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ABSTRACT

Bayesian optimization (BO) struggles in high dimensions, where Gaussian-
process surrogates demand heavy retraining and brittle assumptions, slowing
progress on real engineering and design problems. We introduce GIT-BO, a
Gradient-Informed BO framework that couples TabPFN v2, a tabular founda-
tion model (TFM) that performs zero-shot Bayesian inference in context, with
an active-subspace mechanism computed from the model’s own predictive-mean
gradients. This aligns exploration to an intrinsic low-dimensional subspace via a
Fisher-information estimate and selects queries with a UCB acquisition, requiring
no online retraining. Across 60 problem variants spanning 20 benchmarks—nine
scalable synthetic families and ten real-world tasks (e.g., power systems, Rover,
MOPTA08, Mazda)—up to 500 dimensions, GIT-BO delivers a stronger perfor-
mance–time trade-off than state-of-the-art GP-based methods (SAASBO, TuRBO,
Vanilla BO, BAxUS), ranking highest in performance and with runtime advan-
tages that grow with dimensionality. Limitations include memory footprint and
dependence on the capacity of the underlying TFM.

1 INTRODUCTION

Optimizing expensive black-box functions is central to progress in areas such as machine learn-
ing (Dewancker et al., 2016; Snoek et al., 2012), engineering design (Kumar et al., 2024; Wang
& Dowling, 2022; Zhang et al., 2020; Yu et al., 2025), and hyperparameter tuning (Klein et al.,
2017; Wu et al., 2019). Bayesian optimization (BO) has become the method of choice in these
settings due to its sample efficiency. Yet, despite its successes, standard BO with Gaussian pro-
cesses (GPs) is widely viewed as limited to low-dimensional regimes, typically fewer than a few
dozen variables (Liu et al., 2020; Wang et al., 2023; Santoni et al., 2024). Scaling BO to hundreds
of dimensions remains a critical barrier, where the curse of dimensionality, GP training costs, and
hyperparameter sensitivity severely hinder performance. Research has sought to overcome these
challenges through three main strategies: (1) Exploiting intrinsic low-dimensional structure, e.g.,
random embeddings and active subspaces (Wang et al., 2016; Nayebi et al., 2019; Letham et al.,
2020; Papenmeier et al., 2022);(2) Additive functional decompositions (Kandasamy et al., 2015;
Gardner et al., 2017; Rolland et al., 2018; Han et al., 2021; Ziomek & Ammar, 2023); and (3) Al-
ternative GP priors and trust-region heuristics (Eriksson et al., 2019; Eriksson & Jankowiak, 2021;
Hvarfner et al., 2024; Xu et al., 2025). These innovations push the frontier but still face two practical
obstacles: (1) prohibitive computation from iterative GP retraining, and (2) brittle reliance on hyper-
parameter tuning, including determining appropriate intrinsic dimensionality and selecting optimal
kernels and priors (Rana et al., 2017; Letham et al., 2020; Eriksson & Jankowiak, 2021).

Recent advances in tabular foundation models (TFMs) provide a radically different surrogate model-
ing paradigm. Prior-Data Fitted Networks (PFNs) (Müller et al., 2022; Hollmann et al., 2022; Müller
et al., 2023) perform Bayesian inference in-context with frozen weights, eliminating kernel re-fitting
and delivering 10–100x speedups on BO tasks (Rakotoarison et al., 2024; Yu et al., 2025). These
approaches address computational bottlenecks by leveraging pre-trained models’ in-context learning
capability, which requires only a single forward pass at inference during optimization. These pow-
erful TFMs trained on millions of synthetic prior data can also perform accurate inference without
additional hyperparameter tuning for a new domain.
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The newly released TabPFN v2 (Hollmann et al., 2025) extends this capacity to inputs up to 500
dimensions, opening the door to foundation-model surrogates for high-dimensional BO for the first
time. However, prior analyses have shown that TabPFN v2, despite its strong performance on small-
to medium-scale tasks, exhibits performance degradation in high-dimensional regimes, with recent
work proposing divide-and-conquer or feature-extraction strategies to mitigate these limitations (Ye
et al., 2025; Reuter et al., 2025). This raises a fundamental question: Are frozen TFMs sufficient
for high-dimensional optimization, or must they be coupled with classical algorithmic strategies to
succeed?

We answer this question by introducing Gradient-Informed Bayesian Optimization using TabPFN
(GIT-BO), a framework that integrates TabPFN v2 with gradient-informed active subspaces. Our
key idea is to exploit predictive-mean gradients available from the frozen model itself to construct
low-dimensional gradient-informed subspaces. This provides algorithmic guidance for adaptive ex-
ploration while preserving the inference-time efficiency of TFMs. In doing so, GIT-BO aligns foun-
dation models with classical subspace discovery, combining the speed of in-context surrogates with
the structural power needed in extreme dimensions. We perform comprehensive algorithm bench-
marking against the state-of-the-art (SOTA) GPU-accelerated high-dimensional BO algorithms and
test them on commonly used synthetic benchmarks as well as several real-world engineering BO
benchmarks.

Our contributions are:

• We propose GIT-BO, a gradient-informed high-dimensional BO method that adaptively
discovers active subspaces from a frozen foundation model’s predictive gradients, requiring
no online retraining.

• Across 60 diverse problems comprising synthetic and real-world benchmarks (including
power systems, car crash, and dynamics control), GIT-BO consistently achieves state-of-
the-art optimization quality with orders-of-magnitude runtime savings compared to GP-
based methods.

Our results demonstrate that foundation model surrogates, when paired with structural algorithmic
guidance, emerge as viable and competitive alternatives to Gaussian-process-based BO for high-
dimensional problems. Beyond the core algorithm, we conduct extensive ablation and diagnostic
studies to understand when GIT-BO works and why. We (i) compare gradient-informed subspaces
to alternative projections such as trust regions and BAxUS-style embeddings, (ii) study the impact of
acquisition rules (UCB vs. EI), subspace dimension and sampling schemes, and initialization size,
and (iii) evaluate GIT-BO with GP surrogates and with finetuned TabPFN variants. These analyses,
summarized in Section 5 and detailed in Appendices B and C, show that our gains are not due to a
single design choice and that the GI-subspace mechanism improves both TFM- and GP-based BO.

2 BACKGROUND

2.1 HIGH-DIMENSIONAL BAYESIAN OPTIMIZATION

Bayesian optimization is a sample-efficient approach for optimizing expensive black-box functions
where the objective is to find x∗ ∈ argmaxx∈X f(x) with X = [0, 1]D, achieved by sequentially
querying promising points under the guidance of a surrogate model. Gaussian processes (GPs) re-
main the dominant surrogate due to their effective uncertainty-based exploration and exploitation,
but their cubical computational scaling and deteriorating performance with increasing dimensional-
ity pose serious challenges (Liu et al., 2020; Wang et al., 2023; Santoni et al., 2024; Ramchandran
et al., 2025). Three main families address these issues:

Exploiting intrinsic low-dimensional structure. A common strategy in high-dimensional BO is
to assume the objective depends on only a few effective directions and to project the search into that
subspace, where GPs perform more reliably. REMBO introduced random linear projections (Wang
et al., 2016), while HESBO (Nayebi et al., 2019) and ALEBO (Letham et al., 2020) refined this
idea using sparse embeddings and Mahalanobis kernels. More recently BAxUS (Papenmeier et al.,
2022), adaptively expands nested subspaces with guarantees. These succeed when a meaningful
active subspace exists, but degrade when structure is weak or mis-specified.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Additive decompositions. Another approach assumes the objective decomposes into a sum of
low-dimensional components, enabling separate GP models. Additive GPs use disjoint decompo-
sitions (Kandasamy et al., 2015), while later work allows overlaps (Rolland et al., 2018) or tree-
structured dependencies (Han et al., 2021) to improve tractability. Randomized decompositions
offer a lightweight alternative (Ziomek & Ammar, 2023). These methods improve sample efficiency
since each component is easier to model, but remain limited by the difficulty of discovering the
right decomposition from sparse data and the overhead of structure learning, restricting adoption in
practice (Rolland et al., 2018; Han et al., 2021; Ziomek & Ammar, 2023).

Alternative modeling and trust-region strategies. Beyond embeddings and additive decompo-
sitions, another line of work rethinks the surrogate itself. SAASBO introduces sparsity-inducing
shrinkage priors on GP length-scales to identify relevant dimensions automatically (Eriksson &
Jankowiak, 2021).TuRBO (Eriksson et al., 2019) replaces global modeling in favor of multiple lo-
cal GP surrogates confined to dynamically adjusted trust regions. More recently, studies show that
vanilla BO with carefully chosen priors (Hvarfner et al., 2024) and standard GPs with robust Matérn
kernels (Xu et al., 2025) can remain competitive in high dimensions.

Despite these advances, such methods still depend on high-to-low-dimensional learning, sensitive
kernel choices, or strong structural assumptions—motivating foundation model surrogates as a fun-
damentally different path forward.

2.2 TABULAR FOUNDATION MODELS AS BO SURROGATES

Tabular foundation models (TFMs) provide amortized Bayesian inference through in-context learn-
ing (ICL). Prior-Data Fitted Networks (Müller et al., 2022; Hollmann et al., 2022; 2025) are
transformer-based TFMs trained on massive synthetic priors. At inference time, the observed dataset
of BO evaluations is fed as the context input, which acts as the optimization history. Each new sam-
ple is appended to this context, and a single forward pass produces updated predictive means and
variances. Thus, although PFNs have frozen parameters, their predictions adapt dynamically to the
growing context, mimicking Bayesian updating without retraining (Müller et al., 2023; Rakotoarison
et al., 2024).

This approach eliminates iterative kernel re-fitting required by GPs, yielding 10–100× speedups in
various BO applications (Müller et al., 2023; Rakotoarison et al., 2024; Yu et al., 2025). However,
PFNs cannot explicitly tune kernels or priors, which limits their ability to exploit low-rank structures
when dimensionality grows. Moreover, recent analyses reveal that while transformer-based PFNs
exhibit vanishing variance with larger contexts, their bias persists unless explicit locality is enforced,
resulting in degraded accuracy in high-dimensional regimes (Nagler, 2023). Although TabPFN v2
extends the model’s capability to regression tasks with up to 500-dimensional inputs, its predictive
performance still deteriorates without additional structural guidance (Ye et al., 2025; Reuter et al.,
2025). These limitations highlight the necessity of incorporating additional guidance to sustain the
effectiveness of TabPFN v2 in high-dimensional BO.

2.3 DISCOVERING EMBEDDED SUBSPACES: CLASSICAL AND DEEP LEARNING
PERSPECTIVES

Since PFNs are frozen models, discovering intrinsic low-dimensional subspaces is the most viable
high-dimensional BO strategy requiring no fine-tuning of the foundation model. Classical applied
mathematics offers a principled method that we can leverage here. Active subspaces (Constantine
et al., 2014) use gradient covariance to identify influential directions, while likelihood-informed sub-
spaces (Cui et al., 2014) detect posterior-sensitive directions. Spectral approaches such as Laplacian
eigenmaps (Belkin & Niyogi, 2001) learn nonlinear embeddings. Recent advances provide certified
gradient-based dimension-reduction methods, showing that the leading eigenvectors of Fisher-type
gradient covariance matrices recover low-dimensional, high-information subspaces (Pennington &
Worah, 2018; Karakida et al., 2019; Zahm et al., 2022; Li et al., 2024; 2025). In contrast, deep learn-
ing methods typically learn mappings into latent manifolds, e.g., variational autoencoders designed
for BO (Tripp et al., 2020) or intrinsic-dimension analyses of neural representations (Li et al., 2018;
Ansuini et al., 2019). These approaches require training additional models, which conflicts with the
TFM paradigm of fast inference without retraining.
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The literature suggests a potential synthesis: pair the inference-time efficiency of TFMs with
structure discovery to address high-dimensional optimization. This leads to our central con-
tribution: Gradient-Informed Bayesian Optimization using TabPFN (GIT-BO), which extracts
predictive-mean gradients from TabPFN v2 to estimate a gradient-informed active subspace, then
performs acquisition-driven search within that subspace. This design (i) avoids GP retraining
and heavy hyperparameter tuning, and (ii) supplies the locality and structure that TFMs lack in
high-dimensional—thereby targeting the exact failure modes surfaced above.

3 THE GIT-BO ALGORITHM

GIT-BO consists of four main components: the surrogate model (TabPFN v2), the gradient-based
subspace identification, an upper confidence bound acquisition function, and a method that combines
these for high-dimensional optimization.
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Figure 1: GIT-BO algorithm overview. The method operates in five stages: (1) Initial observed sam-
ples are collected in the high-dimensional space RD; (2) TabPFN v2, a fixed-weight tabular foun-
dation model, generates predictions of the objective space at inference time using in-context learn-
ing; (3) The gradient from TabPFN’s forward pass (∇µ(x)) is used to identify a low-dimensional
gradient-informed (GI) subspace. The predicted mean and variance are used for acquisition value
calculations µ(x), σ2(x); (4) The next sample point (xnext) is selected from GI subspace’s projection
back to the high-dimensional space (Vrz) with the highest acquisition value; (5) Appended xnext to
the “context” observed dataset for iterative search until stopping criteria is met.

3.1 SURROGATE MODELING WITH TABPFN

We use TabPFN v2, a 500-dimensional TFM from Hollmann et al. (2025), as the surrogate model for
our Bayesian optimization framework. TabPFN leverages in-context learning to provide a dynamic
predictive posterior distribution conditioned on the observed dataset Dobs = {(xi, yi)}ni=1, which
expands iteratively during optimization. At each iteration, we random sample (from Sobol sequence)
a huge discrete set of candidate points Xcand = {xj}mj=1 (where (10k−n) ≥ m≫ n, as TabPFN can
take at most 10k samples) from the search domain X ⊂ RD to approximate the continuous search
space. TabPFN (qθ) processes both the context set (Dobs) and candidate set (Xcand) simultaneously,
generating predictive means µm(x) and variances σ2

m(x) for the search space formed by all can-
didates in a single forward pass (µm(x), σ2

m(x) ∼ qθ(Ycand|Xcand, Dobs)). This efficient, adaptive
inference step enables rapid identification of promising regions in high-dimensional optimization
problems without surrogate retraining.

3.2 GRADIENT-INFORMED ACTIVE SUBSPACE IDENTIFICATION AND SAMPLING

To identify an active subspace for efficient exploration, we leverage gradient information obtained
from TabPFN’s predictive mean, defining g(x) := ∇xµm(x) via a single-step backpropagation.
Following gradient-based subspace methods in inverse problems and Fisher-eigenstructure analy-
ses that show a small number of dominant, high-sensitivity directions (Pennington & Worah, 2018;
Karakida et al., 2019; Zahm et al., 2022; Li et al., 2025; 2024; Ly et al., 2017), we form the empir-
ical Fisher matrix H = Eµ[g(x)g(x)

⊤]. This matrix captures the local sensitivity structure of the

4
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predictive model. The algorithm then selects the top r eigenvectors of H as the gradient-informed
active subspace (GI-subspace) Vr ∈ Rr.

For all the results we presented in Section 5 and Appendix D, we selected a fixed r = 10 for our
experiment. Ablation studies on the effect of GI-subspace on BO performance and the selection of
r are presented in Appendix B.1.

Next, we then uniformly sample m candidate points for exploration from the low-dimensional (r-
dimensional) hypercube, z ∼ U([−1, 1]r), and mapping these back to the original high-dimensional
space via:

XGI = xref + Vrz ,

the m candidates are centered around the centroid of observed data, xref = x̄obs, which guides the
search towards promising regions discovered so far, while the acquisition function later promotes
exploitation. These generated candidates, XGI, are then evaluated using the acquisition function to
select the next point to sample. The theoretical detail and experimental results for the GI subspace
are in Appendix A and C.

3.3 ACQUISITION FUNCTION

We adopt the Upper Confidence Bound (UCB) as our acquisition function, as heuristics BO and
PFN-based BO both use in previous studies (Srinivas et al., 2010; Xu et al., 2025; Müller et al.,
2023). UCB selects points by maximizing αUCB = µ(x) + βσ(x), where µ(x) denotes the sur-
rogate’s predictive mean, σ(x) is surrogate’s predictive standard deviation, and β represents the
exploration level. In our GIT-BO algorithm, µ(x) and σ(x) are the TabPFN predictive mean and
standard deviation given data Dobs, and the β is set to 2.33. Further details of β ablation are in
Appendix B.2 with theoretical analysis in Appendix A.

Putting everything together, Figure 1 and Algorithm 1 outline the GIT-BO procedure combining
TabPFN with gradient-informed subspace search. The technical implementation details of GIT-BO
are stated in the Appendix G.

Algorithm 1 Gradient-Informed Bayesian Optimization using TabPFN (GIT-BO)
Require: objective f , domain X ⊂RD, initial sample size n0, iteration budget I , subspace dimen-

sion r, α acquisition function
1: Draw n0 LHS points xi and set yi = f(xi); Dn ← {(xi, yi)}n0

i=1
2: for i = 1 to I do
3: µm and σ2

m← Fit TabPFN on Dn, and predict Xcand randomly sampled from Sobol
4: Calculate backprop gradient∇xµm(x) from TabPFN’s in-context learning of Dn

5: Form approximated Fisher matrix H = Eµ[∇xµm(x)∇xµm(x)⊤]
6: Vr ← top-r eigenvectors of H
7: XGI ← xref + Vrz, with z uniform sampled from the low-dim hypercube z ∼ U([−1, 1]r)
8: xnext ← argmaxj α(XGI)
9: Evaluate ynext = f(xnext)and append the query point data Dn ← Dn ∪ {(xnext, ynext)}

10: end for
11: return x⋆ = argmax(x,y)∈D y

4 EXPERIMENT

This section outlines our empirical approach to evaluating and comparing different high-dimensional
Bayesian optimization algorithms, highlighting the assessment of different algorithms’ performance
across a large number of complex synthetic and unique engineering benchmarks. To conduct a fair,
comprehensive comparison, we benchmark GIT-BO against four other algorithms from the state-of-
the-art BO library, BoTorch (Balandat et al., 2020), on 60 problems, and conduct a statistical ranking
evaluation over experiment trials.

5
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4.1 BENCHMARK ALGORITHMS

We benchmark GIT-BO against random search (Bergstra & Bengio, 2012) and four high-
dimensional BO methods, including SAASBO (Eriksson & Jankowiak, 2021), TURBO (Eriksson
et al., 2019), Vanilla BO for high-dimensional (Hvarfner et al., 2024), and BAxUS (Papenmeier
et al., 2022) from the state-of-the-art (SOTA) PyTorch-based BO library BoTorch (Balandat et al.,
2020). To ensure a fair comparison with our GPU-accelerated GIT-BO framework, we deliberately
selected only algorithms that can be executed efficiently on GPUs, as runtime scalability is a central
evaluation criterion. All methods were run on identical compute resources (one node with the same
CPU and GPU specifications), and additional implementation details are provided in Appendix E.

4.2 TEST PROBLEMS

This study incorporates a diverse set of high-dimensional optimization problems, including 9 syn-
thetic problems and 11 real-world benchmarks. Synthetic and scalable problems include: Ackley,
Rosenbrock, Dixon-Price, Levy, Powell, Griewank, Rastrigin, Styblin-Tang, and Michalewicz. We
note that this set of synthetic functions is taken from BoTorch (Balandat et al., 2020) with their de-
fault setting, and therefore all the baseline algorithms from BoTorch have been tested on this set of
synthetic functions.

The rest of the application problems are collected from previous optimization studies and confer-
ence benchmarks: the power system optimization problems from CEC2020 (Kumar et al., 2020),
Rover (Wang et al., 2018), MOPTA08 car problem (Jones, 2008), two Mazda car problems (Ko-
hira et al., 2018), and Walker problem from MuJoCo (Todorov et al., 2012). As this study focuses
on the high-dimensional characteristic of the problem, we make all our benchmark problems sin-
gle and unconstrained for testing. Therefore, we have applied penalty transforms to all real-world
problems with constraints and performed average weighting to the two multi-objective Mazda prob-
lems. Among the 20 benchmarks, 10 (Synthetic + Rover) are scalable problems. To evaluate
the algorithms’ performance with respect to dimensionality, we solve the scalable problems for
D = {100, 200, 300, 400, 500}. Therefore, we have experimented with a total of 5× 10 + 10 = 60
different variants of the benchmark problems. Details of benchmark selections and their implemen-
tation details are listed in Appendix F.

4.3 METHODS FOR ALGORITHM EXPERIMENT

The algorithm evaluation aims to thoroughly compare GIT-BO to current SOTA Bayesian opti-
mization techniques. This study focuses on maximizing the objective function for the given test
problems. For each test problem, our experiment consists of 20 independent trials, each utilizing a
distinct random seed. To ensure fair comparison, bluewe initialize each algorithm with an identi-
cal set of 200 samples, generated through Latin Hypercube Sampling with consistent random seeds
across all trials. During each iteration, each algorithm selects one sample to evaluate next.

To execute this extensive benchmarking process, we utilized a distributed server infrastructure fea-
turing Intel Xeon Platinum 8480+ CPUs and NVIDIA H100 GPUs. For all algorithms, each individ-
ual experiments (run) were conducted with the same amount of compute allocated: a single H100
GPU node with 24 CPU cores and 224GB RAM.

4.4 EVALUATION METRICS

Optimization Fixed-budget Convergence Analysis Fixed-budget evaluation is a standard tech-
nique for comparing the efficiency of optimization algorithms by allocating a predetermined amount
of computational resources for their execution (Hansen et al., 2022). In our study, we adopt a fixed-
iteration budget, running all algorithms (GIT-BO, SAASBO, TurBO, Vanilla BO, and BAxUS) for
500 iterations. We report performance using plots of average regret versus the number of function
evaluations (iterations), which illustrate the convergence behavior of each algorithm.

In addition, we measure the wall-clock runtime of each algorithm over the same 500 iterations. To
capture efficiency in terms of computational cost, we report plots of average regret versus elapsed
runtime (in seconds).

6
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Statistical Ranking To comprehensively compare and evaluate the performance of the Bayesian
optimization algorithms, statistical ranking techniques are employed instead of direct performance
measurements of the optimization outcome. In this study, we define the optimization performance
result as the median of the optimal found across the 20 optimization trials of each algorithm. By sta-
tistically ranking the results, we were able to standardize the comparisons across different problems,
since various optimization challenges can produce objective values of vastly different magnitudes.
Furthermore, using this ranking allowed us to reduce the distorting effects of unusual or extreme
data points that might influence our evaluation.

We conduct our statistical analysis using the Friedman and Wilcoxon signed-rank tests, comple-
mented by Holm’s alpha correction. These non-parametric approaches excel at processing bench-
marking result data without assuming specific distributions, which is critical for handling optimiza-
tion results with outliers. These statistical methods effectively handle the dependencies in our setup,
where we used the same initial samples and seeds to test all algorithms. The Wilcoxon signed-rank
test addresses paired comparisons between algorithms, while the Friedman test manages problem-
specific grouping effects. For multiple algorithm comparisons, we used Holm’s alpha correction to
control error rates (Wilcoxon, 1945; Holm, 1979).

5 RESULTS

Overall Statistical Ranking and Algorithm Runtime Tradeoffs Across all benchmark variants,
Figure 2 (a) shows that GIT-BO achieves the best overall statistical performance rank (1.92) across
60 problems, consistently outperforming competing baselines in terms of final solution quality af-
ter 500 iterations. In terms of computational cost, Figure 2 (b) demonstrates that GIT-BO remains
runtime-competitive despite its stronger optimization performance. To provide further insight, Fig-
ures 2 (c) and (d) decompose performance by problem class: BAxUS achieves the best ranking on
synthetic benchmarks, whereas GIT-BO dominates on real-world engineering tasks. This contrast
underscores that methods excelling on or even finetuning toward synthetic tests may not generalize
to practical applications.

The joint performance–runtime tradeoff is visualized in Figure 3 (a), where GIT-BO and TurBO both
lie on the Pareto frontier: GIT-BO attains superior optimization quality, while TurBO provides a
speed advantage. Finally, Figure 3 (b) tracks the evolution of average algorithm rank over iterations,
showing that GIT-BO rapidly rises to the top within the first 50 iterations and maintains its lead
thereafter. Together, these results highlight GIT-BO as the most balanced method, achieving state-
of-the-art performance while retaining favorable computational efficiency.

(a)

(c)

(b)

(d)

Figure 2: Statistical ranking across benchmark problems. (a) Overall algorithm optimization perfor-
mance of all 60 problems (synthetic + real-world) ranking based on final solution quality at iteration
500. (b) Algorithm runtime ranking of all 60 problems (synthetic + real-world) based on the time
it takes for 500 iterations of optimization. (c) and (d) Optimization performance ranking on only
synthetic and only real-world benchmark subsets, respectively.

7
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(a) (b)

Figure 3: (a) Pareto frontier plot of runtime rank vs. performance rank (lower is better) over 60
benchmark problems. (b) Evolution of average algorithm rank over iterations, showing that GIT-BO
converges rapidly to the top within 50 iterations and sustains its lead.

Figure 4: Average regrets vs. iteration convergence on a subset of 15 benchmarks (10 synthetic &
5 real-world) comparing our method against SOTA high-dimensional BO algorithms. The solid line
represents the median best function value achieved over 20 trials, with shaded regions indicating the
95% confidence interval. Full statistical tests and per-problem plots for all 60 problems are provided
in the Appendix D.

Convergence Performance Figure 4 summarizes the convergence plots across a representative
set of 15 synthetic and engineering benchmarks in iterations, and Figure 5 plots the average regret
against the algorithm’s elapsed runtime. Due to page number limitations, the convergence plots for
all sixty benchmark problems are reported in Appendix D. For the Ackley function (100–500D), we
observe that GIT-BO starts in the second performance tier but steadily improves relative to com-
peting methods as dimensionality increases. Unlike GP-based approaches such as TurBO, whose
performance deteriorates with higher D, GIT-BO maintains stable convergence rates, suggesting
that TabPFN’s universal modeling capacity generalizes robustly even in extreme dimensions.

Across the broader set of synthetic problems, GIT-BO achieves top-ranked regret curves in most
cases, including Rosenbrock (200D), Dixon-Price (400D), and Rastrigin (500D). However, its fail-
ure on Styblinski–Tang highlights the distributional limits of the TabPFN pre-training regime, an
example where GP-based surrogates still dominate. On the engineering side, GIT-BO again demon-
strates strong performance, consistently outperforming baselines on power system tasks and auto-
motive design benchmarks, while struggling with the Rover problem.
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Figure 5: Average regrets (log-scaled) vs. algorithm runtime (log-scaled seconds) (“time taken for
running 500 iterations”) convergence on a subset of 15 benchmarks (10 synthetic & 5 real-world)
comparing our method against SOTA high-dimensional BO algorithms. The solid line represents
the median best function value achieved over 20 trials, with shaded regions indicating the 95%
confidence interval. Full statistical tests and per-problem plots for all 60 problems are provided in
the Appendix D.

Convergence performance when considering runtime When runtime is taken into account in
Figure 5, the trade-off becomes even more pronounced. Methods such as BAxUS can match or
occasionally surpass GIT-BO in final regret, but only after an additional hour of wall-clock time. In
contrast, GIT-BO reaches competitive or superior regret levels within minutes, providing a decisive
advantage in time-critical engineering settings. Taken together, these iteration- and runtime-based
analyses establish GIT-BO as both the most efficient and broadly effective algorithm among current
high-dimensional BO methods.

Summary of additional ablation studies To better understand the drivers behind these empirical
trends, we next highlight the key findings from our ablation studies detailed in Appendices B and C:

1. GI-subspaces vs. alternative subspaces: Compared GIT-BO (TabPFN + GI-subspcae) to vanilla
TabPFN BO that samples in the 500D space, TabPFN + Trust-Region (Eriksson et al., 2019),
and TabPFN + BAxUS projection (Papenmeier et al., 2022). Trust region and BAxUS-style
projections also help, but consistently underperform GI-subspaces (Appendix B.4).

2. Acquisition function (UCB vs. EI): Empirically, we show that both EI and UCB benefit sub-
stantially from GI-subspaces, and UCB provides a modest but stable advantage, matching prior
observations about EI’s numerical instability in high-dimensional settings (Appendix B.5).

3. Subspace dimension and sampling: Performance is robust across a range of subspace dimensions
r. Very large r (e.g., 40) hurts performance, while small fixed r and variance-explained criteria
(92.5–95%) perform best (Appendix B.2).

4. Sampling in subspace and reference point xref: Uniform, Random, and Sobol sampling in the
GI-subspace lead to similar trends, with mild problem-dependent differences (Appendix B.1).
Empirically we verified that xref = x̄obs has better optimization performance than xref =
xargmax yobs (Appendix B.6).

5. Initialization sample size: Varying the initial Latin-hypercube sample size from 20 to 1000 points
still leaves GIT-BO as the top-ranked method across all sizes, while GP-based baselines degrade
or fluctuate, especially in the large-data regime (Appendix B.7).
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6. Alternative surrogates and finetuning: Mild finetuning of TabPFN on each benchmark yields
small but consistent gains (Appendix B.9). When we replace TabPFN with a standard GP sur-
rogate and reuse GI-subspaces, the algorithm can still identify the effective subspace in the
embedded high-dimensional problem, confirming that GI-subspace discovery is not specific to
TFMs (Appendix C).

6 DISCUSSION

Our experiments highlight several strengths and limitations of GIT-BO in high-dimensional
Bayesian optimization. GIT-BO consistently lies on the Pareto frontier of performance versus run-
time: while BAxUS and Vanilla BO can occasionally match final regret, they require orders of
magnitude more wall-clock time, whereas GIT-BO reaches near-optimal solutions within minutes.
At the same time, TurBO emerges as a compelling alternative when runtime alone is the domi-
nant criterion, underscoring the practical trade-off between speed and accuracy. We also observe
plateauing convergence in both GIT-BO and BAxUS, reflecting the known bias plateau of TabPFN
predictors as sample sizes grow (Nagler, 2023) and pointing to broader challenges for probabilistic
surrogates. Although GIT-BO excels on most synthetic and engineering tasks, its failures on Rover
and Styblinski–Tang reinforce the “no free lunch” theorem (Wolpert & Macready, 1997). Finally,
practical limits persist: TabPFN requires large GPU memory, enforces a 500D cap, and demands
user-specified subspace thresholds. Even without retraining, its inference is slower than fitting a
simple GP in TurBO or Vanilla BO. These findings suggest two directions for future work: scaling
TFMs with memory-efficient architectures for faster inference, and designing benchmark suites that
capture the heterogeneity of real-world tasks beyond synthetic testbeds.

7 CONCLUSION

We presented GIT-BO, a Gradient-Informed Bayesian Optimization framework that integrates
TabPFN v2 with adaptive subspace discovery to tackle high-dimensional black-box problems.
Across sixty benchmark variants, including scalable synthetic functions and challenging engineer-
ing tasks, GIT-BO consistently achieves state-of-the-art performance while maintaining a favor-
able runtime profile, often reaching near-optimal solutions in minutes. By leveraging foundation
model inference and gradient-informed exploration, GIT-BO eliminates costly surrogate retraining
and scales effectively up to 500 dimensions. At the same time, limitations remain: performance
plateaus on certain tasks, GPU memory requirements of TabPFN, and the need for user-defined
subspace thresholds. Looking forward, future work should pursue more memory-efficient TFM ar-
chitectures, automated strategies for subspace selection, and broader benchmark suites that bridge
synthetic testbeds and real-world engineering problems. Extending GIT-BO to constrained, mixed-
variable, and multi-objective optimization also represents a promising avenue for further impact.
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A THEORETICAL ANALYSIS

In this section, we establish the theoretical foundations for GIT-BO by developing confidence
bounds and regret guarantees. Our analysis builds upon the framework of Srinivas et al. (2010)
for GP-UCB while accounting for the unique properties of TabPFN as a surrogate model and our
gradient-informed subspace identification.

A.1 PRELIMINARIES

Problem Setup. We consider the optimization problem:

x∗ ∈ argmax
x∈X

f(x)

where X = [0, 1]D is a compact domain and f : X → R is an unknown objective function. At each
optimization iteration t, we observe yt = f(xt) + ϵt where ϵt is σ-sub-Gaussian noise.

TabPFN Surrogate Properties. Let qθ(y|x, Dt) denote the TabPFN’s posterior predictive dis-
tribution at point x given observed data Dt = {(xi, yi)}ti=1. We denote the predictive mean and
variance as:

µt(x) = Eqθ [y|x, Dt], σ2
t (x) = Varqθ [y|x, Dt]

Reference GP class & Information Gain. For a kernel k and noise σ2, define the (maximal)
information gain

γT = max
A:|A|=T

I(yA; fA) = max
A

1

2
log det(I + σ−2KA). (1)

In GP-UCB, cumulative regret admits the canonical bound RT = O(
√
TβT γT ), with βT a confi-

dence parameter depending on δ and the RKHS norm ∥f∥k (Srinivas et al., 2010).

A.2 ASSUMPTIONS

Assumption 1 (TabPFN Approximation Quality). Based on the empirical results in Müller et al.
(2022) and the statistical analysis from Nagler (2023) showing that TabPFN can approximate GP
posteriors with high fidelity, there exists a constant Capprox > 0 such that for any dataset Dt and
query point x ∈ X: ∣∣µt(x)− µGP

t (x)
∣∣ ≤ Capproxϵapprox(t)∣∣σ2

t (x)− (σGP
t (x))2

∣∣ ≤ Capproxϵapprox(t)

where µGP
t (x) and σGP

t (x) are the corresponding GP posterior mean and standard deviation, and
ϵapprox(t)→ 0 as the TabPFN training data size increases.

Assumption 2 (Bounded Function Complexity). The true function f has bounded RKHS norm:
∥f∥k ≤ B for some reproducing kernel k and constant B > 0.

Assumption 3 (Gradient-Informed Subspace). Following Li et al. (2025; 2024), let µ be a reference
measure (e.g., standard Gaussian) and define the diagnostic/Fisher matrix

H = Eπ

[
∇ log ℓ(X)∇ log ℓ(X)⊤

]
, with dπ(x) ∝ ℓ(x) dµ(x).

Let Vr ∈ RD×r contain the top-r eigenvectors of H . The best r-dimensional ridge approximation
π̃r to π enjoys a certified error

Dα(π∥π̃r) ≤ Jα

(
Cα(µ)

D∑
k=r+1

λk(H)

)
,

for all α ∈ (0, 1], where λk(H) are the eigenvalues of H in descending order and Cα(µ) depends
only on µ. Thus choosing Vr by Fisher-eigenvectors minimizes a tight majorant of the divergence,
with sharper (dimensional) certificates available for α = 1 (KL). We use this to quantify subspace
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truncation error. The certificate above follows from φ-Sobolev / logarithmic-Sobolev bounds that
(i) deliver the same Vr for KL and Hellinger and (ii) upper-bound the divergence by the tail trace∑

k>r λk(H) (Li et al., 2024). Dimensional LSI further sharpens the KL majorant and yields match-
ing minorants at the minimizer (Li et al., 2025).

In BO the exact score ∇ log ℓ(x) is unavailable, so we adopt the widely used empirical-Fisher ap-
proximation based on surrogate gradients g(x) (Pascanu & Bengio, 2013; Kunstner et al., 2019;
Eschenhagen et al., 2025), setting

H = Eµ[g(x)g(x)
⊤], g(x) := ∇xµm(x)

Prior Fisher-spectral analyses Pennington & Worah (2018); Karakida et al. (2019) and likelihood-
informed subspace theory Zahm et al. (2022) show that the leading eigenvectors of such approximate
Fisher matrices still recover the dominant sensitivity directions, validating the use of H as the GI-
subspace estimator.

Empirical Verifications of Assumption 1 To assess whether the approximation error of TabPFN’s
predictive posterior remains small in the regimes relevant for GIT-BO, we measure the approxi-
mation error between TabPFN’s predictive mean and a GP fitted on the same context set Dt. We
report the average discrepancy ϵapprox(t) across five high-dimensional benchmarks: Ackley 100D,
Rosenbrock 100D, Levy 100D, Dixon-Price 100D, and the 118D Reactive Power Phase problem.
For each benchmark and each data-sample size t ∈ [10, 5000], we evaluate both models on a fixed
candidate grid and compute ϵapprox(t) = MSE(µTabPFN

t , µGP
t ). Figure 6 shows that empirically the

approximation error decreases sharply as the dataset grows — consistent with Assumption 1, where
ϵapprox(t)→ 0 as the context length increases.

Figure 6: Average approximation error ϵapprox(t) between TabPFN and GP predictive means across
five problems (Ackley 100D, Rosenbrock 100D, Levy 100D, Dixon-Price 100D, Reactive Power
Phase 118D). The plot shows the mean-squared difference evaluated on a fixed candidate grid as
the context size t grows from 10 to 5000. The rapid decay demonstrates that TabPFN’s predictive
posterior converges toward the GP surrogate as more data are incorporated, confirming Assumption
1 empirically.

A.3 CONFIDENCE BOUNDS FOR TABPFN-BASED SURROGATES

Define:

βt = 2B2 + 2 log

(
π2t2

3δ

)
+ 2C2

approxϵ
2
approx(t)

Lemma 1 (TabPFN-UCB Confidence Bounds). With probability at least 1 − δ, for all t ≥ 1 and
x ∈ X :

|f(x)− µt(x)| ≤
√

βtσt(x)

This follows the martingale concentration approach of Srinivas et al. (2010) but includes an ad-
ditional approximation error term Capproxϵapprox(t) to account for the difference between TabPFN
and the ideal GP posterior. The bounded RKHS norm assumption ensures the function lies in a
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well-defined function class, while the approximation quality assumption controls the deviation from
GP-based confidence bounds.

A.4 SUBSPACE INFORMATION GAIN ANALYSIS

To analyze GIT-BO’s regret, we must characterize how much information can be gained about the
objective function when optimization is restricted to the gradient-informed subspace.

Definition 1 (Subspace Information Gain). For a subspace S ⊂ X and set of points A =
{x1, . . . ,xT } ⊂ S, the subspace information gain is:

γT,S := max
A⊂S,|A|=T

I(yA; fA)

where I(yA; fA) = 1
2 log |I + σ−2KA| is the mutual information between observations yA and

function values fA.

Lemma 2 (Subspace Approximation Error). Under Assumption 3, the approximation error for re-
stricting optimization to the gradient-informed subspace Vr satisfies:

DKL(πfull∥πr) ≤
1

2

d∑
k=r+1

λk(H)

where πfull represents the target distribution in the full space and πr is its approximation in the
subspace Vr.

Lemma 3 (Subspace Information Gain Bound). Under Assumption 3, the information gain in the
gradient-informed subspace Vr satisfies:

γT,Vr
≥ αγT,full − CsubT

1/2

where γT,full is the information gain in the full space and Csub is a constant depending on the subspace
construction quality. This follows from Assumption 3, which ensures that the Fisher eigenvectors
Vr minimize a Sobolev-type divergence between the full distribution and its subspace projection.
The information gain in Vr is therefore lower-bounded by the variation captured in the retained
eigenvalues, linking subspace structure directly to the information-theoretic quantity.

A.5 ACQUISITION FUNCTION ANALYSIS

We adopt the Upper Confidence Bound (UCB) acquisition, a standard principle in Bayesian opti-
mization (Srinivas et al., 2010). At each iteration t, given a predictive posterior with mean µt(x)
and standard deviation σt(x), UCB selects:

xt = argmax
x∈X

αt(x), αt(x) = µt(x) + βtσt(x),

where βt > 0 balances exploration and exploitation.

We instantiate βt in two equivalent ways:

Definition 1 (Sampling-UCB). Draw S i.i.d. samples ỹt(x) ∼ N (µt(x), σ
2
t (x)) and set

αt(x) = max
i=1,...,S

ỹi(x).

By extreme-value theory, the corresponding exploration parameter satisfies

βt ≈ Φ−1

(
1− 1

S

)
,

which asymptotically behaves as
√
2 logS with standard corrections (Srinivas et al., 2010).
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Definition 2 (Quantile-UCB fro (Müller et al., 2023)). For a one-sided Gaussian quantile q ∈ (0, 1),
set

βt = Φ−1(q),

where Φ−1 is the standard normal inverse CDF. Then

αt(x) = Quantileq
[
N (µt(x), σ

2
t (x))

]
.

This corresponds to selecting the q-th posterior quantile, with higher q producing more exploration.
In code, this is parameterized by a “rest probability” prest, where q = 1− prest.

Lemma 4 (Equivalence). Quantile-UCB with quantile level q = 1− 1/S is asymptotically equiva-
lent to Sampling-UCB with S posterior draws. Both implement the same exploration policy, differ-
ing only in whether the quantile is computed analytically or via sampling.

Remark A.5. In practice, we adopt the sampling formulation of UCB, which introduces mild
stochasticity by drawing finite posterior samples. This choice yields trajectories that may vary more
across runs, akin to the exploratory effect of UCB. By contrast, the quantile formulation produces a
deterministic acquisition rule given the posterior, leading to more stable and less variable optimiza-
tion behavior. We provide an ablation of both variants in Appendix B.2. Presenting the two side by
side highlights their close equivalence while ensuring transparency in how exploration is controlled.

A.6 MAIN REGRET BOUNDS

We now establish our main theoretical result for GIT-BO’s regret performance.

Theorem 1 (GIT-BO Regret Bound). Under Assumptions 1-3, let δ ∈ (0, 1) and run GIT-BO with
confidence parameter:

βt = 2B2 +
√

2 logS + 2 log

(
π2t2

3δ

)
+ 2C2

approxϵ
2
approx(t)

Then with probability at least 1− δ, the cumulative regret after T iterations satisfies:

RT ≤
√
C1TβT γT,Vr +

T∑
t=1

(1− α)
√
βtσ2

t (xt) + TCapproxϵapprox(T )

where C1 = 8/ log(1 + σ−2) and the second term accounts for subspace approximation error.

A.7 INFORMATION GAIN BOUNDS FOR HIGH-DIMENSIONAL SUBSPACES

Lemma 5 (Polynomial Information Gain). For common kernel functions (RBF, Matérn) restricted
to an r-dimensional subspace where r ≪ D, the information gain satisfies:

γT,Vr
= O(r(log T )r+1)

This represents a significant improvement over the full-dimensional case where γT,full =
O(D(log T )D+1). This follows the spectral analysis of kernel functions in lower-dimensional
spaces, adapting the techniques of Srinivas et al. (2010) to the subspace setting.

A.8 CONVERGENCE RATE

Combining our results, we obtain the following convergence guarantee:

Corollary 1 (Convergence Rate). Under the conditions of Theorem 1, if the TabPFN approximation
error satisfies ϵapprox(t) = O(t−ξ) for some ξ > 1/2, then:

lim
T→∞

RT

T
= 0
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with convergence rate RT = O(
√
rT (log T )r+2) when r ≪ D.

This demonstrates that GIT-BO achieves sublinear regret with dimension-independent rates when
the effective dimensionality r is small, addressing the curse of dimensionality that plagues standard
GP-based methods.

B ABLATION STUDIES

B.1 WHY r = 10? — PARAMETER SWEEP ABLATION OF GI SUBSPACE’S PRINCIPAL
DIMENSION r

To evaluate the sensitivity of GIT-BO to the dimensionality of the gradient-informed active subspace,
we conducted a parameter sweep across both fixed subspace dimensions (r = 5, 10, 15, 20, 40) and
variance-explained criteria (92.5%, 95%, 97.5%) for a subset of four problems. The results, summa-
rized in Figure 7 and Table 1, highlight two consistent trends. First, very high-dimensional subspaces
(e.g., r = 40) exhibit clear performance degradation, indicating that overly broad subspaces dilute
the effectiveness of the gradient-informed search direction. Second, low- to moderate-dimensional
subspaces and variance-based selections generally perform better, though the best choice of r varies
across problem families. For example, r = 5 yields the top average rank among different rs, while
variance-based selection at the 92.5% and 95% thresholds achieves the top overall results.

To ensure fairness and avoid additional hyperparameter tuning, we fixed r = 10 for all benchmarks
reported in the main text. This choice provides a stable middle ground, neither overly restrictive
nor excessively large, while still yielding competitive performance across diverse problem classes.
Notably, adaptive variance-based selection strategies further improve performance on average, un-
derscoring the potential benefit of problem-dependent tuning, but we leave such extensions for future
work. Overall, these ablation results confirm that GIT-BO remains robust to the specific choice of r,
with consistent advantages over GP-based baselines even under a fixed setting.

Figure 7: Performance of GIT-BO under different gradient-informed subspace dimensions (r) and
variance-explained criteria. Median optimization regret across 20 trials is shown, with shaded
regions denoting 95% confidence intervals. High-dimensional subspaces (e.g., r = 40) consis-
tently degrade performance, while smaller fixed dimensions and adaptive variance-based selections
achieve stronger results. We fix r = 10 across all benchmarks in the main text for fairness, as it
provides a balanced and competitive setting without tuning.

Table 1: Average performance rank of GIT-BO across different fixed subspace dimensions r and
variance-based adaptive selections.

Selection of r Average Rank

92.5% Variance 1.75
95% Variance 2.25

97.5% Variance 3.5
r = 5 3.25
r = 10 5.5
r = 15 5.5
r = 20 6.35
r = 40 8.0
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B.2 WHY SAMPLING-BASED UCB? — ABLATION STUDY ON DIFFERENT β FACTOR OF UCB
ACQUISITION FUNCTION

We compared two equivalent parameterizations of UCB: (1) quantile-UCB, which uses the analytic
Gaussian quantile, and (2) sampling-UCB, which approximates it via the maximum over S posterior
draws. Both induce similar exploration levels for α = 1−1/S, but differ in that sampling introduces
mild stochasticity. Our ablation results in Figure 8 and Table 2 shows that moderate exploration
(β ≈ 1.86 − 1.96, i.e., quantile 95% - 97.5% or sampling with S ≈ 250) achieves the best ranks.
Larger β values (S = 512, 1024) lead to over-exploration and degraded performance.

In the main body of the paper we pre-committed to a single, conservative default (S =512) across
all 60 tasks and 500 iterations per task. We did this deliberately for three reasons: 1. Fairness and
reproducibility: Using one global setting avoids per-benchmark tuning (or hindsight “cherry pick-
ing”) and makes results easy to reproduce and audit across a large suite. 2. Isolating the algorithmic
contribution: We wanted to attribute gains to the proposed GI subspace + TabPFN framework rather
than to problem-specific hyperparameter search. A fixed β keeps the evaluation focused on the
method, not tuning effort. 3. Practicality and compute parity: Sweeping β across 60 problems ×
500 iterations would multiply the already substantial compute; fixing a robust default is closer to
how one would deploy the method under realistic constraints.

Despite this conservative choice (which the ablation shows is not the best), GIT-BO still outper-
formed all baselines in our main results. The ablation simply reveals additional headroom: modestly
smaller β values improve performance further. Designing an automatic β adaptation (e.g., schedule
or data-driven calibration) is promising future work, but is orthogonal to the core contribution and
therefore left out of the main comparison.

β=2.19 (S=256) β=2.32 (S=512) β=2.45 (S=1024)β=1.65 (q=95%) β=1.96 (q=97.5%)

Figure 8: Ablation study of UCB with different exploration factors (β) using quantile- and sampling-
based parameterizations. Moderate β values (quantile 95–97.5% or sampling S = 250) yield the
best performance, while larger β (e.g., S = 512, 1024) leads to over-exploration and weaker results

Table 2: Average performance rank of GIT-BO across different β from quantile-based and sampling-
based UCB.

Selection of β Average Rank

β = 1.65 (q = 95%) 2.0
β = 1.96 (q = 97.5%) 2.25
β = 2.19 (S = 256) 2.75
β = 2.32 (S = 512) 3.25
β = 2.45 (S = 1024) 4.75

B.3 WHY UNIFORM SAMPLING IN THE GRADIENT-INFORMED SUBSPACE? — ABLATION
STUDIES OVER GI SUBSPACE SAMPLING

We conducted an ablation study to evaluate the impact of three different GI subspace sampling
methods on GIT-BO’s optimization performance: uniform (default), random, and Sobol sampling.
Figure 9 shows the comparative convergence results.
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Our findings indicate mixed results without a universally optimal sampling strategy. Uniform
sampling generally provided stable and reliable convergence, while random sampling occasionally
achieved better outcomes but with greater variance, similar as Sobol sampling. These observations
highlight the potential for adaptive strategies in selecting GI subspace sampling methods based on
problem-specific characteristics, representing an important area for future exploration.

Figure 9: Comparative convergence of uniform, random, and Sobol sampling strategies within the GI
subspace on selected benchmarks. Shaded regions represent 95% confidence intervals over 20 trials.
Random and Sobol sampling can achieve similar or superior performance than uniform sampling GI
subspace in engineering problems, while struggling at the synthetic tasks.

B.4 WHY GI SUBSPACE? — ABLATION STUDY ON APPLYING SUBSPACE IDENTIFICATION
ON TABPFN FOR HIGH-DIMENSIONAL BO

We compare using vanilla TabPFN v2 with three other subspace identification methods:

1. TabPFN: Using vanilla TabPFN v2 for BO without any subspace identification method.

2. TabPFN + TR: TabPFN v2 BO with Trust Region (TR) (Eriksson et al., 2019; Papenmeier et al.,
2022).

3. TabPFN + BAxUS Projection: TabPFN v2 BO with the SOTA method that combined subspace
projection method with TR from BAxUS (Papenmeier et al., 2022).

4. TabPFN + GI-Subspace (GIT-BO): our GIT-BO algorithm with TabPFN v2 and GI-subspace
method

With other hyperparameters, acquisition function, and initial samples remains fixed across the tested
algorithms, we run each algorithm 10 time and plot the average regret results in Figure 10. We ob-
serve that though TR and BAxUS contribute improvements to the algorithm performance, where
BAxUS projection improve the performance significantly on the synthetic problems. However, GI-
subspace identification still outperform both other methods in the optimality of final result, maintain-
ing its leading performance in both synthetic and real-world problem, confirming that our gradient
subspace aligned exploration is more effective than local restriction.

We believe that the reason why TR and BAxUS projection is not as effective as GI-subspace is due
to the inevitable implementation differences of TR for GP- and TFM-based BO. For our TabPFN +
TR calculation, since TabPFN does not have kernel structure as GP, we can only equally weighted
the TR hypercube search area but not weighted based on the GP kernel length scales as designed in
the original algorithm for the TR construction (Eriksson et al., 2019). This is the main reason why
we explore alternatives than the existing SOTA subspace identification method.

B.5 WHY UCB? — ABLATION STUDY ON DIFFERENT ACQUISITION FUNCTIONS

We tested GIT-BO on two different acquisition functions: Expected Improvement (EI) and Upper
Confidence Bound (UCB, default acquisition function for GIT-BO). The average regret result from
10 trial runs on the five problems with all combinations of different subspace embedding methods
listed in B.4 are shown in Figure 11.

The ablation result highlights that between acquisition functions, UCB outperforms EI across all
settings by minor difference, consistent with prior findings that EI suffers numerical vanishing in
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Figure 10: Ablation on different subspace identification strategies: Trust Region (TR), BAxUS
Projection, and GI-subspace (our method). Adding TR and BAxUS projection provides less perfor-
mance gains compared to GI-subspace used by GIT-BO with the best overall performance.

high dimensions Ament et al. (2023) and that UCB remains more stable under such conditions Xu
et al. (2025). Hence, GIT-BO adopts UCB and GI-subspace identification as its default configuration
for reliable high-dimensional optimization with TabPFN v2.

Figure 11: Ablation on two acquisition functions: EI and UCB. UCB-based methods consistently
outperform EI, validating GIT-BO’s choice of UCB + GI (red line) as the main setup.

B.6 WHY xREF = x̄OBS? — ABLATION STUDY ON xREF = x̄OBS VS. xREF = xargmax yOBS

Existing high-dimensional BO methods such as BAxUS and TuRBO center their local search trust
regions on the incumbent xargmax yobs , where we get the best observation so far (Eriksson et al., 2019;
Papenmeier et al., 2022). To assess whether GIT-BO should follow the same choice, we compare
two reference points xref for generating GI-subspace candidates: the final incumbent xargmax yobs

versus the centroid of observed data x̄obs.

Across the average regret plot of six representative benchmarks over 10 trial runs shown in Figure 12,
using the incumbent systematically worsens regret and slows convergence, and thus we emperically
select x̄obs as our reference point. We hypothesize that the centroid offers a more stable anchor
by avoiding over-concentration around a incumbent stuck in local optimal location and by keeping
candidate generation within the well-sampled region where TabPFN’s in-context predictions are
most reliable, which is consistent with the observations of TabPFN’s locality and imbalance analysis
in recent work (Ye et al., 2025; Nejjar et al., 2024).

B.7 WHY NINIT = 200? — ABLATION STUDY ON DIFFERENT NINIT

Our choice of Ninit = 200 in the main paper follows the dimensionality-aware scaling used in prior
high-dimensional BO work. For example, TuRBO increases its Ninit initialization from 20 (10D
problem) to 50 (12D problem) to 200 (200D problem) (Eriksson et al., 2019). As the number of
initial sample may affect the algorithm performance, we ablate the effect of initialization size by
testing Ninit ∈ {20, 50, 200, 1000} with GIT-BO and the baseline algorithms. The average regret
results from 10 trial runs on the five problems are shown in Figure 13.
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Figure 12: Ablation study comparing two choices of the reference point xref for generating GI-
subspace candidates: the incumbent best observation (xargmax yobs , blue) vs. the centroid of the
observed data (x̄obs, red). Across all six benchmark problems, centering the GI-subspace at the
centroid yields consistently lower regret and faster convergence, empirically supporting our choice
xref = x̄obs in GIT-BO (Ye et al., 2025).

Figure 13 demonstrated that across all initialization sizes, GIT-BO consistently attains the best statis-
tical rank, even in the large-data setting (Ninit = 1000) that favors GP-based competitors and should
disadvantage TabPFN’s amortized inference. Notably, while Vanilla BO and SAASBO are sensitive
to the choice of Ninit, GIT-BO’s performance remains remarkably stable, with only minor variation
across all regimes. To complement these convergence results, Table 3 reports the corresponding
runtime profiles. The runtimes show the same trend: GIT-BO’s computational cost remains nearly
constant across initialization regimes, while the GP-based methods incur substantial overhead as the
initial dataset grows.

Ninit = 20

Ninit = 50

Ninit = 200
(main paper)

Ninit = 1000

Figure 13: Convergence behavior of five BO algorithms under varying initialization sizes. Across
all Ninit = {20, 50, 200, 1000} values, GIT-BO exhibits stable convergence with minimal sensitivity
to initialization size, whereas several GP-based baselines (e.g., Vanilla BO, SASASBO) degrade or
fluctuate noticeably as Ninit changes. The average statistical rank of each algorithm of each Ninit
also shows that GIT-BO remains the top-ranked method across all four regimes.
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Table 3: Average wall-clock time (in seconds) required to complete 500 BO iterations for all al-
gorithms under Ninit = {20, 50, 200, 1000}. These results complement Figure 13 by showing that
GIT-BO maintains stable runtime across initialization scales.

BO Algorithm Ninit = 20
Average Runtime

Ninit = 50
Average Runtime

Ninit = 200
Average Runtime

Ninit = 1000
Average Runtime

GIT-BO 2700 2722 2734 3404
BAxUS 3666 3981 4008 4061
TurBO 430 445 444 1137
Vanilla BO 2708 2557 2708 4650
SAASBO 13406 12617 13870 16663

B.8 WILL FINETUNING TABPFN FURTHER IMPROVE GIT-BO’S PERFORMANCE? —
ABLATION STUDY ON TABPFN VS. FINETUNED TABPFN

Recent work on tabular foundation models consistently shows that continued pre-training or light
task-specific finetuning can improve surrogate accuracy on domain-specialized objectives (Gardner
et al., 2024; Ma et al., 2025; Garg et al., 2025; Grinsztajn et al., 2025). Motivated by these findings,
we investigate whether finetuning TabPFN on each benchmark can further enhance GIT-BO’s per-
formance beyond the frozen-TFM setting. For every problem, we generate 1,000 Latin Hypercube
samples that are strictly excluded from the BO initialization set for avoiding performance gain from
data leakage, and use them as the dataset for finetuning. Following the Real-TabPFN (Garg et al.,
2025) pipeline 1, we continue pre-training TabPFN for 100 epochs on this task-specific dataset, pro-
ducing a separately finetuned surrogate for each benchmark. GIT-BO is then run with these finetuned
models as drop-in replacements for the frozen TabPFN surrogate, evaluating each configuration over
10 independent BO trials and reporting the mean regret curves.

Across all benchmarks, finetuning consistently improves the surrogate’s accuracy and yields uni-
formly stronger optimization curves when inserted into GIT-BO. While the frozen TabPFN already
provides competitive performance, finetuning enables noticeable gains on domain-specific struc-
ture, demonstrating that GIT-BO can further benefit from TFM adaptation when additional data are
available.

Figure 14: Ablation comparing GIT-BO using the default TabPFNv2 surrogate versus a finetuned
TabPFNv2 model. Finetuning on 1,000 task-specific samples consistently improves optimization
performance across synthetic and engineering benchmarks, demonstrating that domain adaptation
can further boost GIT-BO beyond the frozen-TFM setting.

B.9 HOW SENSITIVE IS GIT-BO TO ORIGIN-CENTERED OPTIMA? — ABLATION ON SHIFTED
SYNTHETIC FUNCTIONS (GIT-BO VS. BAXUS)

One concern from previous research is that a synthetic benchmark with an optimum at the origin
could yield free wins for subspace projection methods. The BAxUS paper (Papenmeier et al., 2022)
highlights that its sparse random embeddings contain the global optimum whenever it lies at the
origin, a situation common in synthetic functions such as Ackley, Rastrigin, Powell, and Griewank

1TabPFN finetuning code from Prior Labs
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with their optimum at origin (0, 0, ...)D in our benchmark problems. Thus, BAxUS and methods
with such subspace embedding can exploit these problems and achieve efficient convergence.

In this section, we elaborate mathematically and empirically why this is not a concern for GIT-BO
even though it is also projecting a low-dimensional subspace to the high-dimensional search space.

Mathematically, GIT-BO’s gradient-informed subspace fundamentally differs from BAxUS’s sparse
random embedding. BAxUS constructs a sparse projection matrix S⊤ where each input dimension is
randomly assigned to exactly one target dimension with a random sign. This construction guarantees
that the origin (0, . . . , 0)D maps to the origin in the embedded space, since S⊤0 = 0 regardless of
the random assignment. Consequently, any optimum located at the origin is automatically contained
in BAxUS’s embedded subspace with probability one. In contrast, GIT-BO’s projection is derived
from the empirical Fisher matrix H = Eµ[g(x)g(x)

⊤], where g(x) := ∇xµm(x) are gradients of
TabPFN’s predictive mean. The gradient-informed subspace Vr consists of the top-r eigenvectors
of H , which are determined by the local sensitivity structure of the predictive model conditioned
on observed data Dobs. Critically, Vr is a dense matrix whose structure depends on the gradient
covariance across the observed samples, not on any pre-specified sparse assignment.

Furthermore, GIT-BO generates candidate points via XGI = xref + Vrz, where xref = x̄obs is the
centroid of observed data and z ∼ U([−1, 1]r). This centering at x̄obs does not guarantee that
the origin lies within the explored subspace unless the observed samples themselves are centered
near the origin. Since the Fisher eigenvectors Vr are data-dependent and the reference point tracks
the search trajectory, GIT-BO’s subspace does not systematically favor origin-centered optima by
construction.

Empirically, we evaluate whether if the origin optima affect optimization performance by replicating
Papenmeier et al. (2022)’s experimental protocol from their supplementary material. We evaluate
both BAxUS and GIT-BO with different subspace projection method on shifted versions of five
100D benchmarks:

fShiftedProblem(x) = fProblem(x+ δ), δi ∼ U(xLB, xUB),

where Problem ∈ {Ackley, Griewank, Powell, Rastrigin, Rosenbrock}D=100, U is a uniform distri-
bution, and xLB, xUB are the lower bound and upper boud of the search space. In addition to the
problems with optima at origin (0, 0, ...)D (Ackley, Rastrigin, Powell, and Griewank), we included
Rosenbrock with optima at (1, 1, ...)D for a harder shifted problem.

Figure 15 shows that even with coordinate shifts that displace the optimum away from the origin,
GIT-BO consistently achieves lower regret than BAxUS across all five benchmarks. This demon-
strates that GIT-BO does not rely on “free wins” from origin-centered problem structure, confirming
that its gradient-informed subspace mechanism is robust to optimum location.

Figure 15: Performance of GIT-BO vs. BAxUS on shifted 100D synthetic benchmarks; GIT-BO
consistently achieves lower regret despite coordinate shifts that displace the optimum away from the
origin.

C EXPERIMENTAL ANALYSIS ON GRADIENT-INFORMED ACTIVE SUBSPACE
IDENTIFICATION

A central question for gradient-informed (GI) subspace identification is whether it can reliably re-
cover the intrinsic dimensionality of a problem when the objective is embedded in high dimen-
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sions. In principle, eigenvalue thresholds on gradient covariance spectra might fail—oscillating
around spurious directions or overestimating dimensionality—unless the surrogate provides suffi-
ciently smooth and informative gradients. We were therefore curious to test whether GIT-BO’s GI
subspace mechanism can autonomously identify the correct intrinsic dimension or not.

To probe this, we evaluate on Branin (d=2 embedded in 100D), Ackley (d=3 embedded in 100D),
and Levy (d=3 embedded in 200D). GIT-BO with TabPFN surrogates consistently auto-selects a
subspace dimension r (via a 95% variance threshold on the gradient covariance spectrum) that con-
verges to the ground-truth d after∼50 iterations, while simultaneously reducing regret. These results
in Figure 16 suggest that TabPFN provides a smooth and informative gradient field that allows the
GI subspace to identify the correct intrinsic structure of a problem, enabling efficient search in that
space.

Figure 16 also confirms the generalizability of GI-subspace for GP surrogate. We utilize the
Vanilla GP BO’s setting of GP 2 Hvarfner et al. (2024) for this experiment with BoTorch’s
propagate grads 3 setting for calculating the gradient from GP model. We then implemented
GI subspace identification using this output GP gradients (∇xµ

GP
m (x)). We see that GI subspace on

GP is similarly effective since it converges to the correct d for Branin (d = 2) and Ackley (d = 2),
but having |r − d| = 1 for the Levy (d = 3) problem, and the average regret is indeed converg-
ing towards the optimal value. We hypothesize that this behavior is due to the fact that the 95%
explained-variance threshold not being universally suitable for GPs or this problem. Future work
can be further investingating the best auto selection mechanism of r for GP-based BO.

Figure 16: GI subspace behavior on high-dimensional embeddings. Top: Median (average) re-
gret (20 trials, 95% CI). Bottom: Auto-selected subspace dimension r under a 95% variance rule.
TabPFN+GI converges to the correct intrinsic dimension (r → d) with strong regret reduction.
GP(EI)+GI also shows the convergence of intrinsic dimension in most cases, indicating the general-
izability of GI-subspace method. The instability of GP(EI)+GI’s r at the early stage of search could
be stemmed from the fixed 95% for r selection (maybe 92% or 97.5% are better for Levy).

D PERFORMANCE AND RUNTIME RESULTS ANALYSIS ON 60 BENCHMARKS

We report comprehensive optimization outcomes across all benchmark problems considered in the
main paper. Figure 17 presents regret trajectories on all 60 benchmarks, and Figure 18 compares
regret versus runtime.

2Changes to default BoTorch covariance and likelihood modules #2451
3botorch.settings.propagate grads
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Overall, GIT-BO exhibits consistently strong performance across diverse high-dimensional prob-
lems, with clear advantages on most engineering benchmarks (with the exception of the Rover fam-
ily). This highlights its ability to balance convergence speed and final solution quality relative to
other state-of-the-art (SOTA) methods.

For synthetic problems, GIT-BO maintains robustness as dimensionality increases, whereas compet-
ing methods degrade more noticeably. Nevertheless, there are cases where GIT-BO underperforms
across all D (e.g., Styblinski–Tang and Michalewicz), consistent with the “No Free Lunch” theo-
rem (Wolpert & Macready, 1997). We also observe plateauing in the convergence of both BAxUS
and GIT-BO. For GIT-BO, this behavior is aligned with the known bias plateau of TabPFN predic-
tors under increasing sample sizes (Nagler, 2023). The similar plateau in BAxUS suggests a broader
phenomenon affecting probabilistic surrogates that merits further investigation.

On real-world engineering problems, GIT-BO ranks first overall, despite poor performance on the
Rover tasks, again reinforcing “No Free Lunch.” Interestingly, BAxUS, which dominates synthetic
benchmarks, drops to fourth place on engineering problems. This discrepancy underscores the gap
between synthetic and real-world benchmarks and motivates the need for more optimization bench-
mark design and evaluation.

E HIGH-DIMENSIONAL BENCHMARK ALGORITHMS IMPLEMENTATION
DETAILS

We benchmark GIT-BO against four high-dimensional BO methods that GPU can also accelerate
compute using PyTorch, including TURBO (Eriksson et al., 2019), Vanilla BO (Hvarfner et al.,
2024), BAxUS (Papenmeier et al., 2022), and SAASBO (Eriksson & Jankowiak, 2021).

• TURBO: The implementation is taken from BoTorch’s GitHub repository (Balandat
et al., 2020) (link: https://github.com/pytorch/botorch/blob/main/
tutorials/turbo_1/turbo_1.ipynb, license: MIT license, last accessed: Sep
21st, 2025)

• Vanilla BO: The implementation is taken from (Balandat et al., 2020) BoTorch ver-
sion 13’s GitHub repository (link: https://github.com/pytorch/botorch/
discussions/2451, license: MIT license, last accessed: Sep 21stt, 2025)

• BAxUS: The implementation is taken from BoTorch’s GitHub repository (Balandat
et al., 2020) (link: https://github.com/pytorch/botorch/blob/main/
tutorials/baxus/baxus.ipynb, license: MIT license, last accessed: Sep 21st,
2025)

• SAASBO: We use the SAASBO-MAP version of the algorithm for comparison. The
code is taken from Xu et al. (2025) (link: https://github.com/XZT008/
Standard-GP-is-all-you-need-for-HDBO/ commit b60e1c6, license: no
license, last accessed: Sep 21st, 2025) where they implemented the MAP estimation of
SAASBO based on the original paper (Eriksson & Jankowiak, 2021), with all the hyperpa-
rameter settings following precisely the same as the original paper. The reason for not using
SAASBO-NUT is due to our computational resource limitations. We set a fixed maximum
time of 10000 seconds for each trial to run, since running all benchmarking experiments
takes roughly 72 million compute hours. Unfortunately, SAASBO-NUT can only run∼310
iterations given this time budget, making it unfeasible for comparison with other algorithms
that can finish running 500 iterations under 10000 seconds.

We use Botorch v0.12.0 for all algorithms mentioned above. The environment setups are detailed in
the provided code zip file.

F BENCHMARK PROBLEMS IMPLEMENTATION DETAILS

The source and license details of our benchmark problems are provided in the following paragraphs.
We restrict our evaluation to problems with well-maintained, publicly available code to ensure re-
producibility and stability across our benchmark framework. Benchmarks that require complex or
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Figure 17: Average (median) regret vs. iterations (# function evaluations) with a budget of 500
iterations for all benchmarks. Average regrets are illustrated by solid lines, with shaded bands
denoting 95% confidence intervals. The y-axis is log-scaled. GIT-BO finds the optimal value for 29
out of the total 60 problems. 30
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Figure 18: Average (median) regret vs. algorithm runtime (seconds) records of running 500 itera-
tions for all benchmarks. Average regrets are illustrated by solid lines, with shaded bands denoting
95% confidence intervals. Both axes are log-scaled.
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incompatible environment configurations are not included in the present study. Looking ahead, we
advocate for a standardized collection of benchmarks with actively maintained codebases to facili-
tate broader adoption and more rigorous comparisons in future research. If this paper is accepted,
we will release our Python benchmark library on PyPI alongside the publication.

Synthetic Problems: The implementations for the nine synthetic functions are taken from
Botorch (Balandat et al., 2020) (link: https://github.com/pytorch/botorch/blob/
main/botorch/test_functions/synthetic.py, license: MIT license, last accessed:
May 1st, 2025). The bounds of each problem are the default implementation in Botorch. De-
tailed equations for each problem can be found here: https://www.sfu.ca/˜ssurjano/
optimization.html.

Power System Problems: We examine a subset of six problems, specifically those with design
spaces exceeding 100 dimensions, from the CEC 2020 Real World Constrained Single Objective
problems test suite (Kumar et al., 2020) (link: https://github.com/P-N-Suganthan/
2020-RW-Constrained-Optimisation, license: no license, last accessed: May 1st, 2025).
The code is initially in MATLAB, and we translate it into Python, running pytest to ensure the
implementations are correct. While these problems incorporate equality constraints (hj(x)), they
are transformed into inequality constraints (gj(x)) using the methodology outlined in the original
paper (Kumar et al., 2020), as constraint handling is not the primary focus of this research. These
transformed constraints are subsequently incorporated into the objective function f(x) as penalty
terms.

gj(x) = |hj(x)| − ϵ ≤ 0 , ϵ = 10−4 , j = 1 ∼ C

fpenalty(x) = f(x) + ρ

C∑
j=1

max(0, gj(x))

We set a different ρ penalty factor for each problem, respectively, to make the objective and con-
straint values have a similar effect on fpenalty(x).

Table 4: Penalty Transform Factors of Benchmark Problems from CEC 2020ρ
CEC’s Problem Index Our Naming ρ

34 Reactive Power Phase 0.01
35 Active Power (AP) Loss 0.0002
36 Reactive Power Loss 0.001
37 Power Flow AP 0.04
38 Power Fuel Cost 0.02
39 Power AP+Fuel 0.04

Rover: The implementation is taken from Wang et al. (2018) (link: https://github.com/
zi-w/Ensemble-Bayesian-Optimization, license: MIT license, last accessed: May 1st,
2025).

Car(x1) Mopta: The MOPTA08 is originally proposed by Jones (2008). The executable used in
this study are taken from the paper Papenmeier et al. (2022)’s personal website (link: https://
leonard.papenmeier.io/2023/02/09/mopta08-executables.html, license: no
license, last accessed: May 1st, 2025). The MOPTA08 Car’s penalty transformation follows the
formation of Eriksson & Jankowiak (2021)’s supplementary material of a one-car car crash design
problem.

Car(x2) and Car(x3) Mazda Cars Benchmark Problems: The implementation is taken
from Kohira et al. (2018) (link: https://ladse.eng.isas.jaxa.jp/benchmark/, li-
cense: no license, last accessed: May 1st, 2025). The Mazda problem has two raw forms: a 4-
objectives problem 148D optimizing a two-car car design problem (Car(x2)) and a 5-objectives
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222D problem three-car car design problem (Car(x3)), and both of them have inequality constraints.
For both problems, we equally weight each objective to form a single objective and perform a penalty
transform:

fmultiobj penalty(x) =
1

N

N∑
i=1

f(x) + ρ

C∑
j=1

max(0, gj(x))

where N is the number of objectives, C is the number of inequality constraints, and we use ρ = 10
for both variants of Mazda problem.

Walker Policy: The problem is originally a locomotion task from MuJoCo (Multi-Joint dynamics
with Contact) physics engine (Todorov et al., 2012) (Walker-2D), one of the most popular Rein-
forcement Learning (RL) benchmarks. The implementation of this RL policy search problem is
directly taken from Wang et al. (2020) (link: https://github.com/facebookresearch/
LA-MCTS/tree/main/example/mujuco, license: CC-BY-NC 4.0 license, last accessed:
May 1st, 2025).

Table 5 summarizes the type of problems and their respective tested dimensions.

Table 5: High-Dimensional Benchmark Problems
Problems Source Type Dimension (D) Tested

Ackley Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Dixon-Price Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Griewank Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Levy Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Michalewicz Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Powell Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Rastrigin Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Rosenbrock Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Styblinski-Tang Botorch (Balandat et al., 2020) Synthetic 100, 200, 300, 400, 500
Reactive Power Phase CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 118
Active Power (AP) Loss CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 153
Reactive Power Loss CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 158
Power Flow AP CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 126
Power Fuel Cost CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 126
Power AP+Fuel CEC2020 Benchmark Suite (Kumar et al., 2020) Real-World 126
Rover Previous BO studies (Wang et al., 2018) Real-World 100, 200, 300, 400, 500
MOPTA08 CAR Previous BO studies (Papenmeier et al., 2022) Real-World 124
MAZDA Mazda Car Bechmark (Kohira et al., 2018) Real-World 222
MAZDA SCA Mazda Car Bechmark (Kohira et al., 2018) Real-World 148
Walker Policy Mujuco (Todorov et al., 2012; Wang et al., 2020) Real-World 102

G ADDITIONAL IMPLEMENTATION DETAILS

G.1 HARDWARE AND OPERATING SYSTEM

Due to the large number of benchmark problems and random seeds, the experiments are conducted
in parallel on a distributed server with nodes of the same compute spec: a node with 22 Intel Xeon
Platinum 8480+ CPUs cores and 1 NVIDIA H100 GPUs. All experiments were conducted on a
GNU/Linux 6.5.0-15-generic x86 64 system running Ubuntu 22.04.3 LTS as the operating system,
ensuring a consistent computational environment across all benchmark tests. As for the environment,
we use BoTorch v0.12.0 and PyTorch 2.6.0+cu126 for all underlying optimization frameworks for
the benchmark algorithms except GIT-BO.

G.2 GIT-BO ALGORITHM IMPLEMENTATION DETAILS

The GIT-BO algorithm was implemented using Python 3.12 with the TabPFN v2.0.6 imple-
mentation and model (link: https://github.com/PriorLabs/TabPFN and https://
huggingface.co/Prior-Labs/TabPFN-v2-reg, license: Prior Lab License (a derivative
of the Apache 2.0 license (http://www.apache.org/licenses/))).
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Would making TabPFN differentiable hurt the performance? Since there is no stable release
of a TabPFN v2 code that allows full model differentiation as far as we know, we get rid of some
marginal performance boosting numpy code in the official TabPFN v2 code (e.g., ensembling of 8
TabPFN v2 for increasing the accuracy marginally 4) or rewrite the numpy-based operations (e.g.,
numerical transformations 5) to PyTorch code into a single model TabPFN v2 in complete PyTorch
code that allows us to use torch.backward() for gradient calculations. This change results in
our implementation as faster inference speed due to the full GPU parallelization of using PyTorch
and getting rid of the default n estimator=8 TabPFN v2 eight ensemble calculation (we use
n estimator=1 with a fixed standardize transformation), but suffers from performance accuracy
degradation as presented in Figure 19 without transformation permutations with ensembling. That
said, the GIT-BO method would have even better performance if, in the future, TabPFN v2 releases
a differentiable option.

Figure 19: Comparison of TabPFN v2 and our implementation of GIT-BO TabPFN v2 across in-
creasing problem dimensions. Left: inference time (seconds) grows substantially for TabPFN v2
due to ensemble evaluations, while GIT-BO’s PyTorch implementation achieves consistent GPU-
accelerated speedups. Right: mean squared error (MSE) highlights the accuracy trade-off, where
eliminating TabPFN’s default ensemble (n estimator=8 → 1) leads to modest degradation. Overall,
GIT-BO achieves faster inference with competitive accuracy, demonstrating the benefits of differen-
tiable integration of TabPFN into BO pipelines.

H LLM USAGE STATEMENT

We acknowledge the use of LLMs (ChatGPT, Claude, and Gemini) only for polishing the writing of
this paper.

4https://github.com/PriorLabs/TabPFN/blob/main/src/tabpfn/preprocessing.py
5https://github.com/PriorLabs/TabPFN/blob/main/src/tabpfn/preprocessors/adaptive quantile transformer.py
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