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ABSTRACT

Super-resolution (SR) for remote sensing imagery often fails under out-of-
distribution (OOD) conditions, such as rare geomorphic features captured by di-
verse sensors, producing visually plausible but physically inaccurate results. We
present RareFlow, a physics-aware SR framework designed for OOD robustness.
RareFlow’s core is a dual-conditioning architecture. A Gated ControlNet pre-
serves fine-grained geometric fidelity from the low-resolution input, while textual
prompts provide semantic guidance for synthesizing complex features. To ensure
physically sound outputs, we introduce a multifaceted loss function that enforces
both spectral and radiometric consistency with sensor properties. Furthermore,
the framework quantifies its own predictive uncertainty by employing a stochastic
forward pass approach; the resulting output variance directly identifies unfamiliar
inputs, mitigating feature hallucination. We validate RareFlow on a new, curated
benchmark of multi-sensor satellite imagery. In blind evaluations, geophysical
experts rated our model’s outputs as approaching the fidelity of ground truth im-
agery, significantly outperforming state-of-the-art baselines. This qualitative su-
periority is corroborated by quantitative gains in perceptual metrics, including a
nearly 40% reduction in FID. RareFlow provides a robust framework for high-
fidelity synthesis in data-scarce scientific domains and offers a new paradigm for
controlled generation under severe domain shift.

1 INTRODUCTION

Monitoring rapid, small-scale environmental change requires imagery that is both high spatial res-
olution (for morphology) and high temporal frequency (for dynamics) Qi et al. (2025); Vu et al.
(2025). Public constellations such as Sentinel-2 deliver near-global coverage with 10 m pixels and
5-day revisit, but lack the fine spatial detail needed to resolve many geomorphic features; very-
high-resolution (VHR) commercial sensors provide sub-meter detail at lower cadence and are often
expensive. European Space Agency (ESA) (a;b) This mismatch creates a persistent spatiotemporal
gap for near-real-time environmental monitoring. Cross-sensor super-resolution (SR) has significant
scientific value, as it promises to synthesize VHR content from publicly available lower-resolution
satellite imagery, substantially reducing reliance on commercial satellite data. However, little SR
research explicitly tackles this problem or reliably addresses the accompanying distribution-shift
challenge. Qi et al. (2025)

Diffusion-based SR now dominates perceptual-quality benchmarks and offers precise structural con-
trol via conditional mechanisms (e.g., ControlNet Zhang & Agrawala (2023)), yet its success typ-
ically hinges on two assumptions that fail in scientific RS: (i) the low-resolution (LR) input is a
structurally faithful proxy for the desired high-resolution (HR) scene; (ii) the model’s prior has
seen enough semantically similar examples to render the target phenomenon. When either assump-
tion breaks—blurred structure or out-of-distribution (OOD) semantics—generators can hallucinate
textures that look plausible but violate physics and radiometry. This tension echoes the percep-
tion–distortion trade-off: pushing perceptual realism often degrades fidelity, and vice versa. Moser
et al. (2024); Saharia et al. (2021); Blau & Michaeli (2018)
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In remote sensing (RS), the primary objective is scientific fidelity rather than photorealistic recon-
struction Wang et al. (2022b). First, generative models must preserve precise spectral signatures,
a constraint that generic models routinely violate, invalidating downstream analysis. Dong et al.
(2021); Dou et al. (2020) Second, the ignorant prior problem becomes a critical point of failure.
A model cannot generate a geologically sound rare-earth feature from aesthetic principles alone; it
requires an implicit understanding of geomorphology. Lacking this, it produces plausible-looking
artifacts, not scientifically valid image. This problem is intractable for standard methods, as the very
rarity of the phenomena under study makes it impossible to amass the vast datasets these models
typically require. Chen et al. (2024); Liu et al. (2022)

These challenges are magnified for rare landforms, such as retrogressive thaw slumps (RTS), ice-rich
permafrost failures whose occurrence and expansion have intensified under Arctic warming. Their
rarity yields extreme class imbalance, severe few-shot regimes, and strong OOD shift across sensors
and regions. Any SR framework used for RTS must therefore (i) recognize OOD conditions and
reduce prior creativity when evidence is weak, and (ii) ground synthesis in physics, not aesthetics.
Nesterova et al. (2024); Lewkowicz & Way (2019); Barth et al. (2025); Nitze et al. (2025)

Figure 1: When the LR input is blurry or
semantically OOD, spatial-only guidance pre-
serves coarse morphology yet remains soft,
while semantic-only guidance hallucinates plau-
sible—but incorrect—textures. RareFlow bal-
ances structural evidence from the LR image with
textual semantics, suppressing hallucinations and
preserving physically consistent geometry and
spectra.

Confronting this triad of challenges—blurry
guidance, absent priors, and data
scarcity—demands more than incremental
improvements; it requires a framework
explicitly designed for this conflict. We
therefore propose RareFlow, a physics-aware
SR framework tailored for cross-sensor RS
under severe domain shift, designed for
OOD robustness. Our work reveal a fun-
damental tension as illustrated in Figure 1:
strong spatial conditioning alone preserves
coarse structure but also propagates unde-
sirable blur, while semantic guidance alone
generates realistic features but sacrifices
geometric fidelity. RareFlow is explic-
itly designed to resolve this conflict. Its
dual-conditioning mechanism uses a gated
ControlNet (Zhang & Agrawala, 2023) to
dynamically weigh the blurry source image
for structural integrity while simultaneously
leveraging textual prompts to provide the
rich semantic context required to synthesize
scientifically plausible details, even when
the target phenomenon is rare and visually
complex.

Contributions. The main contributions of this paper are summarized as follows.

1. Dynamic Control of Priors to Mitigate Hallucination. We introduce a dual-conditioning
framework where a Gated ControlNet preserves geometric fidelity from the LR input, while
text prompts guide semantic synthesis. This gating mechanism dynamically balances the
two influences, reducing reliance on learned priors for OOD data and preventing feature
hallucination.

2. A Physics-Aware Loss for Preserving Scientific Imagery. We design a multifaceted loss
function that anchors the model’s output to the ground truth. By enforcing consistency in
both the spectral domain and a perceptually uniform color space, we ensure the SR process
preserves the large-scale radiometric information captured by the sensor and prevents the
hallucination of erroneous detail.

3. Unified Framework for Harmonization and SR. We present a single, end-to-end model
that jointly performs SR and radiometric harmonization. This removes the need for separate
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pre-processing pipelines and ensures color and brightness statistics are consistent with a
target reference during the reconstruction process.

4. State-of-the-Art (SOTA) Performance in a Low-Data Regime. On a curated multi-
sensor earth-observation benchmark emphasizing RTS and with only ≈ 800 labeled RTS
images, RareFlow reconstructs fine-scale structures and surpasses strong baselines con-
firmed by both quantitative metrics and qualitative analysis; an expert study further evalu-
ated superior fidelity and scientific integrity.

2 RELATED WORKS

Traditional SR methods, from classical interpolation to early deep learning approaches, often strug-
gled to reconstruct fine, high-frequency details Johnson et al. (2016); Ledig et al. (2017); Sajjadi
et al. (2017); Blau & Michaeli (2018); Moser et al. (2024). Their limitation tends to average out
plausible solutions and results in overly smooth or blurry textures Blau & Michaeli (2018); Johnson
et al. (2016).

Diffusion models address this by learning the distribution of natural images and sampling from it,
enabling plausible, high-fidelity detail beyond simple sharpening Ho et al. (2020); Song et al. (2021);
Saharia et al. (2023); Moser et al. (2024). This generative capability underlies SOTA perceptual SR,
but applying it to remote sensing demands (i) strict geometric fidelity, (ii) scientific/radiometric plau-
sibility, and (iii) robustness across sensors and styles Lanaras et al. (2018b); Gascon et al. (2017);
Scarpa & Ciotola (2022a); Claverie et al. (2018); Ju et al. (2025). Our work is situated at the inter-
section of these three key challenges.

Enforcing Geometric and Structural Fidelity A primary challenge in SR is maintaining strict fi-
delity to the geometric and structural content of the LR input. A prominent line of work injects
strong spatial conditioning: ControlNet-centric designs like ControlSR Zhang et al. (2023); Wan
et al. (2024) enhance geometric faithfulness by injecting LR spatial cues at multiple scales. Other
methods leverage segmentation masks or edge priors including SAM-DiffSR Wang et al. (2024) and
SAMSR Liu et al. (2025), to enforce sharp boundaries and object consistency. A second strategy
involves using structure-aware objectives that directly penalize geometric distortion during train-
ing. SPSR restores and supervises image gradients, using a gradient branch and gradient loss to
preserve edges and linework Ma et al. (2020). To avoid hallucinations that violate the LR mea-
surement, data-consistent diffusion methods impose the forward model during sampling: DDRM
and DDNM enforce measurement consistency for SR and other linear inverse problems, while hard
data-consistency with latent diffusion (ReSample) projects samples back to the measurement mani-
fold at each step Kawar et al. (2022); Wang et al. (2022c); Song et al. (2024).

Finally, physics-aware models explicitly embed knowledge of the image acquisition process. These
methods often incorporate the sensor’s Point Spread Function (PSF) or noise characteristics into
a forward degradation model, ensuring the output is physically plausible Yang & Ren (2010). In
remote sensing, this is extended by using guidance from other spectral bands or sensor physics to
preserve features like building footprints Lanaras et al. (2018a); Armannsson et al. (2021); Scarpa &
Ciotola (2022b). While effective for known degradations, these approaches primarily constrain the
degradation process rather than the physical properties (e.g., spectral profiles) of the final HR output
itself.

Nevertheless, a key limitation of these approaches is their reliance on robust guidance signals like
accurate segmentation maps. For rare and subtly-defined geomorphological features like RTS, ac-
curate segmentation masks are prohibitively expensive to create and are often brittle in practice.
These features lack the clear, consistent boundaries that segmentation-heavy models rely on. This
limitation motivates our use of a more flexible gated ControlNet, which provides robust structural
guidance directly from the LR image without depending on fragile, external annotations.

Ensuring Semantic Plausibility for Scientific Use Beyond structural accuracy, SR outputs must be
semantically and scientifically correct; plausible is not the same as correct. Recent work improves
faithfulness by stabilizing the denoising trajectory and balancing LR evidence with generative pri-
ors: timestep-aware fusion preserves input semantics early while enabling detail later Lin et al.
(2024), and joint fine-tuning with alignment/consistency objectives reduces hallucination and better
anchors content to the LR input Chen et al. (2025b). A complementary direction injects richer se-
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Figure 2: (a) The training architecture of RareFlow. The control path (orange) consumes LR
latents and caption tokens to produce residual hints ri and predicts per-block scalars αl∈ [0, 1] that
scale ri before injection into the frozen backbone (blue) features Fi ← Fi + αiri. (b) ControlNet
MM-DiT block internals which produces αi (see Sec. 3.1).

mantic priors so the model “knows what it is restoring”: cross-modal guidance via MLLMs provides
scene- and object-level cues Qu et al. (2024), while segmentation-conditioned diffusion explicitly
constrains regions to class-consistent appearance Xiao et al. (2024); this builds on earlier semantic
SR showing that category-aware conditioning reduces implausible textures Wang et al. (2018).

However, these methods are optimized for generic photo domains. They excel at producing plausi-
ble textures for common objects but lack the domain-specific knowledge to reconstruct the unique
morphology of a thaw slump or distinguish it from similar-looking terrain. Their reliance on general-
world semantics risks generating photorealistic yet scientifically inaccurate artifacts. Our work di-
rectly addresses this gap by using highly specific textual prompts to encode geological knowledge,
guiding the model to generate features that are not just visually convincing but also geologically
plausible.

Cross-Sensor Style Transfer in SR A critical challenge in satellite imaging, often overlooked by
general-purpose SR models, is the pronounced stylistic variation across sensors. Each platform
exhibits distinct radiometry, spectral bandpasses, point-spread/MTF characteristics, noise statistics,
and sun–sensor geometries, producing domain shifts that alter texture and color distributions Gas-
con et al. (2017); European Space Agency (ESA) (c); Claverie et al. (2018); Ju et al. (2025). Most
multi-sensor SR and fusion methods—including recent diffusion-based pipelines such as DiffFuSR
and SatDiffMoE—treat these differences as a nuisance to be harmonized or fused into a canoni-
cal representation, rather than reproducing a target sensor’s style Sarmad et al. (2025); Luo et al.
(2024). In contrast, cross-sensor domain-adaptation studies in recognition consistently document
substantial performance gaps attributable to sensor/style shift, underscoring that the discrepancy is
persistent and non-trivial Wang et al. (2022a); Li et al. (2025); Zeng et al. (2024). Consequently,
explicit style transfer across sensors within SR—achieving a target instrument’s textural and ra-
diometric signature while preserving geometry—remains underexplored; doing so requires sensor-
aware conditioning and physics-aware forward models (e.g., bandpass and MTF matching), together
with evaluations that assess both radiometric agreement and style fidelity beyond generic distortion
metrics Claverie et al. (2018); Ju et al. (2025); Scarpa & Ciotola (2022a).

In contrast, we treat sensor style as a valuable signal. We reframe the problem not as style harmo-
nization, but as explicit style transfer within the SR task. This novel perspective allows our model to
learn the specific visual signature of a target sensor (e.g., higher contrast, unique textural patterns)
and intelligently apply it to an image from a different source. This reframing provides fine-grained
control over the final appearance, enabling both detail enhancement and stylistic consistency with
the characteristics of the chosen sensor. Our work explicitly tackles this dual objective for rare
geological features, filling a crucial gap in the remote sensing literature.

3 RAREFLOW: A PHYSICS-AWARE DUAL-CONDITIONED FLOW MATCHING

We work in latent space with a frozen VAE (E ,D) and a frozen diffusion transformer fθ (SD3
MMDiT) Esser et al. (2024); Peebles & Xie (2023). Given an HR image y, we encode z0 = E(y)
and build noisy latents via the SD3 flow-match schedule

zt = (1− σt) z0 + σt ϵ, ϵ ∼ N (0, I), (1)
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where {σt} is the discrete schedule of the FlowMatch Euler solver. The denoiser receives (zt, t)
together with text conditioning and ControlNet residuals.

3.1 CONTROL ADAPTERS WITH UNCERTAINTY-GATED SCALARS

A ControlNet gϕ processes the LR latent x̃ = E(x) and emits per-block residual feature maps
{rl}l∈L aligned with the transformer blocks Zhang & Agrawala (2023); Zavadski et al. (2024). To
modulate these residuals in a shape-preserving way, we learn a scalar gate per block that depends
on diffusion time and uncertainty:

αl(t, u) = σ
(
pl0 + plt · norm(t) + plu · u

)
, (2)

r̃l = sctrl α
l(t, u) rl, sctrl ∈ R+, (3)

where σ(·) is the logistic function and norm(t) ∈ [0, 1] is a normalized time index. The scalar
u ∈ [0, 1] summarizes only MC-dropout uncertainty.

3.2 UNCERTAINTY VIA MONTE CARLO DROPOUT

We estimate epistemic uncertainty with MC dropout Gal & Ghahramani (2016) while freezing all
backbones. Dropout (rate pdo) is enabled only in the trainable ControlNet gϕ and αl(·). For a fixed
(x, c) we draw T stochastic reconstructions

ŷ(k) = D
(
fθ
(
zt, t, c, x; gϕ with dropout

))
, k = 1, . . . , T,

v(i, j) = VarTk=1

[
ŷ
(k)
i,j

]
,

u = clip
(

mean(clip(v,0,τ))
τ , 0, 1

)
.

(4)

We set the scale on-the-fly as

τ = Pct95
(
{mean(v)}mini-batch

)
+ ϵ, (5)

or equivalently use a fixed scale κ > 0 via

u = 1− exp
(
− mean(v)

κ

)
. (6)

During sampling, u modulates the gates via Eq. equation 2.

3.3 PHYSICS-AWARE TRAINING OBJECTIVE

We train the control pathway gϕ and gate parameters {pl0, plt, plu} while keeping (E ,D) and fθ
frozen. For training pairs (x, y), define

ŷ = D(fθ(zt, t, c, x)) , (7)

and the preconditioned FlowMatch loss Lipman et al. (2022)

Lbase = E(x,y), t, ϵ

[∥∥ω(σt)
(
fθ(zt, t, c, x)− z0

)∥∥2
2

]
, (8)

with schedule-specific weight ω(σt). Although effective, this base term alone can produce overly
smooth outputs; we therefore add three complementary losses.

Frequency alignment (spectral magnitude). To discourage oversmoothing and limit hallucinated
detail, we align spectral magnitudes in either latent or pixel space with a radial emphasis on mid/high
frequencies Jiang et al. (2021); Fuoli et al. (2021):

Lfft =
∥∥∥W ⊙ (∣∣F(uθ)

∣∣− ∣∣F(u⋆)
∣∣)∥∥∥

1
, (9)

where uθ and u⋆ denote latents, and W (ρ) ∝ ργ stresses mid/high spatial frequencies that SR tends
to lose.
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Radiometric Consistency (perceptual color). To preserve coarse color/brightness, we compare
in CIELAB after blur. Let Lab(u) ∈ RH×W×3, Gb be channelwise Gaussian blur, and Labb(·)≡
Gb(Lab(·)). With per-channel spatial mean µ(·) and stdev σ(·),

µ(u) = spatial mean per channel, σ(u) = spatial stdev per channel, (10)

Lcolor =
∥∥Labb(ŷ)− Labb(y)

∥∥
1
+

∑
i∈{µ,σ}

∥∥ i(Labb(ŷ))− i
(
Labb(y)

) ∥∥
1
. (11)

Total objective. Finally, we add LPIPS (AlexNet) Zhang et al. (2018a) to better correlate with
human judgment. Our physics-aware loss enforces spectral and perceptual color consistency, pre-
serving large-scale radiometry while discouraging hallucinated detail:

L = Lbase + λfft Lfft + λcolor Lcolor + λlpips Llpips. (12)

4 EXPERIMENTS AND ANALYSIS

We validate our approach on a challenging, real-world dataset for remote sensing SR. The task is
to learn a mapping from 10m Sentinel-2 (LR) images to 2m Maxar (HR) ground truth. This cross-
sensor and cross-temporal setup inherently induces OOD conditions and presents several significant
challenges, illustrated in Fig. 3.

Figure 3: Data challenges. Left to Right: HR
(Maxar), LR (Sentinel-2, Percentile Norm), LR
(Sentinel-2, Fixed Norm). Row 1 shows color dis-
crepancies and the effect of normalization. Row 2
shows spatial misalignment. Row 3 shows tempo-
ral misalignment due to changes in snow cover.

These challenges include: (1) Spatio-
temporal misalignment between LR and
HR images, acquired at different times,
causes sub-pixel shifts, dramatic variations
in illumination, and stark land cover changes.
Furthermore, the dataset is characterized by
(2) Small image dimensions, with inputs as
small as 30×40 pixels, which prevent direct
comparison to models evaluated on larger
benchmark images. (3) A non-standard 12-
bit data range that departs from the typ-
ical 8-bit format and makes model perfor-
mance highly sensitive to the chosen nor-
malization method as it materially alters in-
put data distribution and model performance.
(4) A limited training corpus of ≈ 800 im-
ages, which necessitates a data-efficient ap-
proach unsuitable for training large models
from scratch. Further details are provided in
Appendix .1.

4.1 EVALUATION STRATEGY

We compare our method against SOTA SR models from two categories. First, we include architec-
tures specifically tailored for remote sensing and trained on Sentinel-2 LR images, such as OpenSR
(Donike et al., 2025), MISR-S2 (Okabayashi et al.) and ZoomLDM (Yellapragada et al., 2025).
Second, we benchmark against leading general-purpose methods like AdcSr (Chen et al., 2025a),
SamSR (Liu et al., 2025) and SeeSR (Wu et al., 2024) to test whether their powerful architectures
offer a fundamental advantage that translates to the remote sensing domain.

Our evaluation strategy involves testing in two settings. We first benchmark all models on the real-
world, cross-sensor pairs. We then use an idealized setting with synthetically downsampled HR
images to isolate architectural performance. The quantitative metrics used for these evaluations are
described and justified in detail in Appendix .2.

4.2 QUANTITATIVE ANALYSIS: THE FIDELITY VS. REALISM TRADE-OFF

Quantitative trends. Table 1 summarizes fidelity (PSNR/SSIM/FSIM), perceptual similarity
(LPIPS/DISTS), and no-reference realism (FID/NIQE/MANIQA). RareFlow attains the lowest
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Figure 4: Qualitative comparison on paired LR–HR data.

LPIPS (0.36) and DISTS (0.30), and the lowest FID (116.16). Relative to the next-best FID (AdcSR,
187.18), this is a 38% reduction. On fidelity, RareFlow achieves the best SSIM (0.59) and FSIM
(0.83) while remaining competitive in PSNR (18.76 dB vs. 18.78 dB for SeeSR;) These results are
consistent with the well-known perception–distortion trade-off (Blau & Michaeli, 2018): methods
optimized primarily for PSNR tend to underperform on perceptual/realism metrics, whereas Rar-
eFlow improves perceptual quality without materially degrading pixelwise fidelity.

Table 1: SR results on paired LR–HR data. Bold = best, underline = second-best; arrows indicate whether
higher or lower is better.

SR Model Fidelity Metrics Perceptual Similarity Realism Metrics

PSNR ↑ SSIM ↑ FSIM ↑ LPIPS ↓ DISTS ↓ FID ↓ NIQE ↓ MANIQA ↑

ZoomLDM 17.23 0.26 0.47 0.60 0.59 352.11 18.10 0.19
SeeSR 18.78 0.50 0.71 0.46 0.38 302.36 10.78 0.36
AdcSR 18.59 0.58 0.71 0.40 0.37 187.18 8.38 0.28
MISR-S2 18.39 0.50 0.68 0.54 0.43 254.70 13.55 0.33
SAMSR 18.36 0.54 0.74 0.48 0.39 189.01 11.84 0.32
OpenSR 17.29 0.51 0.66 0.41 0.36 225.62 9.80 0.25
RareFlow (Ours) 18.76 0.59 0.83 0.36 0.30 116.16 5.36 0.31

Beyond pure resolution enhancement, the core challenge of this task is performing simultaneous SR
and cross-sensor style transfer. A successful model must bridge the significant domain gap between
the Sentinel-2 source and the Maxar target. Figure 4 provides a striking visual demonstration of
this challenge, illustrating the fundamental limitations of prior methods and the scientific utility of
our approach. The baseline models fundamentally fail at the style transfer aspect. As shown in the
figure, their outputs largely retain the characteristic radiometric properties of the Sentinel-2 input,
such as muted contrast and a smoother textural profile. Consequently, the baselines’ attempts at
SR only sharpen the wrong stylistic representation. RareFlow, however, excels at this joint task
by simultaneously reconstructing geological details and translating the image into the target Maxar
style, producing an output that is both HR and stylistically faithful to the ground truth.

4.2.1 CONTROLLED SR (HR→LR DOWNSAMPLING)

To isolate the SR capacity from the cross-sensor harmonization, we synthetically downsample HR
Maxar and evaluate 3-channel RGB methods under an SR protocol (details in App. .4). We ex-
clude methods that rely on non-RGB bands, pan-sharpening inputs, auxiliary geospatial metadata,
or sensor-specific priors, to ensure an apples-to-apples comparison with our RGB-only pipeline.

On HR-downsampled-HR pairs as shown in Table 2, RareFlow delivers a clearly better distor-
tion–perception trade-off: vs. the strongest fidelity-oriented baseline (SeeSR), it cuts percep-
tual/realism error by −27.8% LPIPS, −21.7% DISTS, −41.7% FID, and −31.0% NIQE, while
staying within 4% PSNR (SSIM ties; FSIM 1.2%). Against the closest realism challenger (SAMSR).
Qualitative comparisons in the appendix .4 corroborate these trends on HR-downsampled→HR in-
puts, where RareFlow reconstructs sharper textures across diverse scenes.

This experiment confirms that the core components of our architecture provide a powerful and gen-
eralizable foundation for image restoration. The leading performance in both the specialized cross-
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Table 2: SR results on HR-downsampled–HR pairs data. Bold = best, underline = second-best; arrows
indicate whether higher or lower is better.

SR Model Fidelity Metrics Perceptual Similarity Realism Metrics

PSNR ↑ SSIM ↑ FSIM ↑ LPIPS ↓ DISTS ↓ FID ↓ NIQE ↓ MANIQA ↑

AdcSR 26.59 0.65 0.80 0.27 0.29 191.50 5.91 0.28
SeeSR 29.37 0.75 0.86 0.18 0.23 141.48 6.26 0.28
ZoomLDM 21.60 0.54 0.66 0.47 0.51 232.80 8.10 0.11
SAMSR 27.59 0.65 0.82 0.22 0.23 128.20 5.20 0.22
RareFlow (Ours) 28.20 0.75 0.87 0.13 0.18 82.53 4.32 0.46

sensor task and the standard SISR task strongly suggests that our model’s design is robust and highly
effective, making a significant contribution to the broader field of SR.

4.3 HUMAN EVALUATION BY DOMAIN EXPERTS

To validate the scientific utility of our results, we conducted a two-stage evaluation with geomor-
phology experts (details in Appendix .5).

Stage 1: Validating Semantic Guidance Integrity. Given a HR reference image with a binary
mask over the region of interest, we prompt a SOTA vision–language model (GPT-5) OpenAI (2025)
to produce a structured, resolution-aware description of RTS-predictive attributes (feature texture,
shape, and immediate environment), see Appendix .3 for prompt design. This foundational check
ensures our model is conditioned on scientifically sound semantic priors.

Stage 2: Evaluating Super-Resolved Imagery. With the integrity of the language guidance estab-
lished, we proceeded to the main evaluation of our model’s SR capabilities, again leveraging domain
experts. The study was designed to answer two key questions: whether our SR images offered a clar-
ity improvement over the LR inputs, and the more challenging test of whether they could achieve
perceptual parity with the HR ground truth. The results were conclusive. Experts unanimously
agreed that RareFlow’s outputs provide a consistent and significant clarity enhancement over the
blurry LR inputs. More critically, in numerous instances, our model achieved the gold standard:
experts judged the super-resolved images to be perceptually on par with the 2m Maxar ground truth,
successfully reconstructing fine-scale RTS features that were ambiguous or invisible in the source
image.

4.4 ABLATION STUDIES: DISSECTING THE SOURCE OF PERFORMANCE

We performed comprehensive ablations (Table 3) to isolate the contributions of our key components:
spatial conditioning (ControlNet), semantic guidance (text captions), and perceptual losses. Our
analysis uncovers a critical dilemma inherent to this task.

We conduct a comprehensive ablation across 6 configurations to isolate the effects of (i) spatial pri-
ors (ControlNet: pre-trained vs. scratch, and an α-gated conditioning strength), (ii) semantic guid-
ance (caption supervision describing RTS content), and (iii) perceptual regularization (FFT, color
consistency, and LPIPS losses). The task presents unique challenges arising from two principal fac-
tors: (1) ground-truth (GT) imagery is blurred and compressed; this limitation means that classic
fidelity metrics (like PSNR, SSIM) can be misleading, as a high score might only reflect a model’s
ability to reproduce undesirable blur, and (2) RTS scenes exhibit distinctive geomorphology. There-
fore, while we report standard fidelity metrics for completeness, our analysis gives greater weight to
perceptual metrics (LPIPS, DISTS) and no-reference metrics (FID, NIQE, MANIQA) which better
assess the generated image’s realism and visual quality.

Our analysis of Table 3 highlights a clear trade-off. The model with only a pre-trained ControlNet
(2) excels at most fidelity and perceptual similarity metrics. This shows it is highly effective at
replicating the GT’s structure, but it also reproduces its undesirable softness, leading to poor scores
on no-reference realism metrics like MANIQA. In contrast, adding caption guidance (3, 5) boosts
realism, achieving the best MANIQA scores and significantly lowering FID. However, this comes
at a steep price, as fidelity metrics collapse indicating that the model is generating plausible but
structurally incorrect content based on the descriptive captions.
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Table 3: Comparison of model variants. Bold = best, underline = second-best; arrows indicate whether higher
or lower is better.

Model Configuration Fidelity Metrics Perceptual Similarity Realism Metrics

PSNR ↑ SSIM ↑ FSIM ↑ LPIPS ↓ DISTS ↓ FID ↓ NIQE ↓ MANIQA ↑

(1) Baseline (from Scratch) 18.01 0.49 0.81 0.41 0.33 206.32 5.98 0.25
(2) + Pre-trained CN 18.80 0.51 0.85 0.35 0.29 187.60 6.42 0.19
(3) + Caption 17.08 0.38 0.74 0.47 0.32 145.43 5.64 0.32
(4) + Caption & α-gate 17.69 0.52 0.81 0.38 0.30 138.21 5.78 0.23
(5) + Caption & Loss 17.11 0.38 0.74 0.47 0.32 144.61 5.61 0.32

(6) Full Model (Ours) 18.76 0.59 0.83 0.36 0.30 116.16 5.36 0.31

Figure 5: Visual Comparison of model variants.

RareFlow (full model (6)) successfully navigates this dilemma. It achieves the best distributional
realism and lowest artifacts, evidenced by its SOTA FID and NIQE scores. At the same time, it main-
tains excellent fidelity, securing the second-best scores across all five fidelity and perceptual simi-
larity metrics. This demonstrates that our combined approach does not sacrifice structural integrity
for realism, but instead achieves a synergistic balance, yielding outputs that are both geometrically
faithful and perceptually convincing.

Table 4: Ablation on dataset averages. Bold = best, underline = second-best; arrows indicate whether higher or
lower is better.

Model Accuracy & Calibration Perceptual Quality

SAM ↓ ∆E2000 ↓ NLL (Gauss) ↓ ECE ↓ QNR ↑ Dλ ↓ Ds ↓

Model (4) 4.5318 11.1550 7.1115 0.3853 0.4704 0.1036 0.4745
Model (5) 3.4769 10.3439 0.2251 0.2115 0.4665 0.1292 0.4676
Model (6) 2.6088 6.4504 -0.7792 0.1600 0.3312 0.1201 0.6211

Table 4 shows that progressively adding captions and then the alpha-gated physics-aware loss
(Model 4→5→6) monotonically improves accuracy and calibration—SAM 4.53 → 2.61◦,
∆E2000 11.16 → 6.45, NLL 7.11 → −0.78, and ECE 0.385 → 0.160—with the full model
(Model 6),: captions + alpha-gated physics) best overall; the captions-only variant (Model 5) out-
performs the baseline (Model 4), and the additional physics term trades off perceptual quality as
QNR decreases (0.470 → 0.331) due to a higher Ds (≈ 0.47 → 0.62) while Dλ remains low
(≈ 0.12).

5 CONCLUSIONS

In this work, we address a critical failure mode of generative models: the synthesis of physically
implausible details when generating from OOD scientific data in extreme low-data regimes. To mit-
igate this, we introduce RareFlow, a framework that maintains generative fidelity under significant
domain shifts via a novel physics-aware dual-conditioning mechanism. By preserving geometric
structure while gating the influence of semantic guidance, RareFlow avoids hallucinating invalid
features, enabling the synthesis of plausible instances from the true data distribution rather than
mere pixel replication. Our benchmark results show that RareFlow outperforms all baselines in
fidelity. While this emphasis may constrain sample diversity in the most data-scarce settings, ab-
lations reveal tunable trade-offs through gating hyperparameters. Overall, RareFlow demonstrates
how to enforce scientific fidelity and cross-domain generalization in heterogeneous, low-resource
settings. Future extensions of its dual-conditioning and gating principles to temporal domains, such
as video synthesis, could further reduce distributional drift and hallucinations in foundation models
trained on multimodal, cross-sensor inputs.
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Pessiot, Laurent Trédé, Edoardo Cadau, Roberto De Bonis, Claudio Isola, Philippe Martimort,
and Victor Fernandez. Copernicus sentinel-2a calibration and products validation status. Remote
Sensing, 9(6):584, 2017. doi: 10.3390/rs9060584.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems (NeurIPS), volume 33, pp. 6840–6851, 2020.

Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international
conference on pattern recognition, pp. 2366–2369. IEEE, 2010.

Liming Jiang, Bo Dai, Wayne Wu, and Chen Change Loy. Focal frequency loss for image recon-
struction and synthesis. In ICCV, 2021.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European Conference on Computer Vision (ECCV), pp. 694–711. Springer,
2016. doi: 10.1007/978-3-319-46475-6 43.

Junchuan Ju, Jianyang Zhuang, Zhiqiang Zhang, Grégoire Philippon, Ariuntsetseg Tsend-Ayush,
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APPENDIX

.1 DATASETS & CHALLENGES

The dataset covers seven Arctic regions, including the Yamal and Gydan Peninsulas, Lena River, and
Kolguev Island in Russia, along with Herschel Island, Horton Delta, Tuktoyaktuk Peninsula, and
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Banks Island in Canada Yang et al. (2023). These sites provide diverse land-cover characteristics,
including tundra, ice-rich permafrost bluffs, and coastal slopes, making the dataset valuable for
capturing high-frequency spatial patterns in satellite imagery. The data set contains RTS annotations
that were generated through careful manual digitization of Maxar imagery, supported by multi-
temporal cross-checks with Sentinel-2 and ArcticDEM Yang et al. (2023).

Although the source datasets contain multiple spectral channels and auxiliary layers (e.g., NDVI,
elevation), this work intentionally restricts the model’s input and output to the RGB color space. This
design choice is motivated by the goal of enhancing the generalizability of the framework beyond the
domain of multi-spectral remote sensing. By focusing on standard RGB data, the proposed method
is more readily adaptable to other fields where training data is often limited to three channels and
may be scarce, such as medical imaging or archival photograph restoration. Our method address
several difficulties inherent to the real-world SR data.

To handle the 12-bit radiometric resolution of the Sentinel-2 LR images, we considered two primary
normalization methods to scale pixel values to the [0,1] range. Let X ∈ RH×W×B be the input
image (height H , width W , B bands), and let Y be the normalized output with the same shape.

.1.1 PER-BAND PERCENTILE NORMALIZATION

For each band b ∈ {1, . . . , B}, compute the lower/upper percentile values

αb = Qplow

(
X·,·,b

)
, βb = Qphigh

(
X·,·,b

)
. (13)

Then for every pixel (i, j):

Yi,j,b =


0, if βb = αb,

clip

(
Xi,j,b − αb

βb − αb
, 0, 1

)
, otherwise.

(14)

Equivalently (vectorized per band):

Y·,·,b = clip

(
X·,·,b − αb

βb − αb
, 0, 1

)
, with the same degenerate case (βb = αb). (15)

.1.2 FIXED-RANGE NORMALIZATION

Given constants m = min val and M = max val (e.g., m = 0, M = 3000):

Y =


0, if M = m,

clip

(
X −m

M −m
, 0, 1

)
, otherwise,

(16)

applied element-wise.

Note. clip(z, 0, 1) = min{1,max{0, z}} is applied element-wise, and Qp(·) denotes the p-th
percentile computed over all pixels of the given band.

.2 EVALUATION METRICS

We evaluate SR models using a mixture of full-reference (FR), no-reference (NR), and set-level
distributional metrics and we standardize implementation details to ensure fair comparison across
methods. The most fundamental metric is the Peak Signal-to-Noise Ratio (PSNR) Hore & Ziou
(2010). It’s simple and fast, directly measuring the pixel-wise difference between a generated image
and the ground truth. While useful for gauging raw reconstruction accuracy, its major weakness
is its poor correlation with human vision; an image with a high PSNR can still look unnatural or
blurry to our eyes. To bridge this gap between numerical error and perceived quality, the Structural
Similarity Index Measure (SSIM) Wang et al. (2004) was introduced. Instead of comparing pixels
in isolation, SSIM evaluates the similarity of luminance, contrast, and structure, offering a more
perceptually relevant score.
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PSNR Given a reference image x ∈ [0, R]H×W and a reconstruction y, with mean squared error

MSE(x, y) =
1

HW

H∑
i=1

W∑
j=1

(
xij − yij

)2
, (17)

PSNR(x, y) = 10 log10

(
R2

MSE(x,y)

)
[dB], (18)

where R is the peak pixel value (e.g., R=255 for 8-bit).

SSIM It compares local luminance (l), contrast (c), and structure (s) between x and y:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (19)

where µ, σ2, and σxy are local (Gaussian-windowed) statistics; C1, C2 stabilize division.

While these methods improved the evaluation of structural integrity, they still couldn’t fully capture
the complex textures and nuanced details that make an image look realistic. This limitation paved the
way for learned perceptual metrics. The Learned Perceptual Image Patch Similarity (LPIPS) Zhang
et al. (2018b) metric was a breakthrough, using the internal representations of a deep neural network
(like VGG) to measure similarity in a way that closely mimics human judgment. Other metrics
also target key visual features; FSIM (Feature Similarity Index) Zhang et al. (2011) focuses on
phase congruency and gradient magnitude, which are critical to how we perceive edges and shapes.
Pushing this concept further, DISTS (Deep Image Structure and Texture Similarity) Ding et al.
(2020) uses a purpose-trained network to expertly balance the importance of structural correctness
and textural realism, providing one of the most comprehensive full-reference evaluations available
today.

LPIPS It compares deep features from a fixed backbone (e.g., VGG). For layer l with unit-
normalized features ϕ̂l(·) and learned channel weights wl,

dLPIPS(x, y) =
∑
l

1

HlWl

∑
h,w

∥∥wl ⊙
(
ϕ̂h,w
l (x)− ϕ̂h,w

l (y)
)∥∥2

2
. (20)

FSIM It weights per-pixel similarity by phase congruency (PC) and gradient magnitude (GM).
With

SPC =
2PCx PCy + T1

PC2
x + PC2

y + T1

, SG =
2GMx GMy + T2

GM2
x +GM2

y + T2

, (21)

the local similarity is SL = Sα
PCS

β
G, and the image-level score is

FSIM(x, y) =

∑
p

[
max{PCx(p),PCy(p)}SL(p)

]∑
p max{PCx(p),PCy(p)}

. (22)

DISTS It decomposes similarity in deep space into structure and texture terms per layer l of a
fixed CNN:

DISTS(x, y) =
∑
l

αl

(
1− ρ(ϕl(x), ϕl(y))

)
+ βl

(
1− ρ(µ(ϕl(x)), µ(ϕl(y)))

)
, (23)

where ρ is correlation and µ(·) denotes channel-wise means (texture statistics).

A significant challenge with all these metrics is their reliance on a perfect, HR ground truth image,
which is often unavailable in real-world scenarios. This necessitates the use of no-reference, or
blind, quality assessors. A classic example is NIQE (Natural Image Quality Evaluator) Mittal et al.
(2012), which doesn’t need a reference but instead measures how an image’s statistical properties
deviate from those of an ideal natural image. While NIQE provides a general sense of realism, mod-
ern approaches leverage complex deep learning for more accurate blind assessments. For instance
MANIQA (Multi-dimension Attention Network for IQA) Yang et al. (2022) use sophisticated Trans-
former architectures to analyze images and predict a quality score that strongly aligns with human
opinion.
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NIQE fits a multivariate Gaussian (MVG) to natural-scene-statistics (NSS) features from pristine
images, and another MVG to features from x; quality is the (Mahalanobis-type) distance between
these Gaussians:

NIQE(x) =

√
(µn − µx)⊤

(
Σn+Σx

2

)−1

(µn − µx) (lower is better). (24)

MANIQA uses a ViT backbone with transposed (channel) and Swin-based (spatial) attention
blocks and a patch-weighted head to predict a scalar quality:

q̂ = fθ(x). (25)

Finally, evaluating a generative SR model isn’t just about the quality of a single image but also about
the model’s ability to produce a diverse and realistic distribution of outputs. The standard for this is
the Fréchet Inception Distance (FID) Heusel et al. (2017), which measures the statistical difference
between the feature distributions of many generated images and real images, effectively scoring both
quality and variety.

(Fréchet Inception Distance (FID) Given Inception features for a set of SR images with (µg,Σg)
and reference HR images with (µr,Σr), model each set as a Gaussian and compute the Fréchet
(Wasserstein-2) distance:

FID = ∥µr − µg∥22 +Tr
(
Σr +Σg − 2 (ΣrΣg)

1/2
)
. (26)

We include five complementary criteria that target aspects of quality not fully captured by
PSNR/SSIM. SAM quantifies spectral fidelity by measuring the angle (in degrees) between pre-
dicted and reference spectra, thus being insensitive to scale and directly penalizing spectral shape
errors—crucial for multi/hyperspectral and color-constancy–sensitive tasks. ∆E00 (CIEDE2000)
measures perceptual color difference in CIELAB with SOTA corrections for lightness, chroma, and
hue interactions; it aligns with human judgments and reveals small but perceptually important color
shifts that PSNR can miss. Gaussian NLL evaluates probabilistic predictions by scoring the en-
tire predicted distribution, rewarding sharp, accurate means and penalizing both bias and misesti-
mated uncertainty (σ); lower NLL means better calibrated, better-fit likelihoods. Complementing
this, ECEreg via quantile coverage assesses calibration of uncertainty: across target quantile lev-
els, predicted quantiles should cover the empirical outcomes at the stated rates; deviations indicate
over/under-confidence even when point accuracy is high. Finally, for pansharpening and related fu-
sion, QNR jointly measures spectral consistency across bands (Dλ) and spatial detail preservation
relative to the panchromatic guide (Ds), yielding a no-reference score that balances “do no spectral
harm” with “add the right spatial detail.” Alparone et al. (2007); Kuleshov et al. (2018); Sharma
et al. (2005)

Spectral Angle Mapper (SAM, in degrees). For two spectra x,y ∈ RB ,

SAM(x,y) =
180

π
arccos

(
x⊤y

∥x∥2 ∥y∥2

)
. (27)

Kruse et al. (1993)

∆E00 (CIEDE2000 color difference). Given two CIELAB colors (L∗
1, a

∗
1, b

∗
1) and (L∗

2, a
∗
2, b

∗
2),

define chroma C∗
i =

√
(a∗i )

2 + (b∗i )
2, mean C̄∗ = 1

2 (C
∗
1 + C∗

2 ), and

G = 1
2

(
1−

√
(C̄∗)7

(C̄∗)7 + 257

)
, a′i = (1 +G)a∗i , C ′

i =

√
a′i

2 + b∗i
2, h′

i = atan2(b∗i , a
′
i).

(28)

Let ∆L′ = L∗
2 − L∗

1, ∆C ′ = C ′
2 − C ′

1, and
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∆h′ =


h′
2 − h′

1 if |h′
2 − h′

1| ≤ 180◦,

h′
2 − h′

1 − 360◦ if h′
2 − h′

1 > 180◦,

h′
2 − h′

1 + 360◦ if h′
2 − h′

1 < −180◦,
∆H ′ = 2

√
C ′

1C
′
2 sin

(
∆h′

2

)
. (29)

With means L̄′ = 1
2 (L

∗
1 + L∗

2), C̄
′ = 1

2 (C
′
1 + C ′

2), and

h̄′ =


h′
1+h′

2

2 if |h′
1 − h′

2| ≤ 180◦,
h′
1+h′

2+360◦

2 if |h′
1 − h′

2| > 180◦ and h′
1 + h′

2 < 360◦,
h′
1+h′

2−360◦

2 otherwise,

(30)

the weighting functions are

SL = 1 +
0.015(L̄′ − 50)2√
20 + (L̄′ − 50)2

, SC = 1 + 0.045 C̄ ′, SH = 1 + 0.015 C̄ ′ T, (31)

T = 1− 0.17 cos(h̄′ − 30◦) + 0.24 cos(2h̄′) + 0.32 cos(3h̄′ + 6◦)− 0.20 cos(4h̄′ − 63◦), (32)

RC = 2

√
(C̄ ′)7

(C̄ ′)7 + 257
, RT = −RC sin

(
2∆θ

)
, ∆θ = 30◦ exp

[
−
(
h̄′ − 275◦

25◦

)2
]
. (33)

Finally, for parametric factors kL = kC = kH = 1 (unless otherwise stated),

∆E00 =

√(
∆L′

kLSL

)2

+

(
∆C ′

kCSC

)2

+

(
∆H ′

kHSH

)2

+RT
∆C ′

kCSC

∆H ′

kHSH
. (34)

Sharma et al. (2005)

Gaussian Negative Log-Likelihood (per sample). For targets yi and Gaussian predictions
N (µi, σ

2
i ),

NLL =
1

2

n∑
i=1

[
log
(
2πσ2

i

)
+

(yi − µi)
2

σ2
i

]
. (35)

Expected Calibration Error (ECE) for regression via quantile coverage. Let {αm}Mm=1 ⊂
(0, 1) be nominal quantile levels and q̂αm(x) the model’s predicted αm–quantile for input x. Define
the empirical coverage at level αm by

ĉov(αm) =
1

n

n∑
i=1

1{ yi ≤ q̂αm(xi)} . (36)

Then an ECE-style scalar summary is

ECEreg =

M∑
m=1

wm

∣∣ĉov(αm)− αm

∣∣, wm ≥ 0,

M∑
m=1

wm = 1, (37)

(e.g., wm = 1
M ). Lower is better; 0 indicates calibrated quantiles. Kuleshov et al. (2018)
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QNR (Quality with No Reference) for pansharpening, and its components. Given the fused
multispectral image X̂ = {X̂b}Bb=1, the original multispectral image X = {Xb}Bb=1 (upsampled to
the fused resolution), and the panchromatic image P , define Wang–Bovik’s universal image quality
index Q(·, ·) applied bandwise (and to gradient images for spatial terms). Spectral distortion:

Dλ =
2

B(B − 1)

∑
1≤i<j≤B

∣∣Q(Xi, Xj)−Q(X̂i, X̂j)
∣∣. (38)

Spatial distortion:

Ds =
1

B

B∑
b=1

∣∣Q(∇Xb, ∇P
)
− Q

(
∇X̂b, ∇P

) ∣∣. (39)

With exponents α, β > 0 (often α = β = 1),

QNR = (1−Dλ)
α (1−Ds)

β , higher is better. (40)

Alparone et al. (2007)

Implementation references We rely on widely used implementations: LPIPS (official PyTorch),
DISTS (official), MANIQA (official).1

.3 PROMPTING DETAILS FOR CAPTION GENERATION

This section details the complete system prompt provided to the Vision-Language Model (GPT-
5) (OpenAI, 2025) to generate descriptive captions from the HR reference images. The objective
was to create semantically rich, resolution-aware descriptions of RTS while adhering to a natural,
non-technical style suitable for guiding the SR process.

The prompt established an expert persona for the VLM and outlined a series of rules and constraints
organized into style, content, and exclusions.

1https://github.com/richzhang/PerceptualSimilarity (LPIPS), https://github.
com/dingkeyan93/DISTS (DISTS), https://github.com/IIGROUP/MANIQA (MANIQA).
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System Prompt Fed to the VLM

Persona & Objective
You are an expert satellite image analyst writing captions. Your task is to describe images
of permafrost thaw slumps. The goal is to create natural, descriptive captions suitable for
training a text-to-image AI model. The captions must sound like a human describing a photo
in simple terms.

Style Rules
• Use simple, everyday language.
• Write in a natural, fluid style.
• Use the present tense.
• Do not refer to ”this image” or ”the photo”.

Content Requirements
• Main Feature: Describe the thaw slump using common terms like ”landslide,”

”thaw slump,” ”ground collapse,” or ”erosion scar.”
• Shape & Form: Mention its shape with simple descriptions like ”crescent-shaped,”

”bowl-shaped,” or ”tongue of dirt.”
• Colors & Textures: Describe the colors and textures of the ground, vegetation,

and water (e.g., ”dark brown soil,” ”green tundra,” ”cracked earth,” ”blue-green
ocean”).

• Setting: Briefly describe the surrounding environment, such as ”coastal cliff,”
”green hillside,” ”tundra plain,” or ”riverbank.”

Exclusion Criteria (Crucial Constraints)
• NO JARGON: Do not use technical terms like ”RTS,” ”headwall,” ”lobe,” or

”rilled.”
• NO MEASUREMENTS: Do not mention relative size, scale, or proportions (e.g.,

”covers a tenth of the scene,” ”a small feature”).
• NO ANNOTATIONS: Do not mention map overlays, red lines, or other non-

terrain elements.

Figure 6: Example of input
image given to VLM to gen-
erate an RTS-aware caption.

An example of a caption generated for the given input image 6:

”A bowl-shaped thaw slump cuts into a rugged
coastal hillside, exposing dark brown soil and
crumbly earth, with pale sandy streaks slid-
ing downslope toward blue-green water, sur-
rounded by gray-brown, sparsely vegetated
tundra.”

.4 VALIDATION ON STANDARD SR

To rigorously assess the architectural robustness and general applicability of our proposed model, we
conducted an additional set of experiments outside the primary cross-sensor domain. The objective
of this analysis was to determine if the strong performance of our model is specific to the cross-
sensor challenge or if its underlying design principles are fundamentally effective for the general
task of Single Image Super-Resolution (SISR).
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Figure 7: Qualitative comparison on HR-downsampled to HR data.

.4.1 EXPERIMENTAL SETUP

We used the same HR ground truth images used in our main evaluation. For this SISR task, the cor-
responding LR inputs were synthesized by bicubically downsampling the HR images by a factor of
4x. The visual results in Figure 7 corroborate the quantitative findings. RareFlow excels at recon-
structing fine-grained textures and sharp, plausible details that are often lost or blurred by competing
methods. While other models tend to produce overly smoothed results, our model generates clean,
realistic, and highly detailed images that are perceptually more convincing.

.5 DOMAIN EXPERT EVALUATION

The primary objective of this evaluation was to rigorously assess our method across three key cri-
teria: (1) the perceptual parity of our SR images with HR ground truth, (2) the clarity enhancement
over LR inputs, and (3) the quality of the VLM-generated semantic guidance.

The evaluation was performed by a panel of domain experts to ensure the findings are grounded
in practical scientific application. All participants are scientists actively conducting research on
permafrost geomorphology and Arctic remote sensing at well-known international research centers.
The cohort was composed of:

• Research Scientists, all holding a Ph.D. in a relevant field.
• Senior Research Assistants, with extensive, specialized experience in analyzing thaw

slump features from satellite imagery.

The evaluation was conducted via a custom web-based interface (Figure 8). For each of the 30 sam-
ples assigned to a reviewer, the interface displayed a comprehensive view containing four images:
the HR ground truth with an RTS mask, the unmasked HR ground truth, our generated SR output,
and the original Sentinel-2 LR input. The VLM-generated caption was displayed prominently along-
side. This setup, while time-intensive for the experts, allowed for a thorough and direct comparison
of all relevant data.

.6 USE OF LARGE LANGUAGE MODELS

Large language models were utilized for grammatical correction, LaTeX formatting, debugging, and
finding related work.
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Figure 8: Our custom web-based interface for human evaluation.
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