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ABSTRACT

Mixture-of-Experts (MoE) offers superior performance over dense models. How-
ever, current MoEs impose a critical limitation by enforcing uniform expert sizes,
restricting the model’s ability to dynamically match computational resources with
token-specific requirements. Despite several attempts on heterogeneous experts
have been made, they struggle either with limited performance and inefficient
parameter utilization or unbalanced GPU utilization, there is still a lack of gen-
eral heterogeneous MoE architecture. To this end, we present Mixture of Het-
erogeneous Grouped Experts (MoHGE), an innovative MoE architecture that in-
troduces a two-level routing mechanism and enables more nuanced and efficient
expert selection tailored to each input token’s characteristics. We also propose
a Group-Wise Auxiliary Loss to enhance efficient parameter utilization without
compromising model performance. To address the resulted workload imbalance
challenges, we develop: (1) an All-size Group-decoupling Allocation strategy and
(2) Intra-Group Experts Auxiliary Loss, collectively ensuring balanced GPU uti-
lization. Extensive evaluations on multiple benchmarks demonstrate that MoHGE
achieves comparable performance to state-of-the-art MoE architectures while re-
ducing total parameter count by approximately 20% and maintaining balanced
GPU utilization. Our work establishes a new paradigm for resource-aware MoE
design, better aligning computational allocation with actual inference demands.

1 INTRODUCTION

Transformer-based large language models (LLMs) (Achiam et al., 2023; Touvron et al., 2023; Bai
et al., 2023; Liu et al., 2024a) have achieved remarkable success across a wide range of natural
language processing (NLP) tasks. According to scaling laws (Kaplan et al., 2020), larger models
consistently deliver better performance, and recent studies (Wei et al., 2022) have shown that scaling
can also give rise to emergent abilities. However, the computational cost of training and deploying
such large models grows exponentially (Thompson et al., 2020), creating a critical bottleneck for
both research and real-world applications.

Mixture-of-Experts (MoE) architectures, originally proposed in Jacobs et al. (1991) and Jordan &
Jacobs (1994), offer an effective solution by enabling sparse activation: Only a small subset of the
model parameters are engaged in per inference step, allowing the model to scale efficiently without
proportionally increasing computational overhead.

Despite this advantage, most existing MoE models consist of experts with identical sizes and struc-
tures. This homogeneity poses a limitation when generating tokens of varying difficulty: some
tokens are easy to predict, while others require more sophisticated reasoning. To address this, recent
approaches such as MoDSE (Sun et al., 2024) and HMoE (Wang et al., 2024) have explored the use
of experts with different sizes.

However, MoDSE employs a routing strategy that promotes uniform routing probabilities among
experts, which fail to route input tokens to the most suitable experts, leading to inefficient parameter
utilization. Since experts have different parameter sizes, this setting limits the combination of ex-
perts, making it impossible to select multiple smallest or largest experts, missing opportunities for
better efficiency or performance. HMoE mentions the idea of hybrid heterogeneous–homogeneous
experts as a promising direction, but does not explicitly explore this design. Moreover, it suffers
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from significant GPU utilization imbalance due to uneven parameter sizes, ultimately degrading
training efficiency and limiting its scalability.

In this paper, we first divide experts into multiple groups, where experts within each group share
identical parameter sizes, while the expert sizes vary across groups. We then introduce a two-level
routing strategy to deliver more diverse and nuanced expert combinations. We further propose a
Group-Wise Auxiliary Loss to enable the selection of expert groups with appropriate parameter
sizes, based on the task difficulty. This ensures more efficient parameter utilization by dynamically
matching computational resources to token-specific requirements. To address GPU load imbalance,
we propose an All-size Group-decoupling Allocation strategy, which places an equal number of
experts from each group onto the each GPU. This strategy guarantees that each GPU has the same
memory consumption. Further, we propose an Intra-Group Experts Auxiliary Loss to maintain
balanced routing probabilities within each expert group, ensuring uniform GPU utilization. We
refer to this novel architecture as the Mixture of Heterogeneous Grouped Experts (MoHGE). Our
contributions are summarized as follows:

• Novel Architecture: We propose a novel MoE architecture, MoHGE, that achieves precise
capacity match based on task difficulty and efficient GPU utilization by incorporating the
two-level routing strategy and the Group-Wise Auxiliary Loss.

• Load Balance: To ensure balanced GPU utilization, we propose the All-size Group-
decoupling Allocation strategy and the Intra-Group Experts Auxiliary Loss. Together,
these techniques maintain intra-group utilization equilibrium and achieve uniform GPU
workloads, ensuring the model’s scalability.

• Empirical Validation: Experimental results demonstrate the framework’s effectiveness:
MoHGE achieves an accuracy comparable to that of conventional MoE while reducing
total parameters. More noteworthy, detailed routing analysis confirms successful balance
of GPU utilization and validates our loss functions’ ability to regulate expert activation
patterns.

2 BACKGROUND: MIXTURE OF EXPERTS

An MoE layer typically includes the gating model G1(·) · · ·GN (·), the expert networks
E1(·) · · ·EN (·), and the routing mechanism, where N denotes the number of experts. The gat-
ing model serves as the mathematical implementation of a router, determining how input data is
allocated to experts. Specifically, the gating model with learnable weights W ∈ Rhinput×h selects
the top k experts and combines the outputs of these top k experts to produce the output y ∈ Rh,
where hinput is the dimension of input x and h is the dimension of the hidden layer. The output of
an MoE layer can be expressed as,

y =

N∑
i=1

Gi(x)Ei(x) (1)

Gi(x) = Softmax(topK(H(x))) (2)

H(X)i = (x · W )i (3)

TopK(v, k)i =

{
vi, vi ∈ topk(v)

−∞, otherwise
(4)

3 MIXTURE OF HETEROGENEOUS GROUPED EXPERTS

3.1 GROUP-WISE VARIED SIZE EXPERTS

Traditional MoE architectures typically employ a gating network that routes inputs to a uniform
set of experts, all of which have the same model size. However, as shown by Sun et al. (2024),
the cognitive challenge of predicting the next token varies significantly across different linguistic
contexts—mirroring the dynamic processing demands seen in human cognition.

Building on this observation, we introduce a novel heterogeneous expert architecture that organizes
experts into multi-granularity groups. Formally, we structure the expert set {E1, E2, E3, · · · , ENe}
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Figure 1: An illustration of our Mixture of Heterogeneous Grouped Experts Layer.

into distinct groups {G1, G2, G3, · · · , GNg
}, where each group contains N = Ne/Ng experts (Ne

and Ng denote the total number of experts and groups, respectively). For the convenience of ex-
pression, we transform experts from Ej into Eg,i, where g represents the group to which the expert
belongs and i represents the index of the expert in the group. Experts within each group share
identical parameter sizes, while parameter scales vary across groups according to a predefined pro-
gression. Specifically, the hidden dimension of experts in group Gi is given by:

Wi = 2 ∗ Wbase − WNg−i (5)

where Wbase represents the base hidden dimension and the Wi increases as i increases. This hier-
archical organization enables dynamic computation allocation: compact experts efficiently process
simpler linguistic patterns, while progressively larger experts with greater capacity handle more
complex contextual relationships.

3.2 TWO-LEVEL ROUTING MECHANISM

To efficiently manage the hierarchical structure of experts, our two-level routing mechanism operates
in two stages. The group gating model first selects expert groups based on their relevance to
the input, and the expert gating model then chooses specific experts within these groups. This
staged design ensures that computation is focused on the most relevant experts, reducing overhead
by restricting selection to the top-Kg groups.

3.2.1 GROUP GATING MODEL

The group gating model computes scores GS for all Ng expert groups. For the t-th token input xt,
the score for the g-th group is,

GSg,t = Sigmoid(xt
T
eg) (6)

where eg is the centroid embedding of the g-th expert group. The model then selects the Kg groups
with the highest scores, restricting the expert gating model to only route tokens to experts within
these groups.

3.2.2 EXPERT GATING MODEL

The expert gating model operates in three phases: Intra-Group Expert Scores Calculation, Ex-
perts for Global Selection and Global Normalization.
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1. Intra-Group Expert Scores Calculation. For each selected group, the model computes unnor-
malized scores for its experts using a group-wise Softmax:

ES
′
g,i,t =

{
Softmax(xt

T eg,i) , if GSg,t ∈ topKg(GSt)

0 , otherwise
(7)

where eg,i is the embedding of the i-th expert in group g.

2. Experts for Global Selection. The intra-group expert scores are scaled by the group scores to
reflect group importance:

ES
′′
g,i,t = (ES

′ · GS)g,i,t (8)

Next, the model selects the top-Ke experts globally. Scores for all other experts are set to zero:

ES
′′′
g,i,t =

{
ES′′

g,i,t , if ES′′
g,i,t ∈ topKe(ES′′

g,i,t)

0 , otherwise
(9)

3. Global Normalization. Finally, the selected expert scores are normalized to sum to one:

ESg,i,t =
ES′′′

g,i,t∑Ng
j

∑N
k ES′′′

j,k,t

(10)

This three-step gating strategy enables fine-grained, efficient expert selection by prioritizing both
group relevance and individual expert utility.

3.3 OUTPUT OF MOHGE

The output of MoHGE layer is similar to the MoE layer, the outputs of all selected experts are
multiplied by their corresponding scores and then added together to obtain the final output:

y =

Ng∑
g=1

N∑
i=1

ESg,i,t · Eg,i(xt) (11)

3.4 EFFICIENT PARAMETER UTILIZATION

Without regularization, experts with larger parameter sizes tend to dominate the routing decisions
due to their stronger representational capacity. This dominance can result in inefficient expert usage,
as smaller expert groups with fewer parameters may not be fully utilized. To address this issue and
improve parameter utilization, we introduce a slight penalty for expert groups with larger parameter
sizes. Specifically, we propose Group-Wise Auxiliary Loss LG, which slightly penalizes expert
groups with larger parameter sizes.

This loss encourages the gating model to consider groups with fewer parameters, leading to more
efficient parameter utilization. The model ultimately learns to trade off between minimizing cross-
entropy and reducing parameter-related costs. The group-wise loss is formulated as:

LG = αG

Ng∑
i=1

Wi

Wmax

f
G
i p

G
i (12)

f
Grp
i =

Ng

Kg

T∑
t=1

1(GSi,t ∈ topk(GSt)) (13)

p
G
i =

1

T

T∑
i

s
G
i,t

′
(14)

s
G
i,t

′
=

GSi,t∑Ng
j GSj,t

(15)

where Wi is the parameter count of group i, fGi is the group’s routing frequency, the balance factor
αG is assigned an extremely small value and pGi is its average normalized routing score.
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Figure 2: An example of All-size Group-decoupling Allocation.

3.5 LOAD BALANCE CONSIDERATION

Experts with larger hidden dimensions (i.e., those exceeding a base width Wbase) introduce dispro-
portionately higher memory and computational costs. If not carefully managed, this imbalance can
lead to severe GPU load imbalances, where certain GPUs become bottlenecks while others remain
underutilized. This inefficiency hampers overall training performance and scalability. To mitigate
this issue, we introduce All-size Group-decoupling Allocation and Intra-Group Experts Auxil-
iary Loss, which work synergistically to achieve a uniform distribution of computational load across
GPUs, thus ensuring balanced resource utilization.

3.5.1 ALLOCATION STRATEGY

An All-size expert set consists of the i-th expert from all groups. Each GPU is assigned multiple
such sets, ensuring that the total number of expert parameters on each GPU remains consistent and
smoothing out the variance in parameter size across the system. If expert workloads are evenly
balanced within each group (which is encouraged by our auxiliary loss design), this approach leads
to balanced GPU utilization overall.

As illustrated in Fig. 2 (with Ng = 4), each GPU hosts one All-size expert set (e.g., experts
E1,i, E2,i, E3,i, E4,i). Regardless of the group selection during routing, as long as expert activa-
tion within each group is balanced, overall GPU resource usage remains evenly distributed.

3.5.2 INTRA-GROUP EXPERTS AUXILIARY LOSS

In addition to the standard cross-entropy loss, we incorporate an intra-group experts auxiliary loss
LE adapted from DeepSeekV2 (Liu et al., 2024a) to encourage balanced expert usage during rout-
ing. While DeepSeekV2 penalizes imbalance across all experts globally, our approach focuses on
experts within each selected group, promoting uniform routing frequencies locally. This design
ensures that all experts within an active group are selected with equal frequency during training,
leading to better load distribution across GPUs.

The auxiliary loss is defined as:

LE = αE

Ng∑
g=1

N∑
i=1

f
E
g,ip

E
g,i (16)

5
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f
E
g,i =

N

Ke

T∑
t=1

1(ES
′
g,i,t ∈ topKe(ES

′
t)) (17)

p
E
g,i =

1

T

T∑
i

S
Exp
g,j,t (18)

S
E
g,j,t =

ES′
g,i,t∑N

j ES′
g,j,t + ϵ

(19)

where fE
g,i represents the normalized routing frequency of the i-th expert in group g, seg,i,t

′ is the
normalized routing score, pEg,i is the average selection probability across time steps, the balance
factor αE is assigned an extremely small value and ϵ is a very small constant to ensure that the
denominator is not 0.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Compute Infrastructure. All models were trained on a 16-node GPU cluster, with each node
equipped with eight NVIDIA GPUs. We used the Megatron-LM framework (Shoeybi et al., 2019)
to implement our MoHGE variants, as well as the dense and MoE baseline models.

Pretraining Data. Our pretraining corpus was created by merging and deduplicating three large
English datasets: DataComp-LM, FineWeb, and The Pile. The combined corpus underwent standard
noise filtering and quality checks to ensure data integrity. For all experiments, we sampled 0.58
trillion tokens from this cleaned, unified corpus.

Model Configurations. We evaluated three Transformer variants at the 1B 3B, and 14B parameter
scales: a Dense model whose parameters are equal to the active parameters of the MoE baseline,
a uniform-expert MoE baseline, and our proposed MoHGE architecture with heterogeneous expert
groups. The MoE baseline is adapted from DeepSeekV2 (Liu et al., 2024b), with hyperparame-
ters adjusted to align parameter counts across models for fair comparison. Detailed architectural
configurations for all evaluated models are summarized in APPENDIX.

Training Hyperparameters. Each MoE model was trained for 2 full epochs on the 0.58 tril-
lion–token corpus, using a fixed sequence length of 4,096. We used the AdamW optimizer with
β1 = 0.9, β2 = 0.95, and a weight decay of 0.1. A cosine-decay learning rate schedule was applied,
starting at 3× 10−4 and annealing to a minimum of 3× 10−5.

4.2 MAIN RESULTS

Following OpenCompass protocols (Contributors, 2023), Table 1 reports the zero-shot or few-shot
(Kojima et al., 2022; Brown et al., 2020) in-context learning performance of our pretrained Mo-
HGE models on a diverse suite of downstream tasks, including MMLU (Hendrycks et al., 2020),
SIQA (Sap et al., 2019), GSM8K (Cobbe et al., 2021), LAMBADA (Paperno et al., 2016), MATH
(Hendrycks et al., 2024), PIQA (Bisk et al., 2020) Bisk et al. (2020) and TriviaQA (Joshi et al.,
2017).

As reported in Table 1, averaged over three evaluate runs, MoHGE consistently outperforms both
conventional MoE and dense models across all scales, achieving state-of-the-art results on several
benchmarks. Compared to the MoE baseline, MoHGE achieves a more favorable trade-off between
parameter efficiency and downstream performance by activating fewer expert parameters while si-
multaneously requiring fewer total parameters.

Specifically, MoHGE reduces the overall parameter count by nearly 20% relative to standard MoE,
and the number of activated parameters in the expert layer is reduced by approximately one quarter.
This substantial reduction highlights its effectiveness in balancing model capacity with efficiency.
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Method Total Parameters Activated Parameters of Experts MMLU SIQA GSM8K LAMBADA MATH PIQA TriviaQA
Dense 0.570B – 25.41 34.93 1.79 51.87 1.22 44.85 25.05

MoE-1B 1.098B 0.163B 25.38 35.12 1.74 53.20 1.26 46.09 25.86
MoHGE-1B 0.891B 0.122B 25.98 35.17 1.97 53.75 1.29 48.85 25.71

Dense 0.807B – 26.36 35.30 2.79 61.02 1.33 47.35 34.98
MoE-3B 3.3614B 0.376B 26.22 35.41 3.03 60.86 1.34 49.08 39.16

MoHGE-3B 2.821B 0.295B 26.41 35.56 4.02 62.37 1.36 49.08 39.20
Dense 1.672B – 30.78 42.29 4.61 68.05 6.81 54.92 50.26

MoE-14B 16.760B 1.191B 31.18 44.28 4.88 67.94 7.29 56.71 51.77
MoHGE-14B 14.122B 0.843B 31.62 45.62 5.73 69.89 9.42 58.73 52.69

Table 1: Comparison between Dense model, MoE baseline and our MoHGE, the highest scores
for each benchmark is highlighted in bold. MoHGE achieves slightly better performance while
activating the fewest parameters. Furthermore, our model requires fewer total parameters than the
baseline in addition to its efficiency advantages.

Benchmark MoE-1B(hours) MoHGE-1B(hours) MoE-3B(hours) MoHGE-3B(hours) MoE-14B(hours) MoHGE-14B(hours)
MMLU 6.90 6.77 9.85 9.58 19.27 18.86
SIQA 0.93 0.90 1.29 1.17 2.51 2.33

GSM8K 0.59 0.62 0.84 0.86 1.63 1.62
LAMBADA 2.24 2.22 3.17 3.03 6.27 6.08

MATH 2.24 2.23 3.18 3.02 6.33 6.09
PIQA 0.85 0.78 1.20 1.09 2.38 2.17

TriviaQA 4.11 3.95 5.78 5.46 11.46 10.85

Table 2: The inference duration of the MoE and MoHGE models on downstream tasks.

The inference times are demonstrated in Table 2. Regarding the slight increase in inference time
on GSM8K which is a complex mathematical reasoning task, our routing analysis reveals that the
MoHGE tends to select expert groups with larger parameter on GSM8K and this achieves higher
accuracy while resulting in more inference time. Altogether, our model achieves relatively faster
inference speeds, showing superior inference efficiency.

4.3 ABLATION STUDY ON AUXILIARY LOSS COEFFICIENTS

We conduct an ablation study to analyze the effect of different auxiliary loss coefficients on model
performance. A coefficient of 0 indicates the absence of the auxiliary loss.

As shown in Table 3, the intra-group experts auxiliary loss yields a modest performance gain and
setting αExp = 2.5e − 3 achieves better results. Combining it with the group-wise auxiliary loss
further improves results. Although the group-wise loss contributes only marginally to accuracy, it
reduces the number of activated parameters. Based on the trade-off between evaluation performance
and computational efficiency, we find that setting αExp = 2.5e− 3 and αGrp = 1e− 4 enables the
our models to achieve an optimal balance.

4.4 ANALYSIS ON TOKEN ROUTING

4.4.1 ROUTING ANALYSIS OF LOSS FUNCTION

Building on the optimal configurations identified in Table 3, we conduct experiments on two model
configurations:

Utilizing only intra-group expert auxiliary loss: αExp = 2.5e− 3 and αGrp = 0.

Combining two loss functions: αExp = 2.5e− 3 and αGrp = 1e− 4.

We statistically analyzed the distribution of 100 million token routes across these configurations. As
shown in Fig. 3, the overall route distribution does not exhibit concentration in specific groups under
either setup. However, introducing the group routing loss shifts the token routing behavior: instead
of predominantly favoring larger expert groups, tokens are distributed toward smaller. This indicates
that the group-wise loss encourages the selection of smaller expert groups which can accommodate
the current task difficulty in condition of relatively uniform routing distribution.
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Model αExp αGrp Activated Parameters of Experts MMLU SIQA PIQA LAMBADA TriviaQA

MoHGE-1B

0 0 139M 25.43 34.73 47.62 52.20 25.03
2.5e-3 0 132M 25.61 34.82 47.93 53.35 25.37
5e-3 0 131M 25.87 34.74 48.77 53.14 25.20

2.5e-3 1e-4 122M 25.98 35.17 48.85 53.75 25.42
2.5e-3 1e-3 122M 25.94 35.10 48.28 52.99 25.25
5e-3 1e-4 119M 25.96 34.86 48.12 53.16 25.39

MoHGE-3B

0 0 324M 25.88 35.29 48.65 61.37 38.01
2.5e-3 0 307M 26.11 35.45 48.53 61.62 38.53
5e-3 0 310M 26.03 35.32 48.67 61.75 38.45

2.5e-3 1e-4 295M 26.31 35.56 49.08 62.37 39.20
2.5e-3 1e-3 297M 26.36 35.12 48.83 62.10 38.68
5e-3 1e-4 289M 26.27 35.47 48.21 61.85 38.51

MoHGE-14B

0 0 897M 31.37 44.92 57.94 68.57 51.72
2.5e-3 0 884M 31.18 45.03 58.07 68.95 51.86
5e-3 0 875M 31.71 45.39 58.27 68.90 52.29

2.5e-3 1e-4 843M 31.62 45.62 58.73 69.89 52.49
2.5e-3 1e-3 854M 30.87 45.07 58.22 69.10 52.75
5e-3 1e-4 859M 31.38 44.78 58.15 69.85 51.67

Table 3: The evaluation results for varying coefficients of the auxiliary loss function. The highest-
performing score for each benchmark is highlighted in bold, while the second-highest score is un-
derlined.

GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6 GPU 7 GPU 8 Avg Std
Group 1 2.05M 1.89M 1.92M 1.99M 2.02M 1.86M 1.97M 2.01M 1.96M 0.06283
Group 2 1.66M 1.74M 1.82M 1.62M 1.59M 1.74M 1.58M 1.75M 1.69M 0.08166
Group 3 1.58M 1.59M 1.67M 1.50M 1.51M 1.52M 1.64M 1.70M 1.59M 0.07115
Group 4 1.67M 1.58M 1.65M 1.59M 1.67M 1.62M 1.70M 1.51M 1.62M 0.05786
Group 5 1.25M 1.39M 1.38M 1.27M 1.33M 1.38M 1.35M 1.26M 1.33M 0.05452
Group 6 1.45M 1.41M 1.45M 1.31M 1.49M 1.40M 1.50M 1.41M 1.43M 0.05629
Group 7 1.52M 1.60M 1.57M 1.43M 1.41M 1.55M 1.62M 1.43M 1.52M 0.07745
Group 8 1.39M 1.32M 1.46M 1.41M 1.33M 1.35M 1.32M 1.36M 1.37M 0.04630

Table 4: For 14B scale model, the number of tokens routed to each GPU roughly closes to the
average value.

4.4.2 ROUTING ANALYSIS OF GPU UTILIZATION

To rigorously evaluate the balancing of GPU utilization, we conduct a GPU-level assessment for 14B
scale model by strategically assigning the i-th expert from each capacity group to the i-th GPU. This
experimental design allows us to precisely track how tokens are distributed across experts of varying
sizes on each GPU, which reflects the frequency of token processed by experts of different sizes on
each GPU. Table 4 shows that experts of uniform size receive nearly equal routing frequencies
across GPUs, indicating balanced intra-group expert and GPU utilization. This confirms that our
All-size Group-decoupling Allocation and Intra-group Experts Auxiliary Loss effectively maintain
equilibrium in both computational resource loading and expert activation patterns.

5 RELATED WORK

The MoE model was originally proposed by Jacobs et al. (1991). Subsequently, Shazeer et al.
(2017) introduced Sparsely-Gated Mixture-of-Experts which demonstrate substantial improvements
in model capacity and efficiency. Furtherly, SwitchTransformer, proposed by Fedus et al. (2022),
incorporated MoE into the Transformer architecture’s Feed-Forward Network layers with simplified
MoE routing algorithm, showing great potential in large-scale Transformer models. Typically, MoE
models consist of homogeneous experts, each with identical number of parameters, and a predeter-
mined number of experts are activated regardless of the input’s complexity. However, this hinders
effective expert specialization and efficient parameter utilization.

Huang et al. (2024) proposed Top-P routing algorithm to address inefficient parameter utilization by
assigning different numbers of experts to different tokens. Nevertheless, this method relies on fixed
threshold settings and employs a rudimentary approach to difficulty modeling, making it challenging
to adapt effectively to diverse inputs. Sun et al. (2024) proposed the Diverse Size Experts structure
for each FFN layer, where each expert has a different parameter size to handle generating tasks of
varying difficulty. However, they employ a uniform routing strategy that fails to route input tokens
to the most suitable expert, resulting in inefficient parameter utilization and compromised perfor-

8
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(a) (b) (c)

(d) (e) (f)

Figure 3: The number of tokens routed to each expert group. (a) Our MoHGE-1B with Group-
Wise Auxiliary Loss. (b) Our MoHGE-3B with Group-Wise Auxiliary Loss. (c) Our MoHGE-14B
with Group-Wise Auxiliary Loss. (d) Our MoHGE-1B without Group-Wise Auxiliary Loss. (e)
Our MoHGE-3B without Group-Wise Auxiliary Loss. (f) Our MoHGE-14B without Group-Wise
Auxiliary Loss.

mance. To enhance effective expert specialization and efficient parameter utilization, Wang et al.
(2024) proposed the Heterogeneous Mixture of Experts with the parameter penalty loss to encour-
age the activation of smaller experts. They furtherly explored three types of heterogeneity structures
and showed the hybrid structure that jointly combines both homogeneous and heterogeneous of-
fers better performance than completely heterogeneous structure, such as Geometric and Arithmetic
sequence structures. However, this kind of hybrid structure suffers from a problem of unbalanced
computation and communication arising from the heterogeneous nature of experts, which lead to
inefficient training and restrict its scalability, more optimal setups for hybrid structure need to be
explored.

In contrast, our work introduces a general hybrid heterogeneous MoE architecture that partitions
experts into heterogeneous groups, where each group consists of homogeneous experts. We propose
the two-level routing mechanism and Group-Wise Auxiliary Loss to enable the gating model to
select expert groups with varying parameter sizes based on token difficulty, thus improving param-
eter utilization. Additionally, we propose the All-size Group-decoupling Allocation strategy, which
ensures a uniform distribution of parameters across GPUs, facilitated by the Intra-Group Experts
Auxiliary Loss, ensuring balanced GPU utilization.

6 CONCLUSION

In this work, we propose MoHGE, a novel Mixture-of-Experts (MoE) architecture that introduces
group-wise expert size variation to better accommodate the diverse complexity of token predictions.
We introduce a two-level routing strategy, coupled with a Group-Wise Auxiliary Loss, to enable the
selection of expert groups with suitable parameter sizes based on task difficulty. To address GPU
load imbalance, we propose the All-size Group-decoupling Allocation strategy, which allocates an
equal number of experts from each group to each GPU, ensuring balanced GPU memory usage. And
we apply the Intra-Group Experts Auxiliary Loss to maintain balanced routing probabilities within
each group, promoting uniform expert activation and GPU utilization. Our experimental results
demonstrate that MoHGE achieves improved performance while reducing both the total number
of parameters and the number of activated parameters. Detailed routing analysis further confirms
effective GPU utilization balance. By rethinking how expert capacities should vary and be allocated,
MoHGE paves the way for developing more efficient and capable large language models.

9
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7 APPENDIX

7.1 MODEL CONFIG

Detailed architectural configurations for all evaluated models are summarized in Table 5.

Configuration 1B Scale 3B Scale 14B Scale
Shared Configuration

Transformer Layers 9 15 36
Input Dim 1024 1024 1024

Attention Heads 16 16 16
Dense Model

FFN Hidden Dim 4096 6144 8192

MoE Baseline
Ne 32 64 128
Ke 6 6 6

Shared Experts Ns 2 2 2
Expert Hidden Dim 832 1024 1280

MoHGE
Ng 8 8 8
Kg 3 3 3
Ne 32 64 128
Ke 6 6 6

Shared Experts Ns 2 2 2

Hidden Dims of Expert Groups {256, 320, 384, 512,
640, 768, 832, 896}

{384, 512, 640, 768,
896, 1024, 1152, 1280}

{640, 768, 896, 1024,
1152, 1280, 1408, 1536}

Table 5: Architecture configurations of the evaluated models at both 1B, 3B and 14B parameter
scales. MoHGE uses heterogeneous expert groups with different hidden dimensions.

7.2 ROUTING ANALYSIS OF TOKENS OF DIFFERENT DIFFICULTIES

Token Ranks Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8
Top 1K 16.3% 14.9% 14.1% 12.2% 12.3% 10.5% 10.0% 9.7%

Top 1K-5K 15.0% 14.4% 13.4% 13.1% 12.4% 10.3% 10.9% 10.5%
Top 5K-10K 13.6% 13.4% 13.7% 12.6% 11.5% 12.4% 11.5% 11.3%
Beyond 10K 11.3% 12.0% 11.4% 12.7% 13.0% 12.7% 13.6% 13.3%

We categorized the vocabulary into four difficulty levels based on occurrence frequency ranks in
training corpus: Top 1K (easiest), Top 1K-5K, Top 5K-10K and Beyond 10K (most difficult). Sec-
tion 7.2 shows the ratios of tokens with different difficulty routed to different expert groups. These
results demonstrate that simpler tokens tend to be routed to expert groups with fewer parameters,
and this validates the effectiveness of our method.
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