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ABSTRACT

Capturing spatial relationships from visual inputs is a cornerstone of human-like
general intelligence. Several previous studies have tried to enhance the spatial
awareness of Vision-Language Models (VLMs) by adding extra expert encoders,
which brings extra overhead and usually harms general capabilities. To enhance the
spatial ability in general architectures, we introduce Visual Spatial Tuning (VST), a
comprehensive framework to cultivate VLMs with human-like visuospatial abilities,
from spatial perception to reasoning. We first try to enhance spatial perception in
VLMs by constructing a large-scale dataset termed VST-P, which includes 4.1M
samples spanning 19 skills across single view, multiple images, and videos. Then,
we present VST-R, a curated dataset with 135K samples that instruct models to
reason in space. In particular, we adopt a progressive training pipeline: supervised
fine-tuning to build foundational spatial knowledge, followed by reinforcement
learning to improve spatial reasoning abilities further. Without the side-effect
to general capabilities, the proposed VST consistently achieves state-of-the-art
results on several spatial benchmarks, including 34.8% on MMSI-Bench and
61.2% on VSI-Bench. It turns out that the Vision-Language-Action models can be
significantly enhanced with the proposed spatial tuning paradigm, paving the way
for more physically grounded Al

1 INTRODUCTION

Vision-Language Models (VLMs) (Achiam et al., 2023; Comanici et al., 2025; Guo et al., 2025b;
Wang et al., 2024b; Chen et al., 2024¢) have achieved remarkable success across a wide range
of domains, such as visual question answering (Yue et al., 2024; Liu et al., 2024c), document
understanding (Liu et al., 2024d; Mathew et al., 2021), and autonomous GUI agents (Xie et al., 2024).
However, these models exhibit limitations in capturing spatial relationships from sequential visual
observations (Yang et al., 2025c;a). This spatial understanding ability is a foundational component
of general intelligence, presents across a broad spectrum of animals, including humans (Hegarty
et al., 2006; Piaget, 2013). The deficiency significantly constrains current VLMs to effectively
interact with the physical world, thereby limiting their application in fields such as robotics (Brohan
et al., 2022; Zitkovich et al., 2023), autonomous driving (Tian et al., 2024), and augmented/virtual
reality (AR/VR) (Grauman et al., 2022). To mitigate this issue, several studies have explored
the incorporation of additional 3D-aware expert encoders (Fan et al., 2025; Bigverdi et al., 2025).
However, this approach often introduces extra complexity and can negatively impact the general
capabilities of the models. Alternatively, other research efforts have focused on the development of
specialized datasets (Chen et al., 2024a; Daxberger et al., 2025; Zhang et al., 2025a; Xu et al., 2025b;
Yin et al., 2025; Ouyang et al., 2025), aiming to enhance the spatial understanding abilities of VLMs.

Nevertheless, these arts have typically concentrated on limited or isolated aspects of spatial under-
standing. As summarized in Table 1, some studies focus only on the supervised fine-tuning stage,
while others are restricted to the single scenario, overlooking the diversity of visual input. To this
end, we introduce a comprehensive and integrated framework, termed Visual Spatial Tuning (VST),
which is designed to cultivate human-like visuospatial abilities in VLMs holistically. As illustrated in
Figure 1, VST effectively augments the spatial capabilities of existing VLMs through the construction
of an extensive and carefully curated dataset. This enhancement proves advantageous for downstream
Vision-Language-Action (VLA) tasks.

To develop the VST, we deconstruct spatial ability into two key components: spatial perception
and spatial reasoning. We define spatial perception as the ability to discern the spatial relationships
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Table 1: Spatial dataset comparison. Figure 1: Overview of our VST framework.

between objects, and spatial reasoning as the ability to build and mentally manipulate an internal
model of an environment. These two components correspond to the concepts of perceptual and
conceptual spatial ability, respectively, as proposed in cognitive science (Piaget, 2013). Effective
spatial perception requires the model to possess foundational spatial knowledge—specifically, the
ability to identify both “what is it?” and “where is it?”” within its peripersonal space. While existing
VLMs can accurately recognize objects and locate them within pixel space using 2D points or
bounding boxes (Wang et al., 2024b; Bai et al., 2025; Deitke et al., 2025), their ability to determine
object positions in 3D space remains limited (Ma et al., 2024; Tong et al., 2024). Therefore, we
introduce the VST-Perception (VST-P) dataset, comprising 4.1 million samples across 19 diverse tasks.
It incorporates single-image data to facilitate VLMs in discerning spatial relationships beyond the
pixel level, which is an essential step towards bridging the gap between pixel space and 3D space. In
addition, multi-image data is included to enhance the ability to comprehend spatial relationships from
multiple viewpoints, and video data enables the capture of spatiotemporal relationships. Collectively,
this dataset provides a comprehensive foundation for advancing spatial perception in VLMs.

Beyond foundational spatial perception, we expect the model to mentally represent spatial relation-
ships beyond its own body, thereby engaging in advanced spatial reasoning. To this end, we introduce
the VST-Reasoning (VST-R) dataset, which comprises samples featuring chain-of-thought (CoT)
processes to facilitate the spatial reasoning ability, as well as samples with rule-checkable answers
to further enhance its reasoning capabilities. In spatial reasoning, we place particular emphasis
on multi-image scenarios, as these necessitate the model’s ability to identify connections among
objects and cameras, and to mentally reconstruct spatial layouts. However, when generating spatial
CoT, the limited multi-view spatial understanding of current large VLMs (Yang et al., 2025a;c)
poses challenges for directly synthesizing accurate layout descriptions and coherent reasoning chains.
Drawing inspiration from human cognition, we propose prompting with Bird’s-Eye View (BEV)
annotation. It leverages a top-down perspective to explicitly convey spatial relationships between
objects, thereby improving the quality of both generated layout descriptions and reasoning process.

Building upon the introduced VST-P and VST-R datasets, we propose to inject visual spatial knowl-
edge into VLMs through supervised fine-tuning and further enhance spatial reasoning capabilities via
reinforcement learning (RL). This progressive approach mirrors the development of human spatial
intelligence (Piaget, 2013), i.e., establishing a foundation in spatial perception before developing
higher-level spatial reasoning abilities. As a result, the VST framework consistently achieves state-
of-the-art performance on multiple spatial benchmarks, attaining 86.5% on CV-Bench (Tong et al.,
2024), 34.8% on MMSI-Bench (Yang et al., 2025¢), and 61.2% on VSI-Bench (Yang et al., 2025a),
while preserving the general multi-modal capabilities. Furthermore, the spatial proficiency acquired
via VST demonstrably enhances broader VLA tasks. For instance, Qwen2.5VL-3B (Bai et al., 2025)
fine-tuned on our VST yields an 8.6% improvement on the LIBERO benchmark (Liu et al., 2023).

2 DATASET

In this section, we introduce the VST dataset, specifically developed to enhance the spatial perception
and reasoning capabilities of VLMs. First, we construct a large-scale dataset, VST-Perception
(VST-P), to equip VLMs with comprehensive spatial knowledge. Building upon this foundation, we
further create the VST-Reasoning (VST-R) dataset to enable VLMs to reason in space.
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(a) Perception data distribution. (b) Reasoning data distribution
Figure 2: Overview of the VST dataset. (a) The distribution of VST-P, which is used for SFT. (b) The
distribution of VST-R, which is used for CoT cold start and RL. ‘SR’ denotes spatial reasoning, and
‘GR’ denotes general reasoning.
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Figure 3: Data engines of VST (left) and the capabilities they enable in VST-Model (right).
2.1 VST-PERCEPTION

As illustrated in Figure 2a, the VST-P dataset contains 4.1 M samples across 19 different tasks for
supervised fine-tuning, covering three primary vision scenarios, i.e., single-image, multi-image, and
video. Specifically, single-image data constitutes the majority (64.8%), multi-image data accounts
for 33.1%, and video data makes up the remaining small portion (2.1%).

Single-image. Since monocular images are easily obtainable, single-image data constitutes the
largest category. This category primarily encompasses tasks such as relative depth estimation
(2.5D), 3D object detection, and distance estimation. These tasks bridge the gap between 2D pixel
coordinates and the 3D physical world, thereby facilitating the acquisition of spatial knowledge and
the development of spatial awareness in VLMs. To collect this data, we create dedicated data engines
to gather data with depth maps and data with 3D bounding box annotations, as shown in the top left
of Figure 3. The depth data mainly comes from public datasets and synthetic data. The open-source
data originates from ScanNet++ (Yeshwanth et al., 2023), which is collected using real-world devices,
and Hypersim (Roberts et al., 2021), which is generated by a simulator. To increase the diversity of
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depth data, we use a depth expert model (Yang et al., 2024b) to create pseudo labels for wild images
from the COCO dataset (Lin et al., 2014). After obtaining the depth maps, we convert them to the
same coordinate system and generate depth-related visual instruction samples. The reference formats
for depth-related samples encompass text-, point-, box-, and visual-prompt-based representations.
These diverse formats enable VLMs to infer the relative distance from objects to the camera plane.

For the 3D data engine, we use two main approaches. The first approach relies on open-source datasets,
including ScanNet (Dai et al., 2017), ARKitScenes (Baruch et al., 2021), Hypersim (Roberts et al.,
2021), SUN-RGBD (Song et al., 2015), Matterport3D (Chang et al., 2017), and Objectron (Ahmadyan
et al., 2021). Since the 3D bounding boxes from ScanNet and Matterport3D are axis-aligned, we use
the corrected versions from EmbodiedScan (Wang et al., 2024c) to ensure greater accuracy. Notably,
each dataset is designed for distinct applications, provides visual data in either video or image format,
and annotates objects in varying coordinate systems. Therefore, we standardize all collected 3D
bounding boxes to a unified camera coordinate system and process the raw visual data to reduce
repetition and occlusion. The second approach is generating data using a simulator. Specifically,
we use [saac Sim to synthesize data, and scenes are from the GUTopia (Wang et al., 2024a). With
the large-scale data with 3D bounding boxes, we create visual instruction samples for 3D object
detection, 3D grounding, attribute measurement, and distance estimation tasks.

In the 3D object detection task, we predict the 9-DoF bounding box in the camera coordinate system.
Specifically, the 3D bounding box is defined by (x, vy, z, 21, yi, 21, 0, y, ), where (x,y, z) are the
box center, (7, y;, z;) are the length along the X, Y, and Z axes, and (p, y, r) are the rotation angles.
However, a significant challenge in utilizing datasets aggregated from disparate sources is the inherent
variability in camera intrinsics, which introduces geometric inconsistencies that can hinder model
generalization and scalability. To mitigate this issue, we introduce a Field of View (FoV) unification
strategy. This approach normalizes the input data by projecting all images onto a virtual camera with
a predefined, uniform FoV. This process creates a standardized visual input, akin to data captured by
a single virtual camera, thereby eliminating intrinsic-related discrepancies for the 3D object detection
task. In addition, when creating the instruction data, we mix single-turn and multi-turn formats. The
multi-turn format data allows each subsequent box to reference the previous one during training,
helping the model learn the layout information.

Furthermore, if we rely solely on template-based 3D object detection data for training, the VLM may
overfit to the specific numerical values and fail to generalize spatial understanding. Therefore, to help
the VLM better comprehend spatial information at the language level, we introduce the scene caption.
Unlike general captions, which primarily describe image content, scene captions focus on the layout
information and spatial relationships within the image. To obtain such scene captions, we prompt
a large VLM (Guo et al., 2025b) with ground-truth 3D bounding boxes and object relationships
extracted from the scene graph (Zhu et al., 2023b). The resulting captions not only describe the
objects present in the image, but also provide detailed layout information and spatial arrangements.

Multi-image. The second category comprises multi-image data, which supports tasks such as multi-
view 3D object detection, multi-view correspondence, object-object relationship understanding, and
camera motion analysis. These tasks are designed to enhance VLMs in comprehension of spatial
relationships across different viewpoints. As illustrated in the third data engine of Figure 3, we sample
multi-image data from RGB-D scans sourced from ScanNet (Dai et al., 2017), ScanNet++ (Yeshwanth
etal.,2023), and ARKitScenes (Baruch et al., 2021). For correspondence tasks, we utilize point clouds
and depth maps from various viewpoints to identify matched points. To unify object information
across multiple images, we transform all objects into the camera coordinate system of the first image.
For camera motion data, we represent camera poses using Euler angles. After these unification
steps, we generate template-based visual instruction samples. In the multi-image scenario, we also
create the scene caption to reconstruct the scene layout by text and describe the spatial information
represented by multiple RGB images.

Video. The third category consists of video data, which enables the model to capture spatiotemporal
relationships through tasks such as identifying the order of appearances and counting objects. To
construct the video dataset, we employ the same data engine used for multi-image data. The only
difference is that we add the appearance time for each object. Furthermore, we enhance the video
dataset by sampling two-thirds of the data from VLM-3R (Fan et al., 2025), reorganizing it into a
multi-turn format rather than a single-turn format.
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With the introduction of the VST-P dataset, the VLM exhibits significantly enhanced fundamental
capabilities in comprehending spatial relationships. Notably, there is a ~20% improvement on
CVBench-3D (Tong et al., 2024), a ~5% increase on BLINK (Fu et al., 2024), and a ~16% gain on
VSIBench (Yang et al., 2025a), as illustrated in Tables 5, 6, and 7.

2.2 VST-REASONING

As shown in Figure 2b, the VST-Reasoning (VST-R) dataset contains 135K samples with two parts:
one part includes CoT steps to teach the model how to reason, and the other part provides rule-
checkable data used in online RL to improve the reasoning ability. Besides spatial data, both parts
include general data to preserve the original general abilities. Most spatial reasoning samples come
from multi-image scenarios, which require reconstructing scene details and inferring spatial relations.

For the spatial reasoning samples with the CoT process, we develop a data engine, as illustrated in
the bottom left of Figure 3. Specifically, we sample data from template-based question-answer pairs
and employ a large VLM (Guo et al., 2025b) as the teacher to generate detailed CoT reasoning steps.
Recognizing that the multi-view spatial understanding of the current large VLMs remains limited
relative to their general multi-modal abilities, we introduce a novel strategy named prompting with
BEYV annotation. Specifically, this method leverages ground-truth 3D bounding boxes to visualize
the BEV image of the scene represented by multiple images. During generation, we provide RGB
images, the corresponding BEV visualizations, detailed object information, and question-answer
pairs to prompt the teacher VLM. The BEV images serve as an auxiliary spatial prompt, allowing the
teacher model to better capture spatial relationships compared to using only RGB images. As a result,
the generated reasoning processes are more coherent and accurate. For the CoT patterns, we adopt a
textual representation rather than 3D bounding boxes (Ma et al., 2025) or cognition maps (Yin et al.,
2025), as the textual format offers greater generality. In particular, during the reasoning process, the
model first reconstructs the spatial layout using text, termed RT-CoT, and then infers the answer.

With the VST-R dataset, the VLM demonstrates significantly enhanced spatial reasoning abilities. As
illustrated in Table 14, there is an 8.9% improvement on MMSI-Bench (Yang et al., 2025c¢).

3 METHOD

Our target is to equip general VLMs with 3D knowledge for better spatial understanding and reasoning
from common visual inputs. Therefore, we chose Qwen2.5-VL (Bai et al., 2025) as the base model
because it can accurately identify objects and locate them in pixel space. It follows the widely
used “ViT-MLP-LLM” paradigm: a pre-trained Vision Transformer (ViT) is combined with a large
language model (LLM) via an MLP merger.

3.1 TRAINING STRATEGY

We continued training the base model to endow it with spatial perception and reasoning capabilities.
The training process can be divided into three stages.

Stage 1: Supervised Fine-tuning. In this stage, we incorporate the foundational spatial understanding
into the base model with the proposed VST-P dataset. To maintain the original capabilities of the base
model, we also incorporate a portion of general multi-model data from open-source datasets (Li et al.,
2024a; Deitke et al., 2025). Assume the base model is parameterized by €, which can simultaneously
process text, images, and video. For any given training sample x = [z1,...,z] of length L,
we employ visual tokens as the conditioning context for text prediction and adopt the standard
auto-regressive objective:

L
Lo(x)=— Y wilogps(z; |1, .. zi1), (1)

1=2,x; Etext

Stage 2: CoT Cold Start. This stage leverages chain-of-thought (CoT) data to instruct the model
utilizing reasoning patterns. For example, in spatial reasoning scenarios with limited viewpoints,
the model first reconstructs the layout of the scene using text, and then reasons through the given
question. To preserve the model’s reasoning ability on general tasks, we also take some general
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reasoning data. The training objective remains the same as in Equation 1. The resulting model from
this stage has basic spatial reasoning capabilities (Table 9), which serves as the initial RL actor.

Stage 3: Reinforcement Learning. In this stage, we employ RL to further enhance the spatial
reasoning capabilities of the stage-2 model. For this purpose, we utilize the Group Relative Policy
Optimization (GRPO) algorithm (Shao et al., 2024), which bypasses the need for a value model
by computing the relative advantage of each response within a group of responses to the same
question. To facilitate this process, we curated a verification dataset comprising tasks related to
spatial understanding, 3D object detection, and general multi-modal understanding. This dataset is
categorized into four task types: multiple-choice, open-ended, OCR, and 3D detection. In the GRPO
framework, we employ a mixed rule-based reward to evaluate the generated responses. For a given
response ¢ and its corresponding ground truth y, the overall reward function is defined as:

R(y, 7)) = Race (y, ?J) + Rformat(y7 Z}) 2)

This function combines an accuracy reward, Rc.(, -), which scores the correctness of the response,
with a format reward, Roma (-, ), which incentivizes adherence to a specified output format. For
multiple-choice, open-ended, and OCR tasks, the accuracy reward is calculated using standard
evaluation protocols (Goyal et al., 2017; Singh et al., 2019; Mathew et al., 2021; Masry et al., 2022).
For 3D object detection tasks, the reward is a linear combination of the 3D Intersection over Union
(IoU) score and the F1 score:

R3a(y,9) = aRiou(y, 9) + (1 — ) Rr1(y, 7)), (3)

where « is a hyperparameter that defaults to 0.5. In detail, given IV predicted and M ground-truth
3D bounding boxes, we first establish a bipartite matching (Kuhn, 1955) between the predictions and
the ground truth; Ry (-, -) is then calculated as the average IoU of the successfully matched pairs.
To calculate R (-, -), we define a true positive as a match with an IoU score exceeding a threshold
of 0.25. Following this stage, the model exhibits superior spatial reasoning abilities relative to the
cold-start model, as shown in Table 14.

3.2 EXPANDING TO VISION-LANGUAGE ACTION MODEL

With the spatial-enhanced model, a natural question emerges: can the integration of spatial pri-
ors improve the performance of Vision-Language-Action (VLA) models in robotic manipulation
tasks? To this end, we adapt the pretrained VLM into a VLA model, following the methodology
of OpenVLA (Kim et al., 2024). Specifically, we formulate the action prediction problem as a
vision-language task where, given an observation image and a natural language instruction, the model
auto-regressively predicts the actions. To accomplish this, we discretize the action space into 256
bins, where each bin corresponds to a special token in the language tokenizer. With the actions
tokenized, the entire model is fine-tuned using the objective function defined in Eq 1.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

The training details can be found in Appendix C. For evaluation, we assess spatial understanding
across three distinct modalities: single-image ability is benchmarked with CV-Bench (Tong et al.,
2024) and 3DSRBench (Ma et al., 2024), multi-image ability with BLINK (Fu et al., 2024) and
MMSI-Bench (Yang et al., 2025¢), and video-based ability with VSI-Bench (Yang et al., 2025a). The
average score (S-AVG) across these benchmarks is used to quantify the overall spatial capabilities.
To verify the general ability, we also report the average score (M-AVG) across MMStar (Chen et al.,
2024b), MMBench (MMB) (Liu et al., 2024c), RealworldQA (RWQA) (x.ai, 2024), MMMU (Yue
et al., 2024), OCRBench (OCRB) (Liu et al., 2024d), and AI2D (Kembhavi et al., 2016). For 3D
object detection, we evaluate the model on the SUN RGB-D (Song et al., 2015) (Total3D version (Nie
et al., 2020)) and ARKitScenes (Baruch et al., 2021) (Omni3D version (Brazil et al., 2023)).

4.2 MAIN RESULTS
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Methods | CV 3DSR MMSI BLINK VSI | MMStar MMB RWQA MMMU OCRB AI2D
GPT-40 76.0 453 30.3 659 340 65.1 84.3 76.2 70.7 80.6 84.9
Gemini-2.5-Pro - - 36.9 70.6 - 71.5 90.1 78.0 81.7 86.6 88.4
Seedl.5-VL 852 61.6 29.7 72.1 41.5 77.8 89.9 78.4 719 86.1 87.3
LLava-OneVision-7B | 61.9  54.4 26.6 482 324 61.7 80.8 66.3 48.8 62.2 81.4
Qwen2.5-VL-3B 71.8  50.2 26.5 476 296 55.9 79.9 65.4 47.9 79.7 81.6
Qwen2.5-VL-7B 754 532 259 564  38.9 63.9 83.5 68.5 58.6 86.4 83.9
InternVL3-8B 81.0 55.7 25.7 555 421 68.2 83.4 70.8 62.7 88.0 85.2
MiMo-VL-7B-RL 823 50.8 29.3 624 372 65.1 84.4 68.2 66.7 86.6 83.5
SpaceR-7B 748 533 20.1 554 435 61.6 84.3 64.7 53.1 85.9 85.5
SPAR-8B 80.7 575 - 439 411 - 79.9 64.7 - - -

VST-3B-SFT (ours) | 844 54.1 30.2 59.1 57.9 58.0 80.9 68.4 452 83.7 82.5
VST-3B-RL (ours) 842 56.5 31.3 572 577 58.9 80.5 68.5 49.8 80.9 82.4
VST-7B-SFT (ours) | 85.5 54.6 32.0 62.1 60.6 63.1 83.3 72.2 50.6 85.5 84.9
VST-7B-RL (ours) 86.5 60.1 34.8 62.6 612 63.5 83.0 68.5 49.4 86.1 83.5

Table 2: Comparison with state-of-the-art VLMs on spatial benchmarks and general benchmarks.

Obj. Abs. Obj. Room Rel. Rel. Route Appr.
Count Dist.  Size Size Dist Dir. Plan Order

34.0 46.2 53 43.8 38.2 37.0 413 31.5 28.5
45.4 56.2 309 641 43.6 513 463 36.0 34.6

Methods

Avg. ‘

GPT-40 (Achiam et al., 2023)
Gemini-1.5-Pro (Team et al., 2024)

LLaVA-Video-7B (Zhang et al., 2025b) 35.6 48.5 14.0 47.8 242 435 424 34.0 30.6
Qwen2.5-VL-7B (Bai et al., 2025) 32.7 34.5 194 476 40.8 328 245 325 294
SAT-7B (Ray et al., 2024) - - - - - 473  41.1 37.1 36.1
InternVL-Spatial-8B (Deng et al., 2025) - 68.7 409  63.1 54.3 47.7 - 29.9 60.5
SpaceR-7B (Ouyang et al., 2025) 435 61.9 28.6 609 352 382 460 314 45.6
VILASR-7B (Wu et al., 2025) 45.4 63.5 344 60.6 30.9 489 452 30.4 49.2
VLM-3R-7B (Fan et al., 2025) 60.9 70.2 494 69.2 67.1 654 805 454 40.1
VST-3B-SFT (ours) 57.9 69.3 454 718 62.4 59.0 46.0 38.7 70.2
VST-3B-RL (ours) 57.7 66.6 450 728 60.9 59.9 476 40.7 68.3
VST-7B-SFT (ours) 60.6 72.0 444 743 68.3 59.7 558 44.9 65.2
VST-7B-RL (ours) 61.2 71.6 438 755 69.2 60.0 55.6 443 69.2

Table 3: Detailed comparison with state-of-the-art VLMs on VSI-Bench (Yang et al., 2025a).

aPs  As shown in Table 2, our VST models achieve competitive results

Methods |

Seedl.5-VL 335 across both spatial and general benchmarks. Notably, VST-7B-SFT
Gemini-2.0-Pro 325 and VST-7B-RL deliver leading performance on mainstream spatial un-
Gemf“f Robotics-ER | 48.3 derstanding tasks. On the CV-Bench (Team, 2024), VST-7B-SFT attains
ITI(’:FJI%%D %i:; 85.5, surpassing the proprietary Seed1.5-VL (Guo et al., 2025b) with

VST3B-SFT (ours) | 373 85.2. On MMSI-Bench (Yang et al., 2025c), VST-7B-SFT achieves
VST-3B-RL (ours) 40.1 32.0, outperforming GPT-40 (Achiam et al., 2023) at 30.3, while RL
zg;glsiﬂéﬁ‘r’;;) w5 further boosts VST-7B-RL to 34.8, approaching the proprietary state
- of the art Gemini-2.5-Pro (Comanici et al., 2025) at 36.9. Notably, the
Table 4: Comparison ygI.Bench (Yang et al., 2025a) highlights the strength of our models in
APy5 on SUNRGB-D.  yideo spatial understanding. VST-7B-SFT reaches 60.6, and VST-3B-
SFT achieves 57.9, substantially ahead of GPT-40 with 34.0. Detailed results are reported in Table 3.
Without any specialized 3D encoder, VST-7B-RL delivers the best overall average among comparable
VLMs, achieving 61.2. Although VLM-3R-7B (Fan et al., 2025) attains a similar score, it relies on
an additional expert 3D encoder, whereas VST operates with a standard vision backbone. Beyond the
overall average, VST shows clear strengths on fine-grained spatial sub-tasks: it leads in Object Size
and Room Size estimation, and performs strongly in Relative Direction and Appearance Order. In
addition, VST models provide a well-balanced performance on general benchmarks. These outcomes
highlight the clear advantage of VST in spatial perception and reasoning while maintaining strong
competitiveness in multi-modal understanding. Table 4 summarizes results on the SUN RGB-D (Song
et al., 2015) 3D object detection benchmark. VST-7B-SFT reaches 41.6 AP;s, while VST-7B-RL
improves to 44.2, ranking first among both general VLMSs (Comanici et al., 2025; Guo et al., 2025b)
and expert methods (Zhang et al., 2021; Nie et al., 2020). These findings show that VST, even without
auxiliary 3D encoders, can achieve strong 3D object detection purely through visual spatial tuning.

4.3 ABLATION STUDY

Ablation for the single-image data. Our baseline model is the Qwen2.5-VL-3B fine-tuned on a
general dataset of 800K samples. From this baseline, we incrementally introduced different types of
data to enhance its capabilities. As presented in Table 5, the incorporation of this data yields a 20.8%
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Data | S-AVG | Single-image | Multi-image | Video | M-AVG
\ | CV2D  CV-3D  3DSR | MMSI  BLINK | VSI |
Baseline 49.9 71.2 72.6 50.5 26.1 49.2 29.6 68.3
+ 3Dod 50.9 71.5 78.3 51.0 25.5 48.2 30.9 70.0
+ 3D Grounding 50.5 73.3 72.3 50.5 27.7 48.4 31.0 69.5
+ Scene Caption (si) 52.8 72.4 83.8 52.2 259 49.4 33.1 69.8
+ Measurement (i) 533 71.9 83.0 53.0 26.7 494 355 69.2
+ Depth and Distance Data 56.4 73.5 93.4 53.2 28.8 50.6 38.7 69.7
Table 5: Ablation for the single-image data. si denotes single-image data.
Data | S-AVG | Single-image | Multi-image | Video | M-AVG
\ | CV2D  CV-3D  3DSR | MMSI  BLINK | VSI |
Baseline 56.4 73.5 934 53.2 28.8 50.6 38.7 69.7
+ Corespondence 56.7 74.1 92.5 53.9 279 52.4 39.1 69.7
+ 3Dod (mi) 56.5 73.3 92.3 53.1 30.0 52.7 37.7 69.2
+ Object-object Relation 57.1 74.3 91.9 532 31.9 53.2 38.3 69.4
+ Camera-camera Relation 57.3 72.7 93.1 53.6 31.8 53.7 38.8 68.8
+ Scene Caption (mi) 57.4 73.2 92.8 54.0 32.1 53.0 39.3 69.2
+ Camera Motion 57.7 73.9 92.5 54.0 324 55.0 38.2 68.7
+ General Data (mi) 57.7 73.8 92.4 53.7 32.7 55.4 38.4 69.2

Table 6: Ablation for the multi-image data. mi denotes mingle-image data.

Data | S-AVG | Single-image |  Multi-image | Video | M-AVG
[ | CV-2D CV-3D 3DSR | MMSI BLINK | VSI |
Baseline 54.8 73.8 92.4 53.7 32.7 55.4 38.4 69.2
+ General Video 57.9 74.3 92.3 53.5 31.9 57.6 38.1 69.4
+ VST-video 60.6 75.1 93.1 54.0 31.3 55.6 54.7 69.4

Table 7: Ablation for the video data.
improvement on CV-Bench-3D (Tong et al., 2024). Notably, the inclusion of single-image data also
enhances performance on multi-image and video benchmarks, with improvements of +2.7% on
MMSI-Bench (Yang et al., 2025¢) and +9.1% on VSI-Bench (Yang et al., 2025a).

Ablation for the multi-image data. Based on the ability to infer spatial information from single
images, we further enhance the model by integrating multi-image data to capture spatial relationships
across diverse viewpoints. As shown in Table 6, the multi-image data results in a 1.3% increase
in the average spatial understanding score. Notably, this approach yields a 3.9% improvement on
MMSI-Bench (Yang et al., 2025¢c) and a 4.8% improvement on BLINK (Fu et al., 2024).

Ablation for the video data. Since single-image and multi-image data provide minimal improvement
on video benchmarks, we further constructed video data to enhance spatial understanding for video
inputs. As shown in Table 7, general video data from LLaVA-OneVision (Li et al., 2024a) exhibits
limitations in video-based spatial understanding tasks. By incorporating our VST-video data, the
model achieves a 16.6% improvement on VSI-Bench (Yang et al., 2025a).

3D Object. Detection Settings. We present ab— Settings | SUN RGB-D | ARKitScenes
lation stud.les on 3.D .object detect%on settings in | AP AP(s AP2s APs APyoo| AP AP1s AP2s APs) AProo
Table 8. First, unifying FoV (Uni-FoV) across 5 ™ 155285 19.1 32 30.7 29.442.7 318 7.2 4456
different datasets yields a 2.5 AP improvement  w/o Uni-FoV|18.629.1 19.2 2.2 30.4[26.940.9 282 5.4 42.0

: e Quat 18.329.4 17.8 2.8 30.6[28.642.4 30.8 6.3 43.9
on ARKitScenes. Second, substituting Euler &5 1103560 170 27 284276419 290 60 425
angles with quaternions results in reduced per- - - -
formance. Third, replacing all multi-turn data 1able 8: Ablation for different settings for 3D ob-
with an equivalent amount of single-turn (ST) Jject detection. Training data: 600K 3D object
data leads to a decrease of 1.7 AP on SUN RGB-  detection samples and 800K general samples.

D and 1.8 AP on ARKitScenes.

Ablation for the spatial reasoning data. We conduct an ablation study on CoT data for spatial
reasoning, as summarized in Table 9. Our baseline is Qwen2.5-VL-7B (Yang et al., 2024a), fine-tuned
on one-third of VST-P single-image data, multi-view correspondence data, multi-image 3D object
detection data, and 800K general samples. First, we let the model represent the layout of scenes using
3D bounding boxes (Num-CoT), achieving a score of 29.2 on MMSI-Bench. However, estimating
camera poses across diverse viewpoints proves challenging. Thus, we propose reconstructing the
scene using text within the CoT (RT-CoT), which outperforms Num-CoT. Furthermore, RT-CoT
from prompting with BEV annotations (RT-CoTggy) yields an additional 1.1% improvement. Finally,
mixing all types of data raises the score to 31.7%. RL further improves the score to 35.3% (Table 14).
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CoT Type Data \ Overall‘ Positional Relationship | Attribute | Motion | MSR
\ |CC 00 RR CO OR CR| M A | C O |

- - 264 | 226 287 173 395 388 289|203 182|216 289 | 253
Num-CoT OO 29.2 | 28.0 33.0 284 40.7 259 36.1|39.1 364|203 31.6| 18.7
RT-CoT 00 30.0 | 355 319 259 442 365 325|328 303|216 276 212
RT-CoTgey OO 31.1 312 362 272 465 400 36.1 |266 303 |17.6 303 | 2438
RT-CoTgev  Mix 31.7 | 355 394 37.0 442 365 434|281 227|176 303 | 21.7

Table 9: Cold-start results for spatial reasoning on the MMSI-Bench (Yang et al., 2025¢). Data: OO
refers to the object-object subset, while Mix includes all data types.

Accuracy Reward ‘ AP AP;s APys APsy APigo VLA Backbone | Spatial Object Goal 10 | Avg.
Baseline 202 303 206 45 335 Qwen2.5-VL-3B 56.6 86.6 53.8 15.2 53.1
3D IoU + Recall 13.8 209 14.7 2.6 33.6 QWén2.5—VL—3B (VST) 65.0 88.4 67.8 25.6 61.7

3D ToU + F1 Score [ 244 360 263 58 372 Typle 11: Success rate comparison on the LIBERO

Table 10: Ablation for accuracy reward benchmark (Liu et al., 2023). Qwen2.5-VL-3B (VST)
R3a(-,-) on SUN RGB-D refers to the model fine-tuned on our VST dataset.

Ablation for the accuracy reward on 3D object detection task. As recorded in Table 10, when we
use 3D IoU and recall as the accuracy reward, performance drops markedly because each ground-truth
box is matched with too many false-positive predictions. Thus, we switch to IoU and F1 score as the
accuracy reward, which yields a 4.2 AP improvement.

4.4 EXPANDING TO VLA MODEL

As detailed in Section 3.2, we adapt our VST-tuned VLM into a VLA model. In contrast to the
approach used by OpenVLA (Kim et al., 2024), we do not utilize any pre-trained data on robotic
learning. Instead, we directly fine-tune the VLM and its action embeddings on the small-scale
LIBERO benchmark (Liu et al., 2023) from scratch for action prediction. The results are presented
in Table 11. Notably, the VLA model based on VST-3B, which incorporates spatial knowledge,
surpasses the one based on Qwen2.5-VL-3B (Bai et al., 2025) by an average of 8.6% in success
rate. This improvement clearly demonstrates that the integration of spatial knowledge provides a
significant performance benefit to VLA models.

5 RELATED WORK

VLMs have become a cornerstone of modern Al. Recent advancements on VLMs have focused on
several areas: employing more powerful vision encoders (Chen et al., 2024d), supporting dynamic
resolutions (Wang et al., 2024b), incorporating reasonable positional embeddings (Bai et al., 2025),
and curating higher-quality data (Li et al., 2024a). Despite these significant improvements, established
benchmarks (Yang et al., 2025a;c) reveal a persistent deficiency in the spatial understanding and
reasoning capabilities of current VLMs. Early attempts introduced specialized datasets generated by
expert models (Chen et al., 2024a), while SAT (Ray et al., 2024) tackled data scarcity by simulation.
Subsequent works (Daxberger et al., 2025; Zhang et al., 2025a) have further expanded data to enhance
these spatial abilities. There are also efforts (Wu et al., 2024; Ouyang et al., 2025; Yin et al., 2025)
to improve spatial reasoning. In contrast to previous approaches that treat spatial understanding
and reasoning as distinct tasks, our proposed method integrates foundational spatial perception and
reasoning capabilities, aiming to achieve a more holistic and robust model for spatial intelligence.

6 CONCLUSION

We present Visual Spatial Tuning (VST), a general and scalable framework that endows vision-
language models with human-like spatial perception and reasoning abilities. With the large-scale
perception data (VST-P) and curated reasoning instructions (VST-R), VST effectively acquires spatial
awareness without degrading general capabilities. The proposed approach achieves state-of-the-art
performance on multiple spatial benchmarks, demonstrating that spatial abilities in foundation models
can be systematically scaled. Moreover, the Vision-Language-Action (VLA) models are proved to be
enhanced with better visuo-spatial skills, enabling more grounded interaction with the physical world.
The generality, scalability, and effectiveness of VST highlight a promising direction toward building
physical Al systems that reason and act in space with human-like intelligence.
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A DATA CONVENTION

A.1 CAMERA COORDINATE

In our work, we define the camera coordinate system based on the right-hand rule. The camera center
is taken as the origin, with the X-axis pointing to the right (parallel to the image plane), the Y-axis
pointing downward (also parallel to the image plane), and the Z-axis pointing forward along the optical
axis. Within this system, a 3D bounding box is specified by its center coordinates (z, y, z), its size
(1, y1, 21), and its orientation (pitch, yaw,roll). In our convention, the X-dimension corresponds
to the front—back size of the box, Y represents the vertical extent, and Z denotes the lateral (side)
extent. In our definition of a 3D bounding box, the X-axis points to the front, the Y-axis points
downward, and the Z-axis points sideways. The rotation angles are defined as the transformations
from the camera axes to the box axes, measured in degrees and normalized by 7 (i.e., divided by
180°). Distances and dimensions are given in meters.

A.2 INSTRUCTION FORMAT

The CoT Format

< |[im_start| >system

You are a helpful assistant. You should first think about the reasoning process in the mind and
then provide the user with the answer. The reasoning process is enclosed within < think >
< /think > tags, i.e. < think > reasoning process here i/think; answer here.< |im_end| >
< |im_start| >user

< |vision_start| >image.jpg< |vision_end| >{question}< |im_end| >

< |im_start| >assistant

< think >{thinking content} < /think > {answer}< |im_end| >

B EXTENDED RELATED WORK

Large Vision-Language Models. Recently, Large Vision-Language Models (LVLMs) have become
a pivotal technology in artificial intelligence, able to understand and integrate information across
multiple modalities such as text, images, and video. Most LVLMs use an Encoder—-MLP-LLM
architecture (Liu et al., 2024b; Li et al., 2024a; Wang et al., 2024b; Bai et al., 2025; Deitke et al.,
2025; Chen et al., 2024c). Specifically, a pre-trained vision encoder—often the CLIP vision en-
coder (Radford et al., 202 1)—extracts visual embeddings, and a projector (MLP layers) projects these
embeddings into the language embedding space. Researchers have improved this approach in several
ways: using more advanced vision encoders (Zhai et al., 2023; Chen et al., 2024d), increasing input
resolution (Liu et al., 2024a; Chen et al., 2024c), adopting dynamic resolution (Wang et al., 2024b),
refining multimodal positional embeddings (Yang et al., 2024a; Bai et al., 2025), and synthesizing
high-quality training data (Li et al., 2024a; Cho et al., 2025). Beyond the Encoder—-MLP-LLM archi-
tecture, several works (Zhu et al., 2023a; Dai et al., 2023; Ye et al., 2023; Li et al., 2024b) employ a
Q-former (Li et al., 2023) to map visual embeddings into the language space. The Q-former replaces
long visual feature sequences with a fixed set of learnable queries, reducing the length and complexity
of the visual input. Flamingo (Alayrac et al., 2022) integrates gated cross-attention layers into LLMs
to facilitate cross-modal alignment, while CogVLM (Wang et al., 2023) adds specialized vision
experts to each LLM block to align visual and language features. Additionally, some works (Bavishi
et al., 2023; Yang et al., 2025b) aim to develop LVLMs as unified models that consolidate vision
and language capabilities. Additionally, some studies (Huang et al., 2025; Meng et al., 2025; Xu
et al., 2025c¢) explore the use of reinforcement learning in the post-training stage to enhance the
visual reasoning capabilities of LVLMs, an approach inspired mainly by DeepSeek-R1 (Guo et al.,
2025a). The majority of these works apply Generalized Reinforcement Learning from Preference
Optimization (GRPO) (Shao et al., 2024) to train LVLMs, achieving significant improvements in
many tasks.

Large Vision-Language Models for Spatial Understanding and Reasoning. Despite the re-
markable progress of current LVLMs in visual tasks (Yue et al., 2024; Liu et al., 2024c;d; Mathew
et al., 2021; Xie et al., 2024), numerous benchmarks (Yang et al., 2025a;c; Ma et al., 2024) have
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highlighted persistent challenges in spatial understanding and reasoning. To address these issues,
Spatial VLM (Chen et al., 2024a) pioneered the application of VLMs to spatial understanding by
constructing VQA datasets using expert models. Similarly, SpatialRGPT (Cheng et al., 2024) ex-
panded RGB-based spatial understanding to the RGB-D domain by generating spatial datasets from
3D scene graphs. Recognizing the prohibitive cost of collecting and annotating real-world data,
SAT (Ray et al., 2024) employed simulators to generate training data, thereby extending its focus
from static to dynamic tasks. SpatialBot (Cai et al., 2024) enables VLMs to invoke external tools
for depth estimation, thereby improving their ability to interpret spatial information in input images.
Subsequent studies (Daxberger et al., 2025; Zhang et al., 2025a; Xu et al., 2025a; Deng et al., 2025)
have further advanced the field by constructing more comprehensive datasets to enhance the spatial
understanding capabilities of VLMs. In parallel, another line of research focuses on enhancing the
spatial reasoning abilities of VLMs. For example, MVoT (Wu et al., 2024) leverages multimodal
representations within its reasoning traces to strengthen spatial reasoning. SpaceR (Ouyang et al.,
2025) and MindCube (Yin et al., 2025) incorporate textual cognition maps into their reasoning
traces to enhance spatial reasoning, further improving performance through reinforcement learning.
Similarly, Spatialreasoner (Ma et al., 2025) performs spatial reasoning by predicting 3D locations and
poses as intermediate results. VILASR (Wu et al., 2025) enhances spatial reasoning by incorporating
visual tools and introducing visual prompting into the reasoning process. In contrast to these prior
studies, which typically focus exclusively on either spatial understanding or spatial reasoning, our
approach begins with foundational capabilities and builds upon them to enhance the model’s overall
reasoning skills.

C MORE IMPLEMENTATION DETAILS

Stage 1. The initial training stage aims to establish a strong foundation of spatial understanding
capabilities. For this stage, we use a global batch size of 128, a sequence length of 16, 384, and a
dynamic data packing strategy to accelerate the training process. We employ the AdamW (Loshchilov
& Hutter, 2019) optimizer, setting the base learning rate to 5 x 1075 and the vision encoder’s learning
rate to 5 x 107, During this phase, we combine our VST data with general multi-modal data
from LLaVA-OneVision (Li et al., 2024a). This approach allows the model to learn new spatial
understanding knowledge while mitigating catastrophic forgetting of its original capabilities. For
our ablation studies, we use Qwen2.5-VL-3B (Bai et al., 2025) as the base model, training it on a
mixture of one-third of the VST data and 800K general multi-modal samples. For our final models,
we employ Qwen2.5-VL-3B, Qwen2.5-VL-7B, and Qwen2.5-VL-32B as base models, utilizing the
entire VST dataset combined with 2.4M general multi-modal samples.

Stage 2. In the CoT cold-start stage, we continue training the model from the initial foundation stage.
The hyper-parameters are adjusted to a global batch size of 64, a base learning rate of 1 x 107°, a
vision encoder learning rate of 1 x 10~°, and a sequence length of 16, 384. In this stage, the training
data is a mixture of spatial reasoning data and general multimodal reasoning data. We train the model
for 2 epochs, as we observed that smaller-scale models require extended training to effectively master
the long-form CoT reasoning process.

Stage 3. In the RL stage, we further refine the model from the second stage using the VeRL (Sheng
et al., 2025) framework. For the training objective, we adopt a revised version of the GRPO
algorithm (Yu et al., 2025). This stage utilizes the AdamW (Loshchilov & Hutter, 2019) optimizer
with a constant learning rate of 1 x 10~ and a global batch size of 128.

VLA Model. For the expansion to the VLA model, we continued to use the AdamW (Loshchilov &
Hutter, 2019) optimizer, but with a modified learning rate schedule: a base learning rate of 8 x 107>
and a vision encoder learning rate of 8 x 1075, We set the global batch size to 128 and the max
sequence length for data packing to 2048. This adjustment was necessary to compensate for the
relatively short action sequences and the small resolution of the training images (256 x 256). The
model is finetuned for 50 epochs on the LIBERO dataset (Liu et al., 2023) in total.

D MORE EXPERIMENTS

Data scaling of spatial foundational tasks. To enable the VLM to perceive the positions of objects
in 3D space, we selected monocular 3D object detection and depth estimation as our foundational
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Figure 4: Data scaling of spatial foundational tasks.

tasks. We then incrementally scaled the volume of training data to validate the VLM’s emerging
spatial perception capabilities. As shown in Figure 4a, the AP on the SUN-RGBD (Song et al.,
2015) and ARKitScenes (Baruch et al., 2021) datasets progressively improved as the amount of 3D
detection data increased, demonstrating its ability to learn how to perceive the 3D spatial positions of
objects from visual input. Furthermore, by gradually introducing depth-related data, we discovered
that the VLM could learn to judge the relative distances between objects and the camera, even with a
comparatively small amount of data, as illustrated in Figure 4b.

Scaling Model Size. We further investigate the relationship between model size and spatial under-
standing performance, as shown in Table 12. Increasing the model size from 3B to 7B results in a
1.3% improvement in average scores on spatial understanding benchmarks. Further increasing the
model size to 32B yields a 1.7% improvement in average scores on these benchmarks. These results
suggest that larger models achieve greater improvements on spatial understanding tasks.

The relationship between model size and 3D object detection is presented in Table 13. When
increasing the model size from 3B to 7B, we observe a 4.2 AP improvement on SUN-RGBD (Song
et al., 2015) and a 3.5 AP improvement on ARKitScenes (Baruch et al., 2021). However, when
increasing the model size from 7B to 32B, the performance does not exhibit a positive correlation as
seen in the spatial understanding benchmarks. This may be because a model with 7B parameters is
already sufficient to handle this fundamental perception task.

Scaling Data. When the dataset was increased threefold, all models showed improvement. As
shown in Table 12, tripling the data scale resulted in a 1.1% improvement for the 3B model, a 1.5%
improvement for the 7B model, and a 0.7% improvement for the 32B model.

Model\Data\S_ AVG‘ Single-image | Multi-image \Video\M_ AVG ;
Size |Scale |CV-2D CV-3D 3DSR|MMSI BLINK| VSI | o
sp | 1| 60.6 [ 751 931 540|313 556 |547| 69.4 g s

3x | 617 | 75.0 938 541302 591 [57.9| 699 O | .,

<

g | 1x [ 619 | 765 944 535|319 583 |570[ 731 .

3x | 634 | 752 957 546|320 62.1 |60.6| 73.3
g | 1X| 636 [ 775 931 557(369 614 [S7.1| 756

3x | 653 | 80.7 948 56.1| 360 654 |587| 75.9 - - .

Table 12: Results of scaling model and data size

Spatial reasoning with RL. We found that after the CoT cold start, the model performs better
without CoT inference than with it. As shown in Table 14, the model achieves 33.6% accuracy on
MMSI-Bench (Yang et al., 2025¢) without CoT inference, surpassing the CoT setting by 1.9%. This
suggests the model learns spatial knowledge from the CoT process, but its CoT reasoning ability
is weak, leading to poorer results. Therefore, to improve the spatial reasoning ability, we apply
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Model | Data | SUN-RGBD | ARKitScenes SUN Ix ARK 1%
Size |Scale ( SUN 3 ARK 3
‘ ‘ AP AP15 AP25 AP50 APloo‘ AP AP15 AP25 AP50 AP100 *
w N +4.1
3p | 1% [20.2 303 206 45 335315 45.1 348 83 466 | e
3% [265 373 289 7.1 397 380 517 41.5 143 534 % ;
», +3.8
g | 1X [242 374 246 54 377350 488 380 113 501 .| " o
3x [28.0 41.6 295 7.7 42.1 |39.1 52.8 423 153 543 ‘
3B | 1X 196 295 195 43 327|311 443 337 89 463
3x [22.5 332 233 5.1 36.1(33.6 47.6 358 113 49.1

3B 7B 32B

Table 13: 3D object detection results of scaling model and data size

online RL (Shao et al., 2024) as detailed in Section 3.1. After RL, the model reaches 35.4% on
MMSI-Bench (Yang et al., 2025¢) when using CoT inference.

Training CoT | Overall | Positional relationship | Attribute | Motion | MSR
Stage  Inference |CC 00 RR CO OR CR|M A [ C O | -

- X 264 226 28.7 173 395 388 289|203 182|21.6 289 253
Cold start X 33.6 | 43.0 351 333 430 365 446|328 273|284 329 232
Cold start v 31.7 355 394 37.0 442 365 434 |28.1 227|17.6 303 | 21.7
RL X 347 | 344 383 29.6 535 37.6 434|250 364 |27.0 40.8| 253
RL v 353 355 383 309 54.6 353 47.0|26.6 485|338 31.6| 22.7

Table 14: RL results for spatial reasoning on the MMSI-Bench (Yang et al., 2025c).

E MORE DATASET DETAILS

E.1 PROMPTING WITH BEV ANNOTATION

As shown in Table 15, we prompt the Seed1.5-VL (Guo et al., 2025b) with the BEV visualization to
generate the CoT process.

E.2 DATASET VISUALIZATION

As shown in Table 16, 17, 18, 19, 20, 21, and 22, we provide a visualization of sample data from
various tasks within the VST-P dataset.
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Prompting with BEV annotation

Prompt

<system prompt> <ground-truth> <question>

If the small metal trash can on the floor near the white storage cabinets in the first image is
north of the small printer on the white cabinet near the door in the second image, what direction
is the clear plastic bottle on the white desk with two monitors in the second image from the
printer? Options: A. southeast, B. northeast, C. south, D. northwest

Teacher
model

First, I look at the first image. The scene has a long row of white storage cabinets along the
left wall, a white desk with shelves holding folders on the right, and a small metal trash can
sitting on the floor between the cabinets and the desk. There’s also a coat hanger in the corner
and some boxes stacked nearby. The trash can is clearly positioned on the left side of the room,
close to the storage cabinets.

Next, I examine the second image, which was taken from a closer, more forward angle-like the
camera moved toward the desk and tilted up slightly. The desk is now in the foreground, holding
two black monitors, a keyboard, a mouse, a telephone, and a clear plastic bottle. Against the
back wall near the door, there’s a small printer on a white cabinet. The door and coat hanger
from the first image are still visible in the background, but the trash can isn’t present here.
Putting both images together, the room’s layout makes sense: the left wall has storage cabinets,
the center/right has a desk, and the back wall has a door. The trash can (from image 1) is on the
left side near the cabinets, the printer (from image 2) is on the back right near the door, and the
bottle (from image 2) is on the foreground desk.

The question says the trash can is north of the printer. Since the trash can is on the left side of
the room and the printer is on the back right, “north” from the printer’s perspective must be
toward the left-toward the trash can. Now, I need to figure out where the bottle is relative to the
printer. The bottle is on the desk, which is in the foreground of the second image. From the
printer’s position (back right near the door), the desk is in front of it-closer to the camera. The
bottle is on the part of the desk that’s to the left of the printer (since the desk extends from the
foreground to the back wall, and the printer is on a cabinet against the back wall to the right of
the desk).

So, from the printer’s view: the bottle is to the left (the same direction as north, since north
is toward the trash can on the left) and forward (since the desk is closer than the trash can).
Combining these, the bottle is in the northwest direction from the printer. That matches option
D.

Table 15: One example to illustrate the prompting with BEV annotation.
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Scene Caption

Prompt

Analyze the spatial organization and positional relationship in this image.

Answer

Starting from the camera’s viewpoint, the nearest object is a chair (orange point-2) with a depth
of 1.72m. Adjacent to it, behind, is another chair (orange point-3) at 2.72m depth. Moving
forward, a table (blue point-1) spans 3.00m depth. To the table’s left, chairs (orange points-4,5,6)
are aligned at depths 3.20m, 3.63m, and 4.11m respectively. On the table’s right, chairs (orange
points-7,8) are aligned, with chair (orange point-7) beside chair (orange point-8). Chair (orange
point-6) is in front of chair (orange point-8). Distances: chair (orange point-2) is 1.79m from
the table; chair (orange point-3) is 1.58m from the table. Chairs (orange points-3,4,5,6) form a
left-aligned row. Chairs (orange points-6,7,8) form a right-aligned row. Chair (orange point-8)
is 0.52m from chair (orange point-7).

Prompt

ol A\ A
\ 'J}éll‘i"m ,’5\ P F

The observer’s line of sight is preserved as images are captured one by one. Describe these two
frames in detail.

Answer

The first image shows a room scene with a whiteboard on the left wall, a chair in the lower
central area, a window on the right side with a view of a building outside, a heater below the
window, a box on the windowsill, sockets on the wall near the heater, and a light switch on
the wall. Key holders with colorful keys are attached to the whiteboard. The second image,
taken with the camera rotated right from the first perspective, shows part of the window and the
heater still visible. New elements include a trash can on the floor, a table partially in view, and
additional sockets. Objects present in the first image such as the whiteboard, light switch, and
the box on the windowsill are no longer in view, while the chair remains present.

Table 16: Example of scene caption
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Depth-related Data

Prompt Tell me the depth relationship of the objects of A.sink, B.shelves, C.blinds, D.lamp.

Answer The objects from near to faris A, D, B, C

Prompt There are several boxes in the image: box-A, box-B. Each box represents an object. Present the
object represented by these boxes in an order that goes from close to far and give their names.

Answer box-A (chair), box-B (picture)

Prompt You are given several 2D bounding boxes in the image: [3, 132, 98, 468] [322, 83, 475, 481]
Arrange the object represented by these boxes from the farthest to the nearest based on their
depth relationship and give their names. Output the sorted bboxes and labels using JSSON
format.

Answer

[
{"bbox_2d":[324,81,477,475],"label":"person"},
{"bbox_2d":[3,130,98,462],"label":"person"}

]

Prompt After reviewing tile image, which object—table (cyan box), window-A (orange box), window-B
(pink box) and door (purple box)—would you say is nearer to the camera?

Answer table

Table 17: Example of depth-related data.
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Distance-related Data

Considering the Vpositions, which object—the toilet-A (orange box) or the toilet-B (green

Prompt
box)—do you think is farthest from the door (purple box)?

Answer toilet-A

Prompt Given the spatial layout, which object among the shelf (red box) or the basket (brown box) is
situated farthest from the bag (yellow box)?

Answer shelf

Table 18: Example of distance-related data.

Measurement-related Data

Prompt Can you specify the height of the blinds pointed out by the blue point? State the measurement
in centimeters.
Answer 103cm

Table 19: Example of measurement-related data.
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Correspondence Data

Prompt The first image shows a point circled in gold. After adjusting the camera or lighting, the second
image presents several gold-circled points labeled *A, B, C, D’. Which matches the original?
Options: A: point-A, B: point-B, C: point-C, D: point-D

Answer B: point-B

Table 20: Example of correspondence data.
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Camera-related Data

15

The frames are captured in a continuous manner from a first-person perspective. Which way is

Prompt
the camera’s perspective moving? Options: A. moving backward, B. moving rightward and
forward, C. moving backward and upward, D. moving leftward

Answer B. moving rightward and forward

L J

Prompt The frames are acquired in a continuous sequence from a first-person perspective. If the first
picture was taken with the camera facing west, what is the direction for the second picture?
Options: A. southeast, B. north, C. south, D. northwest

Answer D. northwest

Prompt Images are shot one after another from a first-person perspective. When positioned at the second
photo spot, how is the first camera placed relative to me? Options: A. right, B. back, C. front, D.
front right

Answer B. back

Table 21: Example of camera-related data.
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Object-related Data

Prompt If the small white cabinet under the white desk is north of the black monitor on the left side
of the desk, what direction is the chair on the right side of the room from the black monitor?
Options: A. southeast B. north C. south D. southwest

Answer A. southeast

Prompt If, from the camera position of the first image, the direction toward the hanging jacket (visible in
the first image) is north, then in which direction does the window (visible in the second image)
lie relative to the first image’s camera? Options: A. northeast, B. southeast, C. east, D. south

Answer A. northeast

Table 22: Example of object-related data.
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