) = ĥ(xi) ̸= yi,
−1/nS, h′(xi) ̸= ĥ(xi) = yi,

0, otherwise,
rT ,i =

1{ĥ(xi) ̸= h′(xi)}
nT

for source and target samples, respectively. By construction, the sum of all of these variables is
precisely ϵŜ(ĥ, y

∗)+ ϵT̂ (ĥ, h
′)− ϵŜ(ĥ, h

′) (note these are the empirical terms). Further, observe that

E

∑
Ŝ

rS,i

 = ES [1{ĥ(xi) ̸= yi} − 1{ĥ(xi) ̸= h′(xi)}] = ϵS(ĥ, y
∗)− ϵS(ĥ, h

′),

E

∑
T̂

rT ,i

 = ET [1{ĥ(xi) ̸= h′(xi)}] = ϵT (ĥ, h
′),

and thus their expected sum is ϵS(ĥ, y∗) + ϵT (ĥ, h
′)− ϵS(ĥ, h

′), which are the population terms we
hope to bound. Now we apply Hoeffding’s inequality: the probability that the expectation exceeds
their sum by t is no more than exp

(
− 2t2

nS(2/nS)2+nT (1/nT )2

)
. Solving for t completes the proof.

Remark 3.7. While we state Theorem 3.6 as an implication, Assumption 3.5 is equivalent to the
stated bound up to finite-sample terms. Our empirical findings (and prior work) suggest that
Assumption 3.5 is reasonable in general, but this equivalence allows us to actually prove that it holds
in practice for many shifts. We elaborate on this in Appendix E.

The core message behind Theorem 3.6 is that if there is a simple (i.e., linear) critic h′ with large
disagreement discrepancy, the true y∗ could plausibly be this function, implying ĥ could have high
error—likewise, if no simple y∗ could hypothetically result in high error, we should expect low error.

Remark 3.8. Bounding error under distribution shift is fundamentally impossible without assumptions.
Prior works which estimate accuracy using unlabeled data rely on experiments, suggesting that
whatever condition allows their method to work holds in a variety of settings [21, 3, 40, 32, 24]; using
these methods is equivalent to implicitly assuming that it will hold for future shifts. Understanding
these conditions is thus crucial for assessing in a given scenario whether they can be expected to be
satisfied.3 It is therefore of great practical value that Assumption 3.5 is a simple, intuitive requirement:
below we demonstrate that this simplicity allows us to identify potential failure cases a priori.

3.1 How Does DIS2 Improve over H- and H∆H-Divergence?

To verifiably bound a classifier’s error under distribution shift, one must develop a meaningful notion
of distance between distributions. One early attempt at this was H-divergence [6, 41] which measures
the ability of a binary hypothesis class to discriminate between S and T in feature space. This was
later refined to H∆H-divergence [7], which is equal to H-divergence where the discriminator class
comprises all exclusive-ors between pairs of functions from the original class H. Though these
measures can in principle provide non-vacuous bounds, they usually do not, and evaluating them is
intractable because it requires maximizing an objective over all pairs of hypotheses. Furthermore,
these bounds are overly conservative even for simple function classes and distribution shifts because
they rely on uniform convergence. In practice, we do not care about bounding the error of all
classifiers in H—we only care to bound the error of ĥ. This is a clear advantage of DIS2 over H∆H.

The true labeling function is never worst-case.4 More importantly, we observe that one should
not expect the distribution shift to be truly worst case, because the test distribution T and ground truth

3Whether and when to trust a black-box estimate that is consistently accurate in all observed settings is a
centuries-old philosophical problem [30] which we do not address here. Regardless, Figure 1 shows that these
estimates are not consistently accurate, making interpretability that much more important.

4If it were, we’d see exactly 0% test accuracy—and when does that ever happen?
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(a) (b) (c)

Figure 2: The advantage of DIS2 over bounds based on H- and H∆H-divergence. Consider the
task of classifying circles and squares (triangles are unlabeled). (a): Because h1 and h2⊕h3 perfectly
discriminate between S (blue) and T (red), H- and H∆H-divergence bounds are always vacuous.
In contrast, DIS2 is only vacuous when 0% accuracy is induced by a reasonably likely ground truth
(such as y∗3 in (c), but not y∗1 in (b)), and can often give non-vacuous bounds (such as y∗2 in (b)).

y∗ are not chosen adversarially with respect to ĥ. Figure 2 gives a simple demonstration of this point.
Consider the task of learning a linear classifier to discriminate between squares and circles on the
source distribution S (blue) and then bounding the error of this classifier on the target distribution T
(red), whose true labels are unknown and are therefore depicted as triangles. Figure 2(a) demonstrates
that both H- and H∆H-divergence achieve their maximal value of 1, because both h1 and h2 ⊕ h3

perfectly discriminate between S and T . Thus both bounds would be vacuous.

Now, suppose we were to learn the max-margin ĥ on the source distribution (Figure 2(b)). It is
possible that the true labels are given by the worst-case boundary as depicted by y∗1 (pink), thus
“flipping” the labels and causing ĥ to have 0 accuracy on T . In this setting, a vacuous bound is correct.
However, this seems rather unlikely to occur in practice—instead, recent experimental evidence
[61, 34, 33] suggests that the true y∗ will be much simpler. The maximum disagreement discrepancy
here would be approximately 0.5, giving a test accuracy lower bound of 0.5—this is consistent
with plausible alternative labeling functions such as y∗2 (orange). Even if y∗ is not linear, we still
expect that some linear function will induce larger discrepancy; this is precisely Assumption 3.3.
Now suppose instead we learn ĥ as depicted in Figure 2(c). Then a simple ground truth such as y∗3
(green) is plausible, which would mean ĥ has 0 accuracy on T . In this case, y∗3 is also a critic with
disagreement discrepancy equal to 1, and so DIS2 would correctly output an error upper bound of 1.

A setting where DIS2 may be invalid. There is one setting where it should be clear that Assump-
tion 3.5 is less likely to be satisfied: when the representation we are using is explicitly regular-
ized to keep maxh′∈H ∆(ĥ, h′) small. This occurs for domain-adversarial representation learning
methods such as DANN [18] and CDAN [38], which penalize the ability to discriminate between
S and T in feature space. Given a critic h′ with large disagreement discrepancy, the discriminator
D(x) = 1{argmaxy ĥ(x)y = argmaxy h

′(x)y} will achieve high accuracy on this task (precisely,
1+∆(ĥ,h′)

2 ). By contrapositive, enforcing low discriminatory power means that the max discrepancy
must also be small. It follows that for these methods DIS2 should not be expected to hold universally,
and in practice we see that this is the case (Figure 3). Nevertheless, when DIS2 does overestimate
accuracy, it does so by significantly less than prior methods.

4 Efficiently Maximizing the Disagreement Discrepancy

For a classifier ĥ, Theorem 3.6 clearly prescribes how to bound its test error: first, train a critic
h′ on the chosen X to approximately maximize ∆(ĥ, h′), then evaluate ϵŜ(ĥ) and ∆̂(ĥ, h′) using
a holdout set. The remaining difficulty is in identifying the maximizing h′ ∈ H—that is, the one
which minimizes ϵS(ĥ, h′) and maximizes ϵT (ĥ, h′). We can approximately minimize ϵS(ĥ, h

′) by
minimizing the sample average of the convex surrogate ℓlogistic := − 1

log |Y| log softmax(h(x))y as

justified by statistical learning theory. However, it is less clear how to maximize ϵT (ĥ, h
′).
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Figure 3: DIS2 may be invalid when the features are regularized to violate Assumption 3.5.
Domain-adversarial representation learning algorithms such as DANN [18] and CDAN [38] indirectly
minimize maxh′∈H ∆(ĥ, h′), meaning the necessary condition is less likely to be satisfied. Neverthe-
less, when DIS2 does overestimate accuracy, it almost always does so by less than prior methods.

A few prior works suggest proxy losses for multiclass disagreement [12, 50, 23]. We observe that
these losses are not theoretically justified, as they do not upper bound the 0-1 disagreement loss or
otherwise do not meaningfully enforce that higher agreement causes higher loss. Furthermore, they
are non-convex (or even concave) in the model logits, hindering optimization. Indeed, it is easy to
identify simple settings in which minimizing these losses will result in a degenerate classifier with
arbitrarily small loss but high agreement. Instead, we derive a new loss which satisfies the above
desiderata and thus serves as a more principled approach to maximizing disagreement.
Definition 4.1. The disagreement logistic loss of a classifier h on a labeled sample (x, y) is defined as

ℓdis(h, x, y) :=
1

log 2
log

1 + exp

h(x)y −
1

|Y| − 1

∑
ŷ ̸=y

h(x)ŷ

 .

Fact 4.2. The disagreement logistic loss is convex in h(x) and upper bounds the 0-1 disagreement
loss (i.e., 1{argmaxŷ h(x)ŷ = y}). For binary classification, the disagreement logistic loss is
equivalent to the logistic loss with the label flipped.

We expect that ℓdis can serve as a useful drop-in replacement for any future algorithm which requires
maximizing disagreement in a principled manner. We combine ℓlogistic and ℓdis to arrive at the
empirical disagreement discrepancy objective:

L̂∆(h
′) :=

1

|Ŝ|
∑
x∈Ŝ

ℓlogistic(h
′, x, ĥ(x)) +

1

|T̂ |
∑
x∈T̂

ℓdis(h
′, x, ĥ(x)).

By construction, 1− L̂∆(h
′) is concave and bounds ∆̂(ĥ, h′) from below. However, note that the

representations are already optimized for accuracy on S, which suggests that predictions will have
low entropy and that the 1/log |Y| scaling is unnecessary for balancing the two terms. We therefore
drop the constant scaling factors; this often leads to higher discrepancy. In practice we optimize this
objective with multiple initializations and hyperparameters and select the solution with the largest
empirical discrepancy on a holdout set to ensure a conservative bound. Experimentally, we find that
replacing ℓdis with any of the surrogate losses from [12, 50, 23] results in smaller discrepancy; we
present these results in Appendix B.

Tightening the bound by optimizing over the logits. Looking at Theorem 3.6, it is clear that
the value of the bound will decrease as the capacity of the hypothesis class is restricted. Since the
number of features is large, one may expect that Assumption 3.5 holds even for a reduced feature
set. In particular, it is well documented that deep networks optimized with stochastic gradient
descent learn representations with small effective rank, often not much more than the number of
classes [1, 2, 54, 29]. This suggests that the logits themselves should contain most of the features’
information about S and T and that using the full feature space is unnecessarily conservative. To test
this, we evaluate DIS2 on the full features, the logits output by ĥ, and various fractions of the top
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principal components (PCs) of the features. We observe that using logits indeed results in tighter
error bounds while still remaining valid—in contrast, using fewer top PCs also results in smaller
error bounds, but at some point they become invalid (Figure C.2). The bounds we report in this work
are thus evaluated on the logits of ĥ, except where we provide explicit comparisons in Section 5.

Identifying the ideal number of PCs via a “validity score”. Even though reducing the feature
dimensionality eventually results in an invalid bound, it is tempting to consider how we may identify
approximately when this occurs, which could give a more accurate (though less conservative)
prediction. We find that the optimization trajectory itself provides meaningful signal about this
change. Specifically, Figure C.3 shows that for feature sets which are not overly restrictive, the critic
very rapidly ascends to the maximum source agreement, then slowly begins overfitting. For much
more restrictive feature sets (i.e., fewer PCs), the critic optimizes much more slowly, suggesting that
we have reached the point where we are artificially restricting H and therefore underestimating the
disagreement discrepancy. We design a “validity score” which captures this phenomenon, and we
observe that it is roughly linearly correlated with the tightness of the eventual bound (Figure C.4).
Though the score is by no means perfect, we can evaluate DIS2 with successively fewer PCs and only
retain those above a certain score threshold, reducing the average prediction error while remaining
reasonably conservative (Figure C.5). For further details, see Appendix C.

Coverage (↑) Overest. (↓) MAE (↓)
DA? ✗ ✓ ✗ ✓ ✗ ✓

Prediction Method

AC [25] 0.1000 ±.032 0.0333 ±.023 0.1194 ±.012 0.1123 ±.012 0.1091 ±.011 0.1091 ±.012

DoC [24] 0.1667 ±.040 0.0167 ±.0167 0.1237 ±.012 0.1096 ±.012 0.1055 ±.011 0.1083 ±.012

ATC NE [21] 0.2889 ±.048 0.1333 ±.044 0.0824 ±.009 0.0969 ±.012 0.0665 ±.007 0.0854 ±.011

COT [40] 0.2554 ±.0467 0.1667 ±.049 0.0860 ±.009 0.0948 ±.011 0.0700 ±.007 0.0808 ±.010

DIS2 (Features) 1.0000 1.0000 0.0000 0.0000 0.2807 ±.009 0.1918 ±.008

DIS2 (Logits) 0.9889 ±.011 0.7500 ±.058 0.0011 ±.000 0.0475 ±.007 0.1489 ±.011 0.0945 ±.010

DIS2 (Logits w/o δ) 0.7556 ±.0475 0.4333 ±.065 0.0771 ±.013 0.0892 ±.011 0.0887 ±.009 0.0637 ±.008

Table 1: Comparing the DIS2 bound to prior methods for predicting accuracy. DA denotes if
the representations were learned via a domain-adversarial algorithm. We report what fraction of
predictions correctly bound the true error (Coverage) and the average prediction error among shifts
whose accuracy is overestimated (Overest.), along with overall MAE. DIS2 has substantially higher
coverage and lower overestimation error, though lower overall MAE. By dropping the concentration
term in Theorem 3.6 we can get even better MAE—even beating the baselines on domain-adversarial
representations—at some cost to coverage.

5 Experiments

Datasets. We conduct experiments across 11 vision benchmark datasets for distribution shift on
datasets that span applications in object classification, satellite imagery, and medicine. We use four
BREEDs datasets: [65] Entity13, Entity30, Nonliving26, and Living17; FMoW [11] and Camelyon
[4] from WILDS [35]; Officehome [69]; Visda [52, 51]; CIFAR10, CIFAR100 [36]; and Domainet
[53]. Each of these datasets consists of multiple domains with different types of natural and synthetic
shifts. We consider subpopulation shift and natural shifts induced due to differences in the data
collection process of ImageNet, i.e., ImageNetv2 [60] and a combination of both. For CIFAR10
and CIFAR100 we evaluate natural shifts due to variations in replication studies [59] and common
corruptions [27]. For all datasets, we use the same source and target domains commonly used in
previous studies [22, 64]. We provide precise details about the distribution shifts considered in
Appendix A. Because distribution shifts vary widely in scope, prior evaluations which focus on
only one specific type of shift (e.g., corruptions) often do not convey the full story. We therefore
emphasize the need for more comprehensive evaluations across many different types of shifts
and training methods, as we present here.
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Experimental setup and protocols. Along with source-only training with ERM, we experiment
with Unsupervised Domain Adaptation (UDA) methods that aim to improve target performance with
unlabeled target data (FixMatch [66], DANN [18], CDAN [38], and BN-adapt [37]). We experiment
with Densenet121 [28] and Resnet18/Resnet50 [26] pretrained on ImageNet. For source-only ERM,
as with other methods, we default to using strong augmentations: random horizontal flips, random
crops, as well as Cutout [16] and RandAugment [13]. Unless otherwise specified, we default to full
finetuning for source-only ERM and UDA methods. We use source hold-out performance to pick the
best hyperparameters for the UDA methods, since we lack labeled validation data from the target
distribution. For all of these methods, we fix the algorithm-specific hyperparameters to their original
recommendations following the experimental protocol in [22]. For more details, see Appendix A.

Methods evaluated. We compare DIS2 to four competitive baselines: Average Confidence (AC;
[25]), Difference of Confidences (DoC; [24]), Average Thresholded Confidence (ATC; [21]), and
Confidence Optimal Transport (COT; [40]). We give detailed descriptions of these methods in
Appendix A. For all methods, we implement post-hoc calibration on validation source data with
temperature scaling [25], which has been shown to improve performance. For DIS2, we report
bounds evaluated both on the full features and on the logits of ĥ as described in Section 4. Unless
specified otherwise, we set δ = .01 everywhere. We also experiment with dropping the lower order
concentration term in Theorem 3.6, using only the sample average. Though this is of course no longer
a conservative bound, we find it is an excellent predictor of test error and is worth including.

Metrics for evaluation. As our emphasis is on giving valid error bounds, we report the coverage,
i.e. the fraction of predictions for which the true error does not exceed the predicted error. We
also report the standard prediction metric, mean absolute error (MAE). Finally, we measure the
conditional average overestimation: this is the MAE among predictions which overestimate the
accuracy. This metric captures the idea that the most important thing is giving a valid bound—but if
for some reason it is not, we’d at least like it to be as accurate as possible.

Results. Reported metrics for all methods can be found in Table 1. We aggregate results over all
datasets, shifts, and training methods—we stratify only by whether the training method is domain-
adversarial, as this affects the validity of Assumption 3.5. We find that DIS2 achieves competitive
MAE while maintaining substantially higher coverage, even for domain-adversarial features. When
it does overestimate accuracy, it does so by much less, implying that it is ideal for conservative
estimation even when any given error bound is not technically satisfied. Dropping the concentration
term performs even better (sometimes beating the baselines), at the cost of some coverage. This
suggests that efforts to better estimate the true maximum discrepancy may yield even better predictors.
We also show scatter plots to visualize performance on individual distribution shifts, plotting each
source-target pair as a single point. For these too we report separately the results for domain-
adversarial (Figure 3) and non-domain-adversarial methods (Figure 1). To avoid clutter, these two
plots do not include DoC, as it performed comparably to AC. Figure 4(a) displays additional scatter
plots which allow for a direct comparison of the variants of DIS2. Finally, Figure 4(b) plots the
observed violation rate (i.e. 1−coverage) of DIS2 on non-domain-adversarial methods for varying
δ. We observe that it lies at or below the line y = x, meaning the probabilistic bound provided by
Theorem 3.6 holds across a range of failure probabilities. Thus we see that our probabilistic bound is
empirically valid all of the time—not in the sense that each individual shift’s error is upper bounded,
but rather that the desired violation rate is always satisfied.

Strengthening the baselines to improve coverage. Since the baselines we consider in this work
prioritize predictive accuracy over conservative estimates, their coverage can possibly be improved
without too much increase in error. We explore this option using LOOCV: for a desired coverage, we
learn a parameter to either scale or shift a method’s prediction to achieve that level of coverage on all
but one of the datasets. We then evaluate the method on all shifts of the remaining dataset, and we
repeat this for each dataset. Appendix D reports the results for varying coverage levels. We find that
(i) the baselines do not achieve the desired coverage on the held out data, though they get somewhat
close; and (ii) the adjustment causes them to suffer higher MAE than DIS2. Thus DIS2 is on the Pareto
frontier of MAE and coverage, and is preferable when conservative bounds are desirable. We believe
identifying alternative methods of post-hoc prediction adjustment is a promising future direction.
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Figure 4: (a): Scatter plots depicting DIS2 estimated bound vs. true error for a variety of shifts. “w/o δ”
indicates that the lower-order term of Theorem 3.6 has been dropped. (b): Observed bound violation
rate vs. desired probability δ. Observe that the true rate lies at or below y = x across a range of values.

6 Conclusion

The ability to evaluate trustworthy, non-vacuous error bounds for deep neural networks under
distribution shift remains an extremely important open problem. Due to the wide variety of real-world
shifts and the complexity of modern data, restrictive a priori assumptions on the distribution (i.e.,
before observing any data from the shift of interest) seem unlikely to be fruitful. On the other hand,
prior methods which estimate accuracy using extra information—such as unlabeled test samples—
often rely on opaque conditions whose likelihood of being satisfied is difficult to predict, and so they
sometimes provide large underestimates of test error with no warning signs.

This work bridges this gap with a simple, intuitive condition and a new disagreement loss which to-
gether result in competitive error prediction, while simultaneously providing an (almost) guaranteed
probabilistic error bound. We also study how the process of evaluating the bound (e.g., the optimiza-
tion landscape) can provide even more useful signal, enabling better predictive accuracy. We expect
there is potential to push further in each of these directions, hopefully extending the current accuracy-
reliability Pareto frontier for test error bounds under distribution shift.
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Appendix

A Experimental Details

A.1 Description of Baselines

Average Thresholded Confidence (ATC). ATC first estimates a threshold t on the confidence of
softmax prediction (or on negative entropy) such that the number of source labeled points that get a
confidence greater than t match the fraction of correct examples, and then estimates the test error on
on the target domain Dtest as the expected number of target points that obtain a score less than t, i.e.,

ATCDtest(s) =

n∑
i=1

I [s(f(x′
i)) < t] ,

where t satisfies:
∑j

i=1 I [maxj∈Y(fj(xi)) < t] =
∑m

i=1 I
[
argmaxj∈Y fj(xi) ̸= yi

]
Average Confidence (AC). Error is estimated as the average value of the maximum softmax confidence
on the target data, i.e, ACDtest

=
∑n

i=1 maxj∈Y fj(x
′
i).

Difference Of Confidence (DOC). We estimate error on the target by subtracting the difference of
confidences on source and target (as a surrogate to distributional distance [24]) from the error on
source distribution, i.e., DOCDtest

=
∑n

i=1 maxj∈Y fj(x
′
i) +

∑m
i=1 I

[
argmaxj∈Y fj(xi) ̸= yi

]
−∑m

i=1 maxj∈Y fj(xi). This is referred to as DOC-Feat in [24].

Confidence Optimal Transport (COT). COT uses the empirical estimator of the Earth Mover’s
Distance between labels from the source domain and softmax outputs of samples from the target
domain to provide accuracy estimates:

COTDtest(s) =
1

2
min

π∈Π(Sn,Y m)

n,m∑
i,j=1

∣∣∣∣si − eyj

∣∣∣∣
2
πij ,

where Sn = {f(x′
i)}ni=1 are the softmax outputs on the unlabeled target data and Y m = {yj}mj=1

are the labels on holdout source examples.

For all of the methods described above, we assume that {(x′
i)}ni=1 are the unlabeled target samples

and {(xi, yi)}mi=1 are hold-out labeled source samples.

A.2 Dataset Details

In this section, we provide additional details about the datasets used in our benchmark study.

• CIFAR10 We use the original CIFAR10 dataset [36] as the source dataset. For target domains,
we consider (i) synthetic shifts (CIFAR10-C) due to common corruptions [27]; and (ii) natural
distribution shift, i.e., CIFAR10v2 [58, 68] due to differences in data collection strategy. We
randomly sample 3 set of CIFAR-10-C datasets. Overall, we obtain 5 datasets (i.e., CIFAR10v1,
CIFAR10v2, CIFAR10C-Frost (severity 4), CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate
(severity 5)).

• CIFAR100 Similar to CIFAR10, we use the original CIFAR100 set as the source dataset. For
target domains we consider synthetic shifts (CIFAR100-C) due to common corruptions. We sample
4 CIFAR100-C datasets, overall obtaining 5 domains (i.e., CIFAR100, CIFAR100C-Fog (severity
4), CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast (severity 4), CIFAR100C-spatter
(severity 2) ).

• FMoW In order to consider distribution shifts faced in the wild, we consider FMoW-WILDs [35,
11] from WILDS benchmark, which contains satellite images taken in different geographical regions
and at different times. We use the original train as source and OOD val and OOD test splits as target
domains as they are collected over different time-period. Overall, we obtain 3 different domains.

• Camelyon17 Similar to FMoW, we consider tumor identification dataset from the wilds bench-
mark [4]. We use the default train as source and OOD val and OOD test splits as target domains as
they are collected across different hospitals. Overall, we obtain 3 different domains.
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• BREEDs We also consider BREEDs benchmark [65] in our setup to assess robustness to
subpopulation shifts. BREEDs leverage class hierarchy in ImageNet to re-purpose original classes
to be the subpopulations and defines a classification task on superclasses. We consider distribution
shift due to subpopulation shift which is induced by directly making the subpopulations present
in the training and test distributions disjoint. BREEDs benchmark contains 4 datasets Entity-
13, Entity-30, Living-17, and Non-living-26, each focusing on different subtrees and levels in
the hierarchy. We also consider natural shifts due to differences in the data collection process
of ImageNet [63], e.g, ImageNetv2 [60] and a combination of both. Overall, for each of the 4
BREEDs datasets (i.e., Entity-13, Entity-30, Living-17, and Non-living-26), we obtain four different
domains. We refer to them as follows: BREEDsv1 sub-population 1 (sampled from ImageNetv1),
BREEDsv1 sub-population 2 (sampled from ImageNetv1), BREEDsv2 sub-population 1 (sampled
from ImageNetv2), BREEDsv2 sub-population 2 (sampled from ImageNetv2). For each BREEDs
dataset, we use BREEDsv1 sub-population A as source and the other three as target domains.

• OfficeHome We use four domains (art, clipart, product and real) from OfficeHome dataset [69].
We use the product domain as source and the other domains as target.

• DomainNet We use four domains (clipart, painting, real, sketch) from the Domainnet dataset [53].
We use real domain as the source and the other domains as target.

• Visda We use three domains (train, val and test) from the Visda dataset [52]. While ‘train’ domain
contains synthetic renditions of the objects, ‘val’ and ‘test’ domains contain real world images.
To avoid confusing, the domain names with their roles as splits, we rename them as ‘synthetic’,
‘Real-1’ and ‘Real-2’. We use the synthetic (original train set) as the source domain and use the
other domains as target.

A.3 Setup and Protocols

Architecture Details For all datasets, we used the same architecture across different algorithms:

• CIFAR-10: Resnet-18 [26] pretrained on Imagenet
• CIFAR-100: Resnet-18 [26] pretrained on Imagenet
• Camelyon: Densenet-121 [28] not pretrained on Imagenet as per the suggestion made in [35]
• FMoW: Densenet-121 [28] pretrained on Imagenet
• BREEDs (Entity13, Entity30, Living17, Nonliving26): Resnet-18 [26] not pretrained on Imagenet

as per the suggestion in [65]. The main rationale is to avoid pre-training on the superset dataset
where we are simulating sub-population shift.

• Officehome: Resnet-50 [26] pretrained on Imagenet
• Domainnet: Resnet-50 [26] pretrained on Imagenet
• Visda: Resnet-50 [26] pretrained on Imagenet

Except for Resnets on CIFAR datasets, we used the standard pytorch implementation [19]. For Resnet
on cifar, we refer to the implementation here: https://github.com/kuangliu/pytorch-cifar.
For all the architectures, whenever applicable, we add antialiasing [71]. We use the official library
released with the paper.

For imagenet-pretrained models with standard architectures, we use the publicly available models
here: https://pytorch.org/vision/stable/models.html. For imagenet-pretrained models
on the reduced input size images (e.g. CIFAR-10), we train a model on Imagenet on reduced input
size from scratch. We include the model with our publicly available repository.

Hyperparameter details First, we tune learning rate and ℓ2 regularization parameter by fixing
batch size for each dataset that correspond to maximum we can fit to 15GB GPU memory. We set
the number of epochs for training as per the suggestions of the authors of respective benchmarks.
Note that we define the number of epochs as a full pass over the labeled training source data. We
summarize learning rate, batch size, number of epochs, and ℓ2 regularization parameter used in our
study in Table A.3.

For each algorithm, we use the hyperparameters reported in the initial papers. For domain-adversarial
methods (DANN and CDANN), we refer to the suggestions made in Transfer Learning Library [31].
We tabulate hyperparameters for each algorithm next:
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Dataset Source Target

CIFAR10 CIFAR10v1
CIFAR10v1, CIFAR10v2, CIFAR10C-Frost (severity 4),

CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate (severity 5)

CIFAR100 CIFAR100

CIFAR100, CIFAR100C-Fog (severity 4),

CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast (severity 4),

CIFAR100C-spatter (severity 2)

Camelyon
Camelyon

(Hospital 1–3)
Camelyon (Hospital 1–3), Camelyon (Hospital 4), Camelyon (Hospital 5)

FMoW FMoW (2002–’13) FMoW (2002–’13), FMoW (2013–’16), FMoW (2016–’18)

Entity13

Entity13

(ImageNetv1

sub-population 1)

Entity13 (ImageNetv1 sub-population 1),

Entity13 (ImageNetv1 sub-population 2),

Entity13 (ImageNetv2 sub-population 1),

Entity13 (ImageNetv2 sub-population 2)

Entity30

Entity30

(ImageNetv1

sub-population 1)

Entity30 (ImageNetv1 sub-population 1),

Entity30 (ImageNetv1 sub-population 2),

Entity30 (ImageNetv2 sub-population 1),

Entity30 (ImageNetv2 sub-population 2)

Living17

Living17

(ImageNetv1

sub-population 1)

Living17 (ImageNetv1 sub-population 1),

Living17 (ImageNetv1 sub-population 2),

Living17 (ImageNetv2 sub-population 1),

Living17 (ImageNetv2 sub-population 2)

Nonliving26

Nonliving26

(ImageNetv1

sub-population 1)

Nonliving26 (ImageNetv1 sub-population 1),

Nonliving26 (ImageNetv1 sub-population 2),

Nonliving26 (ImageNetv2 sub-population 1),

Nonliving26 (ImageNetv2 sub-population 2)

Officehome Product Product, Art, ClipArt, Real

DomainNet Real Real, Painiting, Sketch, ClipArt

Visda

Synthetic

(originally referred

to as train)

Synthetic, Real-1 (originally referred to as val),

Real-2 (originally referred to as test)

Table A.2: Details of the source and target datasets in our testbed.

Dataset Epoch Batch size ℓ2 regularization Learning rate

CIFAR10 50 200 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

CIFAR100 50 200 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

Camelyon 10 96 0.01 (chosen from {0.01, 0.001, 0.0001, 0.0}) 0.03 (chosen from {0.003, 0.3, 0.0003, 0.03})

FMoW 30 64 0.0 (chosen from {0.0001, 0.001,1e-5,0.0}) 0.0001 (chosen from {0.001, 0.01, 0.0001})

Entity13 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Entity30 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Living17 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Nonliving26 40 256 0 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Officehome 50 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

DomainNet 15 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

Visda 10 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

Table A.3: Details of the learning rate and batch size considered in our testbed

• DANN, CDANN, As per Transfer Learning Library suggestion, we use a learning rate multiplier
of 0.1 for the featurizer when initializing with a pre-trained network and 1.0 otherwise. We default
to a penalty weight of 1.0 for all datasets with pre-trained initialization.
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• FixMatch We use the lambda is 1.0 and use threshold τ as 0.9.

Compute Infrastructure Our experiments were performed across a combination of Nvidia T4,
A6000, and V100 GPUs.

B Comparing Disagreement Losses

We define the alternate losses for maximizing disagreement:

1. Chuang et al. [12] minimize the negative cross-entropy loss, which is concave in the model logits.
That is, they add the term log softmax(h(x)y) to the objective they are minimizing. This loss
results in substantially lower disagreement discrepancy than the other two.

2. Pagliardini et al. [50] use a loss which is not too different from ours. They define the disagreement
objective for a point (x, y) as

log

(
1 +

exp(h(x)y)∑
ŷ ̸=y exp(h(x)ŷ)

)
. (1)

For comparison, ℓdis can be rewritten as

log

1 +
exp(h(x)y)

exp
(

1
|Y|−1

∑
ŷ ̸=y h(x)ŷ

)
 , (2)

where the incorrect logits are averaged and the exponential is pushed outside the sum. This modi-
fication results in (2) being convex in the logits and an upper bound to the disagreement 0-1 loss,
whereas (1) is neither.
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Loss Mean Discrepancy (Train) Mean Discrepancy (Test)

Neg. X-Ent [12] 0.3555± .0124 0.1694± .0105
D-BAT [50] 0.8145± .0177 0.3224± .0212
ℓdis (Ours) 0.8333± .0132 0.3322± .0205

Figure B.1 & Table B.3: Histogram of disagreement discrepancies for each of the three losses, and
the average values across all datasets. Bold (resp. Underline) indicates the method has higher average
discrepancy under a paired t-test at significance p = .01 (resp. p = .025).

Figure B.1 displays histograms of the achieved disagreement discrepancy across all distributions for
each of the disagreement losses (all hyperparameters and random seeds are the same for all three
losses). The table below it reports the mean disagreement discrepancy on the train and test sets. We
find that the negative cross-entropy, being a concave function, results in very low discrepancy. The D-
BAT loss (Equation (1)) is reasonably competitive with our loss (Equation (2)) on average, seemingly
because it gets very high discrepancy on a subset of shifts. This suggests that it may be particularly
suited for a specific type of distribution shift, though it is less good overall. Though the averages
are reasonably close, the samples are not independent, so we run a paired t-test and we find that the
increases to average train and test discrepancies achieved by ℓdis are significant at levels p = 0.024
and p = 0.009, respectively. With enough holdout data, a reasonable approach would be to split the
data in two: one subset to validate critics trained on either of the two losses, and another to evaluate
the discrepancy of whichever one is ultimately selected.
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C Exploration of the Validity Score

To experiment with reducing the complexity of the class H, we evaluate DIS2 on progressively fewer
top principal components (PCs) of the features. Precisely, for features of dimension d, we evaluate
DIS2 on the same features projected onto their top d/k components, for k ∈ [1, 4, 16, 32, 64, 128]
(Figure C.2). We see that while projecting to fewer and fewer PCs does reduce the error bound value,
unlike the logits it is a rather crude way to reduce complexity of H, meaning at some point it goes
too far and results in invalid error bounds.
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Figure C.2: DIS2 bound as fewer principal components are kept. Reducing the number of top
principal components crudely reduces complexity of H—this leads to lower error estimates, but at
some point the bounds become invalid for a large fraction of shifts.

However, during the optimization process we observe that around when this violation occurs, the
task of training a critic to both agree on S and disagree on T goes from “easy” to “hard”. Figure C.3
shows that on the full features, the critic rapidly ascends to maximum agreement on S, followed by
slow decay (due to both overfitting and learning to simultaneously disagree on T ). As we drop more
and more components, this optimization becomes slower.

Figure C.3: Agreement on one shift between ĥ and h′ on Ŝ during optimization. We observe that
as the number of top PCs retained drops, the optimization occurs more slowly and less monotonically.
For this particular shift, the bound becomes invalid when keeping only the top 1/128 components,
depicted by the brown line.

We therefore design a “validity score” intended to capture this phenomenon which we refer to as the
cumulative ℓ1 ratio. This is defined as the maximum agreement achieved, divided by the cumulative
sum of absolute differences in agreement across all epochs up until the maximum was achieved.
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Formally, let {ai}Ti=1 represent the agreement between h′ and ĥ after epoch i, i.e. 1 − ϵŜ(ĥ, h
′
i),

and define m := argmaxi∈[T ] ai. The cumulative ℓ1 ratio is then am

a1+
∑m

i=2 |ai−ai−1| . Thus, if the
agreement rapidly ascends to its maximum without ever going down over the course of an epoch, this
ratio will be equal to 1, and if it non-monotonically ascends then the ratio will be significantly less.
This definition was simply the first metric we considered which approximately captures the behavior
we observed; we expect it could be greatly improved.
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Figure C.4: Cumulative ℓ1 ratio versus error prediction gap. Despite its simplicity, the ratio
captures the information encoded in the optimization trajectory, roughly linearly correlating with the
tightness and validity of a given prediction. It is thus a useful metric for identifying the ideal number
of top PCs to use.

Figure C.4 displays a scatter plot of the cumulative ℓ1 ratio versus the difference in estimated and
true error for DIS2 evaluated on the full range of top PCs. A negative value implies that we have
underestimated the error (i.e., the bound is not valid). We see that even this very simply metric roughly
linearly correlates with the tightness of the bound, which suggests that evaluating over a range of top
PC counts and only keeping predictions whose ℓ1 ratio is above a certain threshold can improve raw
predictive accuracy without reducing coverage by too much. Figure C.5 shows that this is indeed the
case: compared to DIS2 evaluated on the logits, keeping all predictions above a score threshold can
produce more accurate error estimates, without too severely underestimating error in the worst case.
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Figure C.5: DIS2 bounds and MAE / coverage as the cumulative ℓ1 ratio threshold is lowered.
Values in parenthesis are (MAE / coverage). By only keeping predictions with ratio above a varying
threshold, we can smoothly interpolate between bound validity and raw error prediction accuracy.
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D Making Baselines More Conservative with LOOCV

To more thoroughly compare DIS2 to prior estimation techniques, we consider a strengthening of
the baselines which may give them higher coverage without too much cost to prediction accuracy.
Specifically, for each desired coverage level α ∈ [0.9, 0.95, 0.99], we use all but one of the datasets
to learn a parameter to either scale or shift a method’s predictions enough to achieve coverage α. We
then evaluate this scaled or shifted prediction on the distribution shifts of the remaining dataset, and
we repeat this for each one.

The results, found in Table D.4, demonstrate that prior methods can indeed be made to have much
higher coverage, although as expected their MAE suffers. Furthermore, they still underestimate error
on the tail distribution shifts by quite a bit, and they rarely achieve the desired coverage on the heldout
dataset—though they usually come reasonably close. In particular, ATC [21] and COT [40] do well
with a shift parameter, e.g. at the desired coverage α = 0.95 ATC matches DIS2 in MAE and gets
94.4% coverage (compared to 98.9% by DIS2). However, its conditional average overestimation
is quite high, almost 9%. COT gets much lower overestimation (particularly for higher coverage
levels), and it also appears to suffer less on the tail distribution shifts in the sense that α = 0.99 does
not induce nearly as high MAE as it does for ATC. However, at that level it only achieves 95.6%
coverage, and it averages almost 5% accuracy overestimation on the shifts it does not correctly bound
(compared to 0.1% by DIS2). Also, its MAE is still substantially higher than DIS2, despite getting
lower coverage. Finally, we evaluate the scale/shift approach on our DIS2 bound without the lower
order term, but based on the metrics we report there appears to be little reason to prefer it over the
untransformed version, one of the baselines, or the original DIS2 bound.

Taken together, these results imply that if one’s goal is predictive accuracy and tail behavior is not
important (worst ~10%), ATC or COT will likely get reasonable coverage with a shift parameter—
though they still significantly underestimate error on a non-negligible fraction of shifts. If one cares
about the long tail of distribution shifts, or prioritizes being conservative at a slight cost to average
accuracy, DIS2 is clearly preferable. Finally, we observe that the randomness which determines which
shifts are not correctly bounded by DIS2 is “decoupled” from the distributions themselves under
Theorem 3.6, in the sense that it is an artifact of the random samples, rather than a property of the
distribution (recall Figure 4(b)). This is in contrast with the shift/scale approach which would produce
almost identical results under larger sample sizes because it does not account for finite sample effects.
This implies that some distribution shifts are simply “unsuitable” for prior methods because they do
not satisfy whatever condition these methods rely on, and observing more samples will not remedy
this problem. It is clear that working to understand these conditions is crucial for reliability and
interpretability, since we are not currently able to identify which distributions are suitable a priori.
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MAE (↓) Coverage (↑) Overest. (↓)
α → 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Method Adjustment

AC none 0.106 0.122 0.118
shift 0.153 0.201 0.465 0.878 0.922 0.956 0.119 0.138 0.149
scale 0.195 0.221 0.416 0.911 0.922 0.967 0.135 0.097 0.145

DoC none 0.105 0.167 0.122
shift 0.158 0.200 0.467 0.878 0.911 0.956 0.116 0.125 0.154
scale 0.195 0.223 0.417 0.900 0.944 0.967 0.123 0.139 0.139

ATC NE none 0.067 0.289 0.083
shift 0.117 0.150 0.309 0.900 0.944 0.978 0.072 0.088 0.127
scale 0.128 0.153 0.357 0.889 0.933 0.978 0.062 0.074 0.144

COT none 0.069 0.256 0.085
shift 0.115 0.140 0.232 0.878 0.944 0.956 0.049 0.065 0.048
scale 0.150 0.193 0.248 0.889 0.944 0.956 0.074 0.066 0.044

DIS2 (w/o δ) none 0.083 0.756 0.072
shift 0.159 0.169 0.197 0.889 0.933 0.989 0.021 0.010 0.017
scale 0.149 0.168 0.197 0.889 0.933 0.989 0.023 0.021 0.004

DIS2 (δ = 10−2) none 0.150 0.989 0.001
DIS2 (δ = 10−3) none 0.174 1.000 0.000

Table D.4: MAE, coverage, and conditional average overestimation for the strengthened baselines with
a shift or scale parameter on non-domain-adversarial representations. Because a desired coverage α is
only used when an adjustment is learned, “none”—representing no adjustment—does not vary with α.
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E Proving that Assumption 3.5 Holds for Some Datasets

Here we describe how the equivalence of Assumption 3.5 and the bound in Theorem 3.6 allow us to
prove that the assumption holds with high probability. By repeating essentially the same proof as
Theorem 3.6 in the other direction, we get the following corollary:
Corollary E.1. If Assumption 3.5 does not hold, then with probability ≥ 1− δ,

ϵT̂ (ĥ) > ϵŜ(ĥ) + ∆̂(ĥ, h′)−
√

2(nS + nT ) log 1/δ

nSnT
.

Note that the concentration term here is different from Theorem 3.6 because we are bounding the
empirical target error, rather than the true target error. The reason for this change is that now we can
make direct use of its contrapositive:

Corollary E.2. With probability ≥ 1− δ over the randomness of the samples Ŝ and T̂ , if it is the
case that

ϵT̂ (ĥ) ≤ ϵŜ(ĥ) + ∆̂(ĥ, h′)−
√

2(nS + nT ) log 1/δ

nSnT
,

then Assumption 3.5 must hold.

We evaluate this bound on non-domain-adversarial shifts with δ = 10−6. As some of the BREEDS
shifts have as few as 68 test samples, we restrict ourselves to shifts with nT ≥ 500 to ignore those
where the finite-sample term heavily dominates; this removes a little over 20% of all shifts. Among
the remainder, we find that the bound in Corollary E.2 holds 55.7% of the time when using full
features and 25.7% of the time when using logits. This means that for these shifts, we can be
essentially certain that Assumption 3.5—and therefore also Assumption 3.3—is true.

Note that the fact that the bound is not violated for a given shift does not at all imply that the
assumption is not true. In general, the only rigorous way to prove that Assumption 3.5 does not hold
would be to show that for a fixed δ, the fraction of shifts for which the bound in Theorem 3.6 does not
hold is larger than δ (in a manner that is statistically significant under the appropriate hypothesis test).
Because this never occurs in our experiments, we cannot conclude that the assumption is ever false.
At the same time, the fact that the bound does hold at least 1− δ of the time does not prove that the
assumption is true—it merely suggests that it is reasonable and that the bound should continue to
hold in the future. This is why it is important for Assumption 3.5 to be simple and intuitive, so that
we can trust that it will persist and anticipate when it will not.

However, Corollary E.2 allows us to make a substantially stronger statement. In fact, it says that for
any distribution shift, with enough samples, we can prove a posteriori whether or not Assumption 3.5
holds, because the gap between these two bounds will shrink with increasing sample size.
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F Figure 1 Stratified by Training Method
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Figure F.6: Error prediction stratified by training method. Stars denote DIS2, circles are ATC NE.
We see that DIS2 maintains its validity across different training methods.
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