
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GIT-BO: HIGH-DIMENSIONAL BAYESIAN OPTIMIZA-
TION USING TABULAR FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian optimization (BO) struggles in high dimensions, where Gaussian-
process surrogates demand heavy retraining and brittle assumptions, slowing
progress on real engineering and design problems. We introduce GIT-BO, a
Gradient-Informed BO framework that couples TabPFN v2, a tabular founda-
tion model (TFM) that performs zero-shot Bayesian inference in context, with
an active-subspace mechanism computed from the model’s own predictive-mean
gradients. This aligns exploration to an intrinsic low-dimensional subspace via a
Fisher-information estimate and selects queries with a UCB acquisition, requiring
no online retraining. Across 60 problem variants spanning 20 benchmarks—nine
scalable synthetic families and ten real-world tasks (e.g., power systems, Rover,
MOPTA08, Mazda)—up to 500 dimensions, GIT-BO delivers a stronger perfor-
mance–time trade-off than state-of-the-art GP-based methods (SAASBO, TuRBO,
Vanilla BO, BAxUS), ranking highest in performance and with runtime advan-
tages that grow with dimensionality. Limitations include memory footprint and
dependence on the capacity of the underlying TFM.

1 INTRODUCTION

Optimizing expensive black-box functions is central to progress in areas such as machine learn-
ing (Dewancker et al., 2016; Snoek et al., 2012), engineering design (Kumar et al., 2024; Wang
& Dowling, 2022; Zhang et al., 2020; Yu et al., 2025), and hyperparameter tuning (Klein et al.,
2017; Wu et al., 2019). Bayesian optimization (BO) has become the method of choice in these
settings due to its sample efficiency. Yet, despite its successes, standard BO with Gaussian pro-
cesses (GPs) is widely viewed as limited to low-dimensional regimes, typically fewer than a few
dozen variables (Liu et al., 2020; Wang et al., 2023; Santoni et al., 2024). Scaling BO to hundreds
of dimensions remains a critical barrier, where the curse of dimensionality, GP training costs, and
hyperparameter sensitivity severely hinder performance. Research has sought to overcome these
challenges through three main strategies: (1) Exploiting intrinsic low-dimensional structure, e.g.,
random embeddings and active subspaces (Wang et al., 2016; Nayebi et al., 2019; Letham et al.,
2020; Papenmeier et al., 2022);(2) Additive functional decompositions (Kandasamy et al., 2015;
Gardner et al., 2017; Rolland et al., 2018; Han et al., 2021; Ziomek & Ammar, 2023); and (3) Al-
ternative GP priors and trust-region heuristics (Eriksson et al., 2019; Eriksson & Jankowiak, 2021;
Hvarfner et al., 2024; Xu et al., 2025). These innovations push the frontier but still face two practical
obstacles: (1) prohibitive computation from iterative GP retraining, and (2) brittle reliance on hyper-
parameter tuning, including determining appropriate intrinsic dimensionality and selecting optimal
kernels and priors (Rana et al., 2017; Letham et al., 2020; Eriksson & Jankowiak, 2021).

Recent advances in tabular foundation models (TFMs) provide a radically different surrogate model-
ing paradigm. Prior-Data Fitted Networks (PFNs) (Müller et al., 2022; Hollmann et al., 2022; Müller
et al., 2023) perform Bayesian inference in-context with frozen weights, eliminating kernel re-fitting
and delivering 10–100x speedups on BO tasks (Rakotoarison et al., 2024; Yu et al., 2025). These
approaches address computational bottlenecks by leveraging pre-trained models’ in-context learning
capability, which requires only a single forward pass at inference during optimization. These pow-
erful TFMs trained on millions of synthetic prior data can also perform accurate inference without
additional hyperparameter tuning for a new domain.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The newly released TabPFN v2 (Hollmann et al., 2025) extends this capacity to inputs up to 500
dimensions, opening the door to foundation-model surrogates for high-dimensional BO for the first
time. However, prior analyses have shown that TabPFN v2, despite its strong performance on small-
to medium-scale tasks, exhibits performance degradation in high-dimensional regimes, with recent
work proposing divide-and-conquer or feature-extraction strategies to mitigate these limitations (Ye
et al., 2025; Reuter et al., 2025). This raises a fundamental question: Are frozen TFMs sufficient
for high-dimensional optimization, or must they be coupled with classical algorithmic strategies to
succeed?

We answer this question by introducing Gradient-Informed Bayesian Optimization using TabPFN
(GIT-BO), a framework that integrates TabPFN v2 with gradient-informed active subspaces. Our
key idea is to exploit predictive-mean gradients available from the frozen model itself to construct
low-dimensional gradient-informed subspaces. This provides algorithmic guidance for adaptive ex-
ploration while preserving the inference-time efficiency of TFMs. In doing so, GIT-BO aligns foun-
dation models with classical subspace discovery, combining the speed of in-context surrogates with
the structural power needed in extreme dimensions. We perform comprehensive algorithm bench-
marking against the state-of-the-art (SOTA) GPU-accelerated high-dimensional BO algorithms and
test them on commonly used synthetic benchmarks as well as several real-world engineering BO
benchmarks.

Our contributions are:

• We propose GIT-BO, a gradient-informed high-dimensional BO method that adaptively
discovers active subspaces from a frozen foundation model’s predictive gradients, requiring
no online retraining.

• Across 60 diverse problems comprising synthetic and real-world benchmarks (including
power systems, car crash, and dynamics control), GIT-BO consistently achieves state-of-
the-art optimization quality with orders-of-magnitude runtime savings compared to GP-
based methods.

Our results demonstrate that foundation model surrogates, when paired with structural algorithmic
guidance, emerge as viable and competitive alternatives to Gaussian-process-based BO for high-
dimensional problems. Beyond the core algorithm, we conduct extensive ablation and diagnostic
studies to understand when GIT-BO works and why. We (i) compare gradient-informed subspaces
to alternative projections such as trust regions and BAxUS-style embeddings, (ii) study the impact of
acquisition rules (UCB vs. EI), subspace dimension and sampling schemes, and initialization size,
and (iii) evaluate GIT-BO with GP surrogates and with finetuned TabPFN variants. These analyses,
summarized in Section 5 and detailed in Appendices B and C, show that our gains are not due to a
single design choice and that the GI-subspace mechanism improves both TFM- and GP-based BO.

2 BACKGROUND

2.1 HIGH-DIMENSIONAL BAYESIAN OPTIMIZATION

Bayesian optimization is a sample-efficient approach for optimizing expensive black-box functions
where the objective is to find x∗ ∈ argmaxx∈X f(x) with X = [0, 1]D, achieved by sequentially
querying promising points under the guidance of a surrogate model. Gaussian processes (GPs) re-
main the dominant surrogate due to their effective uncertainty-based exploration and exploitation,
but their cubical computational scaling and deteriorating performance with increasing dimensional-
ity pose serious challenges (Liu et al., 2020; Wang et al., 2023; Santoni et al., 2024; Ramchandran
et al., 2025). Three main families address these issues:

Exploiting intrinsic low-dimensional structure. A common strategy in high-dimensional BO is
to assume the objective depends on only a few effective directions and to project the search into that
subspace, where GPs perform more reliably. REMBO introduced random linear projections (Wang
et al., 2016), while HESBO (Nayebi et al., 2019) and ALEBO (Letham et al., 2020) refined this
idea using sparse embeddings and Mahalanobis kernels. More recently BAxUS (Papenmeier et al.,
2022), adaptively expands nested subspaces with guarantees. These succeed when a meaningful
active subspace exists, but degrade when structure is weak or mis-specified.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Additive decompositions. Another approach assumes the objective decomposes into a sum of
low-dimensional components, enabling separate GP models. Additive GPs use disjoint decompo-
sitions (Kandasamy et al., 2015), while later work allows overlaps (Rolland et al., 2018) or tree-
structured dependencies (Han et al., 2021) to improve tractability. Randomized decompositions
offer a lightweight alternative (Ziomek & Ammar, 2023). These methods improve sample efficiency
since each component is easier to model, but remain limited by the difficulty of discovering the
right decomposition from sparse data and the overhead of structure learning, restricting adoption in
practice (Rolland et al., 2018; Han et al., 2021; Ziomek & Ammar, 2023).

Alternative modeling and trust-region strategies. Beyond embeddings and additive decompo-
sitions, another line of work rethinks the surrogate itself. SAASBO introduces sparsity-inducing
shrinkage priors on GP length-scales to identify relevant dimensions automatically (Eriksson &
Jankowiak, 2021).TuRBO (Eriksson et al., 2019) replaces global modeling in favor of multiple lo-
cal GP surrogates confined to dynamically adjusted trust regions. More recently, studies show that
vanilla BO with carefully chosen priors (Hvarfner et al., 2024) and standard GPs with robust Matérn
kernels (Xu et al., 2025) can remain competitive in high dimensions.

Despite these advances, such methods still depend on high-to-low-dimensional learning, sensitive
kernel choices, or strong structural assumptions—motivating foundation model surrogates as a fun-
damentally different path forward.

2.2 TABULAR FOUNDATION MODELS AS BO SURROGATES

Tabular foundation models (TFMs) provide amortized Bayesian inference through in-context learn-
ing (ICL). Prior-Data Fitted Networks (Müller et al., 2022; Hollmann et al., 2022; 2025) are
transformer-based TFMs trained on massive synthetic priors. At inference time, the observed dataset
of BO evaluations is fed as the context input, which acts as the optimization history. Each new sam-
ple is appended to this context, and a single forward pass produces updated predictive means and
variances. Thus, although PFNs have frozen parameters, their predictions adapt dynamically to the
growing context, mimicking Bayesian updating without retraining (Müller et al., 2023; Rakotoarison
et al., 2024).

This approach eliminates iterative kernel re-fitting required by GPs, yielding 10–100× speedups in
various BO applications (Müller et al., 2023; Rakotoarison et al., 2024; Yu et al., 2025). However,
PFNs cannot explicitly tune kernels or priors, which limits their ability to exploit low-rank structures
when dimensionality grows. Moreover, recent analyses reveal that while transformer-based PFNs
exhibit vanishing variance with larger contexts, their bias persists unless explicit locality is enforced,
resulting in degraded accuracy in high-dimensional regimes (Nagler, 2023). Although TabPFN v2
extends the model’s capability to regression tasks with up to 500-dimensional inputs, its predictive
performance still deteriorates without additional structural guidance (Ye et al., 2025; Reuter et al.,
2025). These limitations highlight the necessity of incorporating additional guidance to sustain the
effectiveness of TabPFN v2 in high-dimensional BO.

2.3 DISCOVERING EMBEDDED SUBSPACES: CLASSICAL AND DEEP LEARNING
PERSPECTIVES

Since PFNs are frozen models, discovering intrinsic low-dimensional subspaces is the most viable
high-dimensional BO strategy requiring no fine-tuning of the foundation model. Classical applied
mathematics offers a principled method that we can leverage here. Active subspaces (Constantine
et al., 2014) use gradient covariance to identify influential directions, while likelihood-informed sub-
spaces (Cui et al., 2014) detect posterior-sensitive directions. Spectral approaches such as Laplacian
eigenmaps (Belkin & Niyogi, 2001) learn nonlinear embeddings. Recent advances provide certified
gradient-based dimension-reduction methods, showing that the leading eigenvectors of Fisher-type
gradient covariance matrices recover low-dimensional, high-information subspaces (Pennington &
Worah, 2018; Karakida et al., 2019; Zahm et al., 2022; Li et al., 2024; 2025). In contrast, deep learn-
ing methods typically learn mappings into latent manifolds, e.g., variational autoencoders designed
for BO (Tripp et al., 2020) or intrinsic-dimension analyses of neural representations (Li et al., 2018;
Ansuini et al., 2019). These approaches require training additional models, which conflicts with the
TFM paradigm of fast inference without retraining.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The literature suggests a potential synthesis: pair the inference-time efficiency of TFMs with
structure discovery to address high-dimensional optimization. This leads to our central con-
tribution: Gradient-Informed Bayesian Optimization using TabPFN (GIT-BO), which extracts
predictive-mean gradients from TabPFN v2 to estimate a gradient-informed active subspace, then
performs acquisition-driven search within that subspace. This design (i) avoids GP retraining
and heavy hyperparameter tuning, and (ii) supplies the locality and structure that TFMs lack in
high-dimensional—thereby targeting the exact failure modes surfaced above.

3 THE GIT-BO ALGORITHM

GIT-BO consists of four main components: the surrogate model (TabPFN v2), the gradient-based
subspace identification, an upper confidence bound acquisition function, and a method that combines
these for high-dimensional optimization.

Append next sample xnext (★) and iteratively search

Observed
Samples (ℝ𝑫)

3. High-Dimensional
Bayesian Optimization

c

Predicted
Posterior

: Fixed-Weight; no training

TabPFNv2

Xtrain ytrain

Xtest ?

Data (Prior)
Search in the

Subspace

∇ 𝜇 𝑥

Estimated
Gradients

Project 𝑉𝑟
Back to

𝑉𝑟𝑧 ∈ ℝ𝐷

2. Get Principal GI subspace (𝑉𝑟)
From Fisher Information Matrix (H)

𝑉𝑟 ∈ ℝ2

𝜇 𝑥 , 𝜎2 𝑥

Predictive Mean and Uncertainties

Acquisition
Function

Original
Dimension

H

1. Tabular Foundation
Model Prediction

c

Figure 1: GIT-BO algorithm overview. The method operates in five stages: (1) Initial observed sam-
ples are collected in the high-dimensional space RD; (2) TabPFN v2, a fixed-weight tabular foun-
dation model, generates predictions of the objective space at inference time using in-context learn-
ing; (3) The gradient from TabPFN’s forward pass (∇µ(x)) is used to identify a low-dimensional
gradient-informed (GI) subspace. The predicted mean and variance are used for acquisition value
calculations µ(x), σ2(x); (4) The next sample point (xnext) is selected from GI subspace’s projection
back to the high-dimensional space (Vrz) with the highest acquisition value; (5) Appended xnext to
the “context” observed dataset for iterative search until stopping criteria is met.

3.1 SURROGATE MODELING WITH TABPFN

We use TabPFN v2, a 500-dimensional TFM from Hollmann et al. (2025), as the surrogate model for
our Bayesian optimization framework. TabPFN leverages in-context learning to provide a dynamic
predictive posterior distribution conditioned on the observed dataset Dobs = {(xi, yi)}ni=1, which
expands iteratively during optimization. At each iteration, we random sample (from Sobol sequence)
a huge discrete set of candidate points Xcand = {xj}mj=1 (where (10k−n) ≥ m≫ n, as TabPFN can
take at most 10k samples) from the search domain X ⊂ RD to approximate the continuous search
space. TabPFN (qθ) processes both the context set (Dobs) and candidate set (Xcand) simultaneously,
generating predictive means µm(x) and variances σ2

m(x) for the search space formed by all can-
didates in a single forward pass (µm(x), σ2

m(x) ∼ qθ(Ycand|Xcand, Dobs)). This efficient, adaptive
inference step enables rapid identification of promising regions in high-dimensional optimization
problems without surrogate retraining.

3.2 GRADIENT-INFORMED ACTIVE SUBSPACE IDENTIFICATION AND SAMPLING

To identify an active subspace for efficient exploration, we leverage gradient information obtained
from TabPFN’s predictive mean, defining g(x) := ∇xµm(x) via a single-step backpropagation.
Following gradient-based subspace methods in inverse problems and Fisher-eigenstructure analy-
ses that show a small number of dominant, high-sensitivity directions (Pennington & Worah, 2018;
Karakida et al., 2019; Zahm et al., 2022; Li et al., 2025; 2024; Ly et al., 2017), we form the empir-
ical Fisher matrix H = Eµ[g(x)g(x)

⊤]. This matrix captures the local sensitivity structure of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

predictive model. The algorithm then selects the top r eigenvectors of H as the gradient-informed
active subspace (GI-subspace) Vr ∈ Rr.

For all the results we presented in Section 5 and Appendix D, we selected a fixed r = 10 for our
experiment. Ablation studies on the effect of GI-subspace on BO performance and the selection of
r are presented in Appendix B.1.

Next, we then uniformly sample m candidate points for exploration from the low-dimensional (r-
dimensional) hypercube, z ∼ U([−1, 1]r), and mapping these back to the original high-dimensional
space via:

XGI = xref + Vrz ,

the m candidates are centered around the centroid of observed data, xref = x̄obs, which guides the
search towards promising regions discovered so far, while the acquisition function later promotes
exploitation. These generated candidates, XGI, are then evaluated using the acquisition function to
select the next point to sample. The theoretical detail and experimental results for the GI subspace
are in Appendix A and C.

3.3 ACQUISITION FUNCTION

We adopt the Upper Confidence Bound (UCB) as our acquisition function, as heuristics BO and
PFN-based BO both use in previous studies (Srinivas et al., 2010; Xu et al., 2025; Müller et al.,
2023). UCB selects points by maximizing αUCB = µ(x) + βσ(x), where µ(x) denotes the sur-
rogate’s predictive mean, σ(x) is surrogate’s predictive standard deviation, and β represents the
exploration level. In our GIT-BO algorithm, µ(x) and σ(x) are the TabPFN predictive mean and
standard deviation given data Dobs, and the β is set to 2.33. Further details of β ablation are in
Appendix B.2 with theoretical analysis in Appendix A.

Putting everything together, Figure 1 and Algorithm 1 outline the GIT-BO procedure combining
TabPFN with gradient-informed subspace search. The technical implementation details of GIT-BO
are stated in the Appendix G.

Algorithm 1 Gradient-Informed Bayesian Optimization using TabPFN (GIT-BO)
Require: objective f , domain X ⊂RD, initial sample size n0, iteration budget I , subspace dimen-

sion r, α acquisition function
1: Draw n0 LHS points xi and set yi = f(xi); Dn ← {(xi, yi)}n0

i=1
2: for i = 1 to I do
3: µm and σ2

m← Fit TabPFN on Dn, and predict Xcand randomly sampled from Sobol
4: Calculate backprop gradient∇xµm(x) from TabPFN’s in-context learning of Dn

5: Form approximated Fisher matrix H = Eµ[∇xµm(x)∇xµm(x)⊤]
6: Vr ← top-r eigenvectors of H
7: XGI ← xref + Vrz, with z uniform sampled from the low-dim hypercube z ∼ U([−1, 1]r)
8: xnext ← argmaxj α(XGI)
9: Evaluate ynext = f(xnext)and append the query point data Dn ← Dn ∪ {(xnext, ynext)}

10: end for
11: return x⋆ = argmax(x,y)∈D y

4 EXPERIMENT

This section outlines our empirical approach to evaluating and comparing different high-dimensional
Bayesian optimization algorithms, highlighting the assessment of different algorithms’ performance
across a large number of complex synthetic and unique engineering benchmarks. To conduct a fair,
comprehensive comparison, we benchmark GIT-BO against four other algorithms from the state-of-
the-art BO library, BoTorch (Balandat et al., 2020), on 60 problems, and conduct a statistical ranking
evaluation over experiment trials.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 BENCHMARK ALGORITHMS

We benchmark GIT-BO against random search (Bergstra & Bengio, 2012) and four high-
dimensional BO methods, including SAASBO (Eriksson & Jankowiak, 2021), TURBO (Eriksson
et al., 2019), Vanilla BO for high-dimensional (Hvarfner et al., 2024), and BAxUS (Papenmeier
et al., 2022) from the state-of-the-art (SOTA) PyTorch-based BO library BoTorch (Balandat et al.,
2020). To ensure a fair comparison with our GPU-accelerated GIT-BO framework, we deliberately
selected only algorithms that can be executed efficiently on GPUs, as runtime scalability is a central
evaluation criterion. All methods were run on identical compute resources (one node with the same
CPU and GPU specifications), and additional implementation details are provided in Appendix E.

4.2 TEST PROBLEMS

This study incorporates a diverse set of high-dimensional optimization problems, including 9 syn-
thetic problems and 11 real-world benchmarks. Synthetic and scalable problems include: Ackley,
Rosenbrock, Dixon-Price, Levy, Powell, Griewank, Rastrigin, Styblin-Tang, and Michalewicz. We
note that this set of synthetic functions is taken from BoTorch (Balandat et al., 2020) with their de-
fault setting, and therefore all the baseline algorithms from BoTorch have been tested on this set of
synthetic functions.

The rest of the application problems are collected from previous optimization studies and confer-
ence benchmarks: the power system optimization problems from CEC2020 (Kumar et al., 2020),
Rover (Wang et al., 2018), MOPTA08 car problem (Jones, 2008), two Mazda car problems (Ko-
hira et al., 2018), and Walker problem from MuJoCo (Todorov et al., 2012). As this study focuses
on the high-dimensional characteristic of the problem, we make all our benchmark problems sin-
gle and unconstrained for testing. Therefore, we have applied penalty transforms to all real-world
problems with constraints and performed average weighting to the two multi-objective Mazda prob-
lems. Among the 20 benchmarks, 10 (Synthetic + Rover) are scalable problems. To evaluate
the algorithms’ performance with respect to dimensionality, we solve the scalable problems for
D = {100, 200, 300, 400, 500}. Therefore, we have experimented with a total of 5× 10 + 10 = 60
different variants of the benchmark problems. Details of benchmark selections and their implemen-
tation details are listed in Appendix F.

4.3 METHODS FOR ALGORITHM EXPERIMENT

The algorithm evaluation aims to thoroughly compare GIT-BO to current SOTA Bayesian opti-
mization techniques. This study focuses on maximizing the objective function for the given test
problems. For each test problem, our experiment consists of 20 independent trials, each utilizing a
distinct random seed. To ensure fair comparison, bluewe initialize each algorithm with an identi-
cal set of 200 samples, generated through Latin Hypercube Sampling with consistent random seeds
across all trials. During each iteration, each algorithm selects one sample to evaluate next.

To execute this extensive benchmarking process, we utilized a distributed server infrastructure fea-
turing Intel Xeon Platinum 8480+ CPUs and NVIDIA H100 GPUs. For all algorithms, each individ-
ual experiments (run) were conducted with the same amount of compute allocated: a single H100
GPU node with 24 CPU cores and 224GB RAM.

4.4 EVALUATION METRICS

Optimization Fixed-budget Convergence Analysis Fixed-budget evaluation is a standard tech-
nique for comparing the efficiency of optimization algorithms by allocating a predetermined amount
of computational resources for their execution (Hansen et al., 2022). In our study, we adopt a fixed-
iteration budget, running all algorithms (GIT-BO, SAASBO, TurBO, Vanilla BO, and BAxUS) for
500 iterations. We report performance using plots of average regret versus the number of function
evaluations (iterations), which illustrate the convergence behavior of each algorithm.

In addition, we measure the wall-clock runtime of each algorithm over the same 500 iterations. To
capture efficiency in terms of computational cost, we report plots of average regret versus elapsed
runtime (in seconds).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Statistical Ranking To comprehensively compare and evaluate the performance of the Bayesian
optimization algorithms, statistical ranking techniques are employed instead of direct performance
measurements of the optimization outcome. In this study, we define the optimization performance
result as the median of the optimal found across the 20 optimization trials of each algorithm. By sta-
tistically ranking the results, we were able to standardize the comparisons across different problems,
since various optimization challenges can produce objective values of vastly different magnitudes.
Furthermore, using this ranking allowed us to reduce the distorting effects of unusual or extreme
data points that might influence our evaluation.

We conduct our statistical analysis using the Friedman and Wilcoxon signed-rank tests, comple-
mented by Holm’s alpha correction. These non-parametric approaches excel at processing bench-
marking result data without assuming specific distributions, which is critical for handling optimiza-
tion results with outliers. These statistical methods effectively handle the dependencies in our setup,
where we used the same initial samples and seeds to test all algorithms. The Wilcoxon signed-rank
test addresses paired comparisons between algorithms, while the Friedman test manages problem-
specific grouping effects. For multiple algorithm comparisons, we used Holm’s alpha correction to
control error rates (Wilcoxon, 1945; Holm, 1979).

5 RESULTS

Overall Statistical Ranking and Algorithm Runtime Tradeoffs Across all benchmark variants,
Figure 2 (a) shows that GIT-BO achieves the best overall statistical performance rank (1.92) across
60 problems, consistently outperforming competing baselines in terms of final solution quality af-
ter 500 iterations. In terms of computational cost, Figure 2 (b) demonstrates that GIT-BO remains
runtime-competitive despite its stronger optimization performance. To provide further insight, Fig-
ures 2 (c) and (d) decompose performance by problem class: BAxUS achieves the best ranking on
synthetic benchmarks, whereas GIT-BO dominates on real-world engineering tasks. This contrast
underscores that methods excelling on or even finetuning toward synthetic tests may not generalize
to practical applications.

The joint performance–runtime tradeoff is visualized in Figure 3 (a), where GIT-BO and TurBO both
lie on the Pareto frontier: GIT-BO attains superior optimization quality, while TurBO provides a
speed advantage. Finally, Figure 3 (b) tracks the evolution of average algorithm rank over iterations,
showing that GIT-BO rapidly rises to the top within the first 50 iterations and maintains its lead
thereafter. Together, these results highlight GIT-BO as the most balanced method, achieving state-
of-the-art performance while retaining favorable computational efficiency.

(a)

(c)

(b)

(d)

Figure 2: Statistical ranking across benchmark problems. (a) Overall algorithm optimization perfor-
mance of all 60 problems (synthetic + real-world) ranking based on final solution quality at iteration
500. (b) Algorithm runtime ranking of all 60 problems (synthetic + real-world) based on the time
it takes for 500 iterations of optimization. (c) and (d) Optimization performance ranking on only
synthetic and only real-world benchmark subsets, respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 3: (a) Pareto frontier plot of runtime rank vs. performance rank (lower is better) over 60
benchmark problems. (b) Evolution of average algorithm rank over iterations, showing that GIT-BO
converges rapidly to the top within 50 iterations and sustains its lead.

Figure 4: Average regrets vs. iteration convergence on a subset of 15 benchmarks (10 synthetic &
5 real-world) comparing our method against SOTA high-dimensional BO algorithms. The solid line
represents the median best function value achieved over 20 trials, with shaded regions indicating the
95% confidence interval. Full statistical tests and per-problem plots for all 60 problems are provided
in the Appendix D.

Convergence Performance Figure 4 summarizes the convergence plots across a representative
set of 15 synthetic and engineering benchmarks in iterations, and Figure 5 plots the average regret
against the algorithm’s elapsed runtime. Due to page number limitations, the convergence plots for
all sixty benchmark problems are reported in Appendix D. For the Ackley function (100–500D), we
observe that GIT-BO starts in the second performance tier but steadily improves relative to com-
peting methods as dimensionality increases. Unlike GP-based approaches such as TurBO, whose
performance deteriorates with higher D, GIT-BO maintains stable convergence rates, suggesting
that TabPFN’s universal modeling capacity generalizes robustly even in extreme dimensions.

Across the broader set of synthetic problems, GIT-BO achieves top-ranked regret curves in most
cases, including Rosenbrock (200D), Dixon-Price (400D), and Rastrigin (500D). However, its fail-
ure on Styblinski–Tang highlights the distributional limits of the TabPFN pre-training regime, an
example where GP-based surrogates still dominate. On the engineering side, GIT-BO again demon-
strates strong performance, consistently outperforming baselines on power system tasks and auto-
motive design benchmarks, while struggling with the Rover problem.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Average regrets (log-scaled) vs. algorithm runtime (log-scaled seconds) (“time taken for
running 500 iterations”) convergence on a subset of 15 benchmarks (10 synthetic & 5 real-world)
comparing our method against SOTA high-dimensional BO algorithms. The solid line represents
the median best function value achieved over 20 trials, with shaded regions indicating the 95%
confidence interval. Full statistical tests and per-problem plots for all 60 problems are provided in
the Appendix D.

Convergence performance when considering runtime When runtime is taken into account in
Figure 5, the trade-off becomes even more pronounced. Methods such as BAxUS can match or
occasionally surpass GIT-BO in final regret, but only after an additional hour of wall-clock time. In
contrast, GIT-BO reaches competitive or superior regret levels within minutes, providing a decisive
advantage in time-critical engineering settings. Taken together, these iteration- and runtime-based
analyses establish GIT-BO as both the most efficient and broadly effective algorithm among current
high-dimensional BO methods.

Summary of additional ablation studies To better understand the drivers behind these empirical
trends, we next highlight the key findings from our ablation studies detailed in Appendices B and C:

1. GI-subspaces vs. alternative subspaces: Compared GIT-BO (TabPFN + GI-subspcae) to vanilla
TabPFN BO that samples in the 500D space, TabPFN + Trust-Region (Eriksson et al., 2019),
and TabPFN + BAxUS projection (Papenmeier et al., 2022). Trust region and BAxUS-style
projections also help, but consistently underperform GI-subspaces (Appendix B.4).

2. Acquisition function (UCB vs. EI): Empirically, we show that both EI and UCB benefit sub-
stantially from GI-subspaces, and UCB provides a modest but stable advantage, matching prior
observations about EI’s numerical instability in high-dimensional settings (Appendix B.5).

3. Subspace dimension and sampling: Performance is robust across a range of subspace dimensions
r. Very large r (e.g., 40) hurts performance, while small fixed r and variance-explained criteria
(92.5–95%) perform best (Appendix B.2).

4. Sampling in subspace and reference point xref: Uniform, Random, and Sobol sampling in the
GI-subspace lead to similar trends, with mild problem-dependent differences (Appendix B.1).
Empirically we verified that xref = x̄obs has better optimization performance than xref =
xargmax yobs (Appendix B.6).

5. Initialization sample size: Varying the initial Latin-hypercube sample size from 20 to 1000 points
still leaves GIT-BO as the top-ranked method across all sizes, while GP-based baselines degrade
or fluctuate, especially in the large-data regime (Appendix B.7).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6. Alternative surrogates and finetuning: Mild finetuning of TabPFN on each benchmark yields
small but consistent gains (Appendix B.9). When we replace TabPFN with a standard GP sur-
rogate and reuse GI-subspaces, the algorithm can still identify the effective subspace in the
embedded high-dimensional problem, confirming that GI-subspace discovery is not specific to
TFMs (Appendix C).

6 DISCUSSION

Our experiments highlight several strengths and limitations of GIT-BO in high-dimensional
Bayesian optimization. GIT-BO consistently lies on the Pareto frontier of performance versus run-
time: while BAxUS and Vanilla BO can occasionally match final regret, they require orders of
magnitude more wall-clock time, whereas GIT-BO reaches near-optimal solutions within minutes.
At the same time, TurBO emerges as a compelling alternative when runtime alone is the domi-
nant criterion, underscoring the practical trade-off between speed and accuracy. We also observe
plateauing convergence in both GIT-BO and BAxUS, reflecting the known bias plateau of TabPFN
predictors as sample sizes grow (Nagler, 2023) and pointing to broader challenges for probabilistic
surrogates. Although GIT-BO excels on most synthetic and engineering tasks, its failures on Rover
and Styblinski–Tang reinforce the “no free lunch” theorem (Wolpert & Macready, 1997). Finally,
practical limits persist: TabPFN requires large GPU memory, enforces a 500D cap, and demands
user-specified subspace thresholds. Even without retraining, its inference is slower than fitting a
simple GP in TurBO or Vanilla BO. These findings suggest two directions for future work: scaling
TFMs with memory-efficient architectures for faster inference, and designing benchmark suites that
capture the heterogeneity of real-world tasks beyond synthetic testbeds.

7 CONCLUSION

We presented GIT-BO, a Gradient-Informed Bayesian Optimization framework that integrates
TabPFN v2 with adaptive subspace discovery to tackle high-dimensional black-box problems.
Across sixty benchmark variants, including scalable synthetic functions and challenging engineer-
ing tasks, GIT-BO consistently achieves state-of-the-art performance while maintaining a favor-
able runtime profile, often reaching near-optimal solutions in minutes. By leveraging foundation
model inference and gradient-informed exploration, GIT-BO eliminates costly surrogate retraining
and scales effectively up to 500 dimensions. At the same time, limitations remain: performance
plateaus on certain tasks, GPU memory requirements of TabPFN, and the need for user-defined
subspace thresholds. Looking forward, future work should pursue more memory-efficient TFM ar-
chitectures, automated strategies for subspace selection, and broader benchmark suites that bridge
synthetic testbeds and real-world engineering problems. Extending GIT-BO to constrained, mixed-
variable, and multi-objective optimization also represents a promising avenue for further impact.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring reproducibility of all results. Upon acceptance, we will release the
full source code, including the implementation of GIT-BO, data preprocessing scripts, benchmark
configurations, and experiment pipelines. All experiments will be accompanied by fixed random
seeds, hardware specifications, and detailed instructions to reproduce the results in the paper.

ETHICS STATEMENT

This work does not raise any ethical concerns.

REFERENCES

Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Un-
expected improvements to expected improvement for bayesian optimization. Advances in Neural
Information Processing Systems, 36:20577–20612, 2023.

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
data representations in deep neural networks. Advances in Neural Information Processing Sys-
tems, 32, 2019.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. In Advances in Neural Information Processing Systems, volume 33, pp.
21524–21538, 2020.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in neural information processing systems, 14, 2001.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(10):281–305, 2012.

Paul G Constantine, Eric Dow, and Qiqi Wang. Active subspace methods in theory and practice:
applications to kriging surfaces. SIAM Journal on Scientific Computing, 36(4):A1500–A1524,
2014.

Tiangang Cui, James Martin, Youssef M Marzouk, Antti Solonen, and Alessio Spantini. Likelihood-
informed dimension reduction for nonlinear inverse problems. Inverse Problems, 30(11):114015,
2014.

Ian Dewancker, Michael McCourt, and Scott Clark. Bayesian optimization for machine learning: A
practical guidebook. arXiv:1612.04858 [cs.LG], 2016.

David Eriksson and Martin Jankowiak. High-dimensional bayesian optimization with sparse axis-
aligned subspaces. In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial
Intelligence, volume 161, pp. 493–503. PMLR, 2021.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. Advances in neural information processing
systems, 32, 2019.

Runa Eschenhagen, Aaron Defazio, Tsung-Hsien Lee, Richard E. Turner, and Hao-Jun Michael Shi.
Purifying shampoo: Investigating shampoo’s heuristics by decomposing its preconditioner. In
The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025.

Jacob Gardner, Chuan Guo, Kilian Weinberger, Roman Garnett, and Roger Grosse. Discovering and
exploiting additive structure for bayesian optimization. In Artificial Intelligence and Statistics, pp.
1311–1319. PMLR, 2017.

Joshua P Gardner, Juan Carlos Perdomo, and Ludwig Schmidt. Large scale transfer learning for tab-
ular data via language modeling. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Anurag Garg, Muhammad Ali, Noah Hollmann, Lennart Purucker, Samuel Müller, and Frank Hutter.
Real-tabpfn: Improving tabular foundation models via continued pre-training with real-world
data. arXiv preprint arXiv:2507.03971, 2025.

Léo Grinsztajn, Klemens Flöge, Oscar Key, Felix Birkel, Philipp Jund, Brendan Roof, Benjamin
Jäger, Dominik Safaric, Simone Alessi, Adrian Hayler, et al. Tabpfn-2.5: Advancing the state of
the art in tabular foundation models. arXiv preprint arXiv:2511.08667, 2025.

Eric Han, Ishank Arora, and Jonathan Scarlett. High-dimensional bayesian optimization via tree-
structured additive models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 7630–7638, 2021.

Nikolaus Hansen, Anne Auger, Dimo Brockhoff, and Tea Tušar. Anytime performance assessment
in blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation, 26
(6):1293–1305, 2022.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. arXiv preprint arXiv:2207.01848,
2022.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, 6(2):65–70, 1979.

Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla Bayesian optimization performs great
in high dimensions. In Proceedings of the 41st International Conference on Machine Learning,
volume 235, pp. 20793–20817. PMLR, 2024.

Donald R Jones. Large-scale multi-disciplinary mass optimization in the auto industry. In MOPTA
2008 Conference (20 August 2008), volume 64, 2008.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional bayesian opti-
misation and bandits via additive models. In International conference on machine learning, pp.
295–304. PMLR, 2015.

Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in
deep neural networks: Mean field approach. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1032–1041. PMLR, 2019.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast Bayesian
Optimization of Machine Learning Hyperparameters on Large Datasets. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, volume 54, pp. 528–536.
PMLR, 2017.

Takehisa Kohira, Hiromasa Kemmotsu, Oyama Akira, and Tomoaki Tatsukawa. Proposal of bench-
mark problem based on real-world car structure design optimization. In Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, pp. 183–184, 2018.

Abhishek Kumar, Guohua Wu, Mostafa Z Ali, Rammohan Mallipeddi, Ponnuthurai Nagaratnam
Suganthan, and Swagatam Das. A test-suite of non-convex constrained optimization problems
from the real-world and some baseline results. Swarm and Evolutionary Computation, 56:100693,
2020.

Nilay Kumar, Mayesha Sahir Mim, Alexander Dowling, and Jeremiah J Zartman. Reverse engineer-
ing morphogenesis through bayesian optimization of physics-based models. npj Systems Biology
and Applications, 10(1):49, 2024.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approx-
imation for natural gradient descent. Advances in neural information processing systems, 32,
2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ben Letham, Roberto Calandra, Akshara Rai, and Eytan Bakshy. Re-examining linear embeddings
for high-dimensional bayesian optimization. In Advances in Neural Information Processing Sys-
tems, volume 33, pp. 1546–1558, 2020.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. In International Conference on Learning Representations, 2018.

Matthew TC Li, Youssef Marzouk, and Olivier Zahm. Principal feature detection via ϕ-sobolev
inequalities. Bernoulli, 30(4):2979–3003, 2024.

Matthew TC Li, Tiangang Cui, Fengyi Li, Youssef Marzouk, and Olivier Zahm. Information and
Inference: A Journal of the IMA, 14(3):iaaf021, 2025.

Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When gaussian process meets big data:
A review of scalable gps. IEEE transactions on neural networks and learning systems, 31(11):
4405–4423, 2020.

Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman, and Eric-Jan Wagenmak-
ers. A tutorial on fisher information. Journal of Mathematical Psychology, 80:40–55, 2017.

Junwei Ma, Valentin Thomas, Rasa Hosseinzadeh, Alex Labach, Jesse C. Cresswell, Keyvan
Golestan, Guangwei Yu, Anthony L. Caterini, and Maksims Volkovs. TabDPT: Scaling tabular
foundation models on real data. In The Thirty-ninth Annual Conference on Neural Information
Processing Systems, 2025.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do bayesian inference. In International Conference on Learning Representations,
2022.

Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. PFNs4BO: In-context learning
for Bayesian optimization. In Proceedings of the 40th International Conference on Machine
Learning, volume 202, pp. 25444–25470. PMLR, 2023.

Thomas Nagler. Statistical foundations of prior-data fitted networks. In Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 25660–25676. PMLR, 23–29 Jul 2023.

Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for Bayesian optimiza-
tion in embedded subspaces. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pp. 4752–4761. PMLR, 2019.

Ismail Nejjar, Faez Ahmed, and Olga Fink. Im-context: In-context learning for imbalanced regres-
sion tasks. Transactions on Machine Learning Research, 2024.

Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the scope as you learn: Adap-
tive bayesian optimization in nested subspaces. Advances in Neural Information Processing Sys-
tems, 35:11586–11601, 2022.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Jeffrey Pennington and Pratik Worah. The spectrum of the fisher information matrix of a single-
hidden-layer neural network. Advances in neural information processing systems, 31, 2018.

Herilalaina Rakotoarison, Steven Adriaensen, Neeratyoy Mallik, Samir Garibov, Eddie Bergman,
and Frank Hutter. In-context freeze-thaw Bayesian optimization for hyperparameter optimiza-
tion. In Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 41982–42008. PMLR, 2024.

Siddharth Ramchandran, Manuel Haussmann, and Harri Lähdesmäki. High-dimensional bayesian
optimisation with gaussian process prior variational autoencoders. In The Thirteenth International
Conference on Learning Representations, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, and Svetha Venkatesh. High dimensional Bayesian
optimization with elastic Gaussian process. In Proceedings of the 34th International Conference
on Machine Learning, volume 70, pp. 2883–2891. PMLR, 2017.

Arik Reuter, Tim G. J. Rudner, Vincent Fortuin, and David Rügamer. Can transformers learn full
bayesian inference in context? In Forty-second International Conference on Machine Learning,
2025.

Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional bayesian
optimization via additive models with overlapping groups. In International conference on artifi-
cial intelligence and statistics, pp. 298–307. PMLR, 2018.

Maria Laura Santoni, Elena Raponi, Renato De Leone, and Carola Doerr. Comparison of high-
dimensional bayesian optimization algorithms on bbob. ACM Transactions on Evolutionary
Learning, 4(3):1–33, 2024.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in Neural Information Processing Systems, 25, 2012.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
tion in the bandit setting: no regret and experimental design. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning, ICML’10, pp. 1015–1022.
Omnipress, 2010.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization
in the latent space of deep generative models via weighted retraining. Advances in Neural Infor-
mation Processing Systems, 33:11259–11272, 2020.

Ke Wang and Alexander W Dowling. Bayesian optimization for chemical products and functional
materials. Current Opinion in Chemical Engineering, 36:100728, 2022.

Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-box
optimization using monte carlo tree search. Advances in Neural Information Processing Systems,
33:19511–19522, 2020.

Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian
optimization. ACM Computing Surveys, 55(13s):1–36, 2023.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian
optimization in high-dimensional spaces. In Proceedings of the Twenty-First International Con-
ference on Artificial Intelligence and Statistics, volume 84, pp. 745–754. PMLR, 2018.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian op-
timization in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55:361–387, 2016.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83,
1945.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE trans-
actions on evolutionary computation, 1(1):67–82, 1997.

Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng. Hyperparameter
optimization for machine learning models based on bayesian optimization. Journal of Electronic
Science and Technology, 17(1):26–40, 2019.

Zhitong Xu, Haitao Wang, Jeff M. Phillips, and Shandian Zhe. Standard gaussian process is all you
need for high-dimensional bayesian optimization. In The Thirteenth International Conference on
Learning Representations, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Han-Jia Ye, Si-Yang Liu, and Wei-Lun Chao. A closer look at tabpfn v2: Understanding its strengths
and extending its capabilities, 2025.

Rosen Ting-Ying Yu, Cyril Picard, and Faez Ahmed. Fast and accurate bayesian optimization with
pre-trained transformers for constrained engineering problems. Structural and Multidisciplinary
Optimization, 68(3):66, 2025.

Olivier Zahm, Tiangang Cui, Kody Law, Alessio Spantini, and Youssef Marzouk. Certified dimen-
sion reduction in nonlinear bayesian inverse problems. Mathematics of Computation, 91(336):
1789–1835, 2022.

Yichi Zhang, Daniel W Apley, and Wei Chen. Bayesian optimization for materials design with
mixed quantitative and qualitative variables. Scientific reports, 10(1):4924, 2020.

Juliusz Krzysztof Ziomek and Haitham Bou Ammar. Are random decompositions all we need in
high dimensional bayesian optimisation? In International Conference on Machine Learning, pp.
43347–43368. PMLR, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

TABLE OF CONTENTS FOR APPENDICES

A Theoretical Analysis 17

A.1 Preliminaries . 17

A.2 Assumptions . 17

A.3 Confidence Bounds for TabPFN-based Surrogates 18

A.4 Subspace Information Gain Analysis . 19

A.5 Acquisition Function Analysis . 19

A.6 Main Regret Bounds . 20

A.7 Information Gain Bounds for High-Dimensional Subspaces 20

A.8 Convergence Rate . 20

B Ablation Studies 21

B.1 Why r = 10? — Parameter Sweep ablation of GI subspace’s principal dimension r 21

B.2 Why sampling-based UCB? — Ablation study on different β factor of UCB Acqui-
sition Function . 22

B.3 Why uniform sampling in the gradient-informed subspace? — Ablation Studies
over GI Subspace Sampling . 22

B.4 Why GI subspace? — Ablation study on applying subspace identification on
TabPFN for high-dimensional BO . 23

B.5 Why UCB? — Ablation study on different Acquisition Functions 23

B.6 Why xref = x̄obs? — Ablation study on xref = x̄obs vs. xref = xargmax yobs 24

B.7 Why Ninit = 200? — Ablation study on different Ninit 24

B.8 Will finetuning TabPFN further improve GIT-BO’s performance? — Ablation study
on TabPFN vs. finetuned TabPFN . 26

B.9 How sensitive is GIT-BO to origin-centered optima? — Ablation on shifted syn-
thetic functions (GIT-BO vs. BAxUS) . 26

C Experimental Analysis on Gradient-Informed Active Subspace Identification 27

D Performance and runtime results analysis on 60 benchmarks 28

E High-dimensional Benchmark Algorithms Implementation Details 29

F Benchmark Problems Implementation Details 29

G Additional Implementation Details 33

G.1 Hardware and Operating System . 33

G.2 GIT-BO Algorithm Implementation Details . 33

H LLM Usage Statement 34

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS

In this section, we establish the theoretical foundations for GIT-BO by developing confidence
bounds and regret guarantees. Our analysis builds upon the framework of Srinivas et al. (2010)
for GP-UCB while accounting for the unique properties of TabPFN as a surrogate model and our
gradient-informed subspace identification.

A.1 PRELIMINARIES

Problem Setup. We consider the optimization problem:

x∗ ∈ argmax
x∈X

f(x)

where X = [0, 1]D is a compact domain and f : X → R is an unknown objective function. At each
optimization iteration t, we observe yt = f(xt) + ϵt where ϵt is σ-sub-Gaussian noise.

TabPFN Surrogate Properties. Let qθ(y|x, Dt) denote the TabPFN’s posterior predictive dis-
tribution at point x given observed data Dt = {(xi, yi)}ti=1. We denote the predictive mean and
variance as:

µt(x) = Eqθ [y|x, Dt], σ2
t (x) = Varqθ [y|x, Dt]

Reference GP class & Information Gain. For a kernel k and noise σ2, define the (maximal)
information gain

γT = max
A:|A|=T

I(yA; fA) = max
A

1

2
log det(I + σ−2KA). (1)

In GP-UCB, cumulative regret admits the canonical bound RT = O(
√
TβT γT), with βT a confi-

dence parameter depending on δ and the RKHS norm ∥f∥k (Srinivas et al., 2010).

A.2 ASSUMPTIONS

Assumption 1 (TabPFN Approximation Quality). Based on the empirical results in Müller et al.
(2022) and the statistical analysis from Nagler (2023) showing that TabPFN can approximate GP
posteriors with high fidelity, there exists a constant Capprox > 0 such that for any dataset Dt and
query point x ∈ X: ∣∣µt(x)− µGP

t (x)
∣∣ ≤ Capproxϵapprox(t)∣∣σ2

t (x)− (σGP
t (x))2

∣∣ ≤ Capproxϵapprox(t)

where µGP
t (x) and σGP

t (x) are the corresponding GP posterior mean and standard deviation, and
ϵapprox(t)→ 0 as the TabPFN training data size increases.

Assumption 2 (Bounded Function Complexity). The true function f has bounded RKHS norm:
∥f∥k ≤ B for some reproducing kernel k and constant B > 0.

Assumption 3 (Gradient-Informed Subspace). Following Li et al. (2025; 2024), let µ be a reference
measure (e.g., standard Gaussian) and define the diagnostic/Fisher matrix

H = Eπ

[
∇ log ℓ(X)∇ log ℓ(X)⊤

]
, with dπ(x) ∝ ℓ(x) dµ(x).

Let Vr ∈ RD×r contain the top-r eigenvectors of H . The best r-dimensional ridge approximation
π̃r to π enjoys a certified error

Dα(π∥π̃r) ≤ Jα

(
Cα(µ)

D∑
k=r+1

λk(H)

)
,

for all α ∈ (0, 1], where λk(H) are the eigenvalues of H in descending order and Cα(µ) depends
only on µ. Thus choosing Vr by Fisher-eigenvectors minimizes a tight majorant of the divergence,
with sharper (dimensional) certificates available for α = 1 (KL). We use this to quantify subspace

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

truncation error. The certificate above follows from φ-Sobolev / logarithmic-Sobolev bounds that
(i) deliver the same Vr for KL and Hellinger and (ii) upper-bound the divergence by the tail trace∑

k>r λk(H) (Li et al., 2024). Dimensional LSI further sharpens the KL majorant and yields match-
ing minorants at the minimizer (Li et al., 2025).

In BO the exact score ∇ log ℓ(x) is unavailable, so we adopt the widely used empirical-Fisher ap-
proximation based on surrogate gradients g(x) (Pascanu & Bengio, 2013; Kunstner et al., 2019;
Eschenhagen et al., 2025), setting

H = Eµ[g(x)g(x)
⊤], g(x) := ∇xµm(x)

Prior Fisher-spectral analyses Pennington & Worah (2018); Karakida et al. (2019) and likelihood-
informed subspace theory Zahm et al. (2022) show that the leading eigenvectors of such approximate
Fisher matrices still recover the dominant sensitivity directions, validating the use of H as the GI-
subspace estimator.

Empirical Verifications of Assumption 1 To assess whether the approximation error of TabPFN’s
predictive posterior remains small in the regimes relevant for GIT-BO, we measure the approxi-
mation error between TabPFN’s predictive mean and a GP fitted on the same context set Dt. We
report the average discrepancy ϵapprox(t) across five high-dimensional benchmarks: Ackley 100D,
Rosenbrock 100D, Levy 100D, Dixon-Price 100D, and the 118D Reactive Power Phase problem.
For each benchmark and each data-sample size t ∈ [10, 5000], we evaluate both models on a fixed
candidate grid and compute ϵapprox(t) = MSE(µTabPFN

t , µGP
t). Figure 6 shows that empirically the

approximation error decreases sharply as the dataset grows — consistent with Assumption 1, where
ϵapprox(t)→ 0 as the context length increases.

Figure 6: Average approximation error ϵapprox(t) between TabPFN and GP predictive means across
five problems (Ackley 100D, Rosenbrock 100D, Levy 100D, Dixon-Price 100D, Reactive Power
Phase 118D). The plot shows the mean-squared difference evaluated on a fixed candidate grid as
the context size t grows from 10 to 5000. The rapid decay demonstrates that TabPFN’s predictive
posterior converges toward the GP surrogate as more data are incorporated, confirming Assumption
1 empirically.

A.3 CONFIDENCE BOUNDS FOR TABPFN-BASED SURROGATES

Define:

βt = 2B2 + 2 log

(
π2t2

3δ

)
+ 2C2

approxϵ
2
approx(t)

Lemma 1 (TabPFN-UCB Confidence Bounds). With probability at least 1 − δ, for all t ≥ 1 and
x ∈ X :

|f(x)− µt(x)| ≤
√

βtσt(x)

This follows the martingale concentration approach of Srinivas et al. (2010) but includes an ad-
ditional approximation error term Capproxϵapprox(t) to account for the difference between TabPFN
and the ideal GP posterior. The bounded RKHS norm assumption ensures the function lies in a

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

well-defined function class, while the approximation quality assumption controls the deviation from
GP-based confidence bounds.

A.4 SUBSPACE INFORMATION GAIN ANALYSIS

To analyze GIT-BO’s regret, we must characterize how much information can be gained about the
objective function when optimization is restricted to the gradient-informed subspace.

Definition 1 (Subspace Information Gain). For a subspace S ⊂ X and set of points A =
{x1, . . . ,xT } ⊂ S, the subspace information gain is:

γT,S := max
A⊂S,|A|=T

I(yA; fA)

where I(yA; fA) = 1
2 log |I + σ−2KA| is the mutual information between observations yA and

function values fA.

Lemma 2 (Subspace Approximation Error). Under Assumption 3, the approximation error for re-
stricting optimization to the gradient-informed subspace Vr satisfies:

DKL(πfull∥πr) ≤
1

2

d∑
k=r+1

λk(H)

where πfull represents the target distribution in the full space and πr is its approximation in the
subspace Vr.

Lemma 3 (Subspace Information Gain Bound). Under Assumption 3, the information gain in the
gradient-informed subspace Vr satisfies:

γT,Vr
≥ αγT,full − CsubT

1/2

where γT,full is the information gain in the full space and Csub is a constant depending on the subspace
construction quality. This follows from Assumption 3, which ensures that the Fisher eigenvectors
Vr minimize a Sobolev-type divergence between the full distribution and its subspace projection.
The information gain in Vr is therefore lower-bounded by the variation captured in the retained
eigenvalues, linking subspace structure directly to the information-theoretic quantity.

A.5 ACQUISITION FUNCTION ANALYSIS

We adopt the Upper Confidence Bound (UCB) acquisition, a standard principle in Bayesian opti-
mization (Srinivas et al., 2010). At each iteration t, given a predictive posterior with mean µt(x)
and standard deviation σt(x), UCB selects:

xt = argmax
x∈X

αt(x), αt(x) = µt(x) + βtσt(x),

where βt > 0 balances exploration and exploitation.

We instantiate βt in two equivalent ways:

Definition 1 (Sampling-UCB). Draw S i.i.d. samples ỹt(x) ∼ N (µt(x), σ
2
t (x)) and set

αt(x) = max
i=1,...,S

ỹi(x).

By extreme-value theory, the corresponding exploration parameter satisfies

βt ≈ Φ−1

(
1− 1

S

)
,

which asymptotically behaves as
√
2 logS with standard corrections (Srinivas et al., 2010).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Definition 2 (Quantile-UCB fro (Müller et al., 2023)). For a one-sided Gaussian quantile q ∈ (0, 1),
set

βt = Φ−1(q),

where Φ−1 is the standard normal inverse CDF. Then

αt(x) = Quantileq
[
N (µt(x), σ

2
t (x))

]
.

This corresponds to selecting the q-th posterior quantile, with higher q producing more exploration.
In code, this is parameterized by a “rest probability” prest, where q = 1− prest.

Lemma 4 (Equivalence). Quantile-UCB with quantile level q = 1− 1/S is asymptotically equiva-
lent to Sampling-UCB with S posterior draws. Both implement the same exploration policy, differ-
ing only in whether the quantile is computed analytically or via sampling.

Remark A.5. In practice, we adopt the sampling formulation of UCB, which introduces mild
stochasticity by drawing finite posterior samples. This choice yields trajectories that may vary more
across runs, akin to the exploratory effect of UCB. By contrast, the quantile formulation produces a
deterministic acquisition rule given the posterior, leading to more stable and less variable optimiza-
tion behavior. We provide an ablation of both variants in Appendix B.2. Presenting the two side by
side highlights their close equivalence while ensuring transparency in how exploration is controlled.

A.6 MAIN REGRET BOUNDS

We now establish our main theoretical result for GIT-BO’s regret performance.

Theorem 1 (GIT-BO Regret Bound). Under Assumptions 1-3, let δ ∈ (0, 1) and run GIT-BO with
confidence parameter:

βt = 2B2 +
√

2 logS + 2 log

(
π2t2

3δ

)
+ 2C2

approxϵ
2
approx(t)

Then with probability at least 1− δ, the cumulative regret after T iterations satisfies:

RT ≤
√
C1TβT γT,Vr +

T∑
t=1

(1− α)
√
βtσ2

t (xt) + TCapproxϵapprox(T)

where C1 = 8/ log(1 + σ−2) and the second term accounts for subspace approximation error.

A.7 INFORMATION GAIN BOUNDS FOR HIGH-DIMENSIONAL SUBSPACES

Lemma 5 (Polynomial Information Gain). For common kernel functions (RBF, Matérn) restricted
to an r-dimensional subspace where r ≪ D, the information gain satisfies:

γT,Vr
= O(r(log T)r+1)

This represents a significant improvement over the full-dimensional case where γT,full =
O(D(log T)D+1). This follows the spectral analysis of kernel functions in lower-dimensional
spaces, adapting the techniques of Srinivas et al. (2010) to the subspace setting.

A.8 CONVERGENCE RATE

Combining our results, we obtain the following convergence guarantee:

Corollary 1 (Convergence Rate). Under the conditions of Theorem 1, if the TabPFN approximation
error satisfies ϵapprox(t) = O(t−ξ) for some ξ > 1/2, then:

lim
T→∞

RT

T
= 0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

with convergence rate RT = O(
√
rT (log T)r+2) when r ≪ D.

This demonstrates that GIT-BO achieves sublinear regret with dimension-independent rates when
the effective dimensionality r is small, addressing the curse of dimensionality that plagues standard
GP-based methods.

B ABLATION STUDIES

B.1 WHY r = 10? — PARAMETER SWEEP ABLATION OF GI SUBSPACE’S PRINCIPAL
DIMENSION r

To evaluate the sensitivity of GIT-BO to the dimensionality of the gradient-informed active subspace,
we conducted a parameter sweep across both fixed subspace dimensions (r = 5, 10, 15, 20, 40) and
variance-explained criteria (92.5%, 95%, 97.5%) for a subset of four problems. The results, summa-
rized in Figure 7 and Table 1, highlight two consistent trends. First, very high-dimensional subspaces
(e.g., r = 40) exhibit clear performance degradation, indicating that overly broad subspaces dilute
the effectiveness of the gradient-informed search direction. Second, low- to moderate-dimensional
subspaces and variance-based selections generally perform better, though the best choice of r varies
across problem families. For example, r = 5 yields the top average rank among different rs, while
variance-based selection at the 92.5% and 95% thresholds achieves the top overall results.

To ensure fairness and avoid additional hyperparameter tuning, we fixed r = 10 for all benchmarks
reported in the main text. This choice provides a stable middle ground, neither overly restrictive
nor excessively large, while still yielding competitive performance across diverse problem classes.
Notably, adaptive variance-based selection strategies further improve performance on average, un-
derscoring the potential benefit of problem-dependent tuning, but we leave such extensions for future
work. Overall, these ablation results confirm that GIT-BO remains robust to the specific choice of r,
with consistent advantages over GP-based baselines even under a fixed setting.

Figure 7: Performance of GIT-BO under different gradient-informed subspace dimensions (r) and
variance-explained criteria. Median optimization regret across 20 trials is shown, with shaded
regions denoting 95% confidence intervals. High-dimensional subspaces (e.g., r = 40) consis-
tently degrade performance, while smaller fixed dimensions and adaptive variance-based selections
achieve stronger results. We fix r = 10 across all benchmarks in the main text for fairness, as it
provides a balanced and competitive setting without tuning.

Table 1: Average performance rank of GIT-BO across different fixed subspace dimensions r and
variance-based adaptive selections.

Selection of r Average Rank

92.5% Variance 1.75
95% Variance 2.25

97.5% Variance 3.5
r = 5 3.25
r = 10 5.5
r = 15 5.5
r = 20 6.35
r = 40 8.0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.2 WHY SAMPLING-BASED UCB? — ABLATION STUDY ON DIFFERENT β FACTOR OF UCB
ACQUISITION FUNCTION

We compared two equivalent parameterizations of UCB: (1) quantile-UCB, which uses the analytic
Gaussian quantile, and (2) sampling-UCB, which approximates it via the maximum over S posterior
draws. Both induce similar exploration levels for α = 1−1/S, but differ in that sampling introduces
mild stochasticity. Our ablation results in Figure 8 and Table 2 shows that moderate exploration
(β ≈ 1.86 − 1.96, i.e., quantile 95% - 97.5% or sampling with S ≈ 250) achieves the best ranks.
Larger β values (S = 512, 1024) lead to over-exploration and degraded performance.

In the main body of the paper we pre-committed to a single, conservative default (S =512) across
all 60 tasks and 500 iterations per task. We did this deliberately for three reasons: 1. Fairness and
reproducibility: Using one global setting avoids per-benchmark tuning (or hindsight “cherry pick-
ing”) and makes results easy to reproduce and audit across a large suite. 2. Isolating the algorithmic
contribution: We wanted to attribute gains to the proposed GI subspace + TabPFN framework rather
than to problem-specific hyperparameter search. A fixed β keeps the evaluation focused on the
method, not tuning effort. 3. Practicality and compute parity: Sweeping β across 60 problems ×
500 iterations would multiply the already substantial compute; fixing a robust default is closer to
how one would deploy the method under realistic constraints.

Despite this conservative choice (which the ablation shows is not the best), GIT-BO still outper-
formed all baselines in our main results. The ablation simply reveals additional headroom: modestly
smaller β values improve performance further. Designing an automatic β adaptation (e.g., schedule
or data-driven calibration) is promising future work, but is orthogonal to the core contribution and
therefore left out of the main comparison.

β=2.19 (S=256) β=2.32 (S=512) β=2.45 (S=1024)β=1.65 (q=95%) β=1.96 (q=97.5%)

Figure 8: Ablation study of UCB with different exploration factors (β) using quantile- and sampling-
based parameterizations. Moderate β values (quantile 95–97.5% or sampling S = 250) yield the
best performance, while larger β (e.g., S = 512, 1024) leads to over-exploration and weaker results

Table 2: Average performance rank of GIT-BO across different β from quantile-based and sampling-
based UCB.

Selection of β Average Rank

β = 1.65 (q = 95%) 2.0
β = 1.96 (q = 97.5%) 2.25
β = 2.19 (S = 256) 2.75
β = 2.32 (S = 512) 3.25
β = 2.45 (S = 1024) 4.75

B.3 WHY UNIFORM SAMPLING IN THE GRADIENT-INFORMED SUBSPACE? — ABLATION
STUDIES OVER GI SUBSPACE SAMPLING

We conducted an ablation study to evaluate the impact of three different GI subspace sampling
methods on GIT-BO’s optimization performance: uniform (default), random, and Sobol sampling.
Figure 9 shows the comparative convergence results.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Our findings indicate mixed results without a universally optimal sampling strategy. Uniform
sampling generally provided stable and reliable convergence, while random sampling occasionally
achieved better outcomes but with greater variance, similar as Sobol sampling. These observations
highlight the potential for adaptive strategies in selecting GI subspace sampling methods based on
problem-specific characteristics, representing an important area for future exploration.

Figure 9: Comparative convergence of uniform, random, and Sobol sampling strategies within the GI
subspace on selected benchmarks. Shaded regions represent 95% confidence intervals over 20 trials.
Random and Sobol sampling can achieve similar or superior performance than uniform sampling GI
subspace in engineering problems, while struggling at the synthetic tasks.

B.4 WHY GI SUBSPACE? — ABLATION STUDY ON APPLYING SUBSPACE IDENTIFICATION
ON TABPFN FOR HIGH-DIMENSIONAL BO

We compare using vanilla TabPFN v2 with three other subspace identification methods:

1. TabPFN: Using vanilla TabPFN v2 for BO without any subspace identification method.

2. TabPFN + TR: TabPFN v2 BO with Trust Region (TR) (Eriksson et al., 2019; Papenmeier et al.,
2022).

3. TabPFN + BAxUS Projection: TabPFN v2 BO with the SOTA method that combined subspace
projection method with TR from BAxUS (Papenmeier et al., 2022).

4. TabPFN + GI-Subspace (GIT-BO): our GIT-BO algorithm with TabPFN v2 and GI-subspace
method

With other hyperparameters, acquisition function, and initial samples remains fixed across the tested
algorithms, we run each algorithm 10 time and plot the average regret results in Figure 10. We ob-
serve that though TR and BAxUS contribute improvements to the algorithm performance, where
BAxUS projection improve the performance significantly on the synthetic problems. However, GI-
subspace identification still outperform both other methods in the optimality of final result, maintain-
ing its leading performance in both synthetic and real-world problem, confirming that our gradient
subspace aligned exploration is more effective than local restriction.

We believe that the reason why TR and BAxUS projection is not as effective as GI-subspace is due
to the inevitable implementation differences of TR for GP- and TFM-based BO. For our TabPFN +
TR calculation, since TabPFN does not have kernel structure as GP, we can only equally weighted
the TR hypercube search area but not weighted based on the GP kernel length scales as designed in
the original algorithm for the TR construction (Eriksson et al., 2019). This is the main reason why
we explore alternatives than the existing SOTA subspace identification method.

B.5 WHY UCB? — ABLATION STUDY ON DIFFERENT ACQUISITION FUNCTIONS

We tested GIT-BO on two different acquisition functions: Expected Improvement (EI) and Upper
Confidence Bound (UCB, default acquisition function for GIT-BO). The average regret result from
10 trial runs on the five problems with all combinations of different subspace embedding methods
listed in B.4 are shown in Figure 11.

The ablation result highlights that between acquisition functions, UCB outperforms EI across all
settings by minor difference, consistent with prior findings that EI suffers numerical vanishing in

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 10: Ablation on different subspace identification strategies: Trust Region (TR), BAxUS
Projection, and GI-subspace (our method). Adding TR and BAxUS projection provides less perfor-
mance gains compared to GI-subspace used by GIT-BO with the best overall performance.

high dimensions Ament et al. (2023) and that UCB remains more stable under such conditions Xu
et al. (2025). Hence, GIT-BO adopts UCB and GI-subspace identification as its default configuration
for reliable high-dimensional optimization with TabPFN v2.

Figure 11: Ablation on two acquisition functions: EI and UCB. UCB-based methods consistently
outperform EI, validating GIT-BO’s choice of UCB + GI (red line) as the main setup.

B.6 WHY xREF = x̄OBS? — ABLATION STUDY ON xREF = x̄OBS VS. xREF = xargmax yOBS

Existing high-dimensional BO methods such as BAxUS and TuRBO center their local search trust
regions on the incumbent xargmax yobs , where we get the best observation so far (Eriksson et al., 2019;
Papenmeier et al., 2022). To assess whether GIT-BO should follow the same choice, we compare
two reference points xref for generating GI-subspace candidates: the final incumbent xargmax yobs

versus the centroid of observed data x̄obs.

Across the average regret plot of six representative benchmarks over 10 trial runs shown in Figure 12,
using the incumbent systematically worsens regret and slows convergence, and thus we emperically
select x̄obs as our reference point. We hypothesize that the centroid offers a more stable anchor
by avoiding over-concentration around a incumbent stuck in local optimal location and by keeping
candidate generation within the well-sampled region where TabPFN’s in-context predictions are
most reliable, which is consistent with the observations of TabPFN’s locality and imbalance analysis
in recent work (Ye et al., 2025; Nejjar et al., 2024).

B.7 WHY NINIT = 200? — ABLATION STUDY ON DIFFERENT NINIT

Our choice of Ninit = 200 in the main paper follows the dimensionality-aware scaling used in prior
high-dimensional BO work. For example, TuRBO increases its Ninit initialization from 20 (10D
problem) to 50 (12D problem) to 200 (200D problem) (Eriksson et al., 2019). As the number of
initial sample may affect the algorithm performance, we ablate the effect of initialization size by
testing Ninit ∈ {20, 50, 200, 1000} with GIT-BO and the baseline algorithms. The average regret
results from 10 trial runs on the five problems are shown in Figure 13.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 12: Ablation study comparing two choices of the reference point xref for generating GI-
subspace candidates: the incumbent best observation (xargmax yobs , blue) vs. the centroid of the
observed data (x̄obs, red). Across all six benchmark problems, centering the GI-subspace at the
centroid yields consistently lower regret and faster convergence, empirically supporting our choice
xref = x̄obs in GIT-BO (Ye et al., 2025).

Figure 13 demonstrated that across all initialization sizes, GIT-BO consistently attains the best statis-
tical rank, even in the large-data setting (Ninit = 1000) that favors GP-based competitors and should
disadvantage TabPFN’s amortized inference. Notably, while Vanilla BO and SAASBO are sensitive
to the choice of Ninit, GIT-BO’s performance remains remarkably stable, with only minor variation
across all regimes. To complement these convergence results, Table 3 reports the corresponding
runtime profiles. The runtimes show the same trend: GIT-BO’s computational cost remains nearly
constant across initialization regimes, while the GP-based methods incur substantial overhead as the
initial dataset grows.

Ninit = 20

Ninit = 50

Ninit = 200
(main paper)

Ninit = 1000

Figure 13: Convergence behavior of five BO algorithms under varying initialization sizes. Across
all Ninit = {20, 50, 200, 1000} values, GIT-BO exhibits stable convergence with minimal sensitivity
to initialization size, whereas several GP-based baselines (e.g., Vanilla BO, SASASBO) degrade or
fluctuate noticeably as Ninit changes. The average statistical rank of each algorithm of each Ninit
also shows that GIT-BO remains the top-ranked method across all four regimes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 3: Average wall-clock time (in seconds) required to complete 500 BO iterations for all al-
gorithms under Ninit = {20, 50, 200, 1000}. These results complement Figure 13 by showing that
GIT-BO maintains stable runtime across initialization scales.

BO Algorithm Ninit = 20
Average Runtime

Ninit = 50
Average Runtime

Ninit = 200
Average Runtime

Ninit = 1000
Average Runtime

GIT-BO 2700 2722 2734 3404
BAxUS 3666 3981 4008 4061
TurBO 430 445 444 1137
Vanilla BO 2708 2557 2708 4650
SAASBO 13406 12617 13870 16663

B.8 WILL FINETUNING TABPFN FURTHER IMPROVE GIT-BO’S PERFORMANCE? —
ABLATION STUDY ON TABPFN VS. FINETUNED TABPFN

Recent work on tabular foundation models consistently shows that continued pre-training or light
task-specific finetuning can improve surrogate accuracy on domain-specialized objectives (Gardner
et al., 2024; Ma et al., 2025; Garg et al., 2025; Grinsztajn et al., 2025). Motivated by these findings,
we investigate whether finetuning TabPFN on each benchmark can further enhance GIT-BO’s per-
formance beyond the frozen-TFM setting. For every problem, we generate 1,000 Latin Hypercube
samples that are strictly excluded from the BO initialization set for avoiding performance gain from
data leakage, and use them as the dataset for finetuning. Following the Real-TabPFN (Garg et al.,
2025) pipeline 1, we continue pre-training TabPFN for 100 epochs on this task-specific dataset, pro-
ducing a separately finetuned surrogate for each benchmark. GIT-BO is then run with these finetuned
models as drop-in replacements for the frozen TabPFN surrogate, evaluating each configuration over
10 independent BO trials and reporting the mean regret curves.

Across all benchmarks, finetuning consistently improves the surrogate’s accuracy and yields uni-
formly stronger optimization curves when inserted into GIT-BO. While the frozen TabPFN already
provides competitive performance, finetuning enables noticeable gains on domain-specific struc-
ture, demonstrating that GIT-BO can further benefit from TFM adaptation when additional data are
available.

Figure 14: Ablation comparing GIT-BO using the default TabPFNv2 surrogate versus a finetuned
TabPFNv2 model. Finetuning on 1,000 task-specific samples consistently improves optimization
performance across synthetic and engineering benchmarks, demonstrating that domain adaptation
can further boost GIT-BO beyond the frozen-TFM setting.

B.9 HOW SENSITIVE IS GIT-BO TO ORIGIN-CENTERED OPTIMA? — ABLATION ON SHIFTED
SYNTHETIC FUNCTIONS (GIT-BO VS. BAXUS)

One concern from previous research is that a synthetic benchmark with an optimum at the origin
could yield free wins for subspace projection methods. The BAxUS paper (Papenmeier et al., 2022)
highlights that its sparse random embeddings contain the global optimum whenever it lies at the
origin, a situation common in synthetic functions such as Ackley, Rastrigin, Powell, and Griewank

1TabPFN finetuning code from Prior Labs

26

https://github.com/PriorLabs/TabPFN/blob/main/examples/finetune_regressor.py

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

with their optimum at origin (0, 0, ...)D in our benchmark problems. Thus, BAxUS and methods
with such subspace embedding can exploit these problems and achieve efficient convergence.

In this section, we elaborate mathematically and empirically why this is not a concern for GIT-BO
even though it is also projecting a low-dimensional subspace to the high-dimensional search space.

Mathematically, GIT-BO’s gradient-informed subspace fundamentally differs from BAxUS’s sparse
random embedding. BAxUS constructs a sparse projection matrix S⊤ where each input dimension is
randomly assigned to exactly one target dimension with a random sign. This construction guarantees
that the origin (0, . . . , 0)D maps to the origin in the embedded space, since S⊤0 = 0 regardless of
the random assignment. Consequently, any optimum located at the origin is automatically contained
in BAxUS’s embedded subspace with probability one. In contrast, GIT-BO’s projection is derived
from the empirical Fisher matrix H = Eµ[g(x)g(x)

⊤], where g(x) := ∇xµm(x) are gradients of
TabPFN’s predictive mean. The gradient-informed subspace Vr consists of the top-r eigenvectors
of H , which are determined by the local sensitivity structure of the predictive model conditioned
on observed data Dobs. Critically, Vr is a dense matrix whose structure depends on the gradient
covariance across the observed samples, not on any pre-specified sparse assignment.

Furthermore, GIT-BO generates candidate points via XGI = xref + Vrz, where xref = x̄obs is the
centroid of observed data and z ∼ U([−1, 1]r). This centering at x̄obs does not guarantee that
the origin lies within the explored subspace unless the observed samples themselves are centered
near the origin. Since the Fisher eigenvectors Vr are data-dependent and the reference point tracks
the search trajectory, GIT-BO’s subspace does not systematically favor origin-centered optima by
construction.

Empirically, we evaluate whether if the origin optima affect optimization performance by replicating
Papenmeier et al. (2022)’s experimental protocol from their supplementary material. We evaluate
both BAxUS and GIT-BO with different subspace projection method on shifted versions of five
100D benchmarks:

fShiftedProblem(x) = fProblem(x+ δ), δi ∼ U(xLB, xUB),

where Problem ∈ {Ackley, Griewank, Powell, Rastrigin, Rosenbrock}D=100, U is a uniform distri-
bution, and xLB, xUB are the lower bound and upper boud of the search space. In addition to the
problems with optima at origin (0, 0, ...)D (Ackley, Rastrigin, Powell, and Griewank), we included
Rosenbrock with optima at (1, 1, ...)D for a harder shifted problem.

Figure 15 shows that even with coordinate shifts that displace the optimum away from the origin,
GIT-BO consistently achieves lower regret than BAxUS across all five benchmarks. This demon-
strates that GIT-BO does not rely on “free wins” from origin-centered problem structure, confirming
that its gradient-informed subspace mechanism is robust to optimum location.

Figure 15: Performance of GIT-BO vs. BAxUS on shifted 100D synthetic benchmarks; GIT-BO
consistently achieves lower regret despite coordinate shifts that displace the optimum away from the
origin.

C EXPERIMENTAL ANALYSIS ON GRADIENT-INFORMED ACTIVE SUBSPACE
IDENTIFICATION

A central question for gradient-informed (GI) subspace identification is whether it can reliably re-
cover the intrinsic dimensionality of a problem when the objective is embedded in high dimen-

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

sions. In principle, eigenvalue thresholds on gradient covariance spectra might fail—oscillating
around spurious directions or overestimating dimensionality—unless the surrogate provides suffi-
ciently smooth and informative gradients. We were therefore curious to test whether GIT-BO’s GI
subspace mechanism can autonomously identify the correct intrinsic dimension or not.

To probe this, we evaluate on Branin (d=2 embedded in 100D), Ackley (d=3 embedded in 100D),
and Levy (d=3 embedded in 200D). GIT-BO with TabPFN surrogates consistently auto-selects a
subspace dimension r (via a 95% variance threshold on the gradient covariance spectrum) that con-
verges to the ground-truth d after∼50 iterations, while simultaneously reducing regret. These results
in Figure 16 suggest that TabPFN provides a smooth and informative gradient field that allows the
GI subspace to identify the correct intrinsic structure of a problem, enabling efficient search in that
space.

Figure 16 also confirms the generalizability of GI-subspace for GP surrogate. We utilize the
Vanilla GP BO’s setting of GP 2 Hvarfner et al. (2024) for this experiment with BoTorch’s
propagate grads 3 setting for calculating the gradient from GP model. We then implemented
GI subspace identification using this output GP gradients (∇xµ

GP
m (x)). We see that GI subspace on

GP is similarly effective since it converges to the correct d for Branin (d = 2) and Ackley (d = 2),
but having |r − d| = 1 for the Levy (d = 3) problem, and the average regret is indeed converg-
ing towards the optimal value. We hypothesize that this behavior is due to the fact that the 95%
explained-variance threshold not being universally suitable for GPs or this problem. Future work
can be further investingating the best auto selection mechanism of r for GP-based BO.

Figure 16: GI subspace behavior on high-dimensional embeddings. Top: Median (average) re-
gret (20 trials, 95% CI). Bottom: Auto-selected subspace dimension r under a 95% variance rule.
TabPFN+GI converges to the correct intrinsic dimension (r → d) with strong regret reduction.
GP(EI)+GI also shows the convergence of intrinsic dimension in most cases, indicating the general-
izability of GI-subspace method. The instability of GP(EI)+GI’s r at the early stage of search could
be stemmed from the fixed 95% for r selection (maybe 92% or 97.5% are better for Levy).

D PERFORMANCE AND RUNTIME RESULTS ANALYSIS ON 60 BENCHMARKS

We report comprehensive optimization outcomes across all benchmark problems considered in the
main paper. Figure 17 presents regret trajectories on all 60 benchmarks, and Figure 18 compares
regret versus runtime.

2Changes to default BoTorch covariance and likelihood modules #2451
3botorch.settings.propagate grads

28

https://github.com/meta-pytorch/botorch/discussions/2451
https://botorch.readthedocs.io/en/latest/settings.html

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Overall, GIT-BO exhibits consistently strong performance across diverse high-dimensional prob-
lems, with clear advantages on most engineering benchmarks (with the exception of the Rover fam-
ily). This highlights its ability to balance convergence speed and final solution quality relative to
other state-of-the-art (SOTA) methods.

For synthetic problems, GIT-BO maintains robustness as dimensionality increases, whereas compet-
ing methods degrade more noticeably. Nevertheless, there are cases where GIT-BO underperforms
across all D (e.g., Styblinski–Tang and Michalewicz), consistent with the “No Free Lunch” theo-
rem (Wolpert & Macready, 1997). We also observe plateauing in the convergence of both BAxUS
and GIT-BO. For GIT-BO, this behavior is aligned with the known bias plateau of TabPFN predic-
tors under increasing sample sizes (Nagler, 2023). The similar plateau in BAxUS suggests a broader
phenomenon affecting probabilistic surrogates that merits further investigation.

On real-world engineering problems, GIT-BO ranks first overall, despite poor performance on the
Rover tasks, again reinforcing “No Free Lunch.” Interestingly, BAxUS, which dominates synthetic
benchmarks, drops to fourth place on engineering problems. This discrepancy underscores the gap
between synthetic and real-world benchmarks and motivates the need for more optimization bench-
mark design and evaluation.

E HIGH-DIMENSIONAL BENCHMARK ALGORITHMS IMPLEMENTATION
DETAILS

We benchmark GIT-BO against four high-dimensional BO methods that GPU can also accelerate
compute using PyTorch, including TURBO (Eriksson et al., 2019), Vanilla BO (Hvarfner et al.,
2024), BAxUS (Papenmeier et al., 2022), and SAASBO (Eriksson & Jankowiak, 2021).

• TURBO: The implementation is taken from BoTorch’s GitHub repository (Balandat
et al., 2020) (link: https://github.com/pytorch/botorch/blob/main/
tutorials/turbo_1/turbo_1.ipynb, license: MIT license, last accessed: Sep
21st, 2025)

• Vanilla BO: The implementation is taken from (Balandat et al., 2020) BoTorch ver-
sion 13’s GitHub repository (link: https://github.com/pytorch/botorch/
discussions/2451, license: MIT license, last accessed: Sep 21stt, 2025)

• BAxUS: The implementation is taken from BoTorch’s GitHub repository (Balandat
et al., 2020) (link: https://github.com/pytorch/botorch/blob/main/
tutorials/baxus/baxus.ipynb, license: MIT license, last accessed: Sep 21st,
2025)

• SAASBO: We use the SAASBO-MAP version of the algorithm for comparison. The
code is taken from Xu et al. (2025) (link: https://github.com/XZT008/
Standard-GP-is-all-you-need-for-HDBO/ commit b60e1c6, license: no
license, last accessed: Sep 21st, 2025) where they implemented the MAP estimation of
SAASBO based on the original paper (Eriksson & Jankowiak, 2021), with all the hyperpa-
rameter settings following precisely the same as the original paper. The reason for not using
SAASBO-NUT is due to our computational resource limitations. We set a fixed maximum
time of 10000 seconds for each trial to run, since running all benchmarking experiments
takes roughly 72 million compute hours. Unfortunately, SAASBO-NUT can only run∼310
iterations given this time budget, making it unfeasible for comparison with other algorithms
that can finish running 500 iterations under 10000 seconds.

We use Botorch v0.12.0 for all algorithms mentioned above. The environment setups are detailed in
the provided code zip file.

F BENCHMARK PROBLEMS IMPLEMENTATION DETAILS

The source and license details of our benchmark problems are provided in the following paragraphs.
We restrict our evaluation to problems with well-maintained, publicly available code to ensure re-
producibility and stability across our benchmark framework. Benchmarks that require complex or

29

https://github.com/pytorch/botorch/blob/main/tutorials/turbo_1/turbo_1.ipynb
https://github.com/pytorch/botorch/blob/main/tutorials/turbo_1/turbo_1.ipynb
https://github.com/pytorch/botorch/discussions/2451
https://github.com/pytorch/botorch/discussions/2451
https://github.com/pytorch/botorch/blob/main/tutorials/baxus/baxus.ipynb
https://github.com/pytorch/botorch/blob/main/tutorials/baxus/baxus.ipynb
https://github.com/XZT008/Standard-GP-is-all-you-need-for-HDBO/
https://github.com/XZT008/Standard-GP-is-all-you-need-for-HDBO/

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 17: Average (median) regret vs. iterations (# function evaluations) with a budget of 500
iterations for all benchmarks. Average regrets are illustrated by solid lines, with shaded bands
denoting 95% confidence intervals. The y-axis is log-scaled. GIT-BO finds the optimal value for 29
out of the total 60 problems. 30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 18: Average (median) regret vs. algorithm runtime (seconds) records of running 500 itera-
tions for all benchmarks. Average regrets are illustrated by solid lines, with shaded bands denoting
95% confidence intervals. Both axes are log-scaled.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

incompatible environment configurations are not included in the present study. Looking ahead, we
advocate for a standardized collection of benchmarks with actively maintained codebases to facili-
tate broader adoption and more rigorous comparisons in future research. If this paper is accepted,
we will release our Python benchmark library on PyPI alongside the publication.

Synthetic Problems: The implementations for the nine synthetic functions are taken from
Botorch (Balandat et al., 2020) (link: https://github.com/pytorch/botorch/blob/
main/botorch/test_functions/synthetic.py, license: MIT license, last accessed:
May 1st, 2025). The bounds of each problem are the default implementation in Botorch. De-
tailed equations for each problem can be found here: https://www.sfu.ca/˜ssurjano/
optimization.html.

Power System Problems: We examine a subset of six problems, specifically those with design
spaces exceeding 100 dimensions, from the CEC 2020 Real World Constrained Single Objective
problems test suite (Kumar et al., 2020) (link: https://github.com/P-N-Suganthan/
2020-RW-Constrained-Optimisation, license: no license, last accessed: May 1st, 2025).
The code is initially in MATLAB, and we translate it into Python, running pytest to ensure the
implementations are correct. While these problems incorporate equality constraints (hj(x)), they
are transformed into inequality constraints (gj(x)) using the methodology outlined in the original
paper (Kumar et al., 2020), as constraint handling is not the primary focus of this research. These
transformed constraints are subsequently incorporated into the objective function f(x) as penalty
terms.

gj(x) = |hj(x)| − ϵ ≤ 0 , ϵ = 10−4 , j = 1 ∼ C

fpenalty(x) = f(x) + ρ

C∑
j=1

max(0, gj(x))

We set a different ρ penalty factor for each problem, respectively, to make the objective and con-
straint values have a similar effect on fpenalty(x).

Table 4: Penalty Transform Factors of Benchmark Problems from CEC 2020ρ
CEC’s Problem Index Our Naming ρ

34 Reactive Power Phase 0.01
35 Active Power (AP) Loss 0.0002
36 Reactive Power Loss 0.001
37 Power Flow AP 0.04
38 Power Fuel Cost 0.02
39 Power AP+Fuel 0.04

Rover: The implementation is taken from Wang et al. (2018) (link: https://github.com/
zi-w/Ensemble-Bayesian-Optimization, license: MIT license, last accessed: May 1st,
2025).

Car(x1) Mopta: The MOPTA08 is originally proposed by Jones (2008). The executable used in
this study are taken from the paper Papenmeier et al. (2022)’s personal website (link: https://
leonard.papenmeier.io/2023/02/09/mopta08-executables.html, license: no
license, last accessed: May 1st, 2025). The MOPTA08 Car’s penalty transformation follows the
formation of Eriksson & Jankowiak (2021)’s supplementary material of a one-car car crash design
problem.

Car(x2) and Car(x3) Mazda Cars Benchmark Problems: The implementation is taken
from Kohira et al. (2018) (link: https://ladse.eng.isas.jaxa.jp/benchmark/, li-
cense: no license, last accessed: May 1st, 2025). The Mazda problem has two raw forms: a 4-
objectives problem 148D optimizing a two-car car design problem (Car(x2)) and a 5-objectives

32

https://github.com/pytorch/botorch/blob/main/botorch/test_functions/synthetic.py
https://github.com/pytorch/botorch/blob/main/botorch/test_functions/synthetic.py
https://www.sfu.ca/~ssurjano/optimization.html
https://www.sfu.ca/~ssurjano/optimization.html
https://github.com/P-N-Suganthan/2020-RW-Constrained-Optimisation
https://github.com/P-N-Suganthan/2020-RW-Constrained-Optimisation
https://github.com/zi-w/Ensemble-Bayesian-Optimization
https://github.com/zi-w/Ensemble-Bayesian-Optimization
https://leonard.papenmeier.io/2023/02/09/mopta08-executables.html
https://leonard.papenmeier.io/2023/02/09/mopta08-executables.html
https://ladse.eng.isas.jaxa.jp/benchmark/

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

222D problem three-car car design problem (Car(x3)), and both of them have inequality constraints.
For both problems, we equally weight each objective to form a single objective and perform a penalty
transform:

fmultiobj penalty(x) =
1

N

N∑
i=1

f(x) + ρ

C∑
j=1

max(0, gj(x))

where N is the number of objectives, C is the number of inequality constraints, and we use ρ = 10
for both variants of Mazda problem.

Walker Policy: The problem is originally a locomotion task from MuJoCo (Multi-Joint dynamics
with Contact) physics engine (Todorov et al., 2012) (Walker-2D), one of the most popular Rein-
forcement Learning (RL) benchmarks. The implementation of this RL policy search problem is
directly taken from Wang et al. (2020) (link: https://github.com/facebookresearch/
LA-MCTS/tree/main/example/mujuco, license: CC-BY-NC 4.0 license, last accessed:
May 1st, 2025).

Table 5 summarizes the type of problems and their respective tested dimensions.

Table 5: High-Dimensional Benchmark Problems
Problems Source Type Dimension (D) Tested

Ackley Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Dixon-Price Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Griewank Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Levy Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Michalewicz Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Powell Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Rastrigin Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Rosenbrock Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Styblinski-Tang Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Reactive Power Phase CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 118
Active Power (AP) Loss CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 153
Reactive Power Loss CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 158
Power Flow AP CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 126
Power Fuel Cost CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 126
Power AP+Fuel CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 126
Rover Previous BO studies (Wang et al., 2018) Real-World 100, 200, 300, 400, 500
MOPTA08 CAR Previous BO studies (Papenmeier et al., 2022) Real-World 124
MAZDA Mazda Car Bechmark (Kohira et al., 2018) Real-World 222
MAZDA SCA Mazda Car Bechmark (Kohira et al., 2018) Real-World 148
Walker Policy Mujuco (Todorov et al., 2012; Wang et al., 2020) Real-World 102

G ADDITIONAL IMPLEMENTATION DETAILS

G.1 HARDWARE AND OPERATING SYSTEM

Due to the large number of benchmark problems and random seeds, the experiments are conducted
in parallel on a distributed server with nodes of the same compute spec: a node with 22 Intel Xeon
Platinum 8480+ CPUs cores and 1 NVIDIA H100 GPUs. All experiments were conducted on a
GNU/Linux 6.5.0-15-generic x86 64 system running Ubuntu 22.04.3 LTS as the operating system,
ensuring a consistent computational environment across all benchmark tests. As for the environment,
we use BoTorch v0.12.0 and PyTorch 2.6.0+cu126 for all underlying optimization frameworks for
the benchmark algorithms except GIT-BO.

G.2 GIT-BO ALGORITHM IMPLEMENTATION DETAILS

The GIT-BO algorithm was implemented using Python 3.12 with the TabPFN v2.0.6 imple-
mentation and model (link: https://github.com/PriorLabs/TabPFN and https://
huggingface.co/Prior-Labs/TabPFN-v2-reg, license: Prior Lab License (a derivative
of the Apache 2.0 license (http://www.apache.org/licenses/))).

33

https://github.com/facebookresearch/LA-MCTS/tree/main/example/mujuco
https://github.com/facebookresearch/LA-MCTS/tree/main/example/mujuco
https://github.com/PriorLabs/TabPFN
https://huggingface.co/Prior-Labs/TabPFN-v2-reg
https://huggingface.co/Prior-Labs/TabPFN-v2-reg
http://www.apache.org/licenses/

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Would making TabPFN differentiable hurt the performance? Since there is no stable release
of a TabPFN v2 code that allows full model differentiation as far as we know, we get rid of some
marginal performance boosting numpy code in the official TabPFN v2 code (e.g., ensembling of 8
TabPFN v2 for increasing the accuracy marginally 4) or rewrite the numpy-based operations (e.g.,
numerical transformations 5) to PyTorch code into a single model TabPFN v2 in complete PyTorch
code that allows us to use torch.backward() for gradient calculations. This change results in
our implementation as faster inference speed due to the full GPU parallelization of using PyTorch
and getting rid of the default n estimator=8 TabPFN v2 eight ensemble calculation (we use
n estimator=1 with a fixed standardize transformation), but suffers from performance accuracy
degradation as presented in Figure 19 without transformation permutations with ensembling. That
said, the GIT-BO method would have even better performance if, in the future, TabPFN v2 releases
a differentiable option.

Figure 19: Comparison of TabPFN v2 and our implementation of GIT-BO TabPFN v2 across in-
creasing problem dimensions. Left: inference time (seconds) grows substantially for TabPFN v2
due to ensemble evaluations, while GIT-BO’s PyTorch implementation achieves consistent GPU-
accelerated speedups. Right: mean squared error (MSE) highlights the accuracy trade-off, where
eliminating TabPFN’s default ensemble (n estimator=8 → 1) leads to modest degradation. Overall,
GIT-BO achieves faster inference with competitive accuracy, demonstrating the benefits of differen-
tiable integration of TabPFN into BO pipelines.

H LLM USAGE STATEMENT

We acknowledge the use of LLMs (ChatGPT, Claude, and Gemini) only for polishing the writing of
this paper.

4https://github.com/PriorLabs/TabPFN/blob/main/src/tabpfn/preprocessing.py
5https://github.com/PriorLabs/TabPFN/blob/main/src/tabpfn/preprocessors/adaptive quantile transformer.py

34

	Introduction
	Background
	High-Dimensional Bayesian Optimization
	Tabular Foundation Models as BO Surrogates
	blackDiscovering Embedded Subspaces: Classical and Deep Learning Perspectives

	The GIT-BO Algorithm
	Surrogate Modeling with TabPFN
	blackGradient-Informed Active Subspace Identification and Sampling
	Acquisition Function

	Experiment
	Benchmark Algorithms
	Test Problems
	Methods for Algorithm Experiment
	Evaluation Metrics

	Results
	Discussion
	Conclusion
	Theoretical Analysis
	Preliminaries
	blackAssumptions
	Confidence Bounds for TabPFN-based Surrogates
	Subspace Information Gain Analysis
	Acquisition Function Analysis
	Main Regret Bounds
	Information Gain Bounds for High-Dimensional Subspaces
	Convergence Rate

	Ablation Studies
	Why r=10? — Parameter Sweep ablation of GI subspace's principal dimension r
	Why sampling-based UCB? — Ablation study on different factor of UCB Acquisition Function
	Why uniform sampling in the gradient-informed subspace? — Ablation Studies over GI Subspace Sampling
	blackWhy GI subspace? — Ablation study on applying subspace identification on TabPFN for high-dimensional BO
	blackWhy UCB? — Ablation study on different Acquisition Functions
	blackWhy xref = obs? — Ablation study on xref = obs vs. xref = xyobs
	blackWhy Ninit = 200? — Ablation study on different Ninit
	blackWill finetuning TabPFN further improve GIT-BO's performance? — Ablation study on TabPFN vs. finetuned TabPFN
	blackHow sensitive is GIT-BO to origin-centered optima? — Ablation on shifted synthetic functions (GIT-BO vs. BAxUS)

	blackExperimental Analysis on Gradient-Informed Active Subspace Identification
	Performance and runtime results analysis on 60 benchmarks
	High-dimensional Benchmark Algorithms Implementation Details
	Benchmark Problems Implementation Details
	Additional Implementation Details
	Hardware and Operating System
	GIT-BO Algorithm Implementation Details

	LLM Usage Statement

