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Abstract

Synthetic data generation has become an emerg-
ing tool to help improve the adversarial robust-
ness in classification tasks, since robust learning
requires a significantly larger amount of train-
ing samples compared with standard classifica-
tion. Among various deep generative models,
the diffusion model has been shown to produce
high-quality synthetic images and has achieved
good performance in improving the adversarial
robustness. However, diffusion-type methods are
generally slower in data generation as compared
with other generative models. Although differ-
ent acceleration techniques have been proposed
recently, it is also of great importance to study
how to improve the sample efficiency of synthetic
data for the downstream task. In this paper, we
first analyze the optimality condition of synthetic
distribution for achieving improved robust accu-
racy. We show that enhancing the distinguisha-
bility among the generated data is critical for im-
proving adversarial robustness. Thus, we pro-
pose the Contrastive-Guided Diffusion Process
(Contrastive-DP), which incorporates the con-
trastive loss to guide the diffusion model in data
generation. We validate our theoretical results
using simulations and demonstrate the good per-
formance of Contrastive-DP on image datasets.

1. Introduction
The success of most deep learning methods relies heavily
on a massive amount of training data, which can be expen-
sive to acquire in practice. For example, in applications
like autonomous driving (O’Kelly et al., 2018) and medical
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diagnosis (Das et al., 2022), the number of rare scenes is
usually very limited in the training dataset. Moreover, the
number of labeled data for supervised learning could also
be limited in some applications since it may be expensive
to label the data. These challenges call for methods that
can produce additional data that are easy to generate and
can help improve downstream task performance. Synthetic
data generation based on deep generative models has shown
promising performance recently to tackle these challenges
(Sehwag et al., 2022; Gowal et al., 2021; Das et al., 2022).

In synthetic data generation, one aims to learn a synthetic
distribution (from which we generate synthetic data) that
is close to the true date-generating distribution and, most
importantly, can help improve the downstream task per-
formance. Synthetic data generation is highly related to
generative models. Among various kinds of generative mod-
els, the score-based model and diffusion type models have
gained much success in image generation recently (Song
& Ermon, 2019; Song et al., 2021b; 2020; Song & Ermon,
2020; Sohl-Dickstein et al., 2015; Nichol & Dhariwal, 2021;
Bao et al., 2022; Rombach et al., 2022; Nie et al., 2022; Sun
et al., 2022). As validated in image datasets, the prototype
of diffusion models, the Denoising Diffusion Probabilistic
Model (DDPM) (Ho et al., 2020), and many variants can
generate high-quality images as compared with classical
generative models such as generative adversarial networks
(Dhariwal & Nichol, 2021).

This paper mainly focuses on the adversarial robust classifi-
cation of image data, which typically requires more training
data than standard classification tasks (Carmon et al., 2019).
In (Gowal et al., 2021), 100M high-quality synthetic images
are generated by DDPM and achieve the state-of-the-art
performance on adversarial robustness on the CIFAR-10
dataset, which demonstrates the effectiveness of diffusion
models in improving adversarial robustness. However, a
major drawback of diffusion-type methods is the slow com-
putational speed. More specifically, DDPM is usually 1000
times slower than GAN (Song et al., 2021a), and this draw-
back is more serious when generating a large number of
samples, e.g., it takes more than 99 GPU days 1 for gener-
ating 100M image data according to (Gowal et al., 2021).

1Running on a RTX 4x2080Ti GPU cluster.
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Moreover, the computational cost will increase dramatically
when the resolution of images increases, which inspires a
plentiful of works studying how to accelerate the diffusion
models (Song et al., 2021a; Watson et al., 2022; Ma et al.,
2022; Salimans & Ho, 2022; Bao et al., 2022; Cao et al.,
2022; Yang et al., 2022). In this paper, we aim to study
the aforementioned problem from a different perspective
– “how to generate effective synthetic data that are most
helpful for the downstream task?” We analyze the optimal
synthetic distribution for the downstream tasks to improve
the sample efficiency of the generative model.

We first study the theoretical insights for finding the optimal
synthetic distributions for achieving adversarial robustness.
Following the setting considered in (Carmon et al., 2019),
we introduce a family of synthetic distributions controlled
by the distinguishability of the representation from different
classes. Our theoretical results show that the more distin-
guishable the representation is for the synthetic data, the
higher the classification accuracy we will get. Motivated by
the theoretical insights, we propose the Contrastive-Guided
Diffusion Process (Contrastive-DP) for efficient synthetic
data generation, incorporating the gradient of the contrastive
learning loss (van den Oord et al., 2018; Chuang et al., 2020;
Robinson et al., 2021) into the diffusion process. We con-
duct comprehensive simulations and experiments on real
image datasets to demonstrate the effectiveness of the pro-
posed Contrastive-DP method.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the problem formulation and preliminaries
on diffusion models. Section 3 contains the theoretical in-
sights of optimal synthetic distribution under the Gaussian
setting. Motivated by the theoretical insights, Section 4
proposes a new type of synthetic data generation procedure
that combines contrastive learning with diffusion models.
Finally, Section 5 conducts extensive numerical experiments
to validate the good performance of the proposed generation
method on simulation and image datasets.

2. Problem Formulation and Preliminaries
We first give a brief overview of adversarial robust classi-
fication, which is our main focus in this work. It is worth
mentioning that the whole framework can be applied to
other downstream tasks in general. Denote the feature space
as X , the corresponding label space as Y , and the true (joint)
data distribution as D = DX×Y .

Assume we have labeled training data Dtrain :=
{(xi, yi)}ni=1 sampled from D. We aim to learn a robust
classifier fθ : X 7→ Y , parameterized by a learnable θ, that
can achieve the minimum adversarial loss:

min
θ

Ladv(θ) := E(x,y)∼D
(
max
δ∈∆

ℓ(x+ δ, y,θ)
)
, (1)

where ℓ(x, y,θ) = 1{y ̸= fθ(x)} is the 0-1 loss function,
1{·} is the indicator function, and ∆ = {δ : ∥δ∥∞ ≤ ϵ} is
the adversarial set defined using ℓ∞-norm. Intuitively, the
solution to problem (1) is a robust classifier that minimizes
the worst-case loss within an ϵ-neighborhood of the input
features.

In the canonical form of adversarial training, we train the ro-
bust classifier fθ on the training set Dtrain := {(xi, yi)}ni=1

by solving the following sample average approximation of
the population loss in (1):

min
θ

L̂adv(θ) :=
1

n

n∑

i=1

max
δi∈∆

ℓ(xi + δi, yi,θ). (2)

2.1. Adversarial Training Using Synthetic Data

As shown in (Carmon et al., 2019), adversarial training re-
quires more training data in order to achieve the desired
accuracy. Synthetic data generation has been used as a
method to artificially increase the size of the training set by
generating a sufficient amount of additional data, thus help-
ing improve the learning algorithm’s performance (Gowal
et al., 2021).

The mainstream generation procedures can be categorized
into two types: unconditional and conditional generation. In
the unconditional generation, we first generate the features
(x) and then assign pseudo labels to them. In the conditional
generation, we generate the features conditioned on the
desired label. Our analysis is mainly based on the former
paradigm, which can be easily generalized to the conditional
generation procedure, and our proposed algorithm is also
flexible enough for both pipelines.

Denote the distribution of the generated features as D̃X
and the generated synthetic data as Dsyn := {(x̃i, ỹi)}ñi=1.
Here the feature values x̃i are generated from the synthetic
distribution D̃X , and ỹi are pseudo labels assigned by a
classifier learned on the training data Dtrain. Combining the
synthetic and real data, we will learn the robust classifier
using a larger training set Dall := Dtrain ∪ Dsyn which now
contains n+ ñ samples:

min
θ

{η
(
1

n

n∑

i=1

max
δi∈∆

ℓ(xi + δi, yi,θ)

)
+

(1− η)

(
1

ñ

n∑

i=1

max
δi∈∆

ℓ(x̃i + δi, ỹi,θ)

)}
,

(3)

where η ∈ (0, 1) is a parameter controlling the weights of
synthetic data.

2.2. Diffusion Model for Data Generation

We build our proposed generation procedure based on the
Denoising Diffusion Probabilistic Model (DDPM) (Ho et al.,
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2020) and its accelerated variant Denoising Diffusion Im-
plicit Model (DDIM) (Song et al., 2021a). In the following,
we briefly review the key components of DDPM.

The core of DDPM is a forward Markov chain with Gaussian
transitions distributions q(xt|xt−1) to inject Gaussian noise
to the original data distribution q(x0). More specifically,
(Ho et al., 2020) model the forward Gaussian transition as:

q (xt|xt−1) := N (
√
αtxt−1, (1− αt) I) ,

where αt, t = 1, 2, . . . , T is a decreasing sequence
to control the variance of injected noise, and I is the
identity covariance matrix. The joint likelihood for
the above Markov chain can be written as q (x0:T ) =

q (x0)
∏T

t=1 q (xt|xt−1). DDPM then propose to use
pθ (x0:T ) = pθ (xT )

∏T
t=1 pθ (xt−1|xt) to model the re-

verse process, where pθ(xt−1|xt) is parameterized using a
neural network. The training objective is to minimize the
Kullback–Leibler (KL) divergence between the forward and
reverse process: DKL(q (x0:T ) , pθ (x0:T )), which can be
simplified as:

min
θ

Et,x0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
]
,

where the expectation is taken with respect to x0 ∼ q(x0),
ϵ ∼ N (0, I), and t uniformly distributed in {1, . . . , T}.
Here ᾱt =

∏t
s=1 αs and ϵθ(x, t) denotes the neural net-

work parameterized by θ. We refer to (Ho et al., 2020) for
the detailed derivation and learning algorithms.

After learning the time-reversed process parameterized by
θ, the original generation process in (Ho et al., 2020) is a
time-reversed Markov chain as follows:

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
+ σtzt,

starting from xT ∼ N (0, I) and calculating for t = T, T −
1, . . . , 1. The output value x0 is the generated synthetic
data. Here zt ∼ N (0, I) if t > 1 and zt = 0 if t = 1.
DDIM (Song et al., 2021a) speeds up the above procedure
by generalizing the diffusion process to a non-Markovian
process, leading to a sampling trajectory much shorter than
T . DDIM carefully designs the forward transition such that
q (xt|x0) = N

(√
αtx0, (1− αt) I

)
for all t = 1, . . . , T .

The great advantage of DDIM is that it admits the same
training objective as DDPM, which means we can adapt the
pre-trained model of DDPM and accelerate the sampling
process without additional cost. The key sample-generating
step in DDIM is as follows:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ (xt, t)√

αt

)

︸ ︷︷ ︸
predicted x0

+
√
1− αt−1 · ϵθ (xt, t)︸ ︷︷ ︸

pointing to xt

,

(4)

in which we can generate xt−1 using xt and x0. Also, the
generating process becomes deterministic.

3. Theoretical Insights: Optimal Synthetic
Distribution

In this section, we consider a concrete distributional model
as used in (Carmon et al., 2019; Schmidt et al., 2018), and
demonstrate the advantage of refining the synthetic data
generation process – using the optimal distribution for syn-
thetic data generation can help reduce the sample complexity
needed for robust classification. This provides theoretical
insights and motivates the proposed Contrastive-DP method
to be introduced in Section 4.

3.1. Theoretical Setup

Consider a binary classification task where X = Rd,Y =
{−1, 1}. The true data distribution D is specified as follows.
The marginal distribution for label y is uniform in Y , and the
conditional distribution of features is x|y ∼ N (yµ, σ2Id),
where µ ∈ Rd is non-zero, and Id is the d dimensional
identity covariance matrix. Thus the marginal feature dis-
tribution DX is a Gaussian mixture, for convenience we
denote as 0.5N (µ, σ2I) + 0.5N (−µ, σ2I). Suppose we
also generate a set of synthetic data from another synthetic
distribution D̃ which could be different from D.

We focus on learning a robust linear classifier under the
above setting. The family of linear classifiers is repre-
sented as fθ(x) = sign(θ⊤x). Recall that we first gen-
erate features and then assign pseudo labels to the fea-
tures. Therefore, a self-learning paradigm is adopted
here (Wei et al., 2020). Given a set of unlabeled syn-
thetic features {x̃1, x̃2, . . . , x̃ñ}, we apply an intermedi-
ate linear classifier parameterized by θ̂inter =

1
n

∑n
i=1 yixi,

learned from real data Dtrain, to assign the pseudo-label.
Then, the synthetic data Dsyn = {(x̃1, ỹ1), . . . , (x̃ñ, ỹñ)},

where ỹi = sign(θ̂
⊤
interxi), i = 1, . . . , ñ. We combine

the real data and synthetic data Dall := Dtrain ∪ Dsyn =
{{(xi, yi)}ni=1, {(x̃i, ỹi)}ñi=1} to obtain an approximate op-
timal solution θ̂final as (Carmon et al., 2019):

θ̂final =
1

n+ ñ
(

n∑

i=1

yixi +

ñ∑

j=1

ỹjx̃j). (5)

Note that the final linear classifier θ̂final depends on the
synthetic data generated from D̃. We aim to study which
synthetic distribution D̃ can help reduce the adversarial
classification error (also called robust error)

errrobust (fθ̂final
) := P(x,y)∼D(∃δ ∈ ∆, fθ̂final

(x+ δ) ̸= y),

where ∆ = {δ : ∥δ∥∞ ≤ ϵ}. And we similarly define the
standard error as errstandard (fθ̂final

) := P(x,y)∼D(fθ̂final
(x) ̸=

y) which will be used later.
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Remark 3.1 (Comparison with existing literature). In (Car-
mon et al., 2019; Deng et al., 2021), sample complexity
results are analyzed based on the same Gaussian setting.
The major difference is that they all assume the learned lin-
ear classifier θ̂final is only learned from synthetic data Dsyn
rather than the combination of the real and synthetic data
Dall. In general, our theoretical setup matches well with the
practical algorithms.

3.2. Theoretical Insights for Optimal Synthetic
Distribution

We first study the desired properties of the synthetic distri-
bution D̃ that can lead to a better adversarial classification
accuracy when the additional synthetic sample Dsyn is used
in the training stage. In (Carmon et al., 2019), the stan-
dard case D̃ = D is studied, i.e., they consider the case
that additional unlabeled data from the true distribution D
is available, and they characterize the usefulness of those
additional training data. Compared with (Carmon et al.,
2019), we consider general distributions D̃ which does not
necessarily equal to D.

First note that by the Bayes rule, the optimal decision bound-
ary for the true data distribution is given by µ⊤x = 0.
Therefore, we restrict our attention to synthetic data dis-
tributions that satisfy: (i) the marginal distribution of the
label ỹ is also uniform in Y , same as D; (ii) the conditional
probability densities p(x̃|ỹ = 1) and p(x̃|ỹ = −1) of the
synthetic data distribution are symmetric around the true
optimal decision boundary µ⊤x = 0. More specifically, we
start with a special case of the synthetic data distribution
D̃X = 0.5N (µ̃, σ2I) + 0.5N (−µ̃, σ2I) (note that when
µ̃ = cµ for some constant c, the above two conditions are
all satisfied).

In the following proposition, we present several represen-
tative scenarios of synthetic distributions in terms of how
they may contribute to the downstream classification task.
Figure 1 gives a pictorial demonstration for different cases.

Proposition 3.2. Consider a special form of synthetic dis-
tributions D̃X = 0.5N (µ̃, σ2I) + 0.5N (−µ̃, σ2I) and as-
sume {x̃1, . . . , x̃ñ} are samples from D̃X . We follow the
self-learning paradigm described in Section 3.1 to learn the
classifier fθ̂final

, when ñ is sufficiently large we have:

Case 1: Inefficient D̃X . When ⟨µ̃,µ⟩ = 0, the standard
error errstandard (fθ̂final

) achieves the maximum and when
⟨µ̃,µ− ε1d⟩ = 0, the robust error errrobust (fθ̂final

) achieves
the maximum.

Case 2: Optimal D̃X for clean accuracy. When µ̃ = cµ
for c > 0, errstandard (fθ̂final

) achieves the minimum, and the
larger the c is, the smaller the errstandard (fθ̂final

).

!
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!
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Lemma 2. For any D̃ in the class of optimal distribution D̃⇤, the smaller the variance D̃ is, the
smaller sample complexity D̃ has.

Proof of Lemma 2. It is a straight forward conclusion derived from equation 6 and 3.12. We can
further extend beyond Gaussian setting, like other heavy-tail distributions.

Based on the previous lemmas, below we summarize the performance guarantee for classification
errors under several representative scenarios of synthetic distributions.

Lemma 3. Consider a special form of synthetic distributions D̃X = 0.5N (µ̃, �2I) +

0.5N (�µ̃, �2I) and suppose {x̃1, x̃2, · · · x̃ñ} are samples from D̃X . We generate pseudo-labels
ỹi = sign(✓̂T

intermediatex̃i), i = 1, · · · , ñ, using the intermediate classifier ✓̂intermediate = 1
n

Pn
i=1 yixi

learned from real data. Then, we learn ✓̂final on D̃ñ = {(x̃1, ỹ1), · · · , (x̃ñ, ỹñ)} by ✓̂final =
1
ñ

Pñ
i=1 ỹix̃i. We have

• hµ̃, µi = 0, error achieves maximum ⇥
• µ̃ = cµ, error achieves minimum X c %) error %

1. When hµ̃, µi = 0, the standard error errstandard

⇣
f✓̂final

⌘
achieves the maximum and when

hµ̃, µ � "1di = 0, the robust error errrobust

⇣
f✓̂final

⌘
achieves the maximum.

2. When µ̃ = cµ, where c is a positive scalar, the standard error errstandard

⇣
f✓̂final

⌘
achieves

the minimum, while the bigger the c is, the smaller the errstandard

⇣
f✓̂final

⌘
is.

3. When µ̃ = c(µ � "1d), where c is a positive scalar, the robust error err1,"
robust

⇣
f✓̂final

⌘

achieves the minimum, while the bigger the c is, the small the err1,"
robust

⇣
f✓̂final

⌘
is.

Proof of Lemma 3. We follow the similar proof in Carmon et al. (2019). Let bi be the indicator that
the i th pseudo-label is incorrect, so that x̃i ⇠ N

�
(1 � 2bi) ỹiµ̃, �2I

�
, and let

� :=
1

ñ

n̄X

i=1

(1 � 2bi) 2 [�1, 1].

We may write the final estimator as

✓̂final =
1

ñ

ñX

i=1

ỹix̃i = �µ̃ +
1

ñ

ñX

i=1

ỹi"i

where "i ⇠ N
�
0, �2I

�
independent of each other. Defining �̃ := ✓̂final � �µ̃, then we have a

detailed discussion about the inverse of the term inside Gaussian error function.

1. ���✓̂final

���
2

⇣
µ>✓̂final

⌘2 =
k�̃ + �µ̃k2

⇣
�hµ, µ̃i + µT �̃

⌘2 .

When hµ̃, µi, k✓̂final k2

(µ>✓̂final )
2 achieves its maximum and plug it in Equation 6, the standard error

errstandard

⇣
f✓̂final

⌘
achieves its maximum, which proves the first part.

2We need to assume µi is larger than ".
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Figure 1. Demonstration of Proposition 3.2. We refer to the main
text for a detailed explanation.

Case 3: Optimal D̃X for robust accuracy. When µ̃ =
c(µ − ε1d) for c > 0, the robust error errrobust (fθ̂final

)

achieves the minimum, and the larger the c is, the smaller
the errrobust (fθ̂final

).

Remark 3.3 (Comparison with the existing characterization
of the synthetic distribution). We briefly comment on the
main differences and similarities with (Deng et al., 2021), in
which a similar result was presented in Theorem 4 therein.
In (Deng et al., 2021), the final solution of θ∗ was given for
minimizing robust error errrobust (fθ̂final

) and they provides a
specific unlabeled distribution µ̃ = µ− ε1d that achieves
better performance under certain condition. In this paper, we
propose a general family of optimal distribution controlled
by a scalar c, which represents the distinguishability of
the feature. The final θ∗ used in (Deng et al., 2021) can be
viewed as a special case of c = 1. Therefore, our conclusion
points out the optimality condition of unlabeled distribution
and inspires a line of work to improve the performance
of θ̂final by making the feature of unlabeled distribution
distinguishable.

We also study the sample complexity for the synthetic dis-
tributions satisfying the condition in Proposition 3.2. The
results below show that for larger c, we typically need fewer
synthetic samples to achieve the desired robust accuracy.
Theorem 3.4. Under the parameter setting ϵ < 1

2 , σ =

(nd)1/4, ∥µ∥2 = d, there exists a universal constant C̃ such
that for ϵ2

√
d/n ≥ C̃, where n is the number of labeled

real data used to construct the intermediate classifier, and
additional ñ synthetic feature generated with mean vector
±cµ and pseudo labels, if

ñ ≥ 288n

c
ϵ2
√

d

n
,

then
Eθ̂final

[ err robust (fθ̂final
)] ≤ 10−3.

4



Improving Adversarial Robustness Through the Contrastive-Guided Diffusion Process

Table 1. Simulation results validating findings in Proposition 3.2
and Theorem 3.4. We use “Real” to denote the real data distribution
and n to denote the number of data from the real distribution, and
we use “c” to denote different synthetic distributions with mean
µ̃ = cµ and use ñ to denote the number of synthetic data. The
average accuracy and the standard deviation in the bracket are
obtained from 50 repetitions.

clean acc rob acc

Real n = 10 0.9023 (0.0192) 0.6843 (0.0359)
n = 100 0.9682 (0.0014) 0.8239 (0.0028)

c = 0.5
ñ = 10 0.7562 (0.0564) 0.4611 (0.0694)
ñ = 100 0.9505 (0.0047) 0.7848 (0.0111)

c = 1
ñ = 10 0.8866 (0.0273) 0.6557 (0.0487)
ñ = 100 0.9695 (0.0012) 0.8239 (0.0031)

c = 1.5
ñ = 10 0.9400 (0.0100) 0.7603 (0.0233)
ñ = 100 0.9743 (0.0008) 0.8343 (0.0011)

Simulation Results. To verify the findings in Proposition
3.2 and Theorem 3.4, we conduct extensive simulation ex-
periments under Gaussian distributions with varying data
dimensions, sample sizes, and the mean vector µ̃. In most
cases, we find increasing c for synthetic distribution can lead
to better clean and robust accuracy. A detailed description of
the experimental setting can be found in Appendix B. In Ta-
ble 1, we demonstrate the clean and robust accuracy learned
on synthetic distribution with the angle between µ and ϵ1d

equals 0◦. Remarkably, the classifier learned only from the
synthetic distribution with µ̃ = cµ with c > 1 achieves
better performance even than the iid samples (denoted as
“Real” in Table).

The closed form of optimal synthetic distribution is µ̃ =
µ − ε1d as stated in Proposition 3.2. It is interesting to
see when µ̃ = cµ and µ is not aligned on ϵ1d, whether
increasing c provides better data distribution for learning a
robust classifier. The answer is still true, demonstrated by
the experiment results (with 30◦, 60◦, and 90◦) in Table 4,
5, 6 and 7 in Appendix B.

4. Contrastive-Guided Diffusion Process
It has been shown in Proposition 3.2 and Theorem 3.4 that
the synthetic data can help improve the classification task,
especially when the representation of different classes is
more distinguishable in the synthetic distribution. Mean-
while, the contrastive loss (van den Oord et al., 2018) can be
adopted to explicitly control the distances of the represen-
tation of different classes. Therefore, we propose a variant
of the classical diffusion model, named Contrastive-Guided
Diffusion Process (Contrastive-DP), to enhance the sample
efficiency of the generative model. In this section, we first
present the overall algorithm of the proposed Contrastive-

Algorithm 1 Generation in Contrastive-guided Diffusion
Process (Contrastive-DP)
Require: Contrastive loss temperature τ , diffusion process

hyperparameter σt

1: XT = {x(i)
T }mi=1 ∼ N (0, I)

2: t = T
3: while t ̸= 1 do
4: for i = 1 to m do
5: Sampling ϵt ∼ N (0, I)
6: Choosing x

(i)
p as the positive pair of x(i)

t

7: ∆x
(i)
t = λ ·∇

x
(i)
t
ℓcontra(x

(i)
t ,x

(i)
p ; τ)+ϵθ(x

(i)
t , t)

8: x
(i)
t−1 =

√
αt−1(

x
(i)
t −

√
1−αt∆x

(i)
t√

αt
) +

√
1− αt−1 − σ2

t ·∆x
(i)
t + σtϵt

9: t = t− 1
10: end for
11: end while
12: Return X0 = {x(i)

0 }mi=1

DP procedure in Section 4.1, then we describe the detailed
design of the contrastive loss in Section 4.2.

4.1. Algorithm for Contrastive-Guided DP

The detailed generation procedure of Contrastive-DP is
given in Algorithm 1. We highlight below some major
differences between the proposed Contrastive-DP and the
vanilla DDIM algorithm. In each time step t of the gener-
ation procedure, given the current value x

(i)
t , we add the

gradient of the contrastive loss ℓcontra(x
(i)
t ,x

(i)
p ; τ) with re-

spect to x
(i)
t to the original diffusion generative process,

here x
(i)
p is the positive pair of x(i)

t (will be explained in
detail later), τ is the temperature for softmax, and λ is the
hyperparameter balancing the contrastive loss within the
diffusion process.

This modification ensures that the generated data will be
distinguishable among data in the same batch. The construc-
tion of the contrastive loss ℓcontra(·) is very flexible – we
can adopt multiple forms of contrastive loss together with
different selection strategies of positive and negative pairs,
which will be discussed in detail in the following.

4.2. Contrastive Loss for Diffusion Process

Let X = {x1, ...,xm} be a minibatch of training data. We
apply the contrastive loss to the embedding space. Assume
f(·) is the feature extractor that maps the input data in X
onto the embedding space. In general, we adopt two forms
of the contrastive loss ℓcontra(x

(i)
t ,x

(i)
p ; τ) which will be

used in Algorithm 1.
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First is the InfoNCE loss:

ℓInfoNCE (xa,xp; τ) = − log(
gτ (xa,xp)∑m

k=1 1k ̸=agτ (xa,xk)
),

where m is the batch size, τ is the temperature for softmax,
xa, xp denote the anchor and the positive pair, respectively,
gτ (x,x

′) = exp(f(x)⊤f(x′)/τ), and all images except
the anchor xa in the minibatch X is negative pairs. In-
foNCE loss is an unsupervised learning metric and does
not explicitly distinguish the representation from different
classes, which implicitly regards the representation from the
same class as negative pair.

Second is the hard negative mining loss:

ℓHNM (xa,xp; τ) = − log
gτ (xa,xp)

gτ (xa,xp) +
m
τ−hτ (xa)

,

where

hτ (xa) = Exn∼qβ [gτ (xa,xn)]− τ+Ev∼q+β
[gτ (xa,v)],

and m denotes the batch size, τ− = 1 − τ+ denotes the
probability of observing any different class with xa and
qβ is an unnormalized von Mises–Fisher distribution (Jam-
malamadaka, 2011), with mean direction f(x) and “con-
centration parameter” β to control the hardness of negative
mining; qβ and q+β can be easily approximated by Monte-
Carlo importance sampling techniques. We refer to (Chuang
et al., 2020; Robinson et al., 2021) for detailed descriptions
of hard negative mining contrastive loss. Compared with
the InfoNCE loss that does not consider class/label infor-
mation, the hard negative mining (HNM) loss enhances
the discriminative ability of different classes in the feature
space.

It is worth mentioning that the Contrastive-DP enjoys the
plugin-type property – it does not modify the original train-
ing procedure of diffusion processes and can be easily
adopted to various kinds of diffusion models.

Moreover, it has a close relationship with Stein Variational
Gradient Descent (Liu & Wang, 2016; Liu, 2017). By utiliz-
ing the existing theoretical tools (Shi & Mackey, 2022) for
analyzing the convergence rate for SVGD, we may also get
the convergence guarantee for Contrastive-DP, which is left
to future work.
Remark 4.1 (Connection with Stein Variational Gradient
Descent). Recall the updating step in Contrastive-DP is

∆x
(i)
t = ϵθ(x

(i)
t , t)︸ ︷︷ ︸

score

+λ ·∇
x

(i)
t
ℓcontra(x

(i)
t ,x(i)

p ; τ)
︸ ︷︷ ︸

repulsive force

.

And the updating step ∆x
(i)
t in SVGD equals (Liu, 2017)

1

n

n∑

j=1

[
sp
(
x
(j)
t

)
k
(
x
(j)
t ,x

(i)
t

)
︸ ︷︷ ︸

weighted sum of score

+∇
x

(j)
t
k
(
x
(j)
t ,x

(i)
t

)
︸ ︷︷ ︸

repulsive force

]
,

where x
(j)
t is other samples in the batch, sp(x) :=

∇x log p(x) is the score function, and k(x,x′) is a pos-
itive definite kernel. Contrastive-DP is similar to the SVGD
with the score that pulls the particles to high-density region
and the repulsive force that pulls the particles away from
each other, but the score in Contrastive-DP is easier to cal-
culate as it does not require a weighted sum over the current
batch.

Numerical Validations. We first demonstrate the effec-
tiveness of Contrastive-DP in Figure 2 using a simulation
example. Consider the binary classification problem as in
Section 3.1, and the real data for each class are generated
from a Gaussian distribution. Figure 2(a) demonstrates
the synthetic data generated by the vanilla diffusion model,
which recovers the ground-truth Gaussian distribution well.
When using the contrastive-DP procedure with HNM loss,
we obtain the generated synthetic data as shown in Figure
2(b), which is more distinguishable with a much smaller
variance.

(a) DDPM (b) Contrastive-DP

Figure 2. An illustration of the effectiveness of synthetic distri-
bution guided by contrastive loss. More details can be found in
Appendix C.2.

In addition, Figure 6 and Figure 7 in Appendix C.2 demon-
strate the synthetic data distribution guided by different
kinds of contrastive loss mentioned above. It can be shown
that InfoNCE loss and hard negative mining method can-
not explicitly distinguish the data within the same class
and thus form a circle within each class to maximize the
distance between samples, while the conditional version
of contrastive loss (given the oracle class information) can
make two classes more separable.

5. Real Data Examples
In this section, we demonstrate the effectiveness of the pro-
posed contrastive guided diffusion process for synthetic data
generation in adversarial classification tasks. We first com-
pare the performance of Contrastive-DP with the vanilla
diffusion models in Section 5.1. Then, we present a compre-
hensive ablation study on the performance of Contrastive-
DP to shed insights on how to adopt the contrastive loss
functions and further data selection methods on the diffu-
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sion model in Section 5.2.

5.1. Experimental Results

We test the contrastive-DP algorithm on three image
datasets, the MNIST dataset (LeCun et al., 1998), CIFAR-
10 dataset (Krizhevsky, 2009), and the Traffic Signs dataset
(Houben et al., 2013). A detailed description of the pipeline
for generating data and the corresponding hyperparameter
can be found in Appendix D.3.

Figure 3 shows the efficacy of synthetic data in terms of
improving adversarial robustness on MNIST data. We fix
the total number of images for training the classifier as 5K
(e.g., when we use 1K real data and 4K synthetic data, to
avoid information leakage, we only use these 1K real data
to train the diffusion model. The same case for 2K, 3K,
and 4K.) 2 Notably, synthetic data improves the clean and
robust accuracy even without using any real data, which is
consistent with the results in Proposition 3.2 and Theorem
3.4. Moreover, lots of proposed methods (Madry et al., 2017;
Tsipras et al., 2018; Zhang et al., 2019) improves the robust
accuracy at the sacrifice of clean accuracy, while adding
contrastive guidance increase both the clean and the robust
accuracy at the same time under the majority of the settings
in Figure 3, which shows the potential of Contrastive-DP
in achieving a better trade-off between clean and robust
accuracy.
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Figure 3. The efficacy of the synthetic data on MNIST dataset. All
the results are trained with 5K data (with different proportions
of real and synthetic data). Subfigure (a) and (b) show the clean
and adversarial accuracy on the MNIST dataset, respectively. The
dashed line is the performance training only on 5K real data.

Table 2 demonstrates the effectiveness of our contrastive-
DP algorithm on the CIFAR-10 dataset 3, which achieves
better robust accuracy on all data regimes than the vanilla

2The case with 5K training images is a special scenario: (i) the
accuracy resulted from using all of the 5K real data is the baseline
(dashed line shown in Figure 3); (ii) while the accuracy resulted
from using 5K synthetic data generated by the diffusion model
trained on 5K real data is shown in the scatter plot.

3Since the Pytorch Implementation of (Gowal et al., 2021) is
not open source, we utilize the best unofficial implementation to
reconduct all the experiments for a fair comparison.

(a) DDIM (b) Contrasrive-DP

Figure 4. Comparison of the Contrastive-DP with the vanilla
DDIM. The image in the same position on subfigures (a) and
(b) has the same initialization.

DDPM and DDIM. All of the results are higher than the
baseline result without synthetic data (81.98%± 0.58% for
clean accuracy and 50.42% ± 0.35% for robust accuracy)
by a large margin (+6.18% in 50K setting and +9.57% in
1M setting). Table 3 demonstrates the effectiveness of our
contrastive-DP algorithm on the Traffic Signs dataset. Our
contrastive-DP achieves better clean and robust accuracy
than the vanilla DDPM model and is also higher than the
baseline result without synthetic data by a large margin
(+10.24%).

To visualize the effectiveness of the guidance, we use
the same initialization to generate images by DDIM and
Contrastive-DP. We find the guidance of the contrastive loss
changes the category of the synthetic images or makes the
synthetic images realistic (colorful).

Moreover, we visualize the t-SNE of the finial classifier
learned on different synthetic data. We find with the guid-
ance of the contrastive loss, the final classifier learns a better
representation that makes the feature of the images from dif-
ferent classes more separable than the final classifier learned
on the images generated by the vanilla DDIM.
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(b) Contrastive-DP

Figure 5. A comparison of the T-SNE of the final classifier learned
on different synthetic data on the CIFAR-10 dataset.

5.2. Ablation Studies

In this subsection, we investigate the effectiveness of seven
kinds of contrastive loss, the effect of strength of the con-
trastive loss, and four proposed selection criterion for choos-
ing more informative data from synthetic data. Due to the

7

https://github.com/imrahulr/adversarial_robustness_pytorch


Improving Adversarial Robustness Through the Contrastive-Guided Diffusion Process

Table 2. The clean and adversarial accuracy on CIFAR-10 dataset. The robust accuracy is reported by AUTOATTACK (Croce & Hein,
2020) with ϵ∞ = 8/255 and WRN-28-10. 50k, 200k, and 1M denote the number of synthetic used for adversarial training. The results
and the standard deviation in the bracket are obtained from 3 repetitions.

50K 200K 1M
clean acc rob acc clean acc rob acc clean acc rob acc

DDIM 84.05%(0.06%) 56.29%(0.15%) 84.86%(0.43%) 57.83%(0.28%) 85.73%(0.51%) 59.85%(0.26%)
Contrastive-DP 83.66%(0.21%) 56.60%(0.17%) 85.71%(0.18%) 58.24%(0.20%) 86.30%(0.09%) 59.99%(0.23%)

DDPM 84.84%(0.37%) 56.30%(0.06%) 85.23%(0.25%) 58.28%(0.09%) 86.86%(0.04%) 59.03%(0.16%)
Contrastive-DP 84.70%(0.43%) 56.18%(0.10%) 85.61%(0.14%) 58.62%(0.12%) 86.30%(0.10%) 59.74%(0.26%)

Table 3. The clean and adversarial accuracy on the Traffic Signs
dataset. The results and the standard deviation in the bracket are
obtained from 3 repetitions.

clean acc rob acc

No additional data 78.52% (0.16%) 46.03% (0.85%)
DDPM 86.79% (0.12%) 56.01% (0.14%)
Contrastive-DP 86.94% (0.32%) 56.27% (0.25%)

space limit, we refer to Appendix E.1, E.2, and E.3 for the
detailed numerical results, respectively.

6. Related Work
Using generative models to improve adversarial robustness
has attracted increasing attention recently. (Gowal et al.,
2021) uses 100M high-quality images generated by DDPM
together with the original training set to achieve state-of-the-
art performance on the CIFAR-10 dataset. They propose to
use Complementary as an important metric for measuring
the efficacy of the synthetic data. In (Sehwag et al., 2022), it
was claimed that the transferability of adversarial robustness
between two data distributions is measured by conditional
Wasserstein distance, which inspires us to use it as a criterion
for selecting samples. Our work follows the same line,
but we investigate how to generate the samples with high
information rather than applying the selection to the data
generated by the vanilla diffusion model. Below we also
summarize some closely related work in different lines.

Sample-Efficient Generation. We can view the sample-
efficient generation problem as a Bi-level optimization prob-
lem. We can regard how to synthesize data as the meta
objective and the performance of the model trained on the
synthetic data as the inner objective. For data-augmentation
based methods, (Ruiz et al., 2019) adopt a reinforcement
learning based method for optimizing the generator in or-
der to maximize the training accuracy. For active learning
based methods, (Tran et al., 2019) use an Auto-Encoder
to generate new samples based on the informative training
data selected by the acquisition function. Besides, (Kim
et al., 2020b) combines the active learning criterion with

data augmentation methods. They use the gradient of acqui-
sition function after one-step augmentation as guidance for
training the augmentation policy network.

Theoretical Analysis of Adversarial Robustness. In
(Schmidt et al., 2018), the sample complexity of adversarial
robustness has been shown to be substantially larger than
standard classification tasks in the Gaussian setting. (Car-
mon et al., 2019) bridges this gap by using the self-training
paradigm and corresponding unlabeled data. (Deng et al.,
2021) further extends the aforementioned conclusion by
leveraging out-of-domain unlabeled data. However, there
still lacks analysis on the optimal distribution for synthetic
data and the corresponding generation algorithm.

Contrastive Learning. Contrastive learning algorithms
have been widely used for representation learning (Chen
et al., 2020; He et al., 2020; Grill et al., 2020). The vanilla
contrastive learning loss, InfoNCE (van den Oord et al.,
2018), aims to draw the distance between positive pairs and
push the negative pairs away. To mitigate the problem that
not all negative pairs may be true negatives, the negative
hard mining criterion was proposed in (Chuang et al., 2020;
Robinson et al., 2021).

7. Conclusion and Discussion
We delve into which kind of synthetic distribution is optimal
for the downstream task, especially for achieving adversar-
ial robustness in image data classification. We derive the
optimality condition under the Gaussian setting and propose
the Contrastive-guided Diffusion Process (Contrastive-DP),
a plug-in algorithm suitable for various types of diffusion
models. We verify our theoretical results on the simulated
Gaussian example and demonstrate the superiority of the
Contrastive-DP algorithm on real image datasets.

It would also be interesting to study the theoretical guar-
antee of the contrastive-guided diffusion process from the
perspective of optimal control. We believe that the proposed
plug-in type algorithm can also be generalized to loss func-
tions other than contrastive loss, such as the acquisition
function in active learning, for other downstream tasks.
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A. Theoretical Details for Section 3
A.1. Error probabilities in closed form.

Here, we briefly recapitulate the closed-form formulation for the standard and robust error probabilities as detailed in
(Carmon et al., 2019; Deng et al., 2021).

The standard error probability can be written as

errstandard (fθ) = P
(
y · x⊤θ < 0

)
= P

(
N
(
µ⊤θ
σ∥θ∥ , 1

)
< 0

)
= Q

(
µ⊤θ
σ∥θ∥

)
, (6)

where

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt

is the Gaussian error function and is non-increasing. Clearly the standard error probability is minimized when θ
∥θ∥ = µ

∥µ∥ ,
i.e., θ = cµ for some scalar c > 0. We may impost ∥θ∥2 = 1 to ensure the unique solution θ = µ/ ∥µ∥.

The robust error probability under the ℓ∞ adversarial set ∆ = {δ : ∥δ∥∞ ≤ ϵ} is

err∞,ε
robust (fθ) = P

(
inf

∥ν∥∞≤ε

{
y · (x+ ν)⊤θ

}
< 0

)

= P
(
y · x⊤θ − ε∥θ∥1 < 0

)
= P

(
N
(
µ⊤θ, σ2∥θ∥2

)
< ε∥θ∥1

)

= Q

(
µ⊤θ
σ∥θ∥ − ε∥θ∥1

σ∥θ∥

)
. (7)

In the following part, we use a simpler notation errrobust (fθ) for the robust error err∞,ε
robust (fθ) without ambiguity. The

closed-form of the optimal θ∗ that minimizes the above robust error errrobust can be shown to be (Deng et al., 2021):

θ∗ =
Tε(µ)

∥Tε(µ)∥
,

where Tε(µ) : Rd → Rd is the hard-thresholding operator with (Tε(µ))j = sign
(
µj

)
·max

{∣∣µj

∣∣− ε, 0
}

. Under the mild
assumption µj > ε,∀j ∈ {1, 2, . . . , d}, the optimal solution can be simplified as:

θ∗ =
µ− ε1d

∥µ− ε1d∥
.

Remark A.1. Note that when µ = c1d for some constant c > ϵ, the optimal solution θ∗ = µ−ε1d

∥µ−ε1d∥ for minimizing the
robust error is the same as the optimal solution µ

∥µ∥ for minimizing the standard error. Otherwise, these two solutions are
different, representing a trade-off between robustness and accuracy.

A.2. Details for the theoretical analysis in Section 3

Overall, we would like to design an appropriate synthetic distribution D̃ that can help optimize the adversarial classification
accuracy in the downstream task. First note that by Bayes rule, the optimal decision boundary for the true distribution
x|y ∼ N (yµ, σ2I) is given by µ⊤x = 0, i.e., the optimal classifier is parameterized by θ = cµ for any c > 0. Therefore,
we restrict our attention to synthetic data distributions that satisfy the following two conditions:

1. The marginal probability density p(ỹ) of the synthetic distribution matches p(y) of the real data distribution well.

2. The conditional probability densities p(x̃|ỹ = 1) and p(x̃|ỹ = −1) of the synthetic data distribution are symmetric
around the true optimal decision boundary µ⊤x = 0.

More specifically, we consider a special case of the synthetic data distribution D̃X = 0.5N (µ̃, σ2I) + 0.5N (−µ̃, σ2I).
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Proof of Proposition 3.2. We follow the proof strategy in (Carmon et al., 2019). Let bi be the indicator that the i-th pseudo-
label ỹi assigned to x̃i is incorrect, so that we have x̃i ∼ N

(
(1− 2bi) ỹiµ̃, σ

2I
)
. Let γ := 1

ñ

∑n̄
i=1 (1− 2bi) ∈ [−1, 1]

and α := ñ
ñ+n . Note that the true data samples xi ∼ N

(
yiµ, σ

2I
)
, thus we may write the final estimator as

θ̂final =
1

n+ ñ
(

ñ∑

j=1

ỹjx̃j +

n∑

i=1

yixi)

=
1

n+ ñ
(

ñ∑

j=1

[(1− 2bj) ỹjµ̃+ ϵ̃j ] · ỹj +
n∑

i=1

[µyi + ϵi] · yi)

= αγµ̃+
1

n+ ñ

ñ∑

i=1

ỹiε̃i + (1− α)µ+
1

n+ ñ

n∑

i=1

yiεi

= αγµ̃+ (1− α)µ+
1

n+ ñ
(

n∑

i=1

yiεi +

ñ∑

i=1

ỹiε̃i),

where εi, ε̃i ∼ N
(
0, σ2I

)
independent of each other, and the marginal probability density p(ỹ) matches p(y) well. Defining

δ̃ := θ̂final − αγµ̃− (1− α)µ.

By (6), we have that the standard error of fθ̂final
is a non-increasing function of µ⊤θ̂final

σ∥θ̂final ∥
. Note that when ñ is large enough,

we have α → 1 and the direction of θ̂final approach the direction of µ̃. Therefore, the statement in Case 1 holds as a
consequence, and similarly for the robust error according to (7).

The remaining proof on Case 2 and Case 3 is based on a detailed discussion for the squared inverse of the term µ⊤θ̂final

σ∥θ̂final ∥
:

∥θ̂final ∥2
(µ⊤θ̂final )2

=
∥δ̃ + αγµ̃+ (1− α)µ∥2

(αγ⟨µ, µ̃⟩+ µ⊤δ̃ + (1− α)∥µ∥2)2
. (8)

Note that the larger the quantity in (8) is, the larger the standard error of fθ̂final
.

Case 2. Assume µ̃ = cµ. Then we have (8) reduces to:

∥θ̂final ∥2
(µ⊤θ̂final )2

=
∥δ̃ + (1− α+ cγα)µ∥2

(
(1− α+ cγα)∥µ∥2 + µ⊤δ̃

)2 (9)

=
1

∥µ∥2 +
∥δ̃ + (1− α+ cγα)µ∥2 − 1

∥µ∥2

(
(1− α+ cγα)∥µ∥2 + µ⊤δ̃

)2

(
(1− α+ cγα)∥µ∥2 + µ⊤δ̃

)2

=
1

∥µ∥2 +
∥δ̃∥2 − 1

∥µ∥2 (µ
⊤δ̃)2

(
(1− α+ cγα)∥µ∥2 + µ⊤δ̃

)2 , (10)

which demonstrates that the bigger the c is, the smaller the standard error errstandard (fθ̂final
) is, which verifies the second part

of Case 2.

Case 3. Assume µ̃ = c(µ− ε1d). Similar to Case 2, we rewrite the term inside the robust error function (7) as:

∥θ̂final ∥2(
(µ− ε1d)⊤θ̂final

)2 =
∥δ̃ + (1− α)µ+ cγα(µ− ε1d)∥2(

cγα∥µ− ε1d∥2 + (1− α)µ⊤(µ− ε1d) + (µ− ε1d)⊤δ̃
)2

≈ 1

∥µ− ε1d∥2
+

∥δ̃∥2 − 1
∥µ−ε1d∥2

(
(µ− ε1d)

⊤δ̃
)2

(
cγα∥µ− ε1d∥2 + (µ− ε1d)⊤δ̃

)2 , (11)
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where the last approximation is due to ñ sufficiently large and thus α ≈ 1. The above equation demonstrates the larger the c
is, the smaller the robust error errrobust (fθ̂final

) is, which proves the second part of Case 3.

Proof of Theorem 3.4. We follow the proof strategy in (Carmon et al., 2019), with the main difference being twofold: (i) in
our final estimate θ̂final depends on both the real data and synthetic data; (ii) our synthetic data are generated from a different
distribution from the true distribution.

Below we analyze the sample complexity to achieve desired robust accuracy. Recall that, under the mild assumption
µj > ε,∀j ∈ {1, 2, . . . , d}, the closed form of the robust error of fθ is Q( (µ−ε1d)

⊤θ
σ∥θ∥ ). Since θ̂final = (1−α+ cγα)µ+ δ̃,

we have the term inside Q(·) function is:

(µ− ε1d)
⊤θ̂final

σ∥θ̂final ∥
=

(1− α+ cγα)∥µ∥2 + µ⊤δ̃
σ∥θ∥ − (ε1d)

⊤θ̂final

σ∥θ̂final ∥
. (12)

We consider the parameter setting:

ϵ <
1

2
, σ = (nd)1/4, ∥µ∥2 = d. (13)

Under such a setting and under the regime that d/n ≫ 1, we have the classifier fµ achieves almost optimal performance in
both robust and standard accuracy. Thus in the following, we mainly focus on the problem of finding the minimum number
of synthetic samples ñ needed in order to ensure the estimate θ̂final is close (in direction) to µ.

For the squared inverse of the first term in (12), we have

∥θ̂final ∥2(
µ⊤θ̂final

)2 =
∥δ̃ + (1− α+ cγα)µ∥2(

(1− α+ cγα)∥µ∥2 + µ⊤δ̃
)

=
1

∥µ∥2 +
∥δ̃∥2 − 1

∥µ∥2

(
µ⊤δ̃

)2

(
(1− α+ cγα)∥µ∥2 + µ⊤δ̃

)2

≤ 1

∥µ∥2 +
∥δ̃∥2

(
(1− α+ cγα)∥µ∥2 + µ⊤δ̃

)2

=
1

∥µ∥2 +
1

∥µ∥4
∥δ̃∥2

(
(1− α+ cγα) + 1

∥µ∥2µ⊤δ̃
)2 (14)

Note that due to the dependence between ỹi and ε̃i, the random variable δ̃ is non-Gaussian. To obtain the concentration
bounds for ∥δ̃∥2 and µ⊤δ̃, we follow the approach used in (Carmon et al., 2019) as follows. Recall θ̂inter =

1
n

∑n
i=1 yixi,

ỹi = sign(θ̂
⊤
interx̃i), and δ̃ = 1

n+ñ (
∑n

i=1 yiεi +
∑ñ

i=1 ỹiε̃i). Find a coordinate system such that the first coordinate is in
the direction of θ̂inter , and let v(i) denote the i th entry of vector v in this coordinate system. Then

ỹi = sign
(
x̃
(1)
i

)
= sign

(
µ(1) + ε̃

(1)
i

)
.

Consequently, ε̃
(j)
i is independent of ỹi for all i and j ≥ 2, so that ỹiε̃

(j)
i ∼ N

(
0, σ2

)
and 1

n+ñ (
∑n

i=1 yiε
(j)
i +

∑ñ
i=1 ỹiε̃

(j)
i ) ∼ N

(
0, σ2/(n+ ñ)

)
and

d∑

j=2

(
1

n+ ñ
(

n∑

i=1

yiε
(j)
i +

ñ∑

i=1

ỹiε̃
(j)
i )

)2

∼ σ2

n+ ñ
χ2
d−1.
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By the Cauchy-Schwarz inequality, we have:
(

1

n+ ñ
(

n∑

i=1

yiε
(1)
i +

ñ∑

i=1

ỹiε̃
(1)
i )

)2

≤ 1

(n+ ñ)2

{(
n∑

i=1

y2i +

ñ∑

i=1

ỹ2i

)(
n∑

i=1

[
ε
(1)
i

]2
+

ñ∑

i=1

[
ε̃
(1)
i

]2
)}

=
1

n+ ñ
(

n∑

i=1

[
ε
(1)
i

]2
+

ñ∑

i=1

[
ε̃
(1)
i

]2
) ∼ σ2

n+ ñ
χ2
n+ñ.

Since ∥δ̃∥2 =
∑d

j=1

(
1

n+ñ (
∑n

i=1 yiε
(j)
i +

∑ñ
i=1 ỹiε̃

(j)
i )
)2

, we have by the union bound

P
(
∥δ̃∥2 ≥ 2

σ2

n+ ñ
(d− 1 + n+ ñ)

)
≤ P

(
χ2
n+ñ ≥ 2(n+ ñ)

)
+ P

(
χ2
d−1 ≥ 2(d− 1)

)

≤ e−(ñ+n)/8 + e−(d−1)/8.

Similarly applying the Cauchy-Schwarz inequality to µ⊤δ̃ = 1
ñ+n

(∑n
i=1 yiµ

⊤εi +
∑ñ

i=1 ỹiµ
⊤ε̃i
)
, we have

(
µ⊤δ̃

)2
≤ 1

(n+ ñ)2

{(
n∑

i=1

y2i +

ñ∑

i=1

ỹ2i

)(
n∑

i=1

(
µ⊤εi

)2
+

ñ∑

i=1

(
µ⊤ε̃i

)2
)}

=
1

n+ ñ
(

n∑

i=1

(
µ⊤εi

)2
+

ñ∑

i=1

(
µ⊤ε̃i

)2
) ∼ σ2∥µ∥2

n+ ñ
χ2
n+ñ.

Therefore we have
P
(
|µ⊤δ̃| ≥

√
2σ∥µ∥

)
= P

(
(µ⊤δ̃)2 ≥ 2σ2∥µ∥2

)
≤ e−(ñ+n)/8.

Finally, we look at the random variable γ. By definition γ = 1
ñ

∑ñ
i=1 (1− 2bi), where bi is the indicator that ỹi is incorrect

for the feature x̃i. Denote ỹ◦i ∈ {−1, 1} as the true label for x̃i, thus we have x̃i ∼ N(cỹ◦i µ, σ
2). Therefore

E[bi] = P[bi = 1] = P
(
ỹ◦i · x̃⊤

i θ̂inter < 0
)
= P

(
N
(
cµ⊤θ̂inter

σ∥θ̂inter ∥
, 1

)
< 0

)
= Q

(
cµ⊤θ̂inter

σ∥θ̂inter ∥

)
.

Moreover since bi are Bernoulli random variables, we have Var(bi) = E[bi](1− E[bi]) ≤ E[bi].

By definition of Q(·) we clearly have Q
(

cµ⊤θ̂inter

σ∥θ̂inter ∥

)
≤ Q

(
µ⊤θ̂inter

σ∥θ̂inter ∥

)
when c ≥ 1 and µ⊤θ̂inter > 0 (which happens with

high probability as shown below). Thus

E
[
γ | θ̂inter

]
= 1− 2Q

(
cµ⊤θ̂inter

σ∥θ̂inter ∥

)
≥ 1− 2 errstandard

(
fθ̂inter

)
,

where errstandard is given in (6).

Therefore, we expect γ to be reasonably large as long as errstandard (fθ̂inter
) < 1

2 . Similar to (Carmon et al., 2019), we have

P
(
γ <

1

6

)
= P

(
1

ñ

ñ∑

i=1

(1− 2bi) <
1

6

)

= P

(
1

ñ

ñ∑

i=1

(1− 2bi) <
1

6
| errstandard (fθ̂inter

) >
1

3

)
· P
(

err standard (fθ̂inter
) >

1

3

)

+ P

(
1

ñ

ñ∑

i=1

(1− 2bi) <
1

6
| errstandard (fθ̂inter

) ≤ 1

3

)
· P
(

err standard (fθ̂inter
) ≤ 1

3

)

≤ P
(

err standard (fθ̂inter
) >

1

3

)
+ P

(
1

ñ

ñ∑

i=1

bi >
5

12
| err standard

(
fθ̂inter

)
≤ 1

3

)
.
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For the first probability, note that
1

3
≥ Q

(
1

2

)
≥ Q

([
2
(
1 +

√
n/d

)]−1/2
)

Therefore, by Lemma 1 in (Carmon et al., 2019), for sufficiently large d/n,

P
(
errstandard

(
fθ̂inter

)
>

1

3

)
≤ e

−c1·min
{√

d/n,n(d/n)1/4
}

for some constant c1.

For the second probability, note that bi are i.i.d. Bernoulli random variables with mean value Q
(

cµ⊤θ̂inter

σ∥θ̂inter ∥

)
≤

errstandard (fθ̂inter
). Therefore, by Hoeffding’s inequality we have

P

(
1

ñ

ñ∑

i=1

bi >
5

12
| errstandard

(
fθ̂inter

)
≤ 1

3

)
≤ e−2ñ( 5

12− 1
3 )

2

= e−ñ/72.

Define the event,

E :=

{
∥δ̃∥2 ≤ 2

σ2

n+ ñ
(d+ n+ ñ),

∣∣∣µ⊤δ̃
∣∣∣ ≤

√
2σ∥µ∥, and γ ≥ 1

6

}
,

thus by the previous concentration bounds, we have

P[EC ] ≤ e−(ñ+n)/8 + e−(d−1)/8 + e
−c1·min

{√
d/n,n(d/n)1/4

}
+ e−ñ/72 ≤ e

−c2 min
{
ñ,
√

d/n, n(d/n)1/4
}
.

Suppose the event E holds, then for the formula in (14) we have:
∥∥∥θ̂final

∥∥∥
2

(
µ⊤θ̂final

)2 ≤ 1

∥µ∥2 +
2σ2(d+ n+ ñ)

(n+ ñ)∥µ∥4
(
(1− α+ 1

6cα)−
√
2σ

∥µ∥

)2 ,

which, after substituting the parameter setting (13), translates into:

σ2
∥∥∥θ̂final

∥∥∥
2

(
µ⊤θ̂final

)2 ≤
√

n

d
+

2nd(d+ n+ ñ)

(n+ ñ)d2
(
(1− α+ 1

6cα)−
√
2
(
n
d

)1/4)2

≤
√

n

d
+

2nd(d+ n+ ñ)

(n+ ñ)d2
(

1
6cα−

√
2
(
n
d

)1/4)2

≤
√

n

d
+

72n

cñ

(
1 + c̃1

(n
d

)1/4)
,

where c̃1 is some positive constant, and above we also implicitly assumed that d/n is sufficiently large.

Combining the above results together, following the analysis in (Carmon et al., 2019), we conclude that there exists
a universal constant C̃ such that for ϵ2

√
d/n ≥ C̃, where n is the number of labeled real data used to construct the

intermediate classifier, and additional ñ synthetic feature generated with mean vector ±cµ and pseudo labels, we have if

ñ ≥ 288n

c
ϵ2
√

d

n
,

we have
Eθ̂final

err ∞,ϵ
robust

(
fθ̂final

)
≤ Q

(
[
√
2− 1]ϵ (d/n)

1/4
)
+ e−ϵ2c2

√
d/n ≤ 10−3.

for sufficiently large C̃.
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B. More simulation results under Gaussian setting in Section 3
In this section, we present more detailed simulation results under the Gaussian setting in Section 3 to demonstrate different
scenarios in Proposition 3.2.

Experimental setting The experimental pipeline is as follow: 1) learning a intermediate classifier θ̂inter by n label data
D = {(x1, y1), . . . , (xn, yn)}, 2) generating ñ synthetic data x̃ ∼ D̃X = 0.5N (µ̃, σ2I) + 0.5N (−µ̃, σ2I), with µ̃ = cµ,
3)assigning pseudo label for synthetic data using the intermediate classifier θ̂inter, 4) learning θ̂final by adversarial training
on ñ synthetic data, 5) testing on 10k extra real data to obtain the clean accuracy and robust accuracy. For data dimension
d = 100, we set ∥µ∥2 = 2, ε = 0.5, and for d = 100, we set ∥µ∥2 = 4, ε = 0.1.

Table 4 and Table 5 show the clean and robust accuracy learned on synthetic distribution µ̃ = cµ with different angles
between µ and ϵ1d. Table 7 shows the clean and robust accuracy learned on synthetic distribution µ̃ = c(µ− ε1d) with
different angles between µ and ϵ1d. Recall that µ is (one of) the optimal linear classifier that maximizes the clean accuracy
under the true distribution considered in Section 3, similarly µ− ϵ1d is the optimal solution for robust accuracy. Therefore,
different angles between µ and ϵ1d represent different trade-offs between the clean and robust accuracy. For example, when
the angle between µ and ϵ1d is 0 degrees, i.e., µ = c1d, we have that the optimal solution for clean accuracy and robust
accuracy are the same. In most cases, the classifier learned from the synthetic distribution that is most separable achieves
better performance even than the iid samples, which verifies Proposition 3.2.

Table 4. The clean and robust accuracy learned on synthetic distribution µ̃ = cµ when d = 2 and the angle between µ and ϵ is 0 degrees
and 90 degrees. “Real” denotes the real data distribution, and n denotes the number of data from the real distribution, while we use “c” to
denote different synthetic distributions and use ñ to denote the number of synthetic data. The results and the standard deviation in the
bracket are obtained from 50 repetitions.

0 degree 90 degree
acc (std) rob acc (std) acc (std) rob acc (std)

Real

n = 10 0.9201 (0.0012) 0.7593 (0.0020) 0.9171 (0.0046) 0.7552 (0.0040)
n = 20 0.9204 (0.0007) 0.7598 (0.0016) 0.9186 (0.0017) 0.7563 (0.0012)
n = 50 0.9206 (0.0004) 0.7605 (0.0007) 0.9196 (0.0009) 0.7566 (0.0006)
n = 100 0.9205 (0.0004) 0.7608 (0.0006) 0.9199 (0.0006) 0.7565 (0.0007)

c = 0.5

ñ = 10 0.9159 (0.0099 ) 0.7541 (0.0096) 0.9104 (0.0121) 0.7492 (0.0122)
ñ = 20 0.9179 (0.0047) 0.7562 (0.0050) 0.9161 (0.0052) 0.7546 (0.0054)
ñ = 50 0.9200 (0.0023) 0.7586 (0.0024) 0.9183 (0.0022) 0.7570 (0.0022)
ñ = 100 0.9213 (0.0011) 0.7601 (0.0009) 0.9193 (0.0012) 0.7576 (0.0010)

c = 1

ñ = 10 0.9133 (0.0066) 0.7502 (0.0061) 0.9161 (0.0048) 0.7598 (0.0048)
ñ = 20 0.9155 (0.0020) 0.7516 (0.0019) 0.9180 (0.0017) 0.7612 (0.0020)
ñ = 50 0.9161 (0.0009) 0.7525 (0.0006) 0.9186 (0.0010) 0.7620 (0.0006)
ñ = 100 0.9165 (0.0005) 0.7528 (0.0006) 0.9189 (0.0005) 0.7622 (0.0003)

c = 1.5

ñ = 10 0.9209 (0.0038) 0.7523 (0.0025) 0.9221 (0.0017) 0.7583 (0.0015)
ñ = 20 0.9228 (0.0010) 0.7536 (0.0006 ) 0.9226 (0.0013) 0.7588 (0.0013)
ñ = 50 0.9229 (0.0008) 0.7538 (0.0005) 0.9232 (0.0005) 0.7594 (0.0006)
ñ = 100 0.9232 (0.0003) 0.7538 (0.0005) 0.9233 (0.0005) 0.7595 (0.0005)
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Table 5. The clean and robust accuracy learned on synthetic distribution µ̃ = cµ when d = 2 and the angle between µ and ϵ is 30 degrees
and 60 degrees. “Real” denotes the real data distribution, and n denotes the number of data from the real distribution, while we use “c” to
denote different synthetic distributions and use ñ to denote the number of synthetic data. The results and the standard deviation in the
bracket are obtained from 50 repetitions.

30 degree 60 degree
acc (std) rob acc (std) acc (std) rob acc (std)

Real

n = 10 0.8307 (0.0123) 0.6343 (0.0283) 0.8348 (0.0117) 0.6378 (0.0293)
n = 20 0.8353 (0.0055) 0.6404 (0.0234) 0.8391 (0.005) 0.6433 (0.0222)
n = 50 0.8371 (0.0022) 0.6450 (0.0168) 0.8410 (0.0017) 0.6494 (0.0134)
n = 100 0.8385 (0.0010) 0.6461 (0.0097) 0.8413 (0.0013) 0.6522 (0.0102)

c = 0.5

ñ = 10 0.8265 (0.0184 ) 0.6282 (0.0418 ) 0.8338 (0.0132 ) 0.6303 (0.0335 )
ñ = 20 0.8299 (0.0129) 0.6352 (0.0325) 0.8365 (0.0132) 0.6393 (0.0316)
ñ = 50 0.8372 (0.0046) 0.6483 (0.0215) 0.8414 (0.0034) 0.6489 (0.0199)
ñ = 100 0.8402 (0.0015) 0.6466 (0.0110) 0.8431 (0.0012) 0.6510 (0.0135)

c = 1

ñ = 10 0.8383 (0.0158) 0.6439 (0.0319) 0.8377 (0.0074) 0.6396 (0.0267)
ñ = 20 0.8425 (0.0060) 0.6480 (0.0218) 0.8416 (0.0034) 0.6513 (0.0178)
ñ = 50 0.8455 (0.0023) 0.6553 (0.0128) 0.8432 (0.0020) 0.6503 (0.0122)
ñ = 100 0.8457 (0.0021) 0.6535 (0.0100) 0.8435 (0.0014) 0.65011 (0.0096)

c = 1.5

ñ = 10 0.8431 (0.0045) 0.6542 (0.0173) 0.8368 (0.0073) 0.6446 (0.0213)
ñ = 20 0.8447 (0.0021) 0.6542 (0.0142) 0.8393 (0.0022) 0.6479 (0.0150)
ñ = 50 0.8455 (0.0006) 0.6556 (0.0082) 0.8404 (0.0005) 0.6488 (0.0089)
ñ = 100 0.8457 (0.0004) 0.6547 (0.0057) 0.8404 (0.0007) 0.6486 (0.0082)

Table 6. The clean and robust accuracy learned on synthetic distribution µ̃ = cµ when d = 100 and the angle between µ and ϵ is 0
degrees. “Real” denotes the real data distribution, and n denotes the number of data from the real distribution, while we use “c” to denote
different synthetic distributions and use ñ to denote the number of synthetic data. The results and the standard deviation in the bracket are
obtained from 50 repetitions

acc (std) rob acc (std)

Real

n = 10 0.9023 (0.0192) 0.6843 (0.0359)
n = 20 0.9341 (0.0128) 0.7519 (0.0267)
n = 50 0.9599 (0.0028) 0.8078 (0.0061)
n = 100 0.9682 (0.0014) 0.8239 (0.0028)

c = 0.5

ñ = 10 0.7562 (0.0564) 0.4611 (0.0694)
ñ = 20 0.8566 (0.0307) 0.6047 (0.0491)
ñ = 50 0.9261 (0.0117) 0.7328 (0.0227)
ñ = 100 0.9505 (0.0047) 0.7848 (0.0111)

c = 1

ñ = 10 0.8866 (0.0273) 0.6557 (0.0487)
ñ = 20 0.9371 (0.0091) 0.7555 (0.0201)
ñ = 50 0.9620 (0.0028) 0.8085 (0.0060)
ñ = 100 0.9695 (0.0012) 0.8239 (0.0031)

c = 1.5

ñ = 10 0.9400 (0.0100) 0.7603 (0.0233)
ñ = 20 0.9591 (0.0037) 0.8031 (0.0080)
ñ = 50 0.9710 (0.0013) 0.8280 (0.0028)
ñ = 100 0.9743 (0.0008) 0.8343 (0.0011)
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Table 7. The clean and robust accuracy learned on synthetic distribution µ̃ = c(µ− ε1d) when d = 2 and the angle between µ and ϵ is
30 degrees and 60 degrees. “Real” denotes the real data distribution, and n denotes the number of data from the real distribution, while we
use “c” to denote different synthetic distributions and use ñ to denote the number of synthetic data. The results and the standard deviation
in the bracket are obtained from 50 repetitions.

30 degree 60 degree
acc (std) rob acc (std) acc (std) rob acc (std)

Real

n = 10 0.9152 (0.0049) 0.7633 (0.0111) 0.9211 (0.0034) 0.7702 (0.0094)
n = 20 0.9170 (0.0030) 0.7642 (0.0075) 0.9225 (0.0020) 0.7714 (0.0068)
n = 50 0.9183 (0.0009) 0.7653 (0.0040) 0.9232 (0.0011) 0.7711 (0.0050)
n = 100 0.9185 (0.0006) 0.7658 (0.0027) 0.9235 (0.0009) 0.7724 (0.0027)

c = 0.5

ñ = 10 0.9089 (0.0183) 0.7563 (0.0310) 0.9111 (0.0114) 0.7638 (0.0172)
ñ = 20 0.9144 (0.0068) 0.7659 (0.0107) 0.9138 (0.0068) 0.7694 (0.0066)
ñ = 50 0.9174 (0.0029) 0.7680 (0.0068) 0.9161 (0.0038) 0.7714 (0.0033)
ñ = 100 0.9183 (0.0016) 0.7681 (0.0053) 0.9165 (0.0031) 0.7727 (0.0014)

c = 1

ñ = 10 0.9135 (0.0116) 0.7642 (0.0194) 0.9069 (0.0111) 0.7677 (0.0109)
ñ = 20 0.9178 (0.0046) 0.7710 (0.0073) 0.9042 (0.0098) 0.7676 (0.0072)
ñ = 50 0.9183 (0.0042) 0.7728 (0.0042) 0.9073 (0.0047) 0.7702 (0.0017)
ñ = 100 0.9196 (0.0017) 0.7733 (0.0036) 0.9059 (0.0039) 0.7698 (0.0016)

c = 1.5

ñ = 10 0.9181 (0.0079) 0.7747 (0.0104) 0.9034 (0.0079) 0.7704 (0.0053)
ñ = 20 0.9209 (0.0053) 0.7770 (0.0052) 0.9077 (0.0059) 0.7716 (0.0056)
ñ = 50 0.9218 (0.0029) 0.7788 (0.0028) 0.9073 (0.0030) 0.7722 (0.0014)
ñ = 100 0.9222 (0.0017) 0.7793 (0.0023) 0.9077 (0.0024) 0.7729 (0.0011)
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C. The detailed construction of the contrastive loss
In this section, we first give a detailed description of several possible ways to design contrastive loss, especially in
constructing positive and negative pairs. Then, we give a visualization of the synthetic data distributions generated under
different contrastive losses.

C.1. Positive and negative pair selection strategy.

In this subsection, we give several possible ways to construct positive and negative pairs.

1. Vanilla version: Using all the samples in the minibatch is the common strategy for contrastive learning. In the diffusion
process, since for each time step t, we want to distinguish each image from other images in the minibatch at the same
time step, a straight-forward strategy is to use all the samples in the minibatch other than xi

t at time step t to be the
negative pairs. For the positive pairs, we can simply adopt xi

t+1 to be the positive pairs rather than augmentation of xi
t.

2. Real data as positive pairs: A possible improvement upon the vanilla version is considering we aim to generate images
similar to real data. Therefore, we can directly adopt the real data as positive pairs.

3. Real data as negative pairs: Another improvement upon the vanilla version is considering the other images in time step t
in the minibatch is not as high quality as the real data. Therefore, we can directly adopt the real data as the negative pairs.

4. Class conditional version: When we use conditional diffusion, and the class label of xt in the minibatch is available, a
further improvement can be adopted is to use all the samples with different class label y in the minibatch at time step t to
be the negative pairs.

C.2. Visualization of the synthetic data distribution generated by different designs of the contrastive loss

In this subsection, we demonstrate the synthetic distributions generated by different designs of the contrastive loss mentioned
in Section C.1 on the Gaussian setting mentioned in Section 3.1. Figure 6 shows the synthetic distribution generated by
using N (0, I) as initialization, while Figure 7 shows the synthetic distribution generated by using N (0, 4I) as initialization.
In all figures, all of the contrastive loss except for conditional hard negative mining form a circle within each class, which
means these algorithms cannot explicitly distinguish the data within the same class and thus maximize the distance within
each class, while the guidance from conditional hard negative mining can generate samples that are more distinguishable.
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(a) InfoNCE (b) Hard negative mining

(c) Hard negative mining (real data as positive
pair)

(d) Hard negative mining (real data as negative
pair)

(e) Conditional inforNCE (f) Conditional hard negative mining

Figure 6. A comparison of the synthetic distribution guided by different contrastive loss with initialization N (0, I). Real data as positive
pair means using the mixture of oracle distribution N (±1d, I) and the data in the same batch as negative pair, while real data as negative
pair means using the data in the same batch as positive pair and using the mixture of oracle distribution as negative pair.
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(a) Diffusion (b) InfoNCE

(c) Hard negative mining (d) Hard negative mining (true data as positive
pair)

(e) Hard negative mining (true data as negative
pair)

(f) Conditional hard negative mining

Figure 7. A comparison of the synthetic distribution guided by different contrastive loss with initialization N (0, 4I).
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D. The experimental results for the real datasets
D.1. Experimental setup for MNIST dataset

We describe the pipeline of synthetic data generation for adversarial robustness and a corresponding setting for the MNIST
dataset in this subsection.

Dataset. MNIST dataset (LeCun et al., 1998) contains 60k 28×28 pixel grayscale handwritten digits between 0 to 9 for
training and 10k digits for testing.

Synthetic data generation by the diffusion model. To utilize the pre-trained diffusion model 4, we use a conditional
DDPM for generating samples for MNIST dataset. We adopt the hard negative mining loss with τ = 10, the strength of
guidance of the contrastive loss λ = 5k, the probability of the same class in the minibatch τ+ = 0.1 and the hardness
of negative mining β = 1. We also use the pre-trained four layers Convolutional Neural Network model (removing the
last fully connected layer) to get the representation for applying the contrastive loss and use a 2-layer feed-forward neural
network to encode the representation after the pre-trained model.

Adversarial Training. Since grayscale handwritten digits can be easily classified, we adopt four layers Convolutional
Neural Network as the classifier instead of using the Wide ResNet-28-10 model. We adopt stochastic weight averaging
(Izmailov et al., 2018) with the decay rate 0.995 and use TRADES (Zhang et al., 2019) with 10 Projected Gradient Descent
steps and ε∞ = 0.3 for 150 epochs with batch size 1024.

D.2. Experimental setup for CIFAR-10 dataset

We describe the pipeline of synthetic data generation for adversarial robustness and a corresponding setting for the CIFAR-10
dataset in this subsection.

Dataset. CIFAR-10 dataset (Krizhevsky, 2009) contains 50K 32x32 color training images in 10 classes and 10K images
for testing.

Overall training pipeline We follow the same training pipeline as (Gowal et al., 2021), i.e., synthesizing data by using
the diffusion model, assigning pseudo-label for synthetic data and aggregating the original data and the synthetic data for
adversarial training. We give a careful explanation of these three components as follow.

Synthetic data generation by the diffusion model. Considering the advantage of DDIM on generation speed, we base
on the official implementation of the DDIM model (Song et al., 2021a) and add the guidance of the contrastive loss. We
generate images with 200 steps with batchsize=512, and use the quadratic version of sub-sequence selection 5. For the
guidance of the contrastive loss, we try different designs of the contrastive loss mentioned in Section 4.2. We set the
temperature τ = 0.1 and the strength of guidance of the contrastive loss λ = 20k in the InfoNCE loss, while τ = 10, the
strength of guidance of the contrastive loss λ = 100k, the probability of the same class in the minibatch τ+ = 0.1 and
the hardness of negative mining β = 1 in hard negative mining loss. These corresponding hyperparameters are chosen
based on some preliminary experiments on image generation. The detailed ablation studies can be found in Section 5.2.
Moreover, we also delve into the representation used by contrastive loss. The default setting is to use the pre-trained Wide
ResNet-28-10 model (Gowal et al., 2021) to get the representation for applying the contrastive loss, which is named as
(without embedding) in Section 5.2. A further improvement is to apply a 2-layer feed-forward neural network to encode the
representation after the pre-trained model, which is named as (with embedding). The advantage of the latter design is we
can adopt the contrastive loss to optimize the encoding network rather than a fixed encoder.

LaNet for assigning pseudo-label. Since the DDIM is an unconditional generator, we need to assign the pseudo-label to
the generated sample. We follow the same choice adopted by (Sehwag et al., 2022), i.e., using state-of-the-art LaNet (Wang
et al., 2019) network for assigning the pseudo-label for the synthetic data.

4https://github.com/VSehwag/minimal-diffusion
5We refer to Appendix D.2 for a detailed explanation of the quadratic version.
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Adversarial Training. We follow the same setting as (Gowal et al., 2021), i.e., we use Wide ResNet-28-10 (Zagoruyko &
Komodakis, 2016) with Swish activation function (Hendrycks & Gimpel, 2016), adopt stochastic weight averaging (Izmailov
et al., 2018) with decay rate 0.995 and use TRADES (Zhang et al., 2019) with 10 Projected Gradient Descent steps and
ε∞ = 8/255 for 400 epochs with batch size 10246.

Evaluation setup For each trained model, we adopt AUTOATTACK (Croce & Hein, 2020) with ϵ∞ = 8/255.

D.3. Experimental setup for Traffic Signs dataset

We describe the pipeline of synthetic data generation for adversarial robustness and a corresponding setting for the Traffic
Signs dataset in this subsection.

Dataset. Traffic Signs dataset (Houben et al., 2013) contains 39252 training images in 43 classes and 12629 images for
testing, and the image sizes vary between 15x15 to 250x250 pixels.

Synthetic data generation by the diffusion model. To utilize the pre-trained diffusion model 7, we use a conditional
DDPM for generating samples for Traffic Signs dataset. We adopt the hard negative mining loss with τ = 10, the strength
of guidance of the contrastive loss λ = 5k, the probability of the same class in the minibatch τ+ = 0.1 and the hardness of
negative mining β = 1. We also use the pre-trained Wide ResNet-28-10 model to get the representation for applying the
contrastive loss and use a 2-layer feed-forward neural network to encode the representation after the pre-trained model.

Adversarial Training. We follow the same setting as the CIFAR-10 dataset, except the training epochs are reduced to 50.
We also extend the training epochs to 400 but do not find significant improvement.

E. Ablation study8.
E.1. The effectiveness of different contrastive losses.

Table 8 demonstrates the performance of different designs of the contrastive loss. We find out that applying the hard negative
mining together with the embedding network achieves better clean and robust accuracy when the additional data is small
(50K and 200K setting), while the infoNCE loss achieves better clean and robust accuracy when the additional data is large
(1M setting). This result shows that we can improve the sample efficiency of the generative model by carefully designing
the contrastive loss.

Table 8. The performance of Contrastive-DP under different contrastive loss: infoNCE and HNM losses, and w/wo embedding denote
with/without an embedding network.

50K 200K 1M

clean acc rob acc clean acc rob acc clean acc rob acc
DDIM+infoNCE 83.40% 52.74% 84.18% 54.75% 85.64% 56.28%
DDIM+HNM(w embedding) 84.20% 53.19% 85.71% 54.92% 85.29% 56.12%
DDIM+HNM(wo embedding) 83.97% 52.89% 85.65% 54.83% 85.38% 55.95%

E.2. Sensitivity of the strength of the contrastive loss

Table 9 shows the influence of the strength of the contrastive loss. λ = 100k gives consistently better results than a
smaller λ = 50k or a larger λ = 200k on robust accuracy on all settings. Moreover, we find the larger the λ is, the better
performance we get on clean accuracy when the additional data is small (50K case), while the smaller the λ is, the better
performance we get on clean accuracy when the additional data is large (1M case).

6For Table 8 in the ablation studies subsection, we use batch size with 256.
7https://github.com/VSehwag/minimal-diffusion
8In this section, the robust accuracy is reported by the worst accuracy obtained by either AUTOATTACK (Croce & Hein, 2020) or

AA+MT (Gowal et al., 2020)
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Table 9. The performance of Contrastive-DP under different λ values.
50K 200K 1M

clean acc rob acc clean acc rob acc clean acc rob acc
λ = 50k 84.41% 53.78% 85.45% 55.24% 86.35% 56.83%
λ = 100k 83.66% 53.91% 85.71% 55.79% 86.30% 56.84%
λ = 200k 84.51% 53.55% 85.51% 55.33% 85.98% 56.69%

E.3. Data selection for synthetic data

Data selection methods are worthy of study since, in practice, we would like to know whether we can achieve better
performance by generating a large number of samples and applying some selection criteria to filter out some samples.
Therefore, we propose several data selection criterion and evaluate corresponding effectiveness in Table 10. All of the
selection methods on Contrastive-DP are higher than vanilla DDIM plus selection methods, which demonstrates the
superiority of using the contrastive learning loss as the guidance rather than using selection methods on the images generated
by the vanilla diffusion model.

Table 10. Comparison of different data selection criteria. The detailed explanation of each selection method can be found in Append E.3.
.

50K 200K 1M

clean acc rob acc clean acc rob acc clean acc rob acc
DDIM (Separability) 79.93% 49.49% 85.09% 54.90% 84.87% 56.08%
Contrastive-DP (Gradient norm) 80.41% 49.47% 84.64% 55.17% 86.36% 57.11%
Contrastive-DP (Gradient norm-rob) 83.91% 55.23% 84.78% 55.42% 85.93% 57.18%
Contrastive-DP (Entropy) 83.66% 53.91% 85.71% 55.79% 86.30% 56.84%

Below we summarize different data selection methods:

• DDIM (Separability): We adopt the separability of the data as a criterion to make the selection of the data generated by
vanilla DDIM. For each data, we use a pre-trained WRN-28-10 model to encode them into the embedding space. Then,
we compute the L2 distance between each sample and the centroid of all classes (which is easily computed as the mean of
all samples in this class) and add them together. To select a subset of samples that are most distinguishable, we choose the
top K samples that have the smallest distance in each class.

• Contrastive-DP (Gradient norm): We use the gradient norm with respect to a pre-trained WRN-28-10 model as a criterion
to make the selection on the data generated by Contrastive-DP. The larger the gradient norm is, the more informative the
sample is for learning a downstream model. Therefore, we select the top K samples that have the largest gradient norm in
each class.

• Contrastive-DP (Gradient norm-rob): Similar to Contrastive-DP (Gradient norm), we use the gradient norm of the robust
loss rather than standard classification loss as a criterion to make the selection on the data generated by Contrastive-DP.
Therefore, we select the top K samples that have the largest gradient norm in each class.

• Contrastive-DP (Entropy): We use the entropy of each sample with respect to LaNet as a criterion to make the selection
on the data generated by Contrastive-DP. The smaller the entropy is, the higher likelihood this image has good quality.
Therefore, we select the top K samples that have the smallest entropy in each class.

F. Additional experiments
F.1. Changing the base adversarial training algorithm

We mainly adopt the TRADES (Zhang et al., 2019) for adversarial training on synthetic data together with real training
data. A question is whether Contrastive-DP algorithm can also have good performance using vanilla adversarial training
algorithm (Madry et al., 2017). Table 11 demonstrates Contrastive-DP also shows advantages against vanilla DDPM and
DDIM by different base adversarial training algorithms.
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Table 11. The clean and adversarial accuracy on CIFAR-10 dataset. The robust accuracy is reported by AUTOATTACK (Croce & Hein,
2020) with ϵ∞ = 8/255 and WRN-28-10. 50k, 200k, and 1M denote the number of synthetic used for adversarial training.

50K 200K 1M
clean acc rob acc clean acc rob acc clean acc rob acc

DDIM 87.84% 54.97% 89.19% 53.79% 88.91% 55.10%
Contrastive-DP 88.50% 54.74% 88.26% 54.20% 89.43% 55.31%

DDPM 88.19% 53.32% 89.21% 54.16% 89.98% 54.17%
Contrastive-DP 88.99% 53.67% 89.55% 54.85% 89.97% 55.82%

F.2. Comparison with adversarial self-supervised learning

In the main paper, we only give the comparison of Contrastive-DP with the state-of-the-art method of adversarial robustness
(Gowal et al., 2021) by using the diffusion model to generate synthetic data. Since contrastive learning is also used in
adversarial self-supervised learning literature (Kim et al., 2020a; Fan et al., 2021; Zhang et al., 2022), we give a detailed
comparison with these methods in Table 12, which also demonstrates the effectiveness of Contrastive-DP.

Table 12. The clean and adversarial accuracy on CIFAR-10 dataset. The robust accuracy is reported by AUTOATTACK (Croce & Hein,
2020) with ϵ∞ = 8/255.

rob acc

RoCL (Kim et al., 2020a) 47.88%
AdvCL (Fan et al., 2021) 49.77%
DeACL (Zhang et al., 2022) 50.39%
Contrastive-DP 59.99%
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