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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
handling long context inputs, but this comes at the cost of increased computa-
tional resources and latency. Our research introduces a novel approach for the
long context bottleneck to accelerate LLM inference and reduce GPU memory
consumption. Our research demonstrates that LLMs can identify relevant tokens
in the early layers before generating answers to a query. Leveraging this insight,
we propose an algorithm that uses early layers of an LLM as filters to select and
compress input tokens, significantly reducing the context length for subsequent
processing. Our method, GemFilter, demonstrates substantial improvements in
both speed and memory efficiency compared to existing techniques, such as stan-
dard attention and SnapKV/H2O. Notably, it achieves a 2.4× speedup and 30%
reduction in GPU memory usage compared to SOTA methods. Evaluation on the
Needle in a Haystack task shows that GemFilter significantly outperforms stan-
dard attention, SnapKV and demonstrates comparable performance on the Long-
Bench challenge. GemFilter is simple, training-free, and broadly applicable across
different LLMs. Crucially, it provides interpretability by allowing humans to in-
spect the selected input sequence. These findings not only offer practical benefits
for LLM deployment, but also enhance our understanding of LLM internal mech-
anisms, paving the way for further optimizations in LLM design and inference.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive abilities (Wei et al., 2022; Bubeck
et al., 2023) and found widespread application in various AI systems, such as ChatGPT (Schulman
et al., 2022), Gemini (Anil et al., 2023), and Claude (Anthropic, 2024), and so on. They are also
a fundamental component in building language-based AI agents that can orchestrate plans and ex-
ecute complex tasks through interaction with external tools. A key requirement for many of these
applications is the ability to process long-context inputs. This ability can also potentially eliminate
the need of a retriever in retrieval augmented generation (RAG) (Xu et al., 2024a) or enhance its per-
formance (Jiang et al., 2024c). Therefore, significant efforts have been made recently to build LLMs
that support long context inputs. For instance, LLaMA 3.1 (Dubey et al., 2024), Mistral (Jiang et al.,
2023a), and Phi 3.5 (Abdin et al., 2024) now support input sequences of up to 128K tokens, while
Gemini can handle inputs of up to 1M tokens. However, processing such lengthy inputs comes at
a substantial cost in terms of computational resources and time. Therefore, accelerating the LLM
generation speed while simultaneously reducing GPU memory consumption for long-context inputs
is essential to minimize response latency and increase throughput for LLM API calls.

One prominent optimization for fast text generation in decoder-only LLMs (i.e., using a causal
attention mask) is the KV cache. Specifically, there are two phases involved in auto-regressive
generation. Given a long context input, the first is the prompt computation phase, when the LLM
computes the KV cache for all layers, storing the intermediate attention keys and values of the input
tokens. Next, in the iterative generation phase, the LLM generates tokens iteratively using the pre-
computed KV cache, avoiding redundant computations. GPU memory usage and running time scale
linearly with the KV cache size, meaning that the computational is high for long inputs.
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Figure 1: Illustration of our method GemFilter: generation with context selection based on early
filter layers. We demonstrate a real Needle in a Haystack task (Section 4.1). The original input
consists of 108,172 tokens, including the initial instruction, key message, and the query. In the
first step, we use the 13th layer of the LLM (LLaMA 3.1 8B Instruct) as a filter to compress the
input tokens by choosing the top k indices from the last row of the attention matrix. Notably, the
selected input retains the initial instruction, key message, and query. GemFilter achieves a 1000×
compression, reducing the input token length to 100. In the second step, we feed the selected tokens
for full LLM inference using a standard generation function, which produces the correct output.
GemFilter significantly reduces running time and GPU memory with negligible performance loss.

To reduce GPU memory usage and running time during the iterative generation phase, H2O (Zhang
et al., 2023) and SnapKV (Li et al., 2024b) introduce static methods to compress/evict the KV cache.
These techniques can shrink the KV cache size from 128K to 1024 with negligible performance
loss, resulting in faster speeds and lower GPU memory consumption during the iterative generation
phase. However, these methods do not improve the efficiency of the prompt computation phase,
which becomes the dominant bottleneck as the input context lengthens. Thus, we ask:

Can we accelerate the speed and reduce memory usage during the prompt computation phase?

Top k selection 
based on last row

A
tte
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n 
M
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: Q
KT

Useful information 
for retrieval

Figure 2: The last row of attention
matrices in early layers can locate
answer-related tokens.

We observe that when serving a query, LLMs often find the
necessary information in the early layers, even before generat-
ing the answer. Specifically, the relevant tokens can be iden-
tified using the attention matrix from these early layers (Fig-
ure 2), which we refer to as filter layers. Figure 1 provides a
real example from the Needle in a Haystack task, where LLMs
must find a small piece of information within a large context.
For LLaMA 3.1 8B, we observe that the information needed
to answer the query can be distilled from the attention matrix
in any of the 13th-19th layers. Furthermore, LLMs explicitly
summarize the required information in these filter layers. As
a consequence, we only need to perform the prompt computa-
tion on a long context input for the filter layers, allowing us to
compress the input tokens into a smaller subset (e.g., reducing
from 128K tokens to 100), saving both time and GPU memory.
We then feed the selected tokens for full model inference and
proceed with a standard generation function. Algorithm 1 in
Section 3 presents our method GemFilter.

As shown in Figure 3, GemFilter runs faster and consumes less GPU memory than SnapKV/H2O
and standard attention (full KV cache) during the prompt computation phase. During the iterative
generation phase, GemFilter has the same running time and GPU memory consumption as Snap-
KV/H2O, both of which outperform standard attention. We discuss the complexity further in Sec-
tion 3.2 theoretically and in Section 4.5 empirically. GemFilter significantly outperforms standard
attention and SnapKV on the Needle in a Haystack benchmark (Section 4.1). Additionally, on Long-
Bench, a multi-task benchmark designed to rigorously evaluate long-context understanding across
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Figure 3: Comparison of time and GPU memory usage across different methods on LLaMA 3.1
8B Instruct. ‘gemfilter’ represents our method, using the 13th layer as the filter. It achieves a 2.4×
speedup and reduces GPU memory usage by 30% compared to SnapKV. The iterative generation is
evaluated on 50 tokens generation. Additional results can be found in Section 4.5.

various datasets, GemFilter achieves performance comparable to SnapKV/H2O (Section 4.2). Fur-
thermore, our ablation study in Section 4.3 shows that our method is quite robust to the filter layer
selection strategy and Section 4.4 shows that each component in our algorithm is essential.

Our contributions and advantages are:

• We found that LLMs can identify relevant tokens using attention matrices in the early layers,
suggesting crucial information is recognized before the answer generation. Furthermore, LLMs
explicitly summarize this information within specific filter layers. This observation provides in-
sights into LLM mechanisms and opens avenues for LLM understanding and algorithm design.

• Leveraging this insight, we develop GemFilter, formulated in Algorithm 1, an inference strategy
which utilizes early LLM layers as a filter to select and compress input tokens into a small subset
to be processed by the full model (Figure 1). GemFilter achieves a 2.4× speedup and reduces
GPU memory consumption by 30% compared to the state-of-the-art methods like SnapKV.

• GemFilter significantly outperforms both standard attention (all KV cache) and SnapKV on the
Needle in a Haystack benchmark (Section 4.1), while maintaining performance comparable to
SnapKV/H2O on the LongBench benchmark (Table 1).

• We provide a thorough ablation studies for the GemFilter in Section 4.3 and Section 4.4.
• Our approach offers several advantages: it is simple, training-free, and broadly applicable to var-

ious LLMs. Furthermore, it enhances interpretability by allowing humans to directly inspect the
selected token sequence.

2 RELATED WORKS

Generation Speed-up with Long Context Input. One effective technique to accelerate auto-
regressive generation is KV cache compression/eviction. During generation, LLMs store the previ-
ous key and value matrices to reduce computational complexity. However, when the input context is
long (e.g., 128K tokens), the memory consumption and running time associated with the KV cache
dominate iterative generation. Many studies have focused on KV cache eviction. For instance, Ge
et al. (2023) evict long-range contexts on attention heads to prioritize local contexts, using the KV
cache only for heads that broadly attend to all tokens. Streaming LLM (Xiao et al., 2023) introduces
an attention sink that retains only the first few tokens and the latest k tokens in the KV cache to
enable fast streaming generation. LOOK-M (Wan et al., 2024) applies KV eviction in the multi-
modality so that the model only needs to look once for the image. LongWriter (Bai et al., 2024) uses
KV eviction to enable LLMs to generate coherent outputs exceeding 20,000 words. MInference
1.0 (Jiang et al., 2024a) introduces ∧-shape, vertical-slash, and block-sparse attention head and de-
termines the optimal KV cache pattern for each attention head offline and dynamically builds sparse
indices based on the assigned query during inference. QuickLLaMA (Li et al., 2024a) classifies
the KV cache to many subsets, e.g., query tokens, context tokens, global tokens, and local tokens,
and only preserves some types of tokens in the KV cache. ThinK (Xu et al., 2024b) proposes a
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query-dependent KV cache pruning method by pruning the least significant channel dimensions of
the KV cache. H2O (Zhang et al., 2023) retains only tokens contributing to cumulative attention.
SnapKV (Li et al., 2024b) evicts non-essential KV positions for each attention head based on ob-
servation windows. While the aforementioned studies focus on eviction and compression of the KV
cache during the prompt computation phase to optimize the iterative generation phase, they do not
reduce the running time or GPU memory usage during the prompt computation phase. In contrast,
our method, GemFilter, achieves both reduced running time and GPU memory usage in the prompt
computation phase, as well as during the iterative generation phase. We provide a more detailed
comparison in Appendix B.

More related to our work, Li et al. (2023) compress input sequences by pruning redundancy in the
context, making inputs more compact. However, they need to keep 50% of input tokens to keep
the LLMs’ performance, whereas GemFilter achieves comparable performance by only reserving
1% of input tokens. For further details, we refer the reader to Section 4.1. The LLMLingua series
methods (Jiang et al., 2023b; Pan et al., 2024; Jiang et al., 2024b) present a coarse-to-fine approach
for prompt compression. It leverages a budget controller to ensure semantic integrity even at high
compression ratios, employs a token-level iterative compression algorithm to model interdependen-
cies within the compressed content, and utilizes an instruction-tuning strategy to achieve distribution
alignment across language models.

3 METHOD

Notations and Preliminary. While the Transformer and self-attention architecture (Vaswani et al.,
2017) have already become overwhelmingly popular, we first introduce preliminary definitions to
provide a better methodological connection to our proposed GemFilter method in Section 3.1.

For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use ◦ to denote function
composition and ⊙ to denote the Hardamard product. Let n be the input token/prompt length, d the
hidden feature dimension, and V the vocabulary set. We now introduce the key concept of attention
and transformers. We first define the query, key, and value matrices. It is important to note that
during text generation, the key and value matrices are also referred to as the KV cache, as they are
stored in GPU memory to reduce running time during the iterative prediction of the next token.
Definition 3.1 (Single layer self-attention). Let Q ∈ Rn×d be the query matrix , K ∈ Rn×d the key
cache, and V ∈ Rn×d the value cache. Let Mc ∈ {0, 1}n×n be the causal attention mask, where
(Mc)i,j is 1 if i ≥ j and 0 otherwise. The self-attention function Attn is defined as:

Attn(Q,K, V ) = Mc ⊙ Softmax(QK⊤/
√
d) · V

Definition 3.2 (Multi-layer transformer). Let T ∈ Vn represent the input tokens, and let m denote
the number of transformer layers. Let gi represent components in the i-th transformer layer other
than self-attention, such as layer normalization, residual connections, and the MLP block, where
gi : Rn×d → Rn×d for any i ∈ {0, 1, . . . ,m}. Let Attni denote the self-attention module in the i-th
transformer layer. We define an m-layer transformer F1:m : Vn → Rn×d as

F1:m(T ) := gm ◦ Attnm ◦ gm−1 ◦ · · · ◦ g1 ◦ Attn1 ◦ g0 ◦ E(T ) ∈ Rn×d,

where E is the input embedding function mapping the input tokens to hidden features using the
vocabulary dictionary, i.e., E(T ) ∈ Rn×d.

Note that the above definitions use a single attention head for simplicity, but in practice, multi-head
attention is used (Vaswani et al., 2017).

3.1 OUR ALGORITHM: GEMFILTER

We present our method, GemFilter, in Algorithm 1. We also present PyTorch code in Appendix D.1
for the reader’s interests. The high-level idea is to run the LLM twice. In the first pass, we run
only the early layers of the LLM to select the key input tokens. This corresponds to the prompt
computation phase (Line 4-7 of Algorithm 1). This process selects the top k tokens that receive
the most attention from the last query token. In the second pass, we feed the selected tokens to the
full LLM and run the generation function, corresponding to the iterative generation phase (Line 8).
Below, we explain Algorithm 1 step by step.
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Algorithm 1 GemFilter: Generation with Token Selection Based on Early Layers

1: procedure SELECTIONGEN(F1:m, T ∈ [V]n, r ∈ [m], k ∈ [n])
2: ▷ F1:m : An m-layer transformer network; T : input sequence of tokens
3: ▷ r: filter layer index for token selection; k: number of selected tokens
4: Get Q(r),K(r) by doing a r-layer forward pass: F1:r(T )
5: ▷ Q(r),K(r) ∈ Rn×d: the r-th layer query, key

6: J ← topk index(Q
(r)
n K(r)⊤, k) ▷ Q

(r)
n : the last row of Q(r); Q(r)

n K(r)⊤ ∈ Rn are attn scores
7: Sort the indices in J ▷ J ⊆ [n] and |J | = k
8: return GEN(F1:m, TJ) ▷ GEN is generation function, TJ ∈ [V]k is a sub-sequence of T on J
9: end procedure

The input of the algorithm is an m-layer transformer F1 (Definition 3.2), an input token sequence
T ∈ Vn, and two hyperparameters r ≤ m, k ≤ n, where r represents the index of the filter layer
for context token selection and k denotes the number of tokens to select. For example, in the case of
LLaMA 3.1 8B Instruct (Figure 1), we have m = 32, r = 13, and k = 1024.

In the first step (Line 4), we run only the first r layers forward to serve as a filter, obtaining the
r-th layer’s query and key matrices, Q(r) and K(r). Note that we do not need to run all layers of
the LLM on a long context input, thereby saving both computation time and memory (see detailed
analysis in Section 3.2). In Line 6, we select token indices based on the r-th layer attention matrix.
The selection is made by identifying the k largest values from the last row of the attention matrix,
i.e., the inner product between the last query token Q

(r)
n and all key tokens K(r). For multi-head

attention, the top-k indices are selected based on the summation of the last row across the attention
matrices of all heads. For instance, suppose we have h attention heads, and let Q(r,j),K(r,j) ∈ Rn×d

represent the query and key matrices for the r-th layer and j-th attention head. Then, we compute
J ← topk index(

∑h
j=1 Q

(r,j)
n K(r,j)⊤, k), where J is a set of top k index selection. Note that our

method uses a single index set J , whereas SnapKV (Li et al., 2024b) and H2O (Zhang et al., 2023)
use different index sets for each layer and attention head, resulting in m · h index sets in total. A
detailed discussion is provided in Appendix B.

In Line 6, J is sorted by inner product values. However, we need to re-sort J so that the selected
tokens follow their original input order, ensuring, for example, that the ⟨bos⟩ token is placed at the
beginning. Line 7 performs this reordering operation. Finally, in Line 8, we can run any language
generation function using the selected tokens TJ , which is a sub-sequence of T on the index set J ,
across all layers. This generation is efficient as the input context length is reduced from n to k, e.g.,
from 128K to 1024 tokens in Figure 1. Below, we provide a formal time complexity analysis.

3.2 RUNNING TIME AND MEMORY COMPLEXITY ANALYSIS

The results of our analysis on time complexity and GPU memory consumption are presented in
Theorem 3.3 below, with the proof deferred to Appendix C.

Theorem 3.3 (Complexity analysis). Let n be the input sequence (prompt) length and d the hidden
feature dimensions. In our Algorithm 1, GemFilter uses the r-th layer as a filter to select k input
tokens. Let SnapKV and H2O also use k as their cache size. Assume the LLM has m attention layers,
each with h attention heads, and each transformer layer’s parameters consume w GPU memory.
Assuming that we generate t tokens with the GEN function and n ≥ max{d, k, t}, the following
table summarizes the complexity for standard attention, SnapKV and H2O, and GemFilter:

Complexity Standard attention SnapKV and H2O GemFilter

Time Prompt Comp. Θ(mhn2d) Θ(mhn2d) Θ(rhn2d)
Iter. generation Θ(mh(nt+ t2)d) Θ(mh(kt+ t2)d) Θ(mh(k2 + t2)d)

GPU mem. Prompt Comp. mw + 2mhnd mw + 2hnd+ 2mhkd rw + 2hnd
Iter. generation mw + 2mh(n+ t)d mw + 2mh(k + t)d mw + 2mh(k + t)d
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Recall that there are two phases in text generation. The first phase is prompt computation, which
involves attention computation on the long context input tokens and generating the KV cache. The
second phase is iterative generation, where auto-regressive generation occurs based on the pre-
computed KV cache. Theorem 3.3 demonstrates that GemFilter is faster and consumes less GPU
memory than SnapKV/H2O and standard attention during the prompt computation phase. Addition-
ally, during the iterative generation phase, GemFilter has the same running time and GPU memory
consumption as SnapKV/H2O, which is significantly better than standard attention. This conclusion
aligns with our experimental results in Section 4.5.

Case Study. Let us consider the case n ≫ k ≈ t, e.g., n =128K, k = t = 1024 and r < m.
During the prompt computation phase, we have the running time and the GPU memory consumption:

Standard attention : SnapKV/H2O : GemFilter = Θ(m : m : r),

Standard attention : SnapKV/H2O : GemFilter ≈ mw +mhnd : mw + hnd : rw + hnd,

We see that GemFilter has a lower time complexity and less GPU memory consumption than stan-
dard attention, SnapKV, and H2O. During the iterative generation phase, we have the running time
and the GPU memory consumption:

Standard attention : SnapKV/H2O : GemFilter = Θ(n : k : k),

Standard attention : SnapKV/H2O : GemFilter ≈ w/hd+ 2n : w/hd+ 4k : w/hd+ 4k,

As such, GemFilter has the same time complexity and GPU memory consumption as SnapKV/H2O,
while significantly outperforming the standard attention. The running time bottleneck for all meth-
ods occurs during prompt computation, which takes Θ(mhn2d) for standard attention, SnapKV, and
H2O. In contrast, GemFilter only requires Θ(rhn2d) for prompt computation, as it only processes
the early layers of the LLMs to select and compress the input tokens during the first run. See detailed
proof in Appendix C. Note that the GPU memory bottleneck for standard attention occurs during
iterative generation, while for other methods, the memory bottleneck arises during prompt compu-
tation due to the reduced KV cache. GemFilter consumes less GPU memory than SnapKV and H2O
because it only requires loading some layer model weights when processing the long context input
in its first run. Our empirical results in Section 4.5 support our complexity analysis findings.

4 EXPERIMENTS

Model and Datasets. We evaluated our approach using three popular long-context models:
LLaMA 3.1 8B Instruct1 (Dubey et al., 2024), Mistral Nemo 12B Instruct2 (Jiang et al., 2023a),
and Phi 3.5 Mini 3.8B Instruct3 (Abdin et al., 2024), all of which support an input token length
of 128K. We compared our method, GemFilter, against standard attention and two state-of-the-art
methods, SnapKV (Li et al., 2024b) and H2O (Zhang et al., 2023)4. For our experiments, we used
two popular datasets: Needle in a Haystack (Kamradt, 2024) (Section 4.1) and LongBench (Bai
et al., 2023) (Section 4.2). More implementation details are provided in Appendix D.2.

Filter Layer. Except for Section 4.3, for context selection, we always use the index of 13 out of
32, 19 out of 40, and 19 out of 32 layers as the input filter for LLaMA 3.1, Mistral Nemo and Phi
3.5, respectively. In Section 4.3, we provide an ablation study for the filter layer choice.

4.1 NEEDLE IN A HAYSTACK

The Needle in a Haystack (Kamradt, 2024) benchmark serves as a pressure test, challenging LLMs
to retrieve accurate information from a specific sentence (the ‘needle’) hidden within an extensive
document (the ‘haystack’), where the sentence can appear at any arbitrary location. The difficulty
increases as the length of the haystack grows. We use input lengths of 60K for Mistral Nemo 12B

1
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct

2
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407

3
https://huggingface.co/microsoft/Phi-3.5-mini-instruct

4While there are many other generation acceleration methods, they may not be directly comparable to ours
as they use orthogonal techniques. We refer the reader to Section 2 for further details.
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(a) All KV. Mistral Nemo average score: 0.486; LLaMA 3.1 average score: 0.841.
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(b) SnapKV-1024. Mistral Nemo average score: 0.494; LLaMA 3.1 average score: 0.749.
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(c) GemFilter-1024. Mistral Nemo average score: 0.838; LLaMA 3.1 average score: 0.887.

Figure 4: Needle in a Haystack performance comparison of different methods using the Mistral
Nemo 12B Instruct model (left column) and the LLaMA 3.1 8B Instruct model (right column). Re-
sults for the Phi 3.5 Mini 3.8B Instruct model are provided in Appendix D.3. The x-axis represents
the length of the input tokens, while the y-axis shows the position depth percentage of the ‘needle’
information (e.g., 0% indicates the beginning, and 100% indicates the end). A higher score reflects
better performance, meaning more effective retrieval of the ‘needle’ information. GemFilter signifi-
cantly outperforms both standard attention (full KV cache) and SnapKV.

Instruct and 120K for LLaMA 3.1 8B Instruct, as these are the maximum lengths for standard atten-
tion on two A100-40GB GPUs. The KV cache size is set to 1024 for both SnapKV and GemFilter.
In Figure 4, we see that GemFilter significantly outperforms both All KV (standard attention) and
SnapKV with Mistral Nemo and LLaMA 3.1.5 The Needle in a Haystack results suggest that our
method, GemFilter, achieves superior retrieval performance for long input contexts compared to
SnapKV and standard attention. Additional results are provided in Appendix D.3.

4.2 LONGBENCH

LongBench (Bai et al., 2023) is a multi-task benchmark designed to rigorously evaluate long-context
understanding capabilities across various datasets, including single- and multi-document Question
Answering (QA), summarization, few-shot learning, and synthetic tasks. We evaluate the English-
only dataset, following Li et al. (2024b); Xu et al. (2024b). Note that we do not use a chat template
in Table 1. See Table 3 in Appendix D.7 for more results of using a chat template.

5H2O cannot be implemented with FlashAttention due to its cumulative attention score strategy and is
therefore unable to handle super long input contexts, which is why we exclude it here, following Li et al.
(2024b); Xu et al. (2024b).
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Table 1: Performance comparison on LongBench across various LLMs and methods. A larger
number means better performance. The best score is boldfaced.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic

Average

Nrtv
QA

Qasp
er

MF-en

HotpotQ
A

2WikiM
QA

Musiq
ue

Gov
Rep

ort

QMSum

MultiN
ew

s

TREC

Triv
iaQ

A

SAMSum

PCount
PRe

LLaMA 3.1 8B Instruct
All KV 32.02 13.04 27.34 16.23 16.05 11.22 34.52 23.41 26.89 73.0 91.64 43.8 7.16 97.73 36.72
H2O-4096 22.94 12.61 26.48 16.63 15.81 10.14 33.51 23.47 26.81 69.0 91.15 43.97 6.66 71.67 33.63
MInference 27.52 14.72 28.89 17.55 15.22 10.58 34.76 22.34 26.64 72.5 89.78 41.94 7.59 92.91 35.92
LLMLingua-1024 11.73 6.28 12.43 13.82 12.92 8.15 22.82 20.18 23.32 24.0 66.75 24.02 9.09 4.24 18.55

SnapKV-1024 31.98 11.17 25.33 14.81 15.73 10.69 26.95 22.89 25.86 67.5 91.89 42.85 7.67 98.16 35.25
GemFilter-1024 20.71 11.0 29.28 19.12 17.01 13.01 30.37 21.75 25.17 63.0 90.7 42.5 7.15 92.22 34.50

SnapKV-2048 31.45 11.94 26.24 15.73 16.03 11.66 29.64 23.24 26.44 69.5 91.48 42.68 7.21 98.03 35.80
GemFilter-2048 24.36 12.63 25.39 19.58 17.03 14.11 33.15 22.31 26.49 69.5 91.59 42.64 4.61 98.75 35.87

SnapKV-4096 32.13 13.12 27.38 16.11 16.08 11.6 32.39 23.47 26.76 71.5 91.64 43.46 7.33 97.24 36.44
GemFilter-4096 25.66 12.95 27.38 17.76 15.6 12.02 34.17 23.25 26.87 70.0 92.36 43.34 5.96 98.0 36.09

Mistral Nemo 12B Instruct
All KV 28.91 40.74 54.65 52.15 48.36 30.28 30.66 23.53 26.31 75.0 89.66 44.32 4.5 100.0 46.36
H2O-4096 31.61 39.52 54.75 47.83 48.09 27.0 30.44 23.21 26.42 72.5 89.76 44.47 3.0 73.0 43.69
LLMLingua-1024 19.24 16.92 21.43 30.94 25.09 13.24 21.96 19.8 23.94 24.5 68.48 33.33 4.0 5.0 23.42

SnapKV-1024 26.42 38.49 52.96 51.21 47.86 27.06 24.32 22.66 25.52 73.0 89.82 43.16 3.5 100.0 44.71
GemFilter-1024 27.53 40.68 53.86 55.51 55.43 34.11 27.25 21.16 25.56 69.0 87.32 42.49 4.0 88.06 45.14

SnapKV-2048 25.85 40.69 54.48 51.96 49.06 26.95 26.29 23.17 25.9 74.5 89.66 43.89 4.0 99.5 45.42
GemFilter-2048 29.27 41.53 54.91 57.62 54.97 35.09 29.34 22.58 26.19 72.0 89.65 44.93 4.0 97.5 47.11
SnapKV-4096 27.92 40.9 54.75 51.69 48.16 29.19 29.17 23.36 26.35 75.0 89.66 43.93 4.5 100.0 46.04
GemFilter-4096 30.29 39.9 56.48 58.78 51.48 32.81 30.32 23.21 26.48 71.5 90.24 42.13 2.0 99.5 46.79

Phi 3.5 Mini 3.8B Instruct
All KV 27.51 17.23 35.63 21.7 25.7 11.68 34.14 23.17 24.95 71.5 87.37 13.08 7.17 83.85 34.62
H2O-4096 19.74 16.23 34.17 21.02 23.05 10.49 33.42 21.95 24.95 67.5 86.13 16.71 1.55 47.46 30.31
LLMLingua-1024 8.58 6.74 14.93 12.37 11.01 4.48 21.23 17.08 20.75 24.0 56.09 23.01 0.96 3.79 16.07

SnapKV-1024 24.31 16.03 34.93 20.72 26.02 13.74 28.27 22.03 24.02 67.5 87.71 14.57 6.08 85.6 33.68
GemFilter-1024 16.57 18.29 35.91 24.22 26.1 9.7 30.29 18.96 23.64 64.5 85.85 23.02 0.2 81.12 32.74

SnapKV-2048 26.41 16.59 36.99 21.8 26.07 12.57 30.88 22.37 24.51 69.5 87.54 13.13 6.57 83.92 34.20
GemFilter-2048 19.63 14.84 35.99 21.38 19.72 10.13 32.39 21.24 24.71 65.0 86.49 20.47 2.17 69.5 31.69

SnapKV-4096 27.25 17.42 36.9 21.37 25.42 12.55 32.9 22.6 24.87 70.5 87.45 13.28 6.81 84.04 34.53
GemFilter-4096 20.95 19.98 35.22 28.82 28.21 13.98 34.2 22.45 25.08 64.5 85.86 18.68 3.43 65.56 33.35

For each LLM, we evaluate GemFilter and SnapKV with selected tokens/KV caches of 1024, 2048,
and 4096. We also evaluated standard attention (all KV cache) and H2O with a KV cache size of
4096 on the LongBench dataset to further demonstrate the performance of GemFilter, following Li
et al. (2024b). Table 1 shows a negligible performance drop in LLMs using GemFilter compared
to standard attention, even with only 1024 selected tokens. In some cases, GemFilter even outper-
forms standard attention, such as GemFilter-2048 for Mistral Nemo 12B Instruct. It demonstrates
significantly better performance than H2O and comparable performance with SnapKV. Furthermore,
GemFilter effectively filters key information in long contexts, provides interpretable summaries, and
compresses the input context effectively, e.g., it reduces input tokens to an average of 8% when using
1024 tokens, and 32% when using 4096, with negligible accuracy drops.

In the section, we also evaluated on two important baselines, MInference (Jiang et al., 2024a) and
LLMLingua (Jiang et al., 2023b)6. We can see that MInference (Jiang et al., 2024a) has com-
patible performance with SnapKV, while it requires offline to determine the best attention pattern,
which cannot save the prompt computation phase running time. We can see that although LLMLin-
gua (Jiang et al., 2023b) achieves a good comparison rate, the performance may not be satisfactory.

4.3 ABLATION STUDY: FILTER LAYER CHOICE

In this section, we explore which layer should be chosen as the input filter. First, we aim to determine
which layer of the LLM can best identify the position of the needle information. In Figure 5, we

6We skip LongLLMLingua Jiang et al. (2024b) for a fair comparison, as it requires explicitly separating the
input context into text information and questions, while other methods do not require that.
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Figure 5: Distance between the needle position and selected token index position across three LLMs.
The position depth percentage of the “needle” information is 50%. The x-axis means the layer index
of different LLMs. The y-axis means min(topk index − niddle index). When y = 0, it means the
needle information is covered by the selected token. The needle information has been successfully
discovered in the early layers of all three LLMs.

plot the distance between the needle’s position and the selected token index across all layers in the
LLM. The results reveal three stages in the prompt computation of LLMs. In the first stage, the
initial layers preprocess the input context and search for the ‘needle’. In the second stage, some
early to middle layers identify the needle information. Finally, in the third stage, the LLM prepares
to generate the output based on the selected tokens.

Table 2: Performance of our method on LongBench using different layers as an input filter. A larger
number means better performance. The best score is boldfaced.

Filter layer

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic

Average

Nrtv
QA

Qasp
er

MF-en

HotpotQ
A

2WikiM
QA

Musiq
ue

Gov
Rep

ort

QMSum

MultiN
ew

s

TREC

Triv
iaQ

A

SAMSum

PCount
PRe

LLaMA 3.1 8B Instruct (32 layers)
layer-1 16.32 7.38 13.86 13.9 13.21 5.22 25.61 20.09 24.51 47.0 76.59 39.78 2.55 23.01 23.50
layer-7 16.89 6.83 13.47 13.78 12.23 9.67 26.56 19.49 24.55 58.0 84.87 41.07 6.5 50.69 27.47
layer-12 15.53 7.73 16.53 17.08 13.33 9.88 28.94 20.32 25.01 58.0 88.16 40.42 8.36 43.06 28.03
layer-13 20.71 11.0 29.28 19.12 17.01 13.01 30.37 21.75 25.17 63.0 90.7 42.5 7.15 92.22 34.50
layer-14 21.14 13.06 25.45 20.89 17.32 12.9 29.85 22.06 24.91 62.0 89.88 42.33 6.17 92.17 34.30
layer-19 19.06 11.69 27.12 20.98 16.98 14.04 29.17 21.88 25.18 58.0 89.65 40.4 8.75 94.84 34.12
layer-25 24.74 12.33 26.18 18.56 16.3 12.54 28.66 21.75 25.14 61.5 88.78 39.47 8.67 90.59 33.94
layer-31 20.62 9.13 17.51 19.13 13.76 10.07 28.21 21.11 25.16 58.0 88.4 42.37 8.23 58.8 30.04

We then use the first layer that accurately identifies the needle’s position as the input filter. In
our experiments, we find that this layer remains consistent across different inputs. As shown in
Table 2, performance first increases and then decreases as we select the input filter layer from the
beginning to the end. The peak performance is observed at the 13th layer, which supports our layer
selection strategy. Performance remains robust between layers 13 and 25, providing flexibility in
layer selection. Exploring the distinct functions of different layers presents an interesting direction
for future research.

4.4 MORE ABLATION STUDY

To understand the intuition behind selecting tokens with the most attention specifically from the last
query, we study using different rows rather than the last row in the attention matrix for indices se-
lection, as shown in Figure 2 in Appendix D.4. In Figure 9, we introduce two methods: (a) selecting
middle rows of the attention matrix and (2) selecting rows with the largest ℓ2 norm. Both methods
fail in the Needle in a Haystack task, verifying that selecting the last query token is essential.

Note that the performance improvement of GemFilter may stem from two factors: (1) the selection of
important tokens, and (2) the re-computation of these tokens, which might mitigate issues like “lost-
in-the-middle”. To understand whether both factors made contributions, we provide an ablation
study to isolate the contribution of each factor in Figure 10 of Appendix D.5. Furthermore, in
Appendix D.6 Figure 11, we show the index selection difference between Gemfilter and SnapKV.
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4.5 RUNNING TIME AND GPU MEMORY CONSUMPTION

In this section, we compare the running time and GPU memory consumption of different methods
with FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024) support.7 The iterative gen-
eration running time and memory consumption are evaluated on 50 tokens generation. As shown
in Figure 3, our method, GemFilter, achieves a 2.4× speedup compared to SnapKV and standard
attention, with 30% and 70% reductions in GPU memory usage, respectively. It saves both running
time and GPU memory by processing the long input context only during the first stage, as described
in Section 4.3. For the latter two stages, the LLMs only need to handle compressed inputs. In Fig-
ure 6, we present a comparison of running time and GPU memory consumption for Mistral Nemo
12B Instruct and Phi 3.5 Mini 3.8B Instruct using various methods. GemFilter runs faster and uses
less GPU memory than the state-of-the-art methods, as discussed above. Additionally, Figure 3 and
Figure 6 further support our Theorem 3.3 in Section 3.2.
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Figure 6: Comparison of time and GPU memory usage across different methods on Mistral Nemo
12B Instruct and Phi 3.5 Mini 3.8B Instruct. GemFilter uses the 19th layer as an input filter for both
LLMs. It achieves a 2.4× speedup and reduces GPU memory usage by 30% compared to SnapKV.

5 CONCLUSION

In this work, we presented a novel approach, GemFilter, to accelerate LLM inference and reduce
memory consumption for long context inputs. By leveraging the ability of early LLM layers to iden-
tify relevant information, GemFilter achieves significant improvements over existing techniques.
It demonstrates a 2.4× speedup and 30% reduction in GPU memory usage compared to SOTA
methods, while also showing superior performance on the Needle in a Haystack benchmark. Our
approach is simple, training-free, applicable to various LLMs, and offers enhanced interpretability
by directly inspecting selected tokens. These results not only provide practical benefits for LLM
deployment, but also provide insight into a better understanding of LLM internal mechanisms.

7We exclude H2O as it does not support FlashAttention and thus requires more GPU memory and running
time than standard attention during prompt computation.
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Appendix

A MORE PRELIMINARY

In this section, we introduce some key definitions of language modeling modules. We begin with
the input embedding function and the output embedding function. They are functions that bridge
between the input token space and the real vector space.

Definition A.1 (Input embedding function and input tokens). The input embedding function E :
Vn → Rn×d maps the input tokens to hidden features using the vocabulary dictionary Dvoc ∈
R|V|×d. Let T ∈ Vn be input tokens. Then, we have E(T ) ∈ Rn×d and E(T )i = Dvoc

Ti
∈ Rd for

any i ∈ [n].

Definition A.2 (Output embedding function). The output embedding function G : Rd → R|V| maps
hidden features to the probability logits of the vocabulary dictionary.

We introduce Softmax, which allows self-attention to learn the probability distribution rather than
function anymore.

Definition A.3 (Softmax). Let z ∈ Rn. We define Softmax : Rn → Rn satisfying

Softmax(z) := exp(z)/⟨exp(z),1n⟩.

B DETAILED COMPARISON WITH OTHER METHODS

GemFilter reduces both running time and GPU memory usage in both the prompt computation and
iterative generation phases, whereas SnapKV (Li et al., 2024b) and H2O (Zhang et al., 2023) focus
only on the iterative generation phase. During the prompt computation phase, standard attention
computes and stores the entire KV cache for all layers in GPU memory, which is used during the
generation phase. SnapKV and H2O, on the other hand, compute the entire KV cache for all layers
but only store a portion of it in GPU memory (e.g., k = 1024). They use the selected KV cache for
memory-efficient generation. SnapKV selects important clustered positions of the KV cache from
an ‘observation’ window located at the end of the prompt, while H2O greedily drops tokens based
on cumulative attention scores to retain only a small portion of the KV cache. In contrast, GemFilter
avoids computing the KV cache for all layers during the prompt computation phase.

Compared to SnapKV and H2O, there are two additional differences. First, SnapKV and H2O
maintain separate index sets for each layer and attention head, resulting in m · h index sets in
total. This leads to different behaviors across attention heads, making their intermediate mechanisms
more difficult to interpret. On the other hand, GemFilter uses a single index set, J , allowing for
easier interpretability by enabling the printing of the selected sequence for human review before the
second run (see a real example in Figure 1). Another distinction lies in how positional embeddings
are handled. In SnapKV and H2O, the maximum positional embedding distance is n + t, as the
same positional embedding is used in both the prompt computation and iterative generation phases.
However, in GemFilter’s second run, the maximum positional embedding distance is reduced to k+t
because the input token length is reduced from n to k, and the RoPE function8 is re-computed. This
reduction makes GemFilter more efficient, as the model can better handle shorter input sequences,
as demonstrated in Figure 4 (a).

C PROOF OF TIME COMPLEXITY

Theorem C.1 (Complexity analysis. Restatement of Theorem 3.3). Let n be the input sequence
(prompt) length and d the hidden feature dimensions. In our Algorithm 1, GemFilter uses the r-th
layer as a filter to select k input tokens. Let SnapKV and H2O also use k as their cache size. Assume

8RoPE is the rotary positional embedding (Su et al., 2024), encoding the positional information of tokens.
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the LLM has m attention layers, each with h attention heads, and each transformer layer’s param-
eters consume w GPU memory. Assuming that we generate t tokens with the GEN function and
n ≥ max{d, k, t}, the following table summarizes the complexity for standard attention, SnapKV
and H2O, and GemFilter:

Complexity Standard attention SnapKV and H2O GemFilter

Time Prompt Comp. Θ(mhn2d) Θ(mhn2d) Θ(rhn2d)
Iter. generation Θ(mh(nt+ t2)d) Θ(mh(kt+ t2)d) Θ(mh(k2 + t2)d)

GPU mem. Prompt Comp. mw + 2mhnd mw + 2hnd+ 2mhkd rw + 2hnd
Iter. generation mw + 2mh(n+ t)d mw + 2mh(k + t)d mw + 2mh(k + t)d

Proof of Theorem 3.3. We prove each method separately.

Proof of standard attention:

During prompting computation, it takes Θ(mhn2d) time complexity, as there are m transformer
layers, each layer has h attention head, and each head takes Θ(n2d) to calculate the attention (Attni
in Definition 3.2) and Θ(nd) for other operations (gi in Definition 3.2).

During iterative generation, it takes Θ(mh(nt+ t2)d) time complexity.

During prompting computation, mw GPU memory consumption is taken for the model weights and
2mhnd GPU memory consumption for the KV cache.

During iterative generation, it takes mw GPU memory consumption for the model weights and
2mh(n+ t)d GPU memory consumption for the KV cache. Proof of SnapKV and H2O:

During prompting computation, it takes Θ(mhn2d) time complexity, which is the same as standard
attention.

During iterative generation, it takes Θ(mh(kt + t2)d) time complexity, as it reduces the KV cache
size from n to k.

During prompting computation, mw GPU memory is consumed for the model weights, 2hnd for
the selection of the key-value matrix for each layer, and 2mhkd for the selected KV cache.

During iterative generation, mw GPU memory is consumed for the model weights and 2mh(k+ t)d
GPU memory is consumed for the KV cache.

Proof of our Algorithm 1 GemFilter:

During prompting computation, GemFilter takes Θ(rhn2d) time complexity, which is faster than
other methods.

During iterative generation, it takes Θ(mh(k2 + kt + t2)d) = Θ(mh(k2 + t2)d) time complexity,
as it reduces the KV cache size from n to k.

During prompting computation, rw + 2hnd GPU memory is consumed for the model weights and
the selection of the key value matrix for each layer.

During iterative generation, mw + 2mh(k + t)d GPU memory is consumed for the KV cache and
model weights.

Thus, we finish the proof.

D MORE DETAILS ABOUT EXPERIMENTS

D.1 PYTORCH CODE

We provide the PyTorch code of Algorithm 1 GemFilter below, where our method only needs a few
lines of adaptation based on standard attention9.

9
https://github.com/huggingface/transformers/blob/v4.43-release/src/transformers/models/

mistral/modeling_mistral.py
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1 # find the selected input for the specific attention layer
2 def find_context(self, query_states, key_states, k):
3 # repeat kv for group query attention
4 key_states = repeat_kv(key_states, self.num_key_value_groups)
5 # only use the last query token for the top k selection
6 top_k_indices = top_index(key_states, query_states[:, :, -1:, :], k)
7 # sort the index into the correct order
8 return torch.sort(top_k_indices, dim=-1).indecies
9

10 def top_index(keys, queries, k, kernel=5):
11 # calculate the inner product
12 in_pro = torch.matmul(queries, keys.transpose(-1, -2))
13 # cumulate the score over all attention heads in one attention layer
14 in_pro = torch.sum(in_pro, dim=1, keepdim=True)
15 # use 1D pooling for clustering, similar as SnapKV
16 in_pro = F.avg_pool1d(in_pro, kernel=kernel, padding=kernel//2,

stride=1)
17 return torch.topk(in_pro, k, dim=-1).indices

D.2 IMPLEMENTATION DETAILS

All the Needle in a Haystack and LongBench experiments run on A100-40GB GPUs. All the ex-
periments of running time and memory complexity are evaluated on H100-80GB GPUs. We use
HuggingFace v4.43 PyTorch implementation. There is no randomness or training in all baseline
methods or our method. For the SnapKV/H2O, we use 32 recent size/observation window, which
is the optimal choice suggested by Li et al. (2024b); Xu et al. (2024b). However, GemFilter does
not have an observation window. We use a maximum pooling kernel size (line 16 of the PyTorch
code below) of 5 for SnapKV and our method. For generation, we use standard generation (greedy
generation)10, where num beams=1, do sample = False.
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Pressure Testing LLaMA 3.1 8B Instruct GemFilter-1024 (layer-14) 
Fact Retrieval Across Context Lengths ("Needle In A HayStack")
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(a) GemFilter-1024 (layer-14). LLaMA 3.1 average score: 0.870.

Figure 7: Needle in a Haystack performance comparison of different filter layers with LLaMA 3.1
8B Instruct model. The x-axis represents the length of the input tokens, while the y-axis shows the
position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning, and 100%
indicates the end). A higher score reflects better performance, meaning more effective retrieval of
the ‘needle’ information.

D.3 MORE NEEDLE IN A HAYSTACK

We provide more results of Section 4.1 here. In Figure 8, GemFilter outperforms All KV (standard
attention) and SnapKV by a large margin with Phi 3.5 Mini 3.8B Instruct. In Figure 7, we use layer
14 of LLama 3.1 as the input filter layer, which is an empirical support of the ablation study in
Section 4.3, as it can also obtain good performance on the Needle in a Haystack benchmark.

10
https://huggingface.co/docs/transformers/v4.43.2/en/main_classes/text_generation
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(a) All KV. Phi 3.5 average score: 0.851.
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(b) SnapKV-1024. Phi 3.5 average score: 0.864.
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Pressure Testing Phi 3.5 Mini 3.8B Instruct GemFilter-1024 (layer-19) 
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(c) GemFilter-1024 (layer-19). Phi 3.5 average score: 0.910.

Figure 8: Needle in a Haystack performance comparison of different methods using the Phi 3.5
Mini 3.8B Instruct model. The x-axis represents the length of the input tokens, while the y-axis
shows the position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance, meaning more effective
retrieval of the ‘needle’ information. GemFilter significantly outperforms both standard attention
(full KV cache) and SnapKV.

D.4 ABLATION STUDY ON ROW SELECTION

To understand the intuition behind selecting tokens with the most attention specifically from the
last query, we study using different rows rather than the last row in the attention matrix for indices
selection, as shown in Figure 2.
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(a) Middle-Row-1024 (layer-19). Mistral Nemo average score: 0.198.
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(b) Largest-Row-1024 (layer-19). Mistral Nemo average score: 0.125.

Figure 9: Needle in a Haystack performance comparison of different methods using the Mistral
Nemo 12B Instruct model. The x-axis represents the length of the input tokens, while the y-axis
shows the position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance, meaning more effective
retrieval of the ‘needle’ information. (a) is using the middle row to select top k indices and (b) is
using the row with largest ℓ2 norm to select top k indices.

In Figure 9, we introduce two methods: (a) selecting the middle rows of the attention matrix and
(2) selecting rows with the largest ℓ2 norm. As we can see, both methods fail in the Needle in a
Haystack task. It shows that selecting the last query token is essential in our method.

D.5 ABLATION STUDY ON RUNS

Note that the performance improvement of GemFilter may stem from two factors: (1) the selection
of important tokens, and (2) the re-computation of these tokens, which might mitigate issues like
“lost-in-the-middle”. To understand whether both factors made contributions, we provide an ablation
study to isolate the contribution of each factor.

In Figure 10, we introduce GemFilter-One-Run, which does not have the second run as GemFilter.
In detail, after getting the indices, which is exactly the same as GemFilter, it directly uses this index
set to evict the KV cache for all attention heads and attention layers and continuously conducts the
iterative generation phase.

D.5.1 DIFFERENCE FROM GEMFILTER AND SNAPKV

It is different from GemFilter as (1) it requires computing full attention matrices for all layers for the
KV cache eviction, so it does not save prompt computation phase complexity; (2) it does not have
the second run so that the RoPE positional distance is not updated as GemFilter, where its distance
between ‘needle’ and query can be very large.
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(a) GemFilter-1024 (layer-19). Mistral Nemo average score: 0.838.
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(b) GemFilter-One-Run-1024 (layer-19). Mistral Nemo average score: 0.827.

Figure 10: Needle in a Haystack performance comparison of different methods using the Mistral
Nemo 12B Instruct model. The x-axis represents the length of the input tokens, while the y-axis
shows the position depth percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance, meaning more effective
retrieval of the ‘needle’ information. (a) is our method GemFilter and (b) is the degenerate version
GemFilter-One-Run for ablation study.

It is different from SnapKV as all attention heads and attention layers share the same index set, while
SnapKV has different index sets for different attention heads and different attention layers.

D.5.2 RESULTS

As we can see in Figure 10, the GemFilter-One-Run has a comparable performance with GemFilter,
while it is worse when the distance between the query and the ‘needle’ is large. This is expected
as the RoPE positional distance does not update in GemFilter-One-Run. On the other hand, the
GemFilter-One-Run takes a larger running time complexity and a larger memory consumption than
GemFilter as it requires computing full attention matrices for all layers, while GemFilter only needs
to compute the first few layers.

D.6 INDEX SELECTION

In Figure 11, we visualize the top-k, k = 100, indices over length n = 46, 530 of each attention
layer in GemFilter and SnapKV when using the Mistral Nemo 12B Instruct model and evaluating on
Needle in a Haystack. The GemFilter uses layer-19 as its filter layer. Recall that GemFilter selects
the top-k indices based on the summation of all attention heads, so each attention layer only has one
index set. The SnapKV selects top-k indices for each attention head, so each attention layer only
has h = 32 index sets, where h is the number of attention heads in each attention layer. Thus, for
GemFilter and SnapKV, we plot 1 and 32 index sets for each attention layer, respectively.
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Figure 11: Needle in a Haystack visualization of the top-k indices of each attention layer in GemFil-
ter and SnapKV when using the Mistral Nemo 12B Instruct model. The GemFilter uses layer-19
(the same as other experiments) as its filter layer. Both GemFilter and SnapKV use k = 100, i.e.,
the number of selected tokens. The x-axis is the layer index, 40 layers in total. The y-axis is the
input index, where the input token length is n = 46, 530. We use 50% as the position depth percent-
age of the ‘needle’ information. The red dots mean the selected tokens for the corresponding layer
and input tokens. The blue rectangle represents the position of the needle information. The output
of GemFilter is “The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park
on a sunny day.” which is totally correct. The output of SnapKV is “The best thing to do in San
Francisco is eat a sandwich.” which is partially correct.

In Figure 11, the red dots mean the selected tokens for the corresponding layer and input tokens.
The blue rectangle represents the position of the needle information. The output of GemFilter is
“The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.”
which is totally correct. The output of SnapKV is “The best thing to do in San Francisco is eat a
sandwich.” which is partially correct.

We can see that GemFilter is only focused on the needle information and recent information, while
SnapKV focuses on a wide range of tokens, which may distract its attention. We can also conclude
that GemFilter and SnapKV have very different selection mechanisms.

D.7 LLAMA 3.1 CHAT TEMPLATE

In Table 3, we report the performance of different methods on the LongBench QA task using LLaMA
3.1 8B Instruct and its official LLaMA Chat template11. In the following, we show the PyTorch code
of the way we use the LLaMA Chat template.

11
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
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1 messages = [
2 {"role": "system", "content": ""},
3 {"role": "user", "content": prompt}]
4

5 input = tokenizer.apply_chat_template(messages, add_generation_prompt=
True, return_tensors="pt", return_dict=True).to(device)

In Table 3, we can see that, after applying the template, all methods gain a large improvement in
performance compared to Table 1. Also, we can see that GemFilter has a performance comparable
to that of other state-of-the-art methods. It is interesting to understand the difference between the
attention mechanisms with and without using a chat template. We leave it as our future work.

Table 3: Performance comparison on LongBench across various methods when using LLaMA 3.1
8B Instruct and its official LLaMA Chat template. A larger number means better performance. The
best score is boldfaced.

Method

Single-Document QA Multi-Document QA

AverageNrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique
All KV 25.08 44.06 55.08 47.86 49.19 27.46 41.46
MInference 29.61 43.89 54.76 51.72 49.55 28.17 42.95
SnapKV-1024 29.01 41.67 56.22 56.81 49.32 31.56 44.10
GemFilter-1024 22.8 40.78 48.05 54.33 50.03 30.03 41.00

D.8 MORE RESULTS OF INDEX SELECTION

In this section, we provide more results of index selection on LLaMA 3.1 8B Instruct and Phi 3.5
Mini 3.8B Instruct, where the setting is similar as Figure 11.
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Figure 12: Needle in a Haystack visualization of the top-k indices of each attention layer in GemFil-
ter and SnapKV when using the LLaMA 3.1 8B Instruct model. The GemFilter uses layer-13 (the
same as other experiments) as its filter layer. Both GemFilter and SnapKV use k = 1024, i.e., the
number of selected tokens. The x-axis is the layer index, 32 layers in total. The y-axis is the input
index, where the input token length is n = 108, 172. We use 50% as the position depth percentage
of the ‘needle’ information. The red dots mean the selected tokens for the corresponding layer and
input tokens. The blue rectangle represents the position of the needle information. The output of
GemFilter is “Eat a sandwich and sit in Dolores Park on a sunny day.” which is totally correct. The
output of SnapKV is “Eat a sandwich at a deli in the Mission District.” which is partially correct.
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Figure 13: Needle in a Haystack visualization of the top-k indices of each attention layer in Gem-
Filter and SnapKV when using the Phi 3.5 Mini 3.8B Instruct model. The GemFilter uses layer-19
(the same as other experiments) as its filter layer. Both GemFilter and SnapKV use k = 1024,
i.e., the number of selected tokens. The x-axis is the layer index, 32 layers in total. The y-axis is
the input index, where the input token length is n = 122, 647. We use 50% as the position depth
percentage of the ‘needle’ information. The red dots mean the selected tokens for the corresponding
layer and input tokens. The blue rectangle represents the position of the needle information. The
output of GemFilter is “Sit in Dolores Park on a sunny day and eat a sandwich.” which is totally
correct. The output of SnapKV is “Eat a sandwich.” which is partially correct.
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