
Robust Group PCA for Separable Noise:
An Argument for Subject-Level PCA

Samuel Oriola∗, Calvin McCurdy†, Bradley T. Baker§, Vince D. Calhoun‡§ and Rogers F. Silva§
∗Department of Computer Science, †Department of Mathematics and Statistics

Georgia State University, Atlanta, Georgia, USA 30302
‡Department of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, Georgia, USA 30332
§Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)

Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA 30303
{soriola1, cmccurdy5, bbaker43, vcalhoun, rsilva}@gsu.edu

Abstract—Functional magnetic resonance imaging (fMRI) cap-
tures whole-brain function with high spatial resolution and
has driven discoveries in brain connectivity across age, gender,
mental illnesses, and developmental stages. As fMRI datasets
grow in number, aggregation methods such as averaging or
low-rank approximations are increasingly more likely to lose
subject-specific details, potentially biasing group estimates and
misrepresenting individuals, which in turn limits replication and
reduces the translational utility of findings—–especially among
minorities. Group principal component analysis (PCA) is the
de facto tool for aggregating datasets, with tools like FSL and
GIFT supporting various implementations that have shaped
neuroimaging studies for decades. Yet, the impact of subject
variability on the group-level estimate, as well as the ensuing
subject specificity, remain unquantified. This study aims to
identify computational strategies that improve the accuracy and
robustness of group-level representations. Three common group
PCA implementations are considered: 1) simple concatenation,
2) concatenation with subject sum of squares normalization, and
3) concatenation with subject-level PCA whitening. Simulated
scenarios test these methods to identify optimal approaches for
group dimensionality reduction while preserving the ground-
truth group mean information. Our results demonstrate that
concatenation with subject-level PCA whitening achieved the best
overall approximation of the ground-truth group mean, with
performance differences largely driven by separable noise.

Index Terms—Group PCA, ICA, Data Analysis, Functional
MRI, Multivariate

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a key
healthcare technology that captures indirect measurements of
neural signals in-vivo with unmatched spatial resolution. It
has catalyzed discoveries in brain connectivity, for instance,
unveiling default mode network interactions with other resting
state networks [1] and dynamic dysconnectivity in schizophre-
nia [2]. With its increased adoption, large multi-dimensional
fMRI datasets have become commonplace. These datasets are
rich with subject-specific details, which must be optimally
preserved in group-level analyses to provide the necessary
insights for personalized treatment and long-term care options.
Without the preservation of subject-specific information, group
data can become biased and misrepresent individuals, hamper
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interpretations, curtail the replication of findings, and perpet-
uate the exclusion of minorities in clinical research.

Group-level representations are notably hard to obtain due
to a simple fact: all brains are different, just like faces. Despite
marked progress in digital warping of individual images into
standardized brain templates, the resulting “spatial maps” still
vary significantly across subjects. Besides expected subject
variation, factors such as image quality, resolution, noise, head
movement, or even physiological interference from heartbeat
and breathing, lead to registration and warping imperfections
that can hamper accurate group-level aggregation.

Group principal component analysis (PCA) is a staple tool
for group-level aggregation and is ubiquitous in neuroimaging.
The FSL [3] and GIFT [4] toolboxes readily offer group PCA
implementations and have supported downstream group-level
studies in thousands of publications over the past two decades.
Implementations of group PCA vary, however, and no study
so far has pragmatically evaluated the impact of subject vari-
ability on the quality of group representations obtained with
different implementations of group PCA (gPCA). This work
explores the limits of gPCA, aiming to identify improvements
for group-level representations and make recommendations
for future research. Such improvements could enhance down-
stream analyses in neuroimaging toolboxes, increase the accu-
racy of group-level representations, enable more robust feature
identification of spatial maps, and inspire novel insights into
brain function that would be unattainable without preserving
more of the underlying subject-specific details.

In this work we briefly review prior related work in Sec-
tion II and describe our proposed approach and rationale in
Section III. Section IV presents results and discusses the ef-
fects of different implementations of gPCA, while Section VI
reviews our findings and outlines future investigations.

II. PRIOR RELATED WORKS

A. Preliminaries

Motivated by the hope that high variance might be synonym
with useful information, the basic model for noiseless principal
component analysis (PCA) of real-valued data [5] stems from
finding the underlying direction a⋆ along which the data



variance is maximal, which is also equivalent to minimizing
the variance in the subspace orthogonal to a⋆ [6], [7]. The
former is formulated as:

a⋆ = argmax
a

a⊤X
(
a⊤X

)⊤
= argmax

a
a⊤Σxa, (1)

where X ∈ RT×N is the data matrix containing N , T -
dimensional samples, Σx = XX⊤ is the scatter matrix, and a
is constrained to unit norm, i.e., ∥a∥22 = a⊤a = 1. Differenti-
ating the corresponding Lagrangian L(a, λ) = a⊤Σxa−λa⊤a
with respect to a and equating to zero yields the following
eigenvalue problem [8]:

Σxa = λa, (2)

where λ is the largest eigenvalue of Σx and a = a⋆ is the
corresponding eigenvector. Thus, the maximal variance λ is
obtained along the principal direction a⋆. The full eigenvalue
problem can be written as:

ΣxA = AΛ, (3)

where A is an orthonormal matrix and Λ is a diagonal matrix
with eigenvalues ordered from largest to smallest, each corre-
sponding with a column of A. The columns are orthogonal
because variance along the i-th direction a⋆i is maximized
in the space orthogonal to all preceding

[
a⋆1 · · ·a⋆i−1

]
. Under

orthogonality, we can write A−1 = A⊤.
In the case of real-valued data, the scatter matrix eigenvalue

problem above is intimately related to the singular value
decomposition (SVD) [9] of X. Specifically, they share the
same basis A:

X = APY⊤, (4)

where A is also known as the “left” singular vectors of X,
P = Λ

1
2 are the singular values, and Y is an orthonormal

matrix containing the “right” singular vectors of X. PCA then
consists of aligning the principal axes of the data with the
canonical basis by transforming (i.e., rotating) the data with
A⊤X = PY⊤, which preserves the data variance. Further
normalizing with P−1A⊤X = Y⊤ sphericizes the variances,
yielding Σy = I, which is referred to as “whitening” because
the variances are equal along Y.

Equivalently, solving the eigenvalue problem on X⊤X
yields Y directly, and A = XYP−1. We often solve the
eigenvalue problem on the matrix (Σx or X⊤X) with the
shortest dimension for best accuracy, limiting the decomposi-
tion to the top k eigenvalues for computational economy [10].
Group PCA (gPCA) is merely solving the eigenvalue problem
on M concatenated datasets, i.e., X =

[
X⊤

1 . . .X⊤
M

]⊤
.

B. Considerations for Analysis of Group FMRI Data

1) Pre-processing: PCA is used to reduce the dimension-
ality of subject data while maintaining most of its variability
and achieve a condensed representation. Group PCA extends
single-subject PCA to combine spatial maps across individ-
uals, capturing prominent features from group data (Fig. 1).

Since PCA is entirely driven by variance, it follows that scaling
differences between subjects are a key factor to determine
their individual contributions and influence at the group level.
The biasing influence of scaling effects in the case of site- or
scanner-induced image intensity variability has been studied
extensively in the field of data harmonization, leading to pre-
processing tools such as ComBat [11] and traveling-subject
based measurement bias correction [12]. But even when site-
and scanner-induced intensity scaling effects are absent, the
extent to which a group of subjects influences the results
can raise questions about fairness and representation. This
is especially concerning when studying minority and hard-to-
scan populations.

Simple sum-of-squares normalization [13] and subject-level
PCA with whitening [10] are two commonly employed pre-
processing approaches to balance the individual contribution
of subjects to the gPCA result. The main appeal of setting
the total sum-of-squares (aka, the Frobenius norm) of each
subject-specific dataset to 1 is that it ensures the total “vari-
ance” contribution from each subject is exactly the same.
The net effect of this approach is that the relative “weigh”
of subject-specific principal components is preserved at the
group level. On the other hand, “whitening” in subject-level
PCA enforces equal weight (i.e., unit variance) for all subject-
specific principal components. Note that the total “variance”
contribution per subject is also the same with this approach.
The key difference is that the relative contribution of subject-
level principal components is not preserved.

2) Memory, Equivalences, and Methods: Historically, the
amount of RAM in desktops and workstations was insufficient
for concatenating all subject datasets into a single matrix for
singular value decomposition, which inspired a number of
approaches for memory-efficient group PCA [14], culminat-
ing into low-RAM, highly accurate iterated approaches like
SMIG [15] and MPOWIT [10]. Previously, two- and even
three-step PCA approaches were common, proposing to use
PCA reduction successively on subjects and subgroups as a
means to reduce the memory footprint with “intermediate”
subgroup representations before the final group estimation.
Soon it was noted [15] that combining representations from
subgroup compression with intermediate PCA steps did not
yield the same group-level estimates as when all data were
concatenated into a large, single step gPCA.

Incremental approaches like MIGP [15] and STP [10]
emerged to address this issue, observing that it was necessary
to carry the subgroup-level singular values into the final gPCA
step (i.e., no whitening to force variances to 1) to obtain the
correct estimates. For this reason, concerns have also been
raised about the use of whitening in subject-level PCA, but
no study so far has addressed this question pragmatically.
Meanwhile, evidence for the utility of subject-level PCA with
whitening as a preprocessing tool remains empirical.

Related back-reconstruction strategies to recover subject-
level components from group-level estimates have since been
studied but in the context of group independent component
analysis (ICA) [16], which we do not consider in this work.
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Fig. 1. The three group PCA implementations evaluated in this work. (a) Simple concatenation of subject data, (b) concatenation after subject sum-of-
squares normalization, and (c) concatenation after subject-level PCA with whitening. For the latter, subject-level proportion of variance retention thresholds
are set at 1, 0.99, 0.9, and 0.65, progressively reducing the subject-level information carried into group PCA.

C. Our Contributions

The goal of our experiments is to determine which gPCA
approach can recover subject-level component variability clos-
est to the ground-truth group mean performance. Unlike
previous studies, we follow a set of principled simulation
guidelines for neuroimaging as outlined in [17], which helps
minimize confounds among various configuration settings.
First, we provide a generative model of subject-level PCA
where the principal components of each subject are linked
across subjects. This link is established by specifying cross-
subject correlation matrices for each principal component.
Using the proposed generative model, our approach allows
full control of the statistical properties of every simulated
principal component, including 1) their variance, 2) their
similarity levels across subjects, and 3) the variance profile
across subjects. In the interest of minimizing the chances of
uncontrolled confounds, we restrict the use of additive noise
to the subspace orthogonal to the signal subspace, but we do
not impose theoretical limits on the variance assigned to noise.

The proposed controlled experimental setting enables a
complete characterization of how latent dissimilarities among
subjects and variance-driven biases affect the recovered
subject-level variability, compared to what could be recovered
using the ground-truth group mean. With that, we hope to
determine preliminary recommendations for preprocessing.

III. METHODS

A. A generative model for multi-subject PCA

Based on the SVD decomposition in (4) and the expectation
that latent sources are linked/similar across individuals, we
propose the following generative model for multi-subject PCA:

Xm = AmPmY⊤
m, (5)

where Ym =
[
y1
m · · ·yi

m · · ·yC
m

]
contains the C latent

sources yi
m of subject m. Each latent source is sampled

from an M -dimensional unit variance multivariate Gaussian

distribution, with non-zero correlation structure (different per
source i) describing the strength of the link/similarity among
M subjects. The m-th element of the i-th source is assigned
to the m-th subject as yim for each of the V , M -dimensional
samples generated per source, such that Ym ∈ RV×C . Pm

is a diagonal matrix where each diagonal element P i
m is a

real, positive value that describes the standard deviation of
source i in subject m (ordering the sources by their standard
deviation is considered irrelevant, as long as their index i is
consistent across subjects). Finally, the random orthonormal
matrix Am =

[
a1m · · ·aim · · ·aCm

]
, Am ∈ RT×C , defines the

basis along which the sources are distributed, unique for each
subject m.

Here, we set Cn out of C latent sources as noise by sam-
pling them from i.i.d. M -dimensional white Gaussian noise
(uncorrelated across subjects). The remaining Cs = C − Cn

sources are considered as signal. In this type of simple,
separable noise structure, the noise is completely orthogonal
to the signal, which serves as a fair, non-confounded setting
for this initial investigation. Fig. 2 provides a depiction of
the model in (5). The experiments were repeated with eleven
different random sampling seeds, each yielding a new dataset.

B. Experimental Settings

We generate data according to the proposed generative
model above. First, we simulate ground-truth spatial maps
with V = 22, 341 voxels, T = C = 50 sources per
subject, and M = 100 subjects. Here, Cs = 40 components
represent signal sources and Cn = 10 components represent
noise sources. The signal source similarity among subjects is
systematically reduced from high in the first source (i = 1) to
very low in the fortieth (i = 40).

We manipulate three key parameters to evaluate the capa-
bilities of three gPCA methods in terms of retained subject-
specific variance. First, the signal source proportion (ps)
represents the ratio of signal to total variance in the data.
This proportion models real-world scenarios where the ratios
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Fig. 2. The data generation strategy using Singular Value Decomposition (SVD) for separable noise. Ground-truth spatial maps are simulated with
V = 22, 341 voxels, Cs = 40 signal sources linked across M = 100 subjects (i.e., 40 independent 100-dimensional multivariate Gaussian distributions)
at varying cross-subject similarity levels, and Cn = 10 independent noise sources per subject (i.e., 10 independent 1-dimensional Gaussian distributions per
subject). The total number of sources is C = Cs + Cn. Signal sources are scaled equally (same variance) according to the source signal proportion ps.
Likewise for noise sources, but 1 − ps. When ps = 0.9, the data is signal-dominant, while ps = 0.5 balances signal and noise equally, and ps = 0.1
makes noise dominant. P i

m determines the relative influence of signal and noise sources. The mixing matrix Am of each subject is orthonormal and square
(T = C), so it does not alter the total variance in the data. To generate the mixed data Xm of each subject, the mixing matrix multiplies the source matrix
Y⊤

m after it is scaled by the source variance matrix Pm, i.e., Xm = AmPmY⊤
m. The mixed data of each subject is then scaled by a single number, vm,

to impose one of three variance profiles: ‘Edge’, ‘Mid’, or ‘Rand’.

of signal and noise are unknown. The value defined for ps is
divided uniformly across sources of each kind such that:

P i
m =

ps
Cs

and P i
m =

1− ps
Cn

. (6)

By setting the noise source proportion to 1 − ps we ensure
that the total variance of each subject is 1.

The second parameter, the variance profile vm, changes the
total variance of each subject and, thus, determines how the
contributions of a subject are weighted at the group level,
yielding:

P i
m = vm

ps
Cs

and P i
m = vm

1− ps
Cn

. (7)

The “Edge” profile emphasizes dissimilar subjects by in-
creasing their vm relative to other subjects to counterbalance
the similarity (i.e., the correlation) among subjects built into
the signal sources. The “Mid” profile overemphasizes similar
subjects by increasing their vm, down-weighting dissimilar
ones even further. The “Rand” profile randomly emphasizes
subjects, mimicking realistic, unpredictable data distributions.
The total variance across all subjects is set as

∑M
m=1 vm = M .

The third parameter, the threshold for proportion of vari-
ance retained post subject-level PCA with whitening, sets
the number of subject-specific principal components carried
over to the group analysis, enabling identification of optimal
component selection strategies. This pragmatic evaluation can
inform improvements in gPCA methodology.

C. Non-separable noise

Here we describe experiments to assess the effect of noise
leaking into the signal subspace. We simulated Cs = 40 signal
sources Ysignal

m linked across subjects in the same way as
the original experiment. We also simulated Cn = 40 i.i.d.
noise sources per subject Ynoise

m in the same way as before.
The key difference is that now we simulated only 40 random
orthonormal directions per subject to define the basis Am and,
after we adjust the variances of signal and noise sources, we
use the same Am matrix to mix the signals and the sources,
i.e., Xm = AmPmYsignal

m +AmPmYnoise
m .

D. Evaluating performance

The formulation in (5) admits a source-wise representation:

Xm =

C∑
i=1

Xi
m =

C∑
i=1

aimP i
m

(
yi
m

)T
, (8)

which computes the i-th source portion of the data matrix for
a single subject. Using the aggregate source estimate Ygpca

from each of the group PCA methods considered here, we try
to recover the variability of each source and each subject using
linear regression:

X̂i
m = Xi

mYgpca

(
YT

gpcaYgpca

)−1
YT

gpca. (9)

The sum of squared error between Xi
m and X̂i

m, relative to
the total sum of squares of Xi

m, yields the normalized sum of



Fig. 3. The ground-truth mean performance. The ground-truth mean is
defined as the mean over subjects of their standardized, unit-variance sources.
The y-axis represents the NSSE obtained by utilizing the ground-truth mean
to approximate source-specific variability in each subject. The ground-truth
mean captures very well the variability for sources of high similarity across
subjects (red), but not so for sources that are more dissimilar across subjects
(blue). For clarity, only results for sources 1, 10, 20, 30, and 40 are shown.
In addition, the approximation error is more accentuated for subjects at the
“edges” of the plot, i.e., the most dissimilar from the subjects in the middle
(the subjects in the middle are always the most similar by design).

squares error (NSSE) for a single subject and source, which
we used as a key performance metric in this work:

NSSE =

∑T
t=1

∑V
v=1

(
X̂i

m −Xi
m

)2

∑T
t=1

∑V
v=1 (X

i
m)

2
. (10)

NSSE is a ratio of error power with respect signal power
specific to each source and each subject, describing how much
variance is recovered by the aggregate measure for a specific
source and subject. This way we hope to determine what
specific variances are lost by each method and condition tested.
Our baseline for comparing gPCA methods is the NSSE for
the ground-truth mean of each source:

YµGT
=

1

M

M∑
m=1

Ym. (11)

A small value indicates little error, and a large value a large
error. To determine the performance of gPCA methods relative
to the baseline YµGT

we define the relative NSSE as the ratio:

NSSErel =
NSSEgpca

NSSEµGT

. (12)

This allows us to determine source- and subject-specific vari-
ability lost by a gPCA method relative to the corresponding
ground-truth source mean performance. An NSSErel = 1
indicates the gPCA method produces the same result as the
baseline. A value larger than 1 indicates the gPCA method
produces a degraded result (more error), and a value smaller
than 1 indicates the gPCA method produces a better result.
By comparing variance retention between gPCA approaches
and the ground-truth mean sources, we quantify subject-level
variability loss and assess group-level source accuracy.

IV. RESULTS

In Fig. 3 we show the subject-level variance lost by the
ground-truth source mean. Sources with high similarity across

subjects are represented by red and sources with low similarity
are represented by blue. The experiments were repeated with
eleven different random sampling seeds, each yielding a new
dataset. The band-plots capture the fifteenth to eighty-fifth
percentiles of variability among the eleven seeds.

We observed that the NSSE was smaller for sources of
high similarity across subjects, indicating good recovery of
subject-specific variability. On the other hand, there is a clear
trend of higher NSSE for sources with lower similarity across
subjects. This indicates that even the ground-truth group mean
can lead to biased inferences about subjects that deviate from
the population average, especially for subjects at the “edges”
of the plot (i.e., those with limited inter-subject similarity).

In Fig. 4, we show the effects of signal source propor-
tion (ps) on simple concatenation gPCA, subject sum-of-
squares normalization gPCA, and concatenation gPCA fol-
lowing subject-level PCA with whitening. Sources with high
similarity across subjects are represented by red and sources
with low similarity are represented by blue. The band-plots
capture the fifteenth to eighty-fifth percentiles of variability
among the eleven seeds. The stars on the panels represent
performance closely matching the ground-truth mean.

Our first observation pertaining to proportion of subject-
level variance lost by gPCA relative to ground-truth mean
(Fig. 4) is that most gPCA methods and specifications in
situations of low to medium noise consistently match the
ground truth mean performance very well. For example, in
the signal-dominant ps = 0.9 condition, most gPCA methods
and specifications perform comparable to the ground-truth
mean. Only gPCA post subject PCA whitening at 0.65 data
reduction loses significant information for subjects with high
similarity. In the balanced signal to noise condition (ps = 0.5),
performance matches the signal dominant condition except for
post subject PCA whitening at or below 0.9 data reduction, for
which more information from subjects with high similarity is
lost. Lastly, in the noise-dominant ps = 0.1 condition, most
gPCA methods and specifications lose significant information
from subjects. Only gPCA post subject PCA whitening with
no data reduction completely matches the ground truth mean
performance in extreme levels of noise.

This result provides an argument for subject-level PCA
whitening due to its ability to perform on par with the ground-
truth mean, retaining comparable subject-level variability even
in scenarios of extreme noise. While this method seems very
sensitive to certain variance retention thresholds, we perceive
this simply as an indication that subject-level reduction after
whitening is unnecessary and not recommended prior to group
PCA, based on the provided evidence.

Our second observation is that in extreme noise the other
gPCA approaches capture variability from subjects with low
similarity better than subjects with high similarity (inverted U-
shape). This pattern replicated in non-separable noise (Fig. 5).

Lastly, we observe that the ’Edge’ variance profile for
gPCA simple concatenation had the least desirable effect
on the sources. In the ’Mid’ profile, it captured subject-
level variability better than the ground truth mean for some
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subjects, and in the ’Rand’ profile it consistently matched the
performance of other gPCA methods, except in extreme noise.
A key observation here is that simple concatenation gPCA’s
performance is indeed sensitive to variance profile, which is
undesirable in the sense that it is affected by arbitrary scaling
effects at the subject level and gives preferential treatment to
certain subjects.

In Fig. 5, the preliminary result suggests that all gPCA
methods degrade in performance and fail to match the ground-
truth source mean even at medium signal proportion level
(ps = 0.5). There is no obvious prevailing method like
in the separable noise case, and failure levels are highly
similar across methods. As in the separable noise case, simple
concatenation gPCA is highly sensitive to different variance
profiles, whereas the other methods are not.

V. PRELIMINARY RECOMMENDATIONS

Given the sensitivity to variance profile changes observed
for conventional gPCA, our first recommendation is utilizing
subject-level normalization to eliminate variance profile effects
in simple concatenation gPCA. This is a very cheap solution
(simply normalize the sum-of-squares for each subject) that
addresses a largely overlooked issue with likely detrimental
consequences since the variance profile of a dataset is, in
principle, not a tunable experimental parameter, just a property
of the dataset. In other words, just utilize gPCA with subject-

level normalization. It has very low computational overhead
compared to simple concatenation gPCA and delivers signifi-
cant reduction in variance profile effects.

Our second recommendation is doing little to no data
reduction for gPCA with subject-level whitening, especially if
the goal is to match the ground truth mean as best as possible.
While closer to the ground-truth performance, this approach
effectively requires about twice the computational effort.

VI. CONCLUSION

Subject-level PCA with whitening and no data reduc-
tion perfectly matches ground-truth mean performance under
separable noise, even with extreme noise levels, effectively
denoising data in this simple setting. This result provides
more insight into the functionality of subject-level PCA with
whitening, and an argument towards using whitening as long
as there is no data reduction. It is important to note that
any reduction after whitening appears to significantly affect
performance relative to other methods and in proportion to
the level of noise in the data. Subject sum of squares nor-
malization performs adequately throughout our experiments,
and simple concatenation performs least desirably in terms of
approximating the ground-truth mean performance. It should
be emphasized that no gPCA method uniformly outperforms
the ground-truth source mean, and the ground-truth source
mean itself can lead to biased inferences about subjects that
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concatenation gPCA is affected by variance profile (’Edge’, ’Mid’, or ’Rand’).

deviate from the population average. Although the current
iteration of our work does not tackle the full, challenging
nature of real fMRI data, where no ground-truth is available,
it does offer a novel, highly objective framework for testing
key factors that are highly relevant to the gPCA approaches
we investigated and, even at this initial stage, it reveals how
certain data characteristics influence performance for different
implementations.

Future work will explore more challenging noise scenarios
such as correlated noise and evaluate the performance of gPCA
methodology on real data. A full evaluation of challenging
realistic noise structures will provide insight on the capa-
bilities and limitations of gPCA to elicit new guidelines for
neuroimaging analyses.
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