

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MIXTURE OF HETEROGENEOUS GROUPED EXPERTS FOR LANGUAGE MODELING

Anonymous authors

Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) offers superior performance over dense models. However, current MoEs impose a critical limitation by enforcing uniform expert sizes, restricting the model’s ability to dynamically match computational resources with token-specific requirements. Despite several attempts on heterogeneous experts have been made, they struggle either with limited performance and inefficient parameter utilization or unbalanced GPU utilization, there is still a lack of general heterogeneous MoE architecture. To this end, we present Mixture of Heterogeneous Grouped Experts (MoHGE), an innovative MoE architecture that introduces a two-level routing mechanism and enables more nuanced and efficient expert selection tailored to each input token’s characteristics. We also propose a Group-Wise Auxiliary Loss to enhance efficient parameter utilization without compromising model performance. To address the resulted workload imbalance challenges, we develop: (1) an All-size Group-decoupling Allocation strategy and (2) Intra-Group Experts Auxiliary Loss, collectively ensuring balanced GPU utilization. Extensive evaluations on multiple benchmarks demonstrate that MoHGE achieves comparable performance to state-of-the-art MoE architectures while reducing total parameter count by approximately 20% and maintaining balanced GPU utilization. Our work establishes a new paradigm for resource-aware MoE design, better aligning computational allocation with actual inference demands.

1 INTRODUCTION

Transformer-based large language models (LLMs) (Achiam et al., 2023; Touvron et al., 2023; Bai et al., 2023; Liu et al., 2024a) have achieved remarkable success across a wide range of natural language processing (NLP) tasks. According to scaling laws (Kaplan et al., 2020), larger models consistently deliver better performance, and recent studies (Wei et al., 2022) have shown that scaling can also give rise to emergent abilities. However, the computational cost of training and deploying such large models grows exponentially (Thompson et al., 2020), creating a critical bottleneck for both research and real-world applications.

Mixture-of-Experts (MoE) architectures, originally proposed in Jacobs et al. (1991) and Jordan & Jacobs (1994), offer an effective solution by enabling sparse activation: Only a small subset of the model parameters are engaged in per inference step, allowing the model to scale efficiently without proportionally increasing computational overhead.

Despite this advantage, most existing MoE models consist of experts with identical sizes and structures. This homogeneity poses a limitation when generating tokens of varying difficulty: some tokens are easy to predict, while others require more sophisticated reasoning. To address this, recent approaches such as MoDSE (Sun et al., 2024) and HMoE (Wang et al., 2024) have explored the use of experts with different sizes.

However, MoDSE employs a routing strategy that promotes uniform routing probabilities among experts, which fail to route input tokens to the most suitable experts, leading to inefficient parameter utilization. Since experts have different parameter sizes, this setting limits the combination of experts, making it impossible to select multiple smallest or largest experts, missing opportunities for better efficiency or performance. HMoE mentions the idea of hybrid heterogeneous–homogeneous experts as a promising direction, but does not explicitly explore this design. Moreover, it suffers

054 from significant GPU utilization imbalance due to uneven parameter sizes, ultimately degrading
 055 training efficiency and limiting its scalability.
 056

057 In this paper, we first divide experts into multiple groups, where experts within each group share
 058 identical parameter sizes, while the expert sizes vary across groups. We then introduce a two-level
 059 routing strategy to deliver more diverse and nuanced expert combinations. We further propose a
 060 Group-Wise Auxiliary Loss to enable the selection of expert groups with appropriate parameter
 061 sizes, based on the task difficulty. This ensures more efficient parameter utilization by dynamically
 062 matching computational resources to token-specific requirements. To address GPU load imbalance,
 063 we propose an All-size Group-decoupling Allocation strategy, which places an equal number of
 064 experts from each group onto the each GPU. This strategy guarantees that each GPU has the same
 065 memory consumption. Further, we propose an Intra-Group Experts Auxiliary Loss to maintain
 066 balanced routing probabilities within each expert group, ensuring uniform GPU utilization. We
 067 refer to this novel architecture as the Mixture of Heterogeneous Grouped Experts (MoHGE). Our
 068 contributions are summarized as follows:
 069

- **Novel Architecture:** We propose a novel MoE architecture, MoHGE, that achieves precise capacity match based on task difficulty and efficient GPU utilization by incorporating the two-level routing strategy and the Group-Wise Auxiliary Loss.
- **Load Balance:** To ensure balanced GPU utilization, we propose the All-size Group-decoupling Allocation strategy and the Intra-Group Experts Auxiliary Loss. Together, these techniques maintain intra-group utilization equilibrium and achieve uniform GPU workloads, ensuring the model’s scalability.
- **Empirical Validation:** Experimental results demonstrate the framework’s effectiveness: MoHGE achieves an accuracy comparable to that of conventional MoE while reducing total parameters. More noteworthy, detailed routing analysis confirms successful balance of GPU utilization and validates our loss functions’ ability to regulate expert activation patterns.

081 2 BACKGROUND: MIXTURE OF EXPERTS

082 An MoE layer typically includes the gating model $G_1(\cdot) \cdots G_N(\cdot)$, the expert networks
 083 $E_1(\cdot) \cdots E_N(\cdot)$, and the routing mechanism, where N denotes the number of experts. The gating
 084 model serves as the mathematical implementation of a router, determining how input data is
 085 allocated to experts. Specifically, the gating model with learnable weights $W \in \mathbb{R}^{h_{\text{input}} \times h}$ selects
 086 the top k experts and combines the outputs of these top k experts to produce the output $y \in \mathbb{R}^h$,
 087 where h_{input} is the dimension of input x and h is the dimension of the hidden layer. The output of
 088 an MoE layer can be expressed as,
 089

$$y = \sum_{i=1}^N G_i(x) E_i(x) \quad (1)$$

$$G_i(x) = \text{Softmax}(\text{top}K(H(x))) \quad (2)$$

$$H(X)_i = (x \cdot W)_i \quad (3)$$

$$\text{Top}K(v, k)_i = \begin{cases} v_i, & v_i \in \text{top}k(v) \\ -\infty, & \text{otherwise} \end{cases} \quad (4)$$

099 3 MIXTURE OF HETEROGENEOUS GROUPED EXPERTS

100 3.1 GROUP-WISE VARIED SIZE EXPERTS

101 Traditional MoE architectures typically employ a gating network that routes inputs to a uniform
 102 set of experts, all of which have the same model size. However, as shown by Sun et al. (2024),
 103 the cognitive challenge of predicting the next token varies significantly across different linguistic
 104 contexts—mirroring the dynamic processing demands seen in human cognition.
 105

106 Building on this observation, we introduce a novel heterogeneous expert architecture that organizes
 107 experts into multi-granularity groups. Formally, we structure the expert set $\{E_1, E_2, E_3, \dots, E_{N_e}\}$

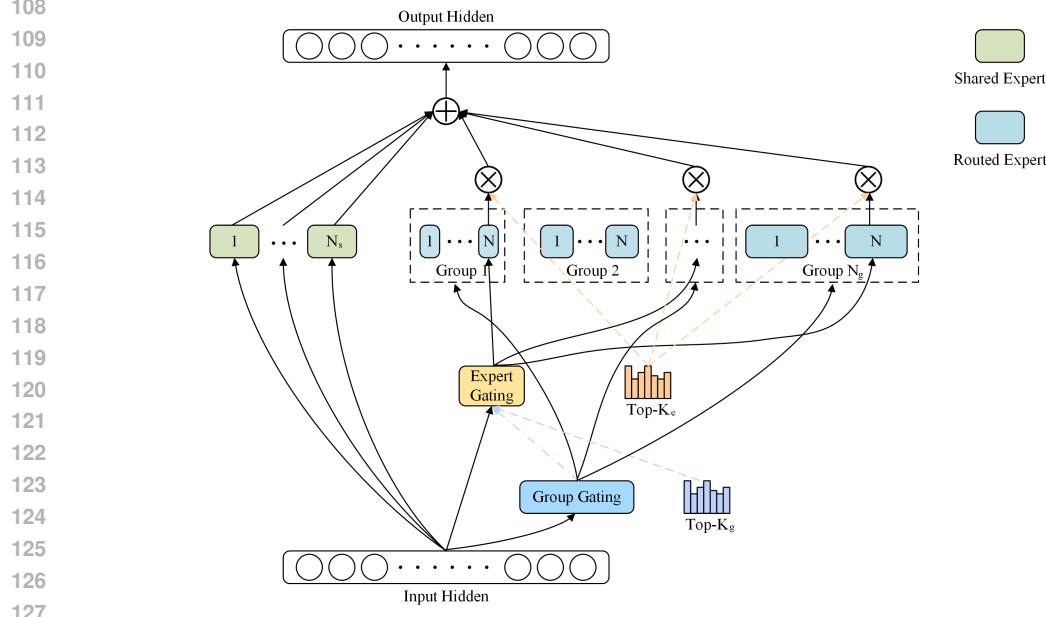


Figure 1: An illustration of our Mixture of Heterogeneous Grouped Experts Layer.

into distinct groups $\{G_1, G_2, G_3, \dots, G_{N_g}\}$, where each group contains $N = N_e/N_g$ experts (N_e and N_g denote the total number of experts and groups, respectively). For the convenience of expression, we transform experts from E_j into $E_{g,i}$, where g represents the group to which the expert belongs and i represents the index of the expert in the group. Experts within each group share identical parameter sizes, while parameter scales vary across groups according to a predefined progression. Specifically, the hidden dimension of experts in group G_i is given by:

$$W_i = 2 * W_{\text{base}} - W_{N_g - i} \quad (5)$$

where W_{base} represents the base hidden dimension and the W_i increases as i increases. This hierarchical organization enables dynamic computation allocation: compact experts efficiently process simpler linguistic patterns, while progressively larger experts with greater capacity handle more complex contextual relationships.

3.2 TWO-LEVEL ROUTING MECHANISM

To efficiently manage the hierarchical structure of experts, our two-level routing mechanism operates in two stages. The **group gating model** first selects expert groups based on their relevance to the input, and the **expert gating model** then chooses specific experts within these groups. This staged design ensures that computation is focused on the most relevant experts, reducing overhead by restricting selection to the top- K_g groups.

3.2.1 GROUP GATING MODEL

The group gating model computes scores GS for all N_g expert groups. For the t -th token input \mathbf{x}_t , the score for the g -th group is,

$$GS_{g,t} = \text{Sigmoid}(\mathbf{x}_t^T \mathbf{e}_g) \quad (6)$$

where \mathbf{e}_g is the centroid embedding of the g -th expert group. The model then selects the K_g groups with the highest scores, restricting the expert gating model to only route tokens to experts within these groups.

3.2.2 EXPERT GATING MODEL

The expert gating model operates in three phases: **Intra-Group Expert Scores Calculation**, **Experts for Global Selection** and **Global Normalization**.

162 **1. Intra-Group Expert Scores Calculation.** For each selected group, the model computes unnor-
 163 malized scores for its experts using a group-wise Softmax:
 164

$$165 \quad ES'_{g,i,t} = \begin{cases} \text{Softmax}(\mathbf{x}_t^T \mathbf{e}_{g,i}), & \text{if } GS_{g,t} \in \text{top}K_g(GS_t) \\ 166 \quad 0, & \text{otherwise} \end{cases} \quad (7)$$

167 where $e_{g,i}$ is the embedding of the i -th expert in group g .
 168

169 **2. Experts for Global Selection.** The intra-group expert scores are scaled by the group scores to
 170 reflect group importance:
 171

$$172 \quad ES''_{g,i,t} = (ES' \cdot GS)_{g,i,t} \quad (8)$$

173 Next, the model selects the top- K_e experts globally. Scores for all other experts are set to zero:
 174

$$175 \quad ES'''_{g,i,t} = \begin{cases} ES''_{g,i,t}, & \text{if } ES''_{g,i,t} \in \text{top}K_e(ES''_{g,i,t}) \\ 176 \quad 0, & \text{otherwise} \end{cases} \quad (9)$$

177 **3. Global Normalization.** Finally, the selected expert scores are normalized to sum to one:
 178

$$179 \quad ES_{g,i,t} = \frac{ES'''_{g,i,t}}{\sum_j^{N_g} \sum_k^N ES'''_{j,k,t}} \quad (10)$$

182 This three-step gating strategy enables fine-grained, efficient expert selection by prioritizing both
 183 group relevance and individual expert utility.
 184

185 3.3 OUTPUT OF MOHGE

187 The output of MoHGE layer is similar to the MoE layer, the outputs of all selected experts are
 188 multiplied by their corresponding scores and then added together to obtain the final output:
 189

$$190 \quad y = \sum_{g=1}^{N_g} \sum_{i=1}^N ES_{g,i,t} \cdot E_{g,i}(x_t) \quad (11)$$

193 3.4 EFFICIENT PARAMETER UTILIZATION

195 Without regularization, experts with larger parameter sizes tend to dominate the routing decisions
 196 due to their stronger representational capacity. This dominance can result in inefficient expert usage,
 197 as smaller expert groups with fewer parameters may not be fully utilized. To address this issue and
 198 improve parameter utilization, we introduce a slight penalty for expert groups with larger parameter
 199 sizes. Specifically, we propose **Group-Wise Auxiliary Loss** L_G , which slightly penalizes expert
 200 groups with larger parameter sizes.

201 This loss encourages the gating model to consider groups with fewer parameters, leading to more
 202 efficient parameter utilization. The model ultimately learns to trade off between minimizing cross-
 203 entropy and reducing parameter-related costs. The group-wise loss is formulated as:
 204

$$206 \quad L_G = \alpha_G \sum_{i=1}^{N_g} \frac{W_i}{W_{max}} f_i^G p_i^G \quad (12)$$

$$208 \quad f_i^{Grp} = \frac{N_g}{K_g} \sum_{t=1}^T \mathbb{1}(GS_{i,t} \in \text{top}k(GS_t)) \quad (13)$$

$$210 \quad p_i^G = \frac{1}{T} \sum_i^T s_{i,t}^G \quad (14)$$

$$212 \quad s_{i,t}^G = \frac{GS_{i,t}}{\sum_j^{N_g} GS_{j,t}} \quad (15)$$

215 where W_i is the parameter count of group i , f_i^G is the group's routing frequency, the balance factor
 α_G is assigned an extremely small value and p_i^G is its average normalized routing score.

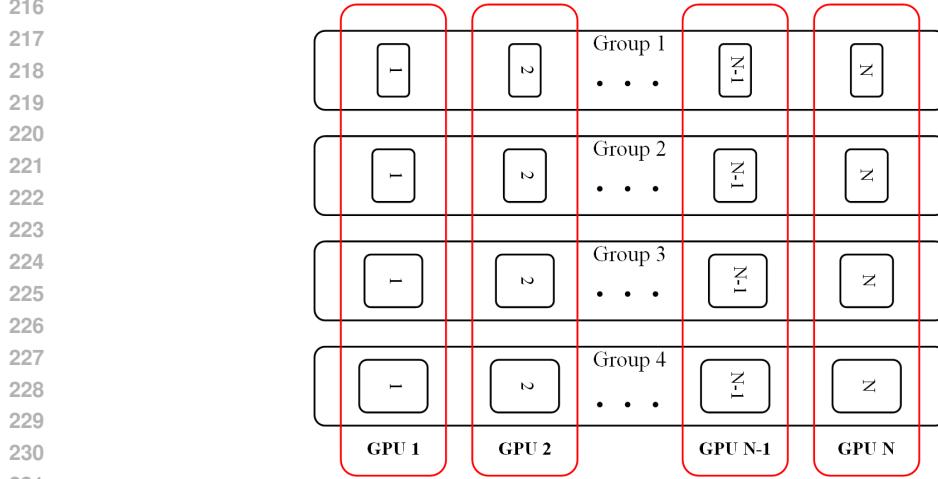


Figure 2: An example of All-size Group-decoupling Allocation.

3.5 LOAD BALANCE CONSIDERATION

Experts with larger hidden dimensions (i.e., those exceeding a base width W_{base}) introduce disproportionately higher memory and computational costs. If not carefully managed, this imbalance can lead to severe GPU load imbalances, where certain GPUs become bottlenecks while others remain underutilized. This inefficiency hampers overall training performance and scalability. To mitigate this issue, we introduce **All-size Group-decoupling Allocation** and **Intra-Group Experts Auxiliary Loss**, which work synergistically to achieve a uniform distribution of computational load across GPUs, thus ensuring balanced resource utilization.

3.5.1 ALLOCATION STRATEGY

An All-size expert set consists of the i -th expert from all groups. Each GPU is assigned multiple such sets, ensuring that the total number of expert parameters on each GPU remains consistent and smoothing out the variance in parameter size across the system. If expert workloads are evenly balanced within each group (which is encouraged by our auxiliary loss design), this approach leads to balanced GPU utilization overall.

As illustrated in Fig. 2 (with $N_g = 4$), each GPU hosts one All-size expert set (e.g., experts $E_{1,i}, E_{2,i}, E_{3,i}, E_{4,i}$). Regardless of the group selection during routing, as long as expert activation within each group is balanced, overall GPU resource usage remains evenly distributed.

3.5.2 INTRA-GROUP EXPERTS AUXILIARY LOSS

In addition to the standard cross-entropy loss, we incorporate an intra-group experts auxiliary loss L_E adapted from DeepSeekV2 (Liu et al., 2024a) to encourage balanced expert usage during routing. While DeepSeekV2 penalizes imbalance across all experts globally, our approach focuses on experts within each selected group, promoting uniform routing frequencies locally. This design ensures that all experts within an active group are selected with equal frequency during training, leading to better load distribution across GPUs.

The auxiliary loss is defined as:

$$L_E = \alpha_E \sum_{g=1}^{N_g} \sum_{i=1}^N f_{g,i}^E p_{g,i}^E \quad (16)$$

270

271

$$f_{g,i}^E = \frac{N}{K_e} \sum_{t=1}^T \mathbb{1}(ES'_{g,i,t} \in \text{top}K_e(ES'_t)) \quad (17)$$

274

$$p_{g,i}^E = \frac{1}{T} \sum_i^T S_{g,j,t}^{Exp} \quad (18)$$

276

$$S_{g,j,t}^E = \frac{ES'_{g,i,t}}{\sum_j^N ES'_{g,j,t} + \epsilon} \quad (19)$$

278

where $f_{g,i}^E$ represents the normalized routing frequency of the i -th expert in group g , $s_{g,i,t}^e$ is the normalized routing score, $p_{g,i}^E$ is the average selection probability across time steps, the balance factor α_E is assigned an extremely small value and ϵ is a very small constant to ensure that the denominator is not 0.

283

284 4 EXPERIMENTS

285

286 4.1 EXPERIMENTAL SETUP

288

Compute Infrastructure. All models were trained on a 16-node GPU cluster, with each node equipped with eight NVIDIA GPUs. We used the Megatron-LM framework (Shoeybi et al., 2019) to implement our MoHGE variants, as well as the dense and MoE baseline models.

291

Pretraining Data. Our pretraining corpus was created by merging and deduplicating three large English datasets: DataComp-LM, FineWeb, and The Pile. The combined corpus underwent standard noise filtering and quality checks to ensure data integrity. For all experiments, we sampled 0.58 trillion tokens from this cleaned, unified corpus.

296

Model Configurations. We evaluated three Transformer variants at the 1B 3B, and 14B parameter scales: a Dense model whose parameters are equal to the active parameters of the MoE baseline, a uniform-expert MoE baseline, and our proposed MoHGE architecture with heterogeneous expert groups. The MoE baseline is adapted from DeepSeekV2 (Liu et al., 2024b), with hyperparameters adjusted to align parameter counts across models for fair comparison. Detailed architectural configurations for all evaluated models are summarized in **APPENDIX**.

303

Training Hyperparameters. Each MoE model was trained for 2 full epochs on the 0.58 trillion-token corpus, using a fixed sequence length of 4,096. We used the AdamW optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.95$, and a weight decay of 0.1. A cosine-decay learning rate schedule was applied, starting at 3×10^{-4} and annealing to a minimum of 3×10^{-5} .

308

309 4.2 MAIN RESULTS

310

Following OpenCompass protocols (Contributors, 2023), Table 1 reports the zero-shot or few-shot (Kojima et al., 2022; Brown et al., 2020) in-context learning performance of our pretrained MoHGE models on a diverse suite of downstream tasks, including MMLU (Hendrycks et al., 2020), SIQA (Sap et al., 2019), GSM8K (Cobbe et al., 2021), LAMBADA (Paperno et al., 2016), MATH (Hendrycks et al., 2024), PIQA (Bisk et al., 2020) Bisk et al. (2020) and TriviaQA (Joshi et al., 2017).

316

As reported in Table 1, averaged over three evaluate runs, MoHGE consistently outperforms both conventional MoE and dense models across all scales, achieving state-of-the-art results on several benchmarks. Compared to the MoE baseline, MoHGE achieves a more favorable trade-off between parameter efficiency and downstream performance by activating fewer expert parameters while simultaneously requiring fewer total parameters.

322

Specifically, MoHGE reduces the overall parameter count by nearly 20% relative to standard MoE, and the number of activated parameters in the expert layer is reduced by approximately one quarter. This substantial reduction highlights its effectiveness in balancing model capacity with efficiency.

Method	Total Parameters	Activated Parameters of Experts	MMLU	SIQA	GSM8K	LAMBADA	MATH	PIQA	TriviaQA
Dense	0.570B	—	25.41	34.93	1.79	51.87	1.22	44.85	25.05
MoE-1B	1.098B	0.163B	25.38	35.12	1.74	53.20	1.26	46.09	25.86
MoHGE-1B	0.891B	0.122B	25.98	35.17	1.97	53.75	1.29	48.85	25.71
Dense	0.807B	—	26.36	35.30	2.79	61.02	1.33	47.35	34.98
MoE-3B	3.3614B	0.376B	26.22	35.41	3.03	60.86	1.34	49.08	39.16
MoHGE-3B	2.821B	0.295B	26.41	35.56	4.02	62.37	1.36	49.08	39.20
Dense	1.672B	—	30.78	42.29	4.61	68.05	6.81	54.92	50.26
MoE-14B	16.760B	1.191B	31.18	44.28	4.88	67.94	7.29	56.71	51.77
MoHGE-14B	14.122B	0.843B	31.62	45.62	5.73	69.89	9.42	58.73	52.69

Table 1: Comparison between Dense model, MoE baseline and our MoHGE, the highest scores for each benchmark is highlighted in bold. MoHGE achieves slightly better performance while activating the fewest parameters. Furthermore, our model requires fewer total parameters than the baseline in addition to its efficiency advantages.

Benchmark	MoE-1B(hours)	MoHGE-1B(hours)	MoE-3B(hours)	MoHGE-3B(hours)	MoE-14B(hours)	MoHGE-14B(hours)
MMLU	6.90	6.77	9.85	9.58	19.27	18.86
SIQA	0.93	0.90	1.29	1.17	2.51	2.33
GSM8K	0.59	0.62	0.84	0.86	1.63	1.62
LAMBADA	2.24	2.22	3.17	3.03	6.27	6.08
MATH	2.24	2.23	3.18	3.02	6.33	6.09
PIQA	0.85	0.78	1.20	1.09	2.38	2.17
TriviaQA	4.11	3.95	5.78	5.46	11.46	10.85

Table 2: The inference duration of the MoE and MoHGE models on downstream tasks.

The inference times are demonstrated in Table 2. Regarding the slight increase in inference time on GSM8K which is a complex mathematical reasoning task, our routing analysis reveals that the MoHGE tends to select expert groups with larger parameter on GSM8K and this achieves higher accuracy while resulting in more inference time. Altogether, our model achieves relatively faster inference speeds, showing superior inference efficiency.

4.3 ABLATION STUDY ON AUXILIARY LOSS COEFFICIENTS

We conduct an ablation study to analyze the effect of different auxiliary loss coefficients on model performance. A coefficient of 0 indicates the absence of the auxiliary loss.

As shown in Table 3, the intra-group experts auxiliary loss yields a modest performance gain and setting $\alpha_{Exp} = 2.5e - 3$ achieves better results. Combining it with the group-wise auxiliary loss further improves results. Although the group-wise loss contributes only marginally to accuracy, it reduces the number of activated parameters. Based on the trade-off between evaluation performance and computational efficiency, we find that setting $\alpha_{Exp} = 2.5e - 3$ and $\alpha_{Grp} = 1e - 4$ enables the our models to achieve an optimal balance.

4.4 ANALYSIS ON TOKEN ROUTING

4.4.1 ROUTING ANALYSIS OF LOSS FUNCTION

Building on the optimal configurations identified in Table 3, we conduct experiments on two model configurations:

Utilizing only intra-group expert auxiliary loss: $\alpha_{Exp} = 2.5e - 3$ and $\alpha_{Grp} = 0$.

Combining two loss functions: $\alpha_{Exp} = 2.5e - 3$ and $\alpha_{Grp} = 1e - 4$.

We statistically analyzed the distribution of 100 million token routes across these configurations. As shown in Fig. 3, the overall route distribution does not exhibit concentration in specific groups under either setup. However, introducing the group routing loss shifts the token routing behavior: instead of predominantly favoring larger expert groups, tokens are distributed toward smaller. This indicates that the group-wise loss encourages the selection of smaller expert groups which can accommodate the current task difficulty in condition of relatively uniform routing distribution.

Model	α_{Exp}	α_{Grp}	Activated Parameters of Experts	MMLU	SIQA	PIQA	LAMBADA	TriviaQA
MoHGE-1B	0	0	139M	25.43	34.73	47.62	52.20	25.03
	2.5e-3	0	132M	25.61	34.82	47.93	53.35	25.37
	5e-3	0	131M	25.87	34.74	48.77	53.14	25.20
	2.5e-3	1e-4	122M	25.98	35.17	<u>48.85</u>	53.75	25.42
	2.5e-3	1e-3	122M	25.94	<u>35.10</u>	48.28	52.99	25.25
	5e-3	1e-4	119M	<u>25.96</u>	34.86	48.12	53.16	<u>25.39</u>
MoHGE-3B	0	0	324M	25.88	35.29	48.65	61.37	38.01
	2.5e-3	0	307M	26.11	35.45	48.53	61.62	38.53
	5e-3	0	310M	26.03	35.32	48.67	61.75	38.45
	2.5e-3	1e-4	295M	26.31	35.56	49.08	62.37	39.20
	2.5e-3	1e-3	297M	26.36	35.12	48.83	<u>62.10</u>	38.68
	5e-3	1e-4	289M	26.27	<u>35.47</u>	48.21	61.85	38.51
MoHGE-14B	0	0	897M	31.37	44.92	57.94	68.57	51.72
	2.5e-3	0	884M	31.18	45.03	58.07	68.95	51.86
	5e-3	0	875M	31.71	45.39	58.27	68.90	52.29
	2.5e-3	1e-4	843M	<u>31.62</u>	45.62	58.73	69.89	<u>52.49</u>
	2.5e-3	1e-3	854M	30.87	45.07	58.22	69.10	52.75
	5e-3	1e-4	859M	31.38	44.78	58.15	69.85	51.67

Table 3: The evaluation results for varying coefficients of the auxiliary loss function. The highest-performing score for each benchmark is highlighted in bold, while the second-highest score is underlined.

	GPU_1	GPU_2	GPU_3	GPU_4	GPU_5	GPU_6	GPU_7	GPU_8	Avg	Std
Group_1	2.05M	1.89M	1.92M	1.99M	2.02M	1.86M	1.97M	2.01M	1.96M	0.06283
Group_2	1.66M	1.74M	1.82M	1.62M	1.59M	1.74M	1.58M	1.75M	1.69M	0.08166
Group_3	1.58M	1.59M	1.67M	1.50M	1.51M	1.52M	1.64M	1.70M	1.59M	0.07115
Group_4	1.67M	1.58M	1.65M	1.59M	1.67M	1.62M	1.70M	1.51M	1.62M	0.05786
Group_5	1.25M	1.39M	1.38M	1.27M	1.33M	1.38M	1.35M	1.26M	1.33M	0.05452
Group_6	1.45M	1.41M	1.45M	1.31M	1.49M	1.40M	1.50M	1.41M	1.43M	0.05629
Group_7	1.52M	1.60M	1.57M	1.43M	1.41M	1.55M	1.62M	1.43M	1.52M	0.07745
Group_8	1.39M	1.32M	1.46M	1.41M	1.33M	1.35M	1.32M	1.36M	1.37M	0.04630

Table 4: For 14B scale model, the number of tokens routed to each GPU roughly closes to the average value.

4.4.2 ROUTING ANALYSIS OF GPU UTILIZATION

To rigorously evaluate the balancing of GPU utilization, we conduct a GPU-level assessment for 14B scale model by strategically assigning the i -th expert from each capacity group to the i -th GPU. This experimental design allows us to precisely track how tokens are distributed across experts of varying sizes on each GPU, which reflects the frequency of token processed by experts of different sizes on each GPU. Table 4 shows that experts of uniform size receive nearly equal routing frequencies across GPUs, indicating balanced intra-group expert and GPU utilization. This confirms that our All-size Group-decoupling Allocation and Intra-group Experts Auxiliary Loss effectively maintain equilibrium in both computational resource loading and expert activation patterns.

5 RELATED WORK

The MoE model was originally proposed by Jacobs et al. (1991). Subsequently, Shazeer et al. (2017) introduced Sparsely-Gated Mixture-of-Experts which demonstrate substantial improvements in model capacity and efficiency. Furtherly, SwitchTransformer, proposed by Fedus et al. (2022), incorporated MoE into the Transformer architecture’s Feed-Forward Network layers with simplified MoE routing algorithm, showing great potential in large-scale Transformer models. Typically, MoE models consist of homogeneous experts, each with identical number of parameters, and a predetermined number of experts are activated regardless of the input’s complexity. However, this hinders effective expert specialization and efficient parameter utilization.

Huang et al. (2024) proposed Top-P routing algorithm to address inefficient parameter utilization by assigning different numbers of experts to different tokens. Nevertheless, this method relies on fixed threshold settings and employs a rudimentary approach to difficulty modeling, making it challenging to adapt effectively to diverse inputs. Sun et al. (2024) proposed the Diverse Size Experts structure for each FFN layer, where each expert has a different parameter size to handle generating tasks of varying difficulty. However, they employ a uniform routing strategy that fails to route input tokens to the most suitable expert, resulting in inefficient parameter utilization and compromised perfor-

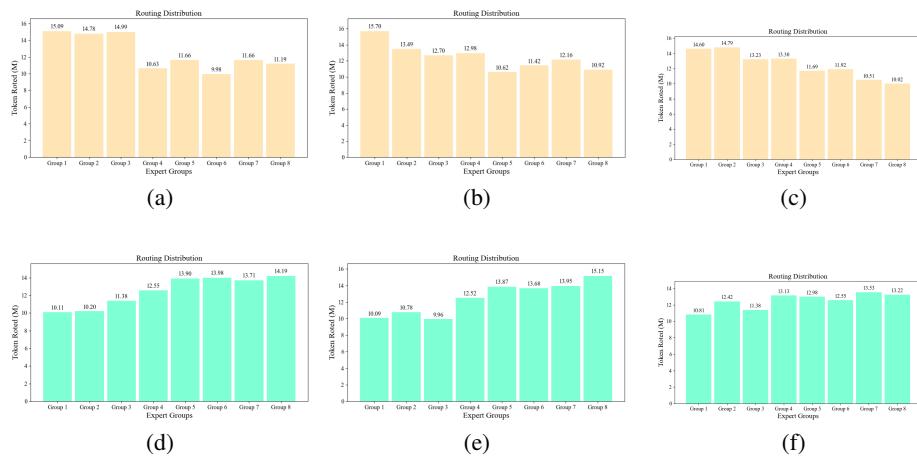


Figure 3: The number of tokens routed to each expert group. (a) Our MoHGE-1B with Group-Wise Auxiliary Loss. (b) Our MoHGE-3B with Group-Wise Auxiliary Loss. (c) Our MoHGE-14B with Group-Wise Auxiliary Loss. (d) Our MoHGE-1B without Group-Wise Auxiliary Loss. (e) Our MoHGE-3B without Group-Wise Auxiliary Loss. (f) Our MoHGE-14B without Group-Wise Auxiliary Loss.

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
492 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

493 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
494 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
495 volume 34, pp. 7432–7439, 2020.

496 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
497 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
498 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

499 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
500 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
501 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

502 OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models,
503 2023.

504 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
505 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
506 2022.

507 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
508 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
509 arXiv:2009.03300*, 2020.

510 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
511 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
512 <https://arxiv.org/abs/2103.03874>, 2024.

513 Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Kun Xu,
514 Liwei Chen, Songfang Huang, and Yansong Feng. Harder task needs more experts: Dynamic
515 routing in MoE models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings
516 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
517 Papers)*, pp. 12883–12895, Bangkok, Thailand, August 2024. Association for Computational Lin-
518 guistics. doi: 10.18653/v1/2024.acl-long.696. URL <https://aclanthology.org/2024.acl-long.696/>.

519 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
520 local experts. *Neural computation*, 3(1):79–87, 1991.

521 Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
522 *Neural computation*, 6(2):181–214, 1994.

523 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
524 supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.

525 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
526 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
527 models. *arXiv preprint arXiv:2001.08361*, 2020.

528 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
529 language models are zero-shot reasoners. *Advances in neural information processing systems*,
530 35:22199–22213, 2022.

531 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
532 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
533 of-experts language model. *arXiv preprint arXiv:2405.04434*, 2024a.

540 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
 541 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
 542 of-experts language model. *arXiv preprint arXiv:2405.04434*, 2024b.

543

544 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 545 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
 546 Word prediction requiring a broad discourse context. *arXiv preprint arXiv:1606.06031*, 2016.

547

548 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
 549 sense reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.

550

551 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 552 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 553 *arXiv preprint arXiv:1701.06538*, 2017.

554

555 Mohammad Shoeybi, Mostafa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 556 Catanzaro. Megatron-Im: Training multi-billion parameter language models using model par-
 557 allelism. *arXiv preprint arXiv:1909.08053*, 2019.

558

559 Manxi Sun, Wei Liu, Jian Luan, Pengzhi Gao, and Bin Wang. Mixture of diverse size experts. In
 560 Franck Dernoncourt, Daniel Preoțiuc-Pietro, and Anastasia Shimorina (eds.), *Proceedings of the
 561 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pp.
 562 1608–1621, Miami, Florida, US, November 2024. Association for Computational Linguistics.
 563 doi: 10.18653/v1/2024.emnlp-industry.118. URL <https://aclanthology.org/2024.emnlp-industry.118/>.

564

565 Neil C Thompson, Kristjan Greenewald, Keeheon Lee, Gabriel F Manso, et al. The computational
 566 limits of deep learning. *arXiv preprint arXiv:2007.05558*, 10, 2020.

567

568 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 569 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 570 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

571

572 An Wang, Xingwu Sun, Ruobing Xie, Shuaipeng Li, Jiaqi Zhu, Zhen Yang, Pinxue Zhao, JN Han,
 573 Zhanhui Kang, Di Wang, et al. Hmoe: Heterogeneous mixture of experts for language modeling.
 574 *arXiv preprint arXiv:2408.10681*, 2024.

575

576 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
 577 gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
 578 models. *arXiv preprint arXiv:2206.07682*, 2022.

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

7 APPENDIX

595

7.1 MODEL CONFIG

596 Detailed architectural configurations for all evaluated models are summarized in Table 5.
597

600 Configuration	1B Scale	3B Scale	14B Scale
Shared Configuration			
601 Transformer Layers	9	15	36
602 Input Dim	1024	1024	1024
603 Attention Heads	16	16	16
Dense Model			
604 FFN Hidden Dim	4096	6144	8192
MoE Baseline			
606 N_e	32	64	128
607 K_e	6	6	6
608 Shared Experts N_s	2	2	2
609 Expert Hidden Dim	832	1024	1280
MoHGE			
610 N_g	8	8	8
611 K_g	3	3	3
612 N_e	32	64	128
613 K_e	6	6	6
614 Shared Experts N_s	2	2	2
615 Hidden Dims of Expert Groups	{256, 320, 384, 512, 640, 768, 832, 896}	{384, 512, 640, 768, 896, 1024, 1152, 1280}	{640, 768, 896, 1024, 1152, 1280, 1408, 1536}

615 Table 5: Architecture configurations of the evaluated models at both 1B, 3B and 14B parameter
616 scales. MoHGE uses heterogeneous expert groups with different hidden dimensions.
617618

7.2 ROUTING ANALYSIS OF TOKENS OF DIFFERENT DIFFICULTIES

621 Token Ranks	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8
622 Top 1K	16.3%	14.9%	14.1%	12.2%	12.3%	10.5%	10.0%	9.7%
623 Top 1K-5K	15.0%	14.4%	13.4%	13.1%	12.4%	10.3%	10.9%	10.5%
624 Top 5K-10K	13.6%	13.4%	13.7%	12.6%	11.5%	12.4%	11.5%	11.3%
625 Beyond 10K	11.3%	12.0%	11.4%	12.7%	13.0%	12.7%	13.6%	13.3%

626 We categorized the vocabulary into four difficulty levels based on occurrence frequency ranks in
627 training corpus: Top 1K (easiest), Top 1K-5K, Top 5K-10K and Beyond 10K (most difficult). Sec-
628 tion 7.2 shows the ratios of tokens with different difficulty routed to different expert groups. These
629 results demonstrate that simpler tokens tend to be routed to expert groups with fewer parameters,
630 and this validates the effectiveness of our method.
631