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Abstract

Leading graph ordinary differential equation
(ODE) models have offered generalized strate-
gies to model interacting multi-agent dynamical
systems in a data-driven approach. They typically
consist of a temporal graph encoder to get the
initial states and a neural ODE-based generative
model to model the evolution of dynamical sys-
tems. However, existing methods have severe de-
ficiencies in capacity and efficiency due to the fail-
ure to model high-order correlations in long-term
temporal trends. To tackle this, in this paper, we
propose a novel model named High-Order graPh
ODE (HOPE) for learning from dynamic interac-
tion data, which can be naturally represented as a
graph. It first adopts a twin graph encoder to ini-
tialize the latent state representations of nodes and
edges, which consists of two branches to capture
spatio-temporal correlations in complementary
manners. More importantly, our HOPE utilizes
a second-order graph ODE function which mod-
els the dynamics for both nodes and edges in the
latent space respectively, which enables efficient
learning of long-term dependencies from complex
dynamical systems. Experiment results on a vari-
ety of datasets demonstrate both the effectiveness
and efficiency of our proposed method.

1. Introduction

Dynamic interacting systems are ubiquitous in the real
world, such as social networks (Hafiene et al., 2020; Huang
et al., 2019; Liao et al., 2021) and moving planets (Cranmer
et al., 2020). In these systems, a set of agents are con-
nected and exhibit complicated behaviors over time, form-
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ing an evolving graph structure. For example, the spread of
COVID-19 can be regarded as a dynamical system where
each node represents a state with an evolving daily death rate
and these nodes are connected according to their geographi-
cal distances. Consequently, modeling and understanding
the intricate dynamics of complex relational systems has
become a major area of research with various downstream
tasks (Hsieh et al., 2021; Wang & Yu, 2021; Hackl et al.,
2021; GroB et al., 2019).

In literature, a range of deep neural network approaches
have been proposed for modeling dynamic interaction sys-
tems (Battaglia et al., 2016; Kipf et al., 2018; Velickovi¢
et al., 2018). Typically, they use graph neural networks
(GNNG5) to learn node representations at each timestamp and
predict their future trends. However, these discrete models
cannot deal with irregular-sampled observations and require
the observation of each node to be accessible at every times-
tamp (Huang et al., 2020; 2021). In contrast, neural ordinary
differential equation (ODE) methods are effective to model
system dynamics with missing data (Chen et al., 2018). Re-
cent efforts (Poli et al., 2019; Huang et al., 2020; 2021;
Gupta et al., 2022) have extended this technique into mod-
eling interacting dynamical systems. Generally speaking,
these methods usually combine GNNs with neural ODE
models to capture spatio-temporal relationships in dynami-
cal systems. In particular, they first utilize GNNs to initialize
state representations and then develop a neural ODE model
for both nodes and edges, which drives the evolution of the
dynamical system. In the end, a decoder is adopted to output
the prediction and the whole generative model is optimized
through variational inference.

However, existing graph ODE approaches fail to model com-
plex high-order correlations from two perspectives, which
results in inferior performance in reality. On the one hand, in
the graph encoder, these methods (Huang et al., 2020; 2021)
usually construct a temporal graph and then utilize a spatial-
based GNN to learn node representations. However, spatial-
based GNNs could miss the high-order non-neighborhood
semantics embedded in graph spectrum, which may fail
to provide proper initialization of latent state representa-
tions. On the other hand, in the generative ODE model,
they typically involve the first-order derivatives. However,
second-order laws are indispensable in abundant dynamical
systems of physical science (Aydin & Coban, 2022; Hao
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et al., 2022), including Newton’s equations of motion as
well as oscillators. Therefore, current approaches are typi-
cally incapable of capturing these high-order dependencies
in latent representations, implying the shortage of model
capacity. Worse yet, it has been validated that first-order
neural ODEs are less efficient owing to the high number of
function evaluations (NFEs) required for optimization and
inference (Norcliffe et al., 2020).

In this paper, we propose a novel method named High-Order
graPh ODE (HOPE) for learning from dynamic interaction
data. Generally, HOPE learns high-order spatio-temporal
correlations in both the graph encoder and graph ODE gen-
erative model. In particular, to initialize the latent state rep-
resentations for objects, we first construct a temporal graph
and then extract holistic spatio-temporal relationships us-
ing two parallel GNN branches from complementary views.
On the one hand, we employ the self-attention mechanism
to adaptively aggregate neighborhood information to learn
object representations from a spatial perspective. On the
other hand, second-order spectral convolution is adopted
to learn high-order correlations between non-neighborhood
nodes in a less-parametric manner, hence exploiting seman-
tics embedded in graph spectrum. In addition, we provide
a generative model involving a second-order graph ODE
function to learn long-term temporal dependency, which
models dynamic nodes and edges in interacting systems
effectively. Our second-order graph ODE function is de-
rived from the momentum updating rule, indicating a faster
convergence rate empirically (Perantonis & Karras, 1995).
Eventually, a decoder is used to output the prediction and
the whole generative model is trained by maximizing the
evidence lower bound of the likelihood loss. We undertake
extensive experiments on three benchmark datasets to verify
the efficacy of our proposed methods and the results show
that HOPE achieves state-of-the-art performance over com-
peting baselines in terms of both accuracy and efficiency.

The contributions of this work can be summarized as below:

* Higher-order Architecture. Our approach incorpo-
rates second-order graph convolution to capture non-
neighborhood semantic information, as well as second-
order graph ODEs to model higher-order temporal depen-
dencies. These specific architectural choices have been
tailored to address the challenges posed by the problem,
ultimately resulting in superior performance on bench-
mark datasets.

* Theoretical Analysis. We offer a theoretical analysis
that connects the message passing algorithm with the
second-order graph ODE (Lemma 3.1), illustrates the
implementation of the second-order graph ODE (Lemma
3.2), and establishes the local uniqueness of solutions to
our ODE (Lemma 3.3).

» Extensive Experiments. We have conducted compre-
hensive experiments across three benchmark datasets in
various settings. Our in-depth analyses demonstrate the ef-
fectiveness of the individual components proposed within
HOPE.

» Application Prospect. Our comprehensive continuous
model has practical applicability to interacting systems,
offering valuable insights into physical simulations and
biological processes governed by second-order laws.

2. Preliminaries
2.1. Problem Definition

We assume that a dynamical system contains NV interacting
objects. The input is comprised of the trajectories of the ob-
jects and their underlying weighted interaction graph which
evolves continuously. The snapshots of the interaction graph
is denoted as G = {G',--- ,GT} in which G* = {V, £}
denotes the interaction graph at the timestamp ¢ and the set
&' denotes the set of weighted edges. wf; € R is the weight
of the edge from node 7 to node j at the timestamp ¢. The ob-

ject trajectory sequence is denoted as X = { X! ... X T}
and X' is the feature matrix at the timestamp ¢. The adja-
cency matrix sequence is denoted as A = {A!, .- AT},

where A'(i, j) = wf;. Given the observed information in
dynamical systems, we aim to model the latent dynamics
based on the object embeddings and use them to predict the
trajectories in the future, i.e., X*(¢t > T).

2.2. Neural ODEs for Modeling Dynamical Systems

Neural ODEs have been proposed for modeling multi-agent
dynamical systems (Huang et al., 2020; 2021). Taking
single-agent dynamic systems as a start, the evolution of
state representations are modeled by a given first-order ODE,
ie., ddi; = f(2'), which drives the dynamical systems to
evolve continuously. At this time, the whole trajectory of
the object is decided by the initial state representations z°

as follows:

T
zT=z°+/ f (") dt. ¢))
t=0
Further, z! can be obtained via numerical methods such as
Runge-Kutta (Schober et al., 2019) and Adams (Odibat &
Baleanu, 2020), producing the trajectory at every timestamp
with a decoder. When it comes to multi-agent dynamical
systems, Equation 1 is extended into a system of ODE equa-
tions as follows (Huang et al., 2021):

T
2] = 2) —l-/ fi (21, 25 2ly) dt, 2)
t=0

where z! denotes the latent state representation for object
i at the timestamp ¢ into x!, and f; captures the complex
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Figure 1. Overview of our proposed HOPE. To begin, the twin encoder utilizes two branches of graph convolution to extract spatio-
temporal relationships for the initialization of latent state representations. Then, a generative model utilizes second-order ODEs to
simulate the evolution of both nodes and edges. In the end, HOPE feeds state representations into the decoders to output the predicted
nodes and edges. We maximize the evidence lower bound (ELBO) of the likelihood during optimization.

interaction among various objects.

3. Methodology

In this paper, we propose a novel method named HOPE for
modeling interacting system dynamics, which learns high-
order spatio-temporal correlations to enhance the model
capacity and the optimization efficiency. Our HOPE is
mainly comprised of three components: (1) a twin graph
encoder to initialize state representations for objects, which
adopts two GNN branches to explore object interactions
from complementary views; (2) a continuous-time gener-
ative model which utilizes the second-order graph ODEs
to model long-term dynamics in interacting systems with
enhanced efficiency; (3) a decoder which outputs the pre-
diction values for nodes and edges based on latent state
representations. More details can be found in Figure 1.

3.1. Twin Graph Encoder

Our twin graph encoder seeks to learn complex spatio-
temporal correlations to initialize the latent state represen-
tations of objects and edges. We begin with building a
temporal graph to characterize both temporal and spatial
patterns, which are then encoded into object representa-
tions by two branches of complementary graph convolution
operations. On the one hand, we combine spatial convolu-
tion with the self-attention mechanism to adaptively learn
neighborhood information in the temporal graph. On the
other hand, a second-order spectral graph convolution is em-
ployed to explore non-neighborhood semantic information
embedded in graph spectrum in a less-parametric fashion.

Finally, we aggregate these temporal object representations
into sequential representations to initialize the latent state
of each object and edge.

Temporal Graph Construction. To concurrently describe
both temporal and spatial correlations, we introduce a tem-
poral graph where each node represents the observation of
an object at a given timestamp. Our graph contains two
types of edges, i.e., spatial and temporal edges. Spatial
edges are based on weighted edges between two objects
at the same timestamps while temporal edges are between
every two consecutive observations for each object.

Specifically, in the constructed temporal graph G, there
are nodes ¢; indicating the observations of ¢ at time step .
The adjacent matrix A contains both spatial and temporal
edges as follows:

. wi; t=t
A(ig,ju) =< 1  i=jt=t+1 . 3)
0 otherwise

First-order Spatial Convolution. In recent years, graph
neural networks (GNNs) have achieved significant success
in modeling graph-structured data (Kipf & Welling, 2017;
Xu et al., 2019). Generally, spatial-based GNNs utilize the
message passing paradigm to provide discriminative node
embeddings. To be specific, at each layer, they embed node
semantic features into deep representations via extracting
information from the first-order neighborhood of each node
To adaptively infer interaction between each node and its
neighbors, we leverage the attention mechanism during the
convolution process.
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In detail, we first calculate the interaction scores between
each central node and its neighbors, which are used to aggre-
gate the embeddings of its neighbors at the previous layer.
Formally, given the embedding h?(k) of i, at the k-th layer,
the interaction scores between 7; and its neighbor j;/ in the
temporal graph is derived from both the adjacent matrix and

their features:

s0) (0f,0!') = Alir, ji)cos(Wueryhe ™, Wie, b 0),

“
where cos(+, ) calculates the cosine similarity between two
vectors. Wyyery and Wi, are two matrices for similarity
calculation. Then the updated node representation at the
k + 1-th layer is as follows:

R =R g |3 Bl 0! ) Waareh ®
v;IEUU?

&)
where o(-) denotes a non-linear activation function and
W ,aiue 1S @ learnable transformation matrix. qu collects
the first-order neighbors of v!. After stacking K layers, we

t,(K) .

can get each node representation, i.e., h§ = h; in an

adaptive fashion.

Second-order Spectral Convolution. However, spatial
graph convolution could be ineffective to explore non-
neighborhood correlations. Toward this end, we further
introduce spectral graph convolution as a supplement to ex-
plore semantic information buried in spectral domains. In
particular, we leverage a less-parametric way to implicitly
exploit high-order non-neighboring correlations embedded
in graph spectrum from the adjacent matrix.

We first recall that the Chebyshev polynomial is defined
in a recursive manner with Ty(z) = 1, T1(z) = « and
Ton(z) = 22T —1(x) — Trn—2(z). All the node features
are stacked into a matrix E(®) = X . Given the normalized
graph Laplacian L = I — D=2 AD~% with the degree
matrix D and the identity matrix I, the node representation
matrix at k-th layer E(®) using the second-order Chebyshev
graph convolution (Defferrard et al., 2016) is formulated as:

2
E® =" 1, (L) E* YW (6)

) =
m
m=0

where L = 2L /Amax — I and Ay denotes the maximum
eigenvalue of L, and W) ¢ Rixd ig a learnable weight
matrix at the k-th layer. We also stack K layers, producing
each representation vector e} from E(5) ¢ RNT*4 with
semantics from a spectral perspective.

Sequence Representation Learning. Our twin branches
probe spatio-temporal relationships from complementary
views. To generate sequence representations for initializa-
tion, we first combine both representations and then leverage

the attention mechanism to aggregate these temporal rep-
resentations into a sequence representation for each object.
On this basis, we obtain the posterior distributions of initial
latent state representations.

In particular, we first combine both representations at the last
layer with the temporal embeddings, and then utilize a multi-
layer perception (MLP) to obtain the final representation for
each v!. In formulation,

a; = d([ei, hi]) + TE(t) ™
. . At
TE(¢)[2i] = sin (10000%“) , (8)
. . At

where [2i] and [2¢ + 1] represent the element indexes for the
even and odd positions in temporal embeddings, respectively
and d(-) is an learnable MLP projector.

Afterward, we summarize these node representations at
every timestamp into a summarized representation u,; by
generating weights for each timestamp and then taking the
weighted average. In particular, for each object, our HOPE
first takes the average of all observations to generate weights
for different timestamps. In formulation,

T
1
t—tanh((=S " @) Waun) - 4 10
af = tan ((T;qz) )- gt (10)

where Wy, is a learnable matrix for linear transformation.
Then, we take the weighted average of all observations with
a non-linear activation function o (-) embedded to provide
non-linearity as follows:

t_
u; =

> olalq)). (11)

t=1

Nl =

In the end, we initialize state representations for the sequen-
tial generative model by sampling from the approximate
posterior distribution, i.e., ¢(Z°| X, .A) based on sequence
representations. Moreover, the posterior distribution should
approach a prior distribution p(Z°) during optimization
as an regularization. To accomplish this, we measure the
mean and variance of the posterior distribution to mini-
mize their difference and employ the “reparametrization”
trick (Kingma & Welling, 2013) when initializing state vec-
tors z{ and H?j for object 7 and the edge between nodes
i and j, respectively from the posterior distribution. In
formulation, we have:

q(2)]X, A) = N (@™ (wi), ¥ (us)), (12)

z) ~p(2)) ~ q(2)|X, A), (13)



HOPE: High-order Graph ODE For Modeling Interacting Dynamic

IO, = °(2)]]2)]]2) ® 29), (14)

where N denotes a normal distribution, 1" (u;) and ¢ (u;)
are two MLPs to calculate its mean and variance, || denotes
the concatenation of vectors, ® denotes the Hadamard prod-
uct of the two vectors, and )¢ is an MLP to initialize the
state representations for edges.

3.2. Neural Coupled Graph ODE Model

With the latent states for basic constituents (i.e., nodes and
edges) in the graph, we introduce a neural graph ODE model
to study the dynamics of interacting systems in a generative
manner. Existing methods often adopt first-order ODE func-
tions, which are incapable of effectively capturing long-term
dependencies. Worse yet, first-order neural ODEs have been
shown lack of efficiency due to the requirement for a high
number of function evaluations (NFEs) in both optimization
and inference (Norcliffe et al., 2020). To address these is-
sues, we aim to incorporate second-order neural ODEs into
continuous GNNs. Second-order ODEs can model the ma-
jority of underlying high-order laws in complicated physical
systems which first-order ODE:s fail to model. Additionally,
second-order ODEs have been investigated in various nu-
meric optimization scenarios with accelerated convergence
rates (Zhang et al., 2019; Polyak, 1964; Xia et al., 2021).

To be specific, we introduce a second-order graph ODE
function on latent state representations, which is written as:

EVA dzt I
WJFVW :O'((Dt) 1AtZth) 7Zt, (15)
where Z! = [21,--- , 24;] € RV*9 represents the latent

state representation matrix at timestamp ¢, W, € R*4 js
matrix for linear transformation, -y is a pre-defined coeffi-
cient to balance the first-order and second-order ODEs, At
denotes the updated adjacent which will be introduced later,
and D' is a degree matrix used to normalize A'. The right
hand side term follows the paradigm of message passing to
discover spatial relations in the system. Therefore, using
a numerical solver to solve Equation 15 is equivalent to
aggregating neighborhood information and then iteratively
updating state representations as time passes.

Further, to acquire the updated adjacent matrix A' embed-
ded with the dynamic edge information, we introduce a
second ODE to simulate the development of edges, which
is determined by both node state representations and the
current edge states. In detail, the ODE function for edges is
written as follows:

8 ) 1 ()
2t

= Pn ([zf”zi”zf © zﬂ) =+ pe (Hf]) )
(16)
where p,, and p. are two MLPs to transform the input to

embedding space R?. Finally, a projector p, transfers each
edge state IL;; € R? to a scalar in the updated adjacent

matrix as follows:

Al = py(TLy). (17)

An Optimization Perspective. Taking Equation 15 as an
example, we illustrate our second-order ODE function us-
ing the momentum optimization algorithm. To begin with,
we extend the momentum optimization algorithm (Polyak,
1964) to graphs as follows:

Z" = (1-NZ'+ (D) A Z'W,) + B (2" - 27,
(18)

where 3 > 0 is a parameter to control the updating rule.
Equation 18 is comprised of three terms: the first one de-
notes the state representation matrix at the last timestamp;
the second one provides the neighborhood information fol-
lowing the message passing paradigm; and the last one is the
momentum term recording the updating trend, which is com-
monly used in accelerating the convergence in optimization
algorithms (Polyak, 1964; Sutskever et al., 2013).

Lemma 3.1. Given the momentum updating algorithm for
GNNs, we have Equation 15 when \ — 0.

To facilitate the off-the-shelf ODE solvers during implemen-
tation, we transform the second-order ODE into a first-order
ODE using the following lemma.

Lemma 3.2. Our ODE formalization can be transformed
into an augmented first-order ODE.

Discussion. We regard second-order ODEs as a specific
type of augmented first-order ODEs (Dupont et al., 2019),
which expands the feature space to increase the expressive
capability. Differently, our augmented features come from
the gradients, i.e., Z t which has a definite form with bet-
ter interpretability for modeling long-term dependency in
dynamical interacting systems.

Based on the augmented first-order ODE expression, we
can also show the local uniqueness of solutions to our ODE
system. This analysis of uniqueness can help us design the
architectures of neural networks (Kong et al., 2020; Chen
etal., 2018).

Lemma 3.3. Given the initial state (to, Z'°), we claim that
there exists € > 0, s.t. Equation 15 has a unique solution
in the interval [to — €, to + €] when the activation function
o(-) is ReLU and A is continuous.

The proofs of three lemmas can be found in Appendix A, B
and C, respectively.

3.3. Decoder and Optimization

In this part, we introduce two decoders to reconstruct the
inputs (i.e., nodes and edges) and then formalize the training
optimization procedure for the whole framework.
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Table 1. Results of compared methods on COVID-19 with the prediction length one week, two weeks and three weeks. Bold numbers
indicate the best performance whereas underline numbers indicate the second best performance.

Methods 1-week-ahead 2-week-ahead 3-week-ahead Average
MAE RMSE MAPE ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE
LSTM 231.7 3704 0.0816 | 4823 771.8 0.1608 | 547.5 865.9 0.1809 | 420.5 669.4 0.1411
GRU 2349 3738 0.0786 | 491.8 780.3 0.1544 | 5553 874.0 0.1739 | 4273 676.0 0.1356
NODE 103.1 184.7 0.0349 | 183.7 2934 0.0516 | 2557 400.1 0.0677 | 180.8 292.7 0.0514
HBNODE 243.8 383.6 0.0712 | 220.1 380.8 0.0527 | 283.3 464.2 0.0767 | 249.1 409.5 0.0669
DGCRN 1024 161.5 0.0279 | 191.7 301.0 0.0479 | 281.4 428.1 0.0739 | 191.8 2969 0.0499
MPNODE 152.7 237.5 0.0357 | 272.0 5494 0.0527 | 248.7 3858 0.0696 | 2245 3909 0.0527
CG-ODE 91.59 1469 0.0255 | 182.5 2989 0.0431 | 251.1 385.6 0.0632 | 175.1 277.1 0.0439
HOPE 85.64 146.0 0.0228 | 180.9 2752 0.0397 | 243.1 3733 0.0612 | 169.9 264.8 0.0412

Table 2. Results of compared methods on Social Network with the prediction length 10, 20 and 40. Bold numbers indicate the best
performance whereas underline numbers indicate the second best performance.

Methods 10 20 40 Average
MAE RMSE MAPE ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE
LSTM 0.0933 0.1367 0.1269 | 0.1880 0.2719 0.2748 | 0.3677 0.5268 0.6276 | 0.2163 0.3118 0.3431
GRU 0.0939 0.1374 0.1280 | 0.1844 0.2724 0.2772 | 0.3916 0.5478 0.6566 | 0.2233 0.3192 0.3539
NODE 0.1276  0.1630 0.1161 | 0.2430 0.3066 0.2521 | 0.5383 0.6742 0.6025 | 0.3030 0.3813 0.3236
HBNODE 0.1230 0.1596 0.1149 | 0.2701 0.3358 0.2635 | 0.4877 0.6247 0.5934 | 0.2936 0.3734 0.3239
DGCRN  0.0913 0.1284 0.1192 | 0.2337 0.3046 0.2558 | 0.4764 0.5723 0.5614 | 0.2671 0.3351 0.3121
MPNODE 0.0887 0.1198 0.1151 | 0.1792 0.2554 0.2549 | 0.3678 0.5239 0.5214 | 0.2119 0.2997 0.2971
CG-ODE 0.0852 0.1236 0.1205 | 0.2073 0.2436 0.2432 | 0.3199 0.4871 0.4909 | 0.2041 0.2848 0.2849
HOPE 0.0796 0.1167 0.1050 | 0.1543 0.2203 0.2174 | 0.3019 0.4873 0.4867 | 0.1786 0.2748 0.2697

To be specific, our HOPE predicts object trajectories based
on their latent states. To this end, we utilize two decoders to
output the likelihood for each observation and interaction,
i.e., p(xf|2}) and p(wj; |TT};), respectively. To simplify the
computation, we merely output the mean of the distribution
as follows:

- (bn( ) :uz] = ¢€( ))? (19)

where ¢,, and ¢, are two different functions parameterized
by two MLPs.

In our implementation, we partition each training example
into two segments based on the time and utilize the first
part to predict the second part. Then, the framework is opti-
mized with the variational inference paradigm (Kingma &
Welling, 2013), i.e., maximizing the evidence lower bound
(ELBO) of the likelihood. In particular, we not only maxi-
mize the likelihood for nodes and edges, but also minimize
the Kullback-Leibler (KL) divergence between the prior and
posterior distributions. The objective is formalized as:

{pLBO = Ez(«ng\f:l q(201X,A) [log p(X, A)]
KL [T, a(=01%. A)llp (2°)]

where K L(+||-) denotes the Kullback-Leibler (KL) diver-
gence. After considering the likelihood independently for

(20)

each node and each edge, Equation 20 can be rewritten as:

lpLpo = =Y, > gt =, 22 v ”205”
~KL [T, a(z01%, A)llp (2 )] ,
21
where o2 denotes the variance of the prior distribution. The
overall algorithm is provided in Appendix.

4. Experiments
4.1. Experimental Settings

Datasets and Data Split. To evaluate our model, we uti-
lize three datasets of interacting dynamical systems, i.e.,
COVID-19 (Dong et al., 2020), Social Network (Gu et al.,
2017) and Spring Ocsillator (Kipf et al., 2018). COVID-19
contains daily tendency records from the Johns Hopkins Uni-
versity (JHU) Center for Systems Science and Engineering '.
Following recent works (Huang et al., 2021), five dynamic
features along with one static feature are selected as object
attributes. Social Network models opinions migrating from
individuals to individuals in a social network. Spring Oc-
sillator models a group of balls linked with springs. The
location and velocity vectors are adopted as node represen-
tations. To facilitate our model optimization, each training

"https://github.com/CSSEGISandData/COVID-19
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Figure 2. Performance comparison in different settings on Social

Network. Our HOPE can achieves better performance in most
cases.

Table 3. Results of compared methods on Spring Ocsillator with
the prediction length 36, 48 and 60.

Methods 36 48 60
MAE RMSE \ MAE RMSE \ MAE RMSE
LSTM 0.2661 0.3401 | 0.4120 0.5321 | 0.6257 0.7775
GRU 0.3110 0.3910 | 0.3940 0.4997 | 0.6369 0.7950
NODE 0.2757 0.3491 | 0.4569 0.5702 | 0.6259 0.7770
HBNODE 0.2969 0.3792 | 0.4512 0.5778 | 0.6486 0.8086
DGCRN  0.2798 0.3623 | 0.4013 0.5296 | 0.6159 0.7683
MPNODE 0.3473 0.4340 | 0.4161 0.5199 | 0.6133 0.7648
CG-ODE 0.2723 0.3515 | 0.4178 0.5382 | 0.6180 0.7729
HOPE 0.2649 0.3387 | 0.3847 0.4841 | 0.5883 0.7359

graph sequence is separated into a conditional segment and a
prediction segment where the conditional segment is served
as the input for the model encoder, while the prediction seg-
ment is used as supervision. Condition length and prediction
length denote the size of two segments, respectively. We
also make sure that there is no sequence overlap on training
and testing sets as indicated in (Huang et al., 2021).

Baselines. We compare our models with a range of state-
of-the-art methods, including three neural network-based
methods (LSTM (Hochreiter & Schmidhuber, 1997), GRU
(Cho et al., 2014) and DGCRN (Li et al., 2022)) and four
neural ODE-based methods (NODE (Chen et al., 2018),
HBNODE (Xiaetal., 2021), MPNODE (Gupta et al., 2022)
and CG-ODE (Huang et al., 2021)). Their details can be
found in Appendix F.

Evaluation Metrics. To evaluate these competing methods,
we leverage three standard evaluation metrics, i.e., Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Mean Absolute Percentage Error (MAPE). Since the
ground truth values in Spring Oscillator are shaking around
zero, the metric MAPE is deprecated here. In addition, we
vary the prediction length and conditional length with the
same trend, which can evaluate competing methods both in
the long run and short run.

Implementation Details. We adopt Pytorch (Paszke et al.,
2017) and torchdiffeq (Kidger et al., 2021) for implement-
ing all the baselines. In our method, we use one-layer graph

convolution in the graph encoder. The coefficient -y is set
to 3 as default. The parameter sensitivity will be further ex-
plored in Section 4.5. The embedding dimension of hidden
embeddings is set to 64. During training, an Adam opti-
mizer is used with the learning rate set to 5e — 3 and weight
decay set to 1e — 5. The dropout rate is set to 0.2. The batch
size is set to 8 and we train the model for 100 epochs. For
fair comparisons, the parameters in the compared baselines
are first set according to the corresponding papers and then
tuned for the best performance.

4.2. Performance Comparison

Table 1, Table 2 and Table 3 summarize the performance
of competing methods with varying prediction lengths on
COVID-19, Social Network and Spring Ocsillator, respec-
tively. From the compared results, we have the following
observations: First, although the temporal GNN method
(DGCRN) can obtain competitive performance on Spring
Oscillator, it still performs much worse than most of the
neural ODE methods (i.e., NODE, CG-ODE and HOPE).
Therefore, modeling the continuous evolution of nodes and
edges is indispensable in dynamical systems. Second, Graph
ODE methods (i.e., CG-ODE and HOPE) overall perform
better than neural ODE methods (i.e., NODE and HBN-

ODE), implying that learning spatial relationships is crucial
for modeling dynamical interacting systems. Third, our

method outperforms all these baselines in most cases on
three datasets. In particular, compared with the best base-
line CG-ODE, our HOPE reduces the prediction error of
2.97%, 4.44% and 6.15% in terms of average MAE, RMSE
and MAPE on COVID-19, respectively. We attribute the
significant decreasement of prediction errors to two reasons.
(i) Introduction of the second-order spectral convolution
expands the receptive field of the encoder, improving the
initialization of the latent state representations. (ii) Introduc-
tion of the second-order graph ODE allows the generative
model to explore long-term dependency, which enhances
model expressivity.

Effect of Different Condition and Prediction Lengths.
Finally, we analyze the prediction performance with regard
to various condition lengths and prediction lengths. In par-
ticular, we vary the condition length and prediction length in
{10, 20, 30, 40, 50,60} and {10, 20, 30}, respectively. The
compared results of CG-ODE and HOPE on Social Network
is shown in Figure 2. It can be seen that our HOPE achieves
better performance in most cases in terms of MAPE, which
validates the superiority of our HOPE. In addition, we can
find that when conducting the long-run prediction, the gap
between CG-ODE and HOPE tends to be larger in most
cases. Perhaps the reason is that the long-run prediction is
more dependent on high-order dependency which can be
captured in our HOPE.
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Table 4. Ablation study on Social Network. Bold numbers indicate the best performance whereas underline numbers indicate the second

best performance.

Methods 10 20 40 Avgence
MAE RMSE MAPE ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE
HOPE w.o. FC  0.09910 0.1222 0.1172 | 0.1856 0.2669 0.2624 | 0.3934 0.5360 0.5421 | 0.2260 0.3084 0.3072
HOPE w.o. FO 0.08477 0.1334 0.1237 | 0.2018 0.2761 0.2835 | 0.3244 0.5163 0.4935 | 0.2037 0.3086 0.3002
HOPE w.o. SC  0.08322 0.1169 0.1122 | 0.1520 0.2384 0.2682 | 0.3167 0.4700 0.5782 | 0.1840 0.2751 0.3195
HOPE w.o. SO 0.08067 0.1212 0.1099 | 0.1793 0.2497 0.2223 | 0.3029 0.4847 0.6470 | 0.1876  0.2852 0.3264
HOPE w.o. E  0.09612 0.1358 0.1249 | 0.1879 0.2648 0.2616 | 0.3612 0.6249 0.5238 | 0.2151 0.3418 0.3034
Full Model 0.07958 0.1167 0.1050 | 0.1543 0.2203 0.2174 | 0.3019 0.4873 0.4867 | 0.1786 0.2748 0.2697
2000 rort 300 or variants: (1): HOPE w.o. FC. It removes the first-order spa-
16004 CG-ODE 20 G- ODE tial convolution and only utilizes the second-order spectral
convolution in the encoder. (2) HOPE w.o. SC. It removes
o 12004 o 1801 the second-order spectral convolution and only utilizes the
z w00 z 0] first-order spatial convolution in the encoder. (3) HOPE
w.o. FO. It removes the term of the first-order derivative by
4001 60 setting v in Equation 15. (4) HOPE w.o. SO. It removes
the term of the second-order derivative in Equation 15. (5)
0 102 10° 107 0 102 10° 107 HOPE w.o. E. It does not model the evolution of edge

Tolerance Tolerance

Figure 3. NFEs comparison between CG-ODE and HOPE on
COVID-19 (left) and Social Network (right). Our model out-
performs CG-ODE in terms of efficiency.

4.3. Efficiency Analysis

In this part, we evaluate the efficiency of two graph ODE
models (i.e., CG-ODE and HOPE) by comparing the num-
ber of function evaluation (NFE) on forward or backward
process. A higher NFE means a lower convergence rate
in ODE solving process, which brings more computational
resources consumption and more time cost. In particular,
we vary the error tolerance using the same ODE solver to
show the efficiency of these methods under different circum-
stances. The results on COVID-19 and Social Network are
shown in Figure 3 and we can observe similar results on
Spring Oscillator. From the results, it can be observed that
the NFEs of both HOPE and CG-ODE both rise when the
tolerance decreases. Since a lower error tolerance usually
indicates a high accuracy, we can conclude a trade-off be-
tween the prediction accuracy and the computation cost. In
addition, we can observe that HOPE requires fewer NFEs
when the tolerance is the same, which indicates that HOPE
is more efficient with a higher convergence rate using the
second-order ODEs. This conclusion is also in accordance
with the acceleration of the momentum updating algorithm.

4.4. Ablation Study

Furthermore, we conduct extensive ablation experiments
to demonstrate the performance of the key components in
HOPE. To be specific, we introduce the following model

evolution using neural ODEs.

Table 4 shows the compared results on Social Network. We
can have several observations as follows: (1) HOPE is su-
perior to HOPE w.o. FC and HOPE w.o. SC mostly, which
indicates that both first-order spatial and second-order spec-
tral graph convolution is indispensable for learning complex
spatio-temporal correlations in the temporal graph. (2) With-
out the second-order ODEs, HOPE w.o. SO achieves worse
performance compared with our full model, which indicates
the importance of capturing long-term dependency in com-
plex dynamical systems. (3) Our full model outperforms
HOPE w.o. FO consistently, which implies that modeling
the short-term dependency in Equation 15 is also benefi-
cial to the performance. (4) The performance achieved by
HOPE w.o. E is much poorer than the full model, which
demonstrates the importance of modeling the evolution of
edges in dynamical interacting systems.

4.5. Sensitivity Analysis

In this part, we study how the hyperparameters (i.e., number
of the convolution layer K and coefficient -y in Equation 15
influence the prediction performance of our HOPE in Figure
4 with varying prediction lengths. To begin with, we vary the
layer number K with all other parameters fixed and reveal
the performance in the left column. From the results, it can
be observed that the performance is optimal with a one-layer
twin graph encoder. Perhaps the reason is that the encoder
could suffer from the over-smoothing issue. Furthermore,
we analyze the influence of the coefficient «y in the right
column. It can be found that when + is zero, the performance
tends to decrease, which validates the necessity of modeling
the first-order dependency once more. Moreover, our HOPE
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Figure 4. Performance sensitivity of K and v on Social Network
with different prediction lengths.

can obtain considerable performance when + is around —3.
Therefore, we set K and y to 1 and —3, respectively.

5. Related Work

Neural Ordinary Differential Equation. Motivated by the
fact that ResNets can be formalized as discretized Ordinary
Differential Equations (ODEs) (Chen et al., 2018), a num-
ber of neural ODE approaches have been developed (Chen
et al., 2018; Dupont et al., 2019), which characterize a e
continuous-depth model by parameterizing the derivative of
the hidden state. In recent years, numerous attempts have
been made to increase the expressive capability of neural
ODEs. For instance, Augmented Neural ODEs (Dupont
et al., 2019) enlarge the embedding space, which enables
neural ODEs to learn features with a different topology from
the input space. In addition, a variety of techniques have
integrated neural ODEs into GNNs (Xhonneux et al., 2020;
Zhang et al., 2022; Qin et al., 2023). However, these mod-
els focus on designing continuous models to release over-
smoothing on static graphs. Even worse, they do not study
the transferability of the inductive bias to changing graph
structure. In contrast, our work targets at dynamical inter-
acting systems with complex spatio-temporal relationships
and improves the performance on dynamic graph structures
with coupled ODE systems.

Interacting Dynamical Systems Analysis. In recent years,
learning from interacting dynamical systems has attracted
considerable interest for a variety of applications, including
traffic flow forecasting (Wang et al., 2020; Lan et al., 2022;
Zhao et al., 2023) and stock price prediction (Deng et al.,
2019; Sawhney et al., 2021; Yoo et al., 2021). To collect
complex interacting information, a variety of GNN-based
algorithms have been developed, which integrate GNNs
with various sequential methodologies (Pan et al., 2021;

Yuan et al., 2021; Chen et al., 2022; Dai et al., 2020; Sun
etal., 2019; Guo et al., 2019). These approaches typically
generate graphs based on distance and learn temporal and
spatial dependence using various architectures in dynamical
systems. In spite of their performance, the bulk of these
works depend on the premise that the observation of each
item is available at each timestamp. Nonetheless, this as-
sumption cannot be compatible with the ground truth in
practice (Huang et al., 2020; 2021). To address this issue,
we investigate the architectures of neural ODEs for model-
ing interacting dynamics and offer a model HOPE to capture
high-order dependency in dynamical interacting systems.

6. Conclusion

This paper studies the problem of modeling dynamic inter-
action systems and introduce a novel graph ODE method
named HOPE to tackle it. The core of our HOPE is to
learn high-order relationships from dynamic interaction
data. HOPE adopts a graph encoder, which consists of two
branches to capture complex spatio-temporal relationships
in complementary manners. More importantly, it utilizes
second-order graph ODE functions which model the dynam-
ics for both nodes and edges based on their embeddings
respectively, which enables efficient learning of long-term
dependencies from complex dynamical systems. Experi-
ment results on a variety of datasets demonstrate the effec-
tiveness of our proposed method in terms of both accuracy
and efficiency.

Limitations. While the incorporation of high-order dy-
namics in our HOPE model offers advantages in terms of
improved performance and faster convergence, it also comes
with the trade-off of increased computational space, partic-
ularly when implemented through augmented first-order
ODEs. As a result, our proposed HOPE model may en-
counter scalability challenges when applied to large-scale
dynamic systems. In some cases, even more complex higher-
order dynamics may be present, which cannot be adequately
captured by our second-order model. This limitation indi-
cates that further enhancements may be necessary to address
such complexities in specific applications. To overcome
these limitations, our future research will concentrate on
refining the implementation using parallel optimization tech-
niques, which could help mitigate the scalability challenges.
Furthermore, expanding the model to accommodate more
generalized higher-order dynamics will enhance its versatil-
ity for a wider spectrum of dynamical systems.
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A. Proof of Lemma 3.1.

Proof. Assuming R'*! := (Z!*! — Z') /v/Xand B := 1 — /X where v is a given coefficient, the momentum updating
algorithm can be rewritten as follows:

R = (1 — VAR + VA(o((DY)TA'ZIW,) — ZY). (22)
When A — 0, we have
dz?
— —R! 23
7 ; (23)
th t =1 At rpt t
W:*’YR + (D) A" Z'W,,) — Z7), 24)
Finally, we combine Equation 23 and Equation 24 by deleting R’ as below:
dZZt dZt Nt\—1 At rzt t
O

B. Proof of Lemma 3.2.

Proof. A coupled first-order ODE can be directly obtained from Equation 23 and Equation 24. Further, we can augment the
node state representation matrix by F* = [Z* Z!] and F' = [Z', Z']?, resulting in a first-order ODE with the variable
Ft. O
C. Proof of Lemma 3.3.

We first introduce a theorem and then finish the proof.

Theorem C.1. (Picard-Lindelof theorem) D C R x R™ denotes a closed rectangle containing the point, i.e., (to,yo) € D.
[ D — R"™ denotes a function which is continuous with respect to t and Lipschitz continuous with respect to y. Following
this, some positive € > 0 exists such that the initial value problem, i.e.,

y'(t) = f(t,y(t), v (to) = vo (26)

has a unique solution y(t) on the interval [ty — &,t9 + €] .

Proof. Let the message passing matrix be

Mi, ... My
M= (Dt)—lAt _ : : 7 27)
Mi, ... Miy
the weight matrix is
Wip ... Wi
W, = : (28)
Wa Waa
Then, we define the transformation function
S: RVX4 - RN (29)
Z (z9)"
Z' = > : : (30)
ZN (i)

2t . dzt >t . d*zt
Z'=*-and Z" == 5
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and transform the augmented ODE Equations 23 and 24 to be

{ 4 S(R') = —~S(R') — S(Z') + ReLU(S(M' Z'W,)) D

where (M'Z'W,,);; = Z?f:l Zfz\’:l M{, Z g, W;.
S(ZY)
S(R)
For any two solutions Y, Yy, denote AR! = S(R")y; — S(R")2;, AZ! = S(Z")1; — S(Z")2;. Note [ReLU(x) —
ReLU(y)| = |z — y*| < |z — y|. Therefore, we have

Now, let Yt = < ) € R2NVdx1 e get the ODE equation X~ = f(¢, Y'*). It is obvious that f is continuous w.r.t t.

dt

Nd
IF(YV) = F(Y)I5 < D (ARD? (32)
i=1
Nd
+3)  [Y(AR)? + (AZ))? (33)
i=1
+ N2 (M)W (2L, — 2L, )] (34)
a,b
Nd
<) [(1+39)(AR)? (35)
i=1
+ (34 3N**M*W?)(AZ])?] (36)
< LYY - Y53 (37)
where M = max; ; [Mf;|, W = max;; |[Wi|, L = max(y/1 + 372, v/3 + 3N3d3M2W?2). Hence, we prove that f is
Lipschitz-continuous in y, then by Picard—Lindelof theorem, we prove the uniqueness of the solution. O
D. Algorithm

We summarize the overall framework of HOPE in Algorithm 1.

Algorithm 1 Learning Algorithm of HOPE
Input: Object trajectory sequence X, adjacency matrix sequence A
Output: The parameters in both the encoder and the decoder.

1: Initialize model parameters.
2: while not convergence do
3. Select a batch of training sequences;
for each training sequence do
Construct temporal graph using Equation 3;
Feed the sequence into the twin encoder to obtain the posterior distribution Equation 12;
Initialize the node and edge latent states using Equation 13 and Equation 14;
Solve the second-order ODE system in Equation 15, Equation 16 and Equation 17,
Feed the latent states into a decoder and obtain the prediction using Equation 19;
10:  end for
11:  Calculate ELBO in Equation 21;
12:  Update parameters using back propagation;
13: end while

R A A

E. More Related Work

Graph Neural Networks. Graph neural networks (GNNs) have been shown an effective tool for representation learning
in relational data (Wang et al., 2021; Fan et al., 2019; Zhao et al., 2022; Ju et al., 2023a;b). They have been extensively
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explored in a range of applications including node classification (Wu et al., 2020; Zhao et al., 2021), link prediction (Qu
et al., 2020; Benson & Kleinberg, 2019), and recommendation systems (He et al., 2020; Wang et al., 2019). GNNs can
be roughly categorized into spectral methods (Defferrard et al., 2016; Bruna et al., 2013; Henaff et al., 2015; Zhao et al.,
2022) and spatial methods (Kipf & Welling, 2017; Velickovi¢ et al., 2018; Xu et al., 2019). Spectral methods seek to filter
graph signals using graph Laplacian, which extends the convolution theory to graphs. Typically, these algorithms construct
localized filters in the spectral domain using graph Fourier transform. In contrast, spatial methods adhere to the paradigm
of message passing, where each node collects information from its neighborhood, followed by an aggregation operation
to iteratively update the node representation. Further research investigates adaptive aggregation operators to enhance the
model performance (Hamilton et al., 2017; Veli¢kovi¢ et al., 2018; Xu et al., 2019; Kim & Oh, 2022). For instance, Graph
Attention Network (Velickovic et al., 2018) (GAT) uses the attention mechanism to determine the significance of neighbors
to the central node. However, these methods could fail to capture the high-order non-neighborhood information in the
spectral domain (Balcilar et al., 2021). In this paper, we combine the advantages of both worlds. In particular, our twin graph
encoder leverages both spatial and spectral graph convolution to investigate complex high-order correlations in dynamical
interacting systems.

F. Details of Datasets

We utilize the COVID-19 data from the Johns Hopkins University (JHU) Center for Systems Science and Engineering (Dong
et al., 2020) to build our node feature data. We selected five dynamic features along with one static feature as object
attributes. Detailed information about these features is introduced below.

* Population: The number of population in each state.
* Confirmed-Number: The number of state increased confirmed cases in each day.

* Deaths-Number: The number of state increased deaths in each day.

Recoverd-Number: The number of state increased recovered cases in each day.
* Mortality-Rate: The number of state cumulative deaths / the number of state cumulative confirmed cases each day.

» Testing-Rate: The number of state cumulative test results per 100,000 persons in each day.

Then we manage to generate training and testing samples. To capture dynamic spatial correlations between each object, the
Dynamic Time Warping (DTW) algorithm (Berndt & Clifford, 1994) is employed for similarity measurement of states. To
be specific, for each time ¢ the edge weight of two nodes is measured with their feature series in [t — A, t] by the DTW
algorithm. Social Network models opinions migrating from individuals to individuals in a social network. Following (Huang
et al., 2021), the number of individuals and the noise parameter is set to 80 and 0.2, respectively. The sparsity parameter is
set to e~%4, For Spring Ocsillator, we set the number of balls to 50 and simulate the data for total 240 timestamps. The
side length of the box is set to 2 and the initial locations of these balls follow uniform distribution in the area inside the box.
Every two balls have a probability of 0.5 to be connected together with a spring, and we also ensure that every ball has at
least one spring on it. As we discussed before, each training or testing sample is a continuous time series composed of the
condition part and prediction part. The conditional part is model input and the prediction part is used for supervising or
evaluating. As a result, it is sufficient to ensure no overlapping between the training sample and the testing sample.

To be specific, we split feature data in COVID-19, a 266-days time series, into a 233-day part and 31-day part. The training
samples and validating samples are extracted from 233-day part, and testing samples are extracted from 31-day part. The
similar procedure is deployed on Social Network and Spring Oscillator. Socail Network is divided into a 320-day part and a
80-day part, and Spring Oscillator is divided into a 500-stamp part and a 50-stamp part.

To evaluate our HOPE and baselines, we select several testing samples and adopt the average performance among the
samples. For example, on the 2-week-ahead prediction task in COVID-19, we select Dec.02-Dec.15, Dec.10-Dec.22,
Dec.17-Dec.29 as testing samples. The three metrics, i.e., MAE, RMSE and MAPE are then computed on each sample.
Finally, we take the average on these samples to report.
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G. Details of Baselines

The details of baselines are elaborated as follows:

* LSTM (Hochreiter & Schmidhuber, 1997): It is a classic recurrent neural network (RNN) that learns the dynamics of the
sequence, without considering the interaction between nodes.

* GRU (Cho et al., 2014): It is another variant of RNNs, which involves two gates to model temporal evolution.

* NODE (Chen et al., 2018): It is the first continuous-depth neural network model which is solved by the back-propagatable
ODE solver.

» HBNODE (Xia et al., 2021): It employs a heavy ball ODE to accelerate the forward and back propagation of the ODE
model.

* DGCRN (Li et al., 2022): It constructs the dynamic graph and utilizes a graph convolution recurrent unit to capture the
real-time spatial-temporal dependencies in the dynamical system.

* MPNODE (Gupta et al., 2022): It combines augmented ODE with message passing mechanism.

* CG-ODE (Huang et al., 2021): It is a graph ODE model that integrates the evolution of both edges and nodes into a
holistic ODE system.

H. Additional Experiments

Figure 5 reports the performance sensitivity of the number of the convolution layer /K and the balance coefficient «y in terms
of MAPE. We can observe a similar tendency that the performance is optimal with K set to 1 and ~y around —3.

0.25 0.25
0.20 - 0.20 +
2 0151 0.15 1 pred 10
E pred 20
0.10 ~ 0.10 {
0.05 + 0.05 -
1 2 3 4 103 -1 0 1 3 10
Number of convolutional layer K Balance coefficient y

Figure 5. Performance sensitivity on Social Network in terms of MAPE.
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