

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GIT-BO: HIGH-DIMENSIONAL BAYESIAN OPTIMI- ZATION USING TABULAR FOUNDATION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Bayesian optimization (BO) struggles in high dimensions, where Gaussian-process surrogates demand heavy retraining and brittle assumptions, slowing progress on real engineering and design problems. We introduce GIT-BO, a Gradient-Informed BO framework that couples TabPFN v2, a tabular foundation model (TFM) that performs zero-shot Bayesian inference in context, with an active-subspace mechanism computed from the model’s own predictive-mean gradients. This aligns exploration to an intrinsic low-dimensional subspace via a Fisher-information estimate and selects queries with a UCB acquisition, requiring no online retraining. Across 60 problem variants spanning 20 benchmarks—nine scalable synthetic families and ten real-world tasks (e.g., power systems, Rover, MOPTA08, Mazda)—up to 500 dimensions, GIT-BO delivers a stronger performance–time trade-off than state-of-the-art GP-based methods (SAASBO, TuRBO, Vanilla BO, BAxUS), ranking highest in performance and with runtime advantages that grow with dimensionality. Limitations include memory footprint and dependence on the capacity of the underlying TFM.

1 INTRODUCTION

Optimizing expensive black-box functions is central to progress in areas such as machine learning (Dewancker et al., 2016; Snoek et al., 2012), engineering design (Kumar et al., 2024; Wang & Dowling, 2022; Zhang et al., 2020; Yu et al., 2025), and hyperparameter tuning (Klein et al., 2017; Wu et al., 2019). Bayesian optimization (BO) has become the method of choice in these settings due to its sample efficiency. Yet, despite its successes, standard BO with Gaussian processes (GPs) is widely viewed as limited to low-dimensional regimes, typically fewer than a few dozen variables (Liu et al., 2020; Wang et al., 2023; Santoni et al., 2024). Scaling BO to hundreds of dimensions remains a critical barrier, where the curse of dimensionality, GP training costs, and hyperparameter sensitivity severely hinder performance. Research has sought to overcome these challenges through three main strategies: (1) Exploiting intrinsic low-dimensional structure, e.g., random embeddings and active subspaces (Wang et al., 2016; Nayebi et al., 2019; Letham et al., 2020; Papenmeier et al., 2022); (2) Additive functional decompositions (Kandasamy et al., 2015; Gardner et al., 2017; Rolland et al., 2018; Han et al., 2021; Ziomek & Ammar, 2023); and (3) Alternative GP priors and trust-region heuristics (Eriksson et al., 2019; Eriksson & Jankowiak, 2021; Hvarfner et al., 2024; Xu et al., 2025). These innovations push the frontier but still face two practical obstacles: (1) prohibitive computation from iterative GP retraining, and (2) brittle reliance on hyperparameter tuning, including determining appropriate intrinsic dimensionality and selecting optimal kernels and priors (Rana et al., 2017; Letham et al., 2020; Eriksson & Jankowiak, 2021).

Recent advances in tabular foundation models (TFMs) provide a radically different surrogate modeling paradigm. Prior-Data Fitted Networks (PFNs) (Müller et al., 2022; Hollmann et al., 2022; Müller et al., 2023) perform Bayesian inference in-context with frozen weights, eliminating kernel re-fitting and delivering 10–100x speedups on BO tasks (Rakotoarison et al., 2024; Yu et al., 2025). These approaches address computational bottlenecks by leveraging pre-trained models’ in-context learning capability, which requires only a single forward pass at inference during optimization. These powerful TFM trained on millions of synthetic prior data can also perform accurate inference without additional hyperparameter tuning for a new domain.

054 The newly released TabPFN v2 (Hollmann et al., 2025) extends this capacity to inputs up to 500
 055 dimensions, opening the door to foundation-model surrogates for high-dimensional BO for the first
 056 time. However, prior analyses have shown that TabPFN v2, despite its strong performance on small-
 057 to medium-scale tasks, exhibits performance degradation in high-dimensional regimes, with recent
 058 work proposing divide-and-conquer or feature-extraction strategies to mitigate these limitations (Ye
 059 et al., 2025; Reuter et al., 2025). This raises a fundamental question: *Are frozen TFM*s sufficient
 060 for high-dimensional optimization, or must they be coupled with classical algorithmic strategies to
 061 succeed?

062 We answer this question by introducing Gradient-Informed Bayesian Optimization using TabPFN
 063 (GIT-BO), a framework that integrates TabPFN v2 with gradient-informed active subspaces. Our
 064 key idea is to exploit predictive-mean gradients available from the frozen model itself to construct
 065 low-dimensional gradient-informed subspaces. This provides algorithmic guidance for adaptive ex-
 066 ploration while preserving the inference-time efficiency of TFM

s. In doing so, GIT-BO aligns foun-
 067 dation models with classical subspace discovery, combining the speed of in-context surrogates with
 068 the structural power needed in extreme dimensions. We perform comprehensive algorithm bench-
 069 marking against the state-of-the-art (SOTA) GPU-accelerated high-dimensional BO algorithms and
 070 test them on commonly used synthetic benchmarks as well as several real-world engineering BO
 071 benchmarks.

072 Our contributions are:

- 074 • We propose GIT-BO, a gradient-informed high-dimensional BO method that adaptively
 075 discovers active subspaces from a frozen foundation model’s predictive gradients, requiring
 076 no online retraining.
- 077 • Across 60 diverse problems comprising synthetic and real-world benchmarks (including
 078 power systems, car crash, and dynamics control), GIT-BO consistently achieves state-of-
 079 the-art optimization quality with orders-of-magnitude runtime savings compared to GP-
 080 based methods.

081 Our results demonstrate that foundation model surrogates, when paired with structural algorithmic
 082 guidance, emerge as viable and competitive alternatives to Gaussian-process-based BO for high-
 083 dimensional problems. Beyond the core algorithm, we conduct extensive ablation and diagnostic
 084 studies to understand when GIT-BO works and why. We (i) compare gradient-informed subspaces
 085 to alternative projections such as trust regions and BAxUS-style embeddings, (ii) study the impact of
 086 acquisition rules (UCB vs. EI), subspace dimension and sampling schemes, and initialization size,
 087 and (iii) evaluate GIT-BO with GP surrogates and with finetuned TabPFN variants. These analyses,
 088 summarized in Section 5 and detailed in Appendices B and C, show that our gains are not due to a
 089 single design choice and that the GI-subspace mechanism improves both TFM- and GP-based BO.

090 2 BACKGROUND

093 2.1 HIGH-DIMENSIONAL BAYESIAN OPTIMIZATION

095 Bayesian optimization is a sample-efficient approach for optimizing expensive black-box functions
 096 where the objective is to find $x^* \in \arg \max_{x \in \mathcal{X}} f(x)$ with $\mathcal{X} = [0, 1]^D$, achieved by sequentially
 097 querying promising points under the guidance of a surrogate model. Gaussian processes (GPs) re-
 098 main the dominant surrogate due to their effective uncertainty-based exploration and exploitation,
 099 but their cubical computational scaling and deteriorating performance with increasing dimensionality
 100 pose serious challenges (Liu et al., 2020; Wang et al., 2023; Santoni et al., 2024; Ramchandran
 101 et al., 2025). Three main families address these issues:

102 **Exploiting intrinsic low-dimensional structure.** A common strategy in high-dimensional BO is
 103 to assume the objective depends on only a few effective directions and to project the search into that
 104 subspace, where GPs perform more reliably. REMBO introduced random linear projections (Wang
 105 et al., 2016), while HESBO (Nayebi et al., 2019) and ALEBO (Letham et al., 2020) refined this
 106 idea using sparse embeddings and Mahalanobis kernels. More recently BAxUS (Papenmeier et al.,
 107 2022), adaptively expands nested subspaces with guarantees. These succeed when a meaningful
 active subspace exists, but degrade when structure is weak or mis-specified.

108 **Additive decompositions.** Another approach assumes the objective decomposes into a sum of
 109 low-dimensional components, enabling separate GP models. Additive GPs use disjoint decomposi-
 110 tions (Kandasamy et al., 2015), while later work allows overlaps (Rolland et al., 2018) or tree-
 111 structured dependencies (Han et al., 2021) to improve tractability. Randomized decompositions
 112 offer a lightweight alternative (Ziomek & Ammar, 2023). These methods improve sample efficiency
 113 since each component is easier to model, but remain limited by the difficulty of discovering the
 114 right decomposition from sparse data and the overhead of structure learning, restricting adoption in
 115 practice (Rolland et al., 2018; Han et al., 2021; Ziomek & Ammar, 2023).

116 **Alternative modeling and trust-region strategies.** Beyond embeddings and additive decomposi-
 117 tions, another line of work rethinks the surrogate itself. SAASBO introduces sparsity-inducing
 118 shrinkage priors on GP length-scales to identify relevant dimensions automatically (Eriksson &
 119 Jankowiak, 2021). TuRBO (Eriksson et al., 2019) replaces global modeling in favor of multiple lo-
 120 cal GP surrogates confined to dynamically adjusted trust regions. More recently, studies show that
 121 vanilla BO with carefully chosen priors (Hvarfner et al., 2024) and standard GPs with robust Matérn
 122 kernels (Xu et al., 2025) can remain competitive in high dimensions.

123 Despite these advances, such methods still depend on high-to-low-dimensional learning, sensitive
 124 kernel choices, or strong structural assumptions—motivating foundation model surrogates as a fun-
 125 damentally different path forward.

127 2.2 TABULAR FOUNDATION MODELS AS BO SURROGATES

128 Tabular foundation models (TFMs) provide amortized Bayesian inference through in-context learn-
 129 ing (ICL). Prior-Data Fitted Networks (Müller et al., 2022; Hollmann et al., 2022; 2025) are
 130 transformer-based TFM trained on massive synthetic priors. At inference time, the observed dataset
 131 of BO evaluations is fed as the context input, which acts as the optimization history. Each new sam-
 132 ple is appended to this context, and a single forward pass produces updated predictive means and
 133 variances. Thus, although PFNs have frozen parameters, their predictions adapt dynamically to the
 134 growing context, mimicking Bayesian updating without retraining (Müller et al., 2023; Rakotoarison
 135 et al., 2024).

136 This approach eliminates iterative kernel re-fitting required by GPs, yielding 10–100× speedups in
 137 various BO applications (Müller et al., 2023; Rakotoarison et al., 2024; Yu et al., 2025). However,
 138 PFNs cannot explicitly tune kernels or priors, which limits their ability to exploit low-rank structures
 139 when dimensionality grows. Moreover, recent analyses reveal that while transformer-based PFNs
 140 exhibit vanishing variance with larger contexts, their bias persists unless explicit locality is enforced,
 141 resulting in degraded accuracy in high-dimensional regimes (Nagler, 2023). Although TabPFN v2
 142 extends the model’s capability to regression tasks with up to 500-dimensional inputs, its predictive
 143 performance still deteriorates without additional structural guidance (Ye et al., 2025; Reuter et al.,
 144 2025). These limitations highlight the necessity of incorporating additional guidance to sustain the
 145 effectiveness of TabPFN v2 in high-dimensional BO.

147 2.3 DISCOVERING EMBEDDED SUBSPACES: CLASSICAL AND DEEP LEARNING 148 PERSPECTIVES

149 Since PFNs are frozen models, discovering intrinsic low-dimensional subspaces is the most viable
 150 high-dimensional BO strategy requiring no fine-tuning of the foundation model. Classical applied
 151 mathematics offers a principled method that we can leverage here. Active subspaces (Constantine
 152 et al., 2014) use gradient covariance to identify influential directions, while likelihood-informed sub-
 153 spaces (Cui et al., 2014) detect posterior-sensitive directions. Spectral approaches such as Laplacian
 154 eigenmaps (Belkin & Niyogi, 2001) learn nonlinear embeddings. Recent advances provide certified
 155 gradient-based dimension-reduction methods, showing that the leading eigenvectors of Fisher-type
 156 gradient covariance matrices recover low-dimensional, high-information subspaces (Pennington &
 157 Worah, 2018; Karakida et al., 2019; Zahm et al., 2022; Li et al., 2024; 2025). In contrast, deep learn-
 158 ing methods typically learn mappings into latent manifolds, e.g., variational autoencoders designed
 159 for BO (Tripp et al., 2020) or intrinsic-dimension analyses of neural representations (Li et al., 2018;
 160 Ansini et al., 2019). These approaches require training additional models, which conflicts with the
 161 TFM paradigm of fast inference without retraining.

162 The literature suggests a potential synthesis: pair the inference-time efficiency of TFM^s with
 163 structure discovery to address high-dimensional optimization. This leads to our central con-
 164 tribution: Gradient-Informed Bayesian Optimization using TabPFN (GIT-BO), which extracts
 165 predictive-mean gradients from TabPFN v2 to estimate a gradient-informed active subspace, then
 166 performs acquisition-driven search within that subspace. This design (i) avoids GP retraining
 167 and heavy hyperparameter tuning, and (ii) supplies the locality and structure that TFM^s lack in
 168 high-dimensional—thereby targeting the exact failure modes surfaced above.
 169

170 3 THE GIT-BO ALGORITHM

172 GIT-BO consists of four main components: the surrogate model (TabPFN v2), the gradient-based
 173 subspace identification, an upper confidence bound acquisition function, and a method that combines
 174 these for high-dimensional optimization.

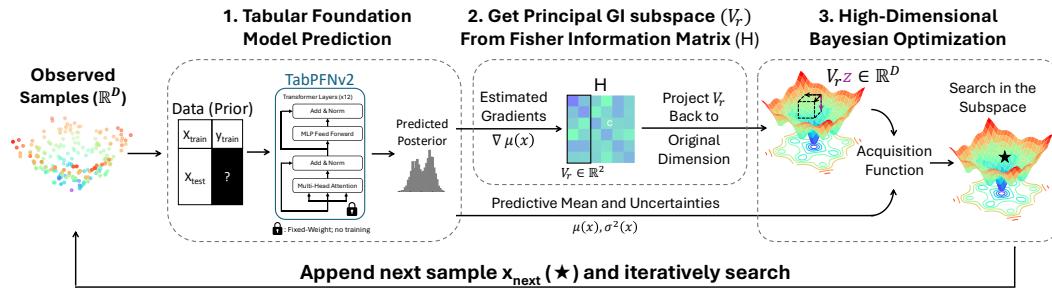


Figure 1: GIT-BO algorithm overview. The method operates in five stages: (1) Initial observed samples are collected in the high-dimensional space \mathbb{R}^D ; (2) TabPFN v2, a fixed-weight tabular foundation model, generates predictions of the objective space at inference time using in-context learning; (3) The gradient from TabPFN’s forward pass ($\nabla\mu(x)$) is used to identify a low-dimensional gradient-informed (GI) subspace. The predicted mean and variance are used for acquisition value calculations $\mu(x), \sigma^2(x)$; (4) The next sample point (x_{next}) is selected from GI subspace’s projection back to the high-dimensional space ($V_r.z$) with the highest acquisition value; (5) Appended x_{next} to the “context” observed dataset for iterative search until stopping criteria is met.

3.1 SURROGATE MODELING WITH TABPFN

We use TabPFN v2, a 500-dimensional TFM from Hollmann et al. (2025), as the surrogate model for our Bayesian optimization framework. TabPFN leverages in-context learning to provide a dynamic predictive posterior distribution conditioned on the observed dataset $\mathcal{D}_{\text{obs}} = \{(x_i, y_i)\}_{i=1}^n$, which expands iteratively during optimization. At each iteration, we random sample (from Sobol sequence) a huge discrete set of candidate points $X_{\text{cand}} = \{x_j\}_{j=1}^m$ (where $(10k-n) \geq m \gg n$, as TabPFN can take at most 10k samples) from the search domain $\mathcal{X} \subset \mathbb{R}^D$ to approximate the continuous search space. TabPFN (q_θ) processes both the context set (\mathcal{D}_{obs}) and candidate set (X_{cand}) simultaneously, generating predictive means $\mu_m(x)$ and variances $\sigma_m^2(x)$ for the search space formed by all candidates in a single forward pass ($\mu_m(x), \sigma_m^2(x) \sim q_\theta(Y_{\text{cand}}|X_{\text{cand}}, \mathcal{D}_{\text{obs}})$). This efficient, adaptive inference step enables rapid identification of promising regions in high-dimensional optimization problems without surrogate retraining.

3.2 GRADIENT-INFORMED ACTIVE SUBSPACE IDENTIFICATION AND SAMPLING

To identify an active subspace for efficient exploration, we leverage gradient information obtained from TabPFN’s predictive mean, defining $g(x) := \nabla_x \mu_m(x)$ via a single-step backpropagation. Following gradient-based subspace methods in inverse problems and Fisher-eigenstructure analyses that show a small number of dominant, high-sensitivity directions (Pennington & Worah, 2018; Karakida et al., 2019; Zahm et al., 2022; Li et al., 2025; 2024; Ly et al., 2017), we form the empirical Fisher matrix $H = \mathbb{E}_\mu[g(x)g(x)^\top]$. This matrix captures the local sensitivity structure of the

216 predictive model. The algorithm then selects the top r eigenvectors of H as the gradient-informed
 217 active subspace (GI-subspace) $V_r \in \mathbb{R}^r$.
 218

219 For all the results we presented in Section 5 and Appendix D, we selected a fixed $r = 10$ for our
 220 experiment. Ablation studies on the effect of GI-subspace on BO performance and the selection of
 221 r are presented in Appendix B.1.

222 Next, we then uniformly sample m candidate points for exploration from the low-dimensional (r -
 223 dimensional) hypercube, $z \sim \mathcal{U}([-1, 1]^r)$, and mapping these back to the original high-dimensional
 224 space via:

$$225 \quad X_{\text{GI}} = x_{\text{ref}} + V_r z, \\ 226$$

227 the m candidates are centered around the centroid of observed data, $x_{\text{ref}} = \bar{x}_{\text{obs}}$, which guides the
 228 search towards promising regions discovered so far, while the acquisition function later promotes
 229 exploitation. These generated candidates, X_{GI} , are then evaluated using the acquisition function to
 230 select the next point to sample. The theoretical detail and experimental results for the GI subspace
 231 are in Appendix A and C.

233 3.3 ACQUISITION FUNCTION

235 We adopt the Upper Confidence Bound (UCB) as our acquisition function, as heuristics BO and
 236 PFN-based BO both use in previous studies (Srinivas et al., 2010; Xu et al., 2025; Müller et al.,
 237 2023). UCB selects points by maximizing $\alpha_{\text{UCB}} = \mu(x) + \beta\sigma(x)$, where $\mu(x)$ denotes the sur-
 238rogate’s predictive mean, $\sigma(x)$ is surrogate’s predictive standard deviation, and β represents the
 239 exploration level. In our GIT-BO algorithm, $\mu(x)$ and $\sigma(x)$ are the TabPFN predictive mean and
 240 standard deviation given data \mathcal{D}_{obs} , and the β is set to 2.33. Further details of β ablation are in
 241 Appendix B.2 with theoretical analysis in Appendix A.

242 Putting everything together, Figure 1 and Algorithm 1 outline the GIT-BO procedure combining
 243 TabPFN with gradient-informed subspace search. The technical implementation details of GIT-BO
 244 are stated in the Appendix G.

246 **Algorithm 1** Gradient-Informed Bayesian Optimization using TabPFN (GIT-BO)

247 **Require:** objective f , domain $\mathcal{X} \subset \mathbb{R}^D$, initial sample size n_0 , iteration budget I , subspace dimen-
 248 sion r , α acquisition function
 249 1: Draw n_0 LHS points x_i and set $y_i = f(x_i)$; $D_n \leftarrow \{(x_i, y_i)\}_{i=1}^{n_0}$
 2: **for** $i = 1$ to I **do**
 250 3: μ_m and $\sigma_m^2 \leftarrow$ Fit TabPFN on D_n , and predict X_{cand} randomly sampled from Sobol
 251 4: Calculate backprop gradient $\nabla_x \mu_m(x)$ from TabPFN’s in-context learning of D_n
 252 5: Form approximated Fisher matrix $H = \mathbb{E}_\mu[\nabla_x \mu_m(x) \nabla_x \mu_m(x)^\top]$
 253 6: $V_r \leftarrow$ top- r eigenvectors of H
 254 7: $X_{\text{GI}} \leftarrow x_{\text{ref}} + V_r z$, with z uniform sampled from the low-dim hypercube $z \sim \mathcal{U}([-1, 1]^r)$
 255 8: $x_{\text{next}} \leftarrow \arg \max_j \alpha(X_{\text{GI}})$
 256 9: Evaluate $y_{\text{next}} = f(x_{\text{next}})$ and append the query point data $D_n \leftarrow D_n \cup \{(x_{\text{next}}, y_{\text{next}})\}$
 257 10: **end for**
 258 11: **return** $x^* = \arg \max_{(x, y) \in D} y$

262 4 EXPERIMENT

263 This section outlines our empirical approach to evaluating and comparing different high-dimensional
 264 Bayesian optimization algorithms, highlighting the assessment of different algorithms’ performance
 265 across a large number of complex synthetic and unique engineering benchmarks. To conduct a fair,
 266 comprehensive comparison, we benchmark GIT-BO against four other algorithms from the state-of-
 267 the-art BO library, BoTorch (Balandat et al., 2020), on 60 problems, and conduct a statistical ranking
 268 evaluation over experiment trials.

270 4.1 BENCHMARK ALGORITHMS
271

272 We benchmark GIT-BO against random search (Bergstra & Bengio, 2012) and four high-
273 dimensional BO methods, including SAASBO (Eriksson & Jankowiak, 2021), TURBO (Eriksson
274 et al., 2019), Vanilla BO for high-dimensional (Hvarfner et al., 2024), and BAxUS (Papenmeier
275 et al., 2022) from the state-of-the-art (SOTA) PyTorch-based BO library BoTorch (Balandat et al.,
276 2020). To ensure a fair comparison with our GPU-accelerated GIT-BO framework, we deliberately
277 selected only algorithms that can be executed efficiently on GPUs, as runtime scalability is a central
278 evaluation criterion. All methods were run on identical compute resources (one node with the same
279 CPU and GPU specifications), and additional implementation details are provided in Appendix E.

280 4.2 TEST PROBLEMS
281

282 This study incorporates a diverse set of high-dimensional optimization problems, including 9 syn-
283 thetic problems and 11 real-world benchmarks. Synthetic and scalable problems include: Ackley,
284 Rosenbrock, Dixon-Price, Levy, Powell, Griewank, Rastrigin, Styblin-Tang, and Michalewicz. We
285 note that this set of synthetic functions is taken from BoTorch (Balandat et al., 2020) with their de-
286 fault setting, and therefore all the baseline algorithms from BoTorch have been tested on this set of
287 synthetic functions.

288 The rest of the application problems are collected from previous optimization studies and confer-
289 ence benchmarks: the power system optimization problems from CEC2020 (Kumar et al., 2020),
290 Rover (Wang et al., 2018), MOPTA08 car problem (Jones, 2008), two Mazda car problems (Ko-
291 hira et al., 2018), and Walker problem from MuJoCo (Todorov et al., 2012). As this study focuses
292 on the high-dimensional characteristic of the problem, we make all our benchmark problems sin-
293 gle and unconstrained for testing. Therefore, we have applied penalty transforms to all real-world
294 problems with constraints and performed average weighting to the two multi-objective Mazda prob-
295 lems. Among the 20 benchmarks, 10 (Synthetic + Rover) are scalable problems. To evaluate
296 the algorithms' performance with respect to dimensionality, we solve the scalable problems for
297 $D = \{100, 200, 300, 400, 500\}$. Therefore, we have experimented with a total of $5 \times 10 + 10 = 60$
298 different variants of the benchmark problems. Details of benchmark selections and their implemen-
299 tation details are listed in Appendix F.

300 4.3 METHODS FOR ALGORITHM EXPERIMENT
301

302 The algorithm evaluation aims to thoroughly compare GIT-BO to current SOTA Bayesian opti-
303 mization techniques. This study focuses on maximizing the objective function for the given test
304 problems. For each test problem, our experiment consists of 20 independent trials, each utilizing a
305 distinct random seed. To ensure fair comparison, bluewe initialize each algorithm with an identi-
306 cal set of 200 samples, generated through Latin Hypercube Sampling with consistent random seeds
307 across all trials. During each iteration, each algorithm selects one sample to evaluate next.

308 To execute this extensive benchmarking process, we utilized a distributed server infrastructure fea-
309 turing Intel Xeon Platinum 8480+ CPUs and NVIDIA H100 GPUs. For all algorithms, each individ-
310 ual experiments (run) were conducted with the same amount of compute allocated: a single H100
311 GPU node with 24 CPU cores and 224GB RAM.

312 4.4 EVALUATION METRICS
313

314 **Optimization Fixed-budget Convergence Analysis** Fixed-budget evaluation is a standard tech-
315 nique for comparing the efficiency of optimization algorithms by allocating a predetermined amount
316 of computational resources for their execution (Hansen et al., 2022). In our study, we adopt a fixed-
317 iteration budget, running all algorithms (GIT-BO, SAASBO, TurBO, Vanilla BO, and BAxUS) for
318 500 iterations. We report performance using plots of average regret versus the number of function
319 evaluations (iterations), which illustrate the convergence behavior of each algorithm.

320 In addition, we measure the wall-clock runtime of each algorithm over the same 500 iterations. To
321 capture efficiency in terms of computational cost, we report plots of average regret versus elapsed
322 runtime (in seconds).

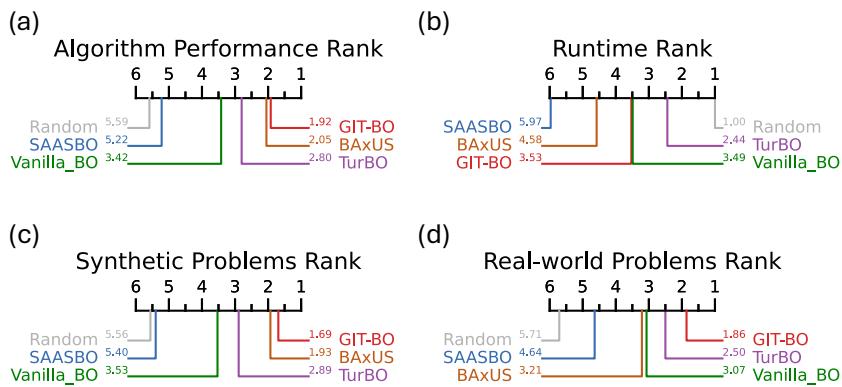
324 **Statistical Ranking** To comprehensively compare and evaluate the performance of the Bayesian
 325 optimization algorithms, statistical ranking techniques are employed instead of direct performance
 326 measurements of the optimization outcome. In this study, we define the optimization performance
 327 result as the median of the optimal found across the 20 optimization trials of each algorithm. By sta-
 328 tistically ranking the results, we were able to standardize the comparisons across different problems,
 329 since various optimization challenges can produce objective values of vastly different magnitudes.
 330 Furthermore, using this ranking allowed us to reduce the distorting effects of unusual or extreme
 331 data points that might influence our evaluation.

332 We conduct our statistical analysis using the Friedman and Wilcoxon signed-rank tests, comple-
 333 mented by Holm’s alpha correction. These non-parametric approaches excel at processing bench-
 334 marking result data without assuming specific distributions, which is critical for handling optimiza-
 335 tion results with outliers. These statistical methods effectively handle the dependencies in our setup,
 336 where we used the same initial samples and seeds to test all algorithms. The Wilcoxon signed-rank
 337 test addresses paired comparisons between algorithms, while the Friedman test manages problem-
 338 specific grouping effects. For multiple algorithm comparisons, we used Holm’s alpha correction to
 339 control error rates (Wilcoxon, 1945; Holm, 1979).

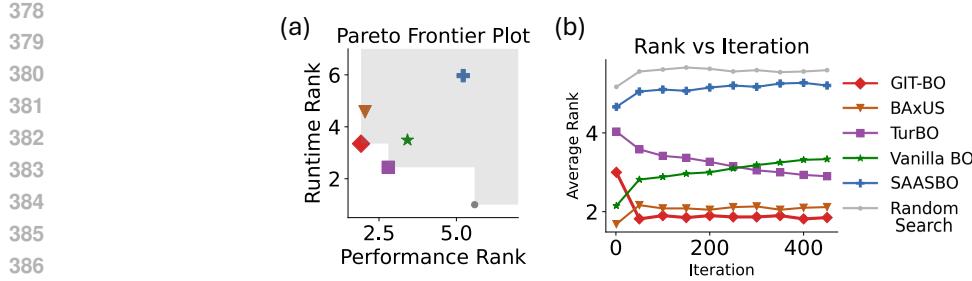
340 341 5 RESULTS

342 **Overall Statistical Ranking and Algorithm Runtime Tradeoffs** Across all benchmark variants,
 343 Figure 2 (a) shows that GIT-BO achieves the best overall statistical performance rank (1.92) across
 344 60 problems, consistently outperforming competing baselines in terms of final solution quality after
 345 500 iterations. In terms of computational cost, Figure 2 (b) demonstrates that GIT-BO remains
 346 runtime-competitive despite its stronger optimization performance. To provide further insight, Fig-
 347 ures 2 (c) and (d) decompose performance by problem class: BAxUS achieves the best ranking on
 348 synthetic benchmarks, whereas GIT-BO dominates on real-world engineering tasks. This contrast
 349 underscores that methods excelling on or even finetuning toward synthetic tests may not generalize
 350 to practical applications.

351 The joint performance–runtime tradeoff is visualized in Figure 3 (a), where GIT-BO and TurBO both
 352 lie on the Pareto frontier: GIT-BO attains superior optimization quality, while TurBO provides a
 353 speed advantage. Finally, Figure 3 (b) tracks the evolution of average algorithm rank over iterations,
 354 showing that GIT-BO rapidly rises to the top within the first 50 iterations and maintains its lead
 355 thereafter. Together, these results highlight GIT-BO as the most balanced method, achieving state-
 356 of-the-art performance while retaining favorable computational efficiency.

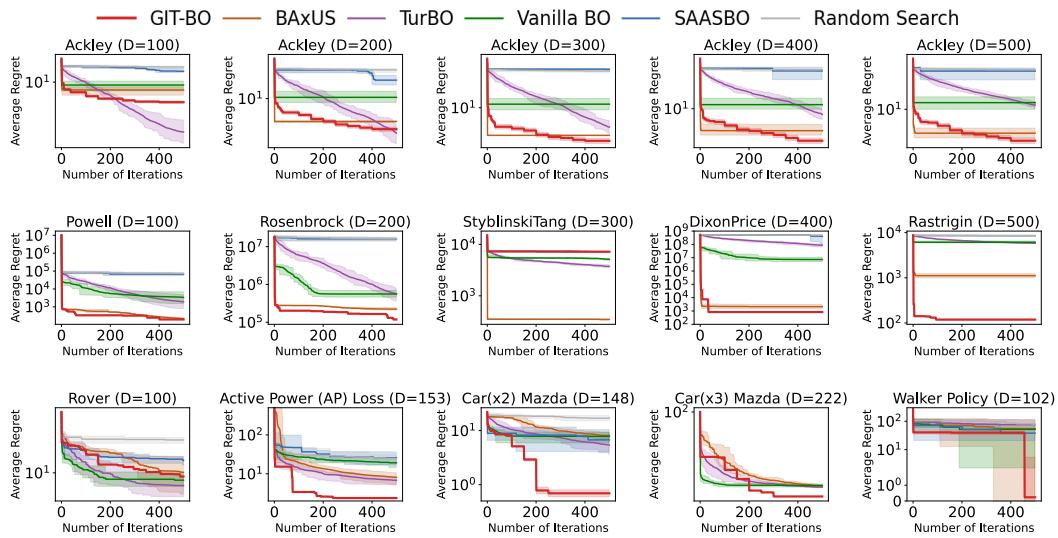


373 Figure 2: Statistical ranking across benchmark problems. (a) Overall algorithm optimization perfor-
 374 mance of all 60 problems (synthetic + real-world) ranking based on final solution quality at iteration
 375 500. (b) Algorithm runtime ranking of all 60 problems (synthetic + real-world) based on the time
 376 it takes for 500 iterations of optimization. (c) and (d) Optimization performance ranking on only
 377 synthetic and only real-world benchmark subsets, respectively.



388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

Figure 3: (a) Pareto frontier plot of runtime rank vs. performance rank (lower is better) over 60 benchmark problems. (b) Evolution of average algorithm rank over iterations, showing that GIT-BO converges rapidly to the top within 50 iterations and sustains its lead.



412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Average regrets vs. iteration convergence on a subset of 15 benchmarks (10 synthetic & 5 real-world) comparing our method against SOTA high-dimensional BO algorithms. The solid line represents the median best function value achieved over 20 trials, with shaded regions indicating the 95% confidence interval. Full statistical tests and per-problem plots for all 60 problems are provided in the Appendix D.

Convergence Performance Figure 4 summarizes the convergence plots across a representative set of 15 synthetic and engineering benchmarks in iterations, and Figure 5 plots the average regret against the algorithm’s elapsed runtime. Due to page number limitations, the convergence plots for all sixty benchmark problems are reported in Appendix D. For the Ackley function (100–500D), we observe that GIT-BO starts in the second performance tier but steadily improves relative to competing methods as dimensionality increases. Unlike GP-based approaches such as TurBO, whose performance deteriorates with higher D , GIT-BO maintains stable convergence rates, suggesting that TabPFN’s universal modeling capacity generalizes robustly even in extreme dimensions.

Across the broader set of synthetic problems, GIT-BO achieves top-ranked regret curves in most cases, including Rosenbrock (200D), Dixon-Price (400D), and Rastrigin (500D). However, its failure on Styblinski–Tang highlights the distributional limits of the TabPFN pre-training regime, an example where GP-based surrogates still dominate. On the engineering side, GIT-BO again demonstrates strong performance, consistently outperforming baselines on power system tasks and automotive design benchmarks, while struggling with the Rover problem.

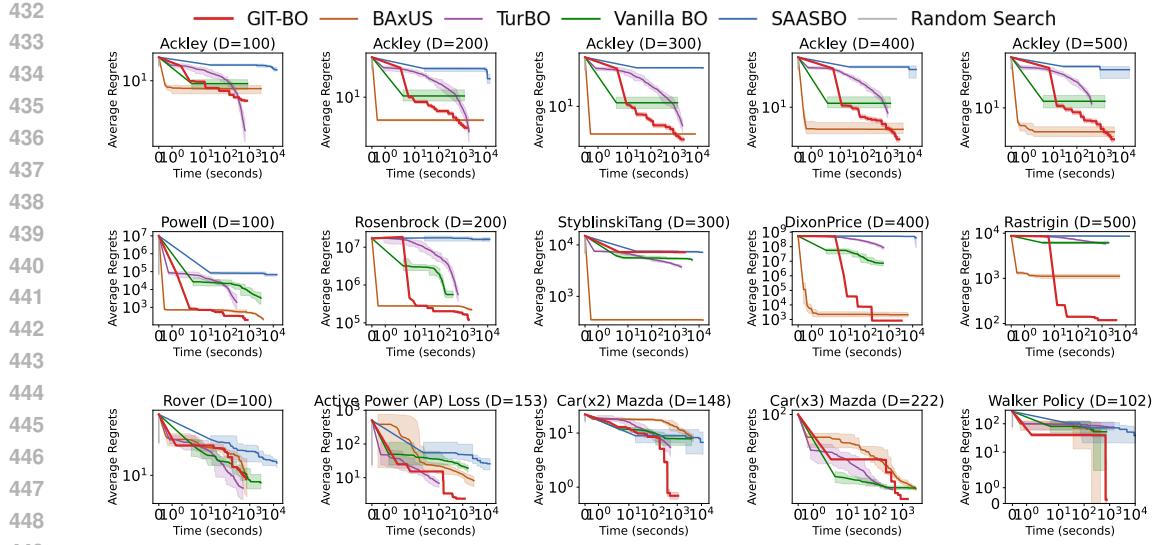


Figure 5: Average regrets (log-scaled) vs. algorithm runtime (log-scaled seconds) (“time taken for running 500 iterations”) convergence on a subset of 15 benchmarks (10 synthetic & 5 real-world) comparing our method against SOTA high-dimensional BO algorithms. The solid line represents the median best function value achieved over 20 trials, with shaded regions indicating the 95% confidence interval. Full statistical tests and per-problem plots for all 60 problems are provided in the Appendix D.

Convergence performance when considering runtime When runtime is taken into account in Figure 5, the trade-off becomes even more pronounced. Methods such as BAxUS can match or occasionally surpass GIT-BO in final regret, but only after an additional hour of wall-clock time. In contrast, GIT-BO reaches competitive or superior regret levels within minutes, providing a decisive advantage in time-critical engineering settings. Taken together, these iteration- and runtime-based analyses establish GIT-BO as both the most efficient and broadly effective algorithm among current high-dimensional BO methods.

Summary of additional ablation studies To better understand the drivers behind these empirical trends, we next highlight the key findings from our ablation studies detailed in Appendices B and C:

1. GI-subspaces vs. alternative subspaces: Compared GIT-BO (TabPFN + GI-subspcae) to vanilla TabPFN BO that samples in the 500D space, TabPFN + Trust-Region (Eriksson et al., 2019), and TabPFN + BAxUS projection (Papenmeier et al., 2022). Trust region and BAxUS-style projections also help, but consistently underperform GI-subspaces (Appendix B.4).
2. Acquisition function (UCB vs. EI): Empirically, we show that both EI and UCB benefit substantially from GI-subspaces, and UCB provides a modest but stable advantage, matching prior observations about EI’s numerical instability in high-dimensional settings (Appendix B.5).
3. Subspace dimension and sampling: Performance is robust across a range of subspace dimensions r . Very large r (e.g., 40) hurts performance, while small fixed r and variance-explained criteria (92.5–95%) perform best (Appendix B.2).
4. Sampling in subspace and reference point x_{ref} : Uniform, Random, and Sobol sampling in the GI-subspace lead to similar trends, with mild problem-dependent differences (Appendix B.1). Empirically we verified that $x_{\text{ref}} = \bar{x}_{\text{obs}}$ has better optimization performance than $x_{\text{ref}} = x_{\arg \max y_{\text{obs}}}$ (Appendix B.6).
5. Initialization sample size: Varying the initial Latin-hypercube sample size from 20 to 1000 points still leaves GIT-BO as the top-ranked method across all sizes, while GP-based baselines degrade or fluctuate, especially in the large-data regime (Appendix B.7).

486 6. Alternative surrogates and finetuning: Mild finetuning of TabPFN on each benchmark yields
 487 small but consistent gains (Appendix B.9). When we replace TabPFN with a standard GP sur-
 488 rogue and reuse GI-subspaces, the algorithm can still identify the effective subspace in the
 489 embedded high-dimensional problem, confirming that GI-subspace discovery is not specific to
 490 TFM (Appendix C).

491 **6 DISCUSSION**

492 Our experiments highlight several strengths and limitations of GIT-BO in high-dimensional
 493 Bayesian optimization. GIT-BO consistently lies on the Pareto frontier of performance versus run-
 494 time: while BAxUS and Vanilla BO can occasionally match final regret, they require orders of
 495 magnitude more wall-clock time, whereas GIT-BO reaches near-optimal solutions within minutes.
 496 At the same time, TurBO emerges as a compelling alternative when runtime alone is the domi-
 497 nant criterion, underscoring the practical trade-off between speed and accuracy. We also observe
 498 plateauing convergence in both GIT-BO and BAxUS, reflecting the known bias plateau of TabPFN
 499 predictors as sample sizes grow (Nagler, 2023) and pointing to broader challenges for probabilistic
 500 surrogates. Although GIT-BO excels on most synthetic and engineering tasks, its failures on Rover
 501 and Styblinski-Tang reinforce the “no free lunch” theorem (Wolpert & Macready, 1997). Finally,
 502 practical limits persist: TabPFN requires large GPU memory, enforces a 500D cap, and demands
 503 user-specified subspace thresholds. Even without retraining, its inference is slower than fitting a
 504 simple GP in TurBO or Vanilla BO. These findings suggest two directions for future work: scaling
 505 TFM with memory-efficient architectures for faster inference, and designing benchmark suites that
 506 capture the heterogeneity of real-world tasks beyond synthetic testbeds.

507 **7 CONCLUSION**

508 We presented GIT-BO, a Gradient-Informed Bayesian Optimization framework that integrates
 509 TabPFN v2 with adaptive subspace discovery to tackle high-dimensional black-box problems.
 510 Across sixty benchmark variants, including scalable synthetic functions and challenging engineer-
 511 ing tasks, GIT-BO consistently achieves state-of-the-art performance while maintaining a favor-
 512 able runtime profile, often reaching near-optimal solutions in minutes. By leveraging foundation
 513 model inference and gradient-informed exploration, GIT-BO eliminates costly surrogate retraining
 514 and scales effectively up to 500 dimensions. At the same time, limitations remain: performance
 515 plateaus on certain tasks, GPU memory requirements of TabPFN, and the need for user-defined
 516 subspace thresholds. Looking forward, future work should pursue more memory-efficient TFM ar-
 517 chitectures, automated strategies for subspace selection, and broader benchmark suites that bridge
 518 synthetic testbeds and real-world engineering problems. Extending GIT-BO to constrained, mixed-
 519 variable, and multi-objective optimization also represents a promising avenue for further impact.

540 REPRODUCIBILITY STATEMENT
541

542 We are committed to ensuring reproducibility of all results. Upon acceptance, we will release the
543 full source code, including the implementation of GIT-BO, data preprocessing scripts, benchmark
544 configurations, and experiment pipelines. All experiments will be accompanied by fixed random
545 seeds, hardware specifications, and detailed instructions to reproduce the results in the paper.

546 ETHICS STATEMENT
547

548 This work does not raise any ethical concerns.
549

550 REFERENCES
551

552 Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Un-
553 expected improvements to expected improvement for bayesian optimization. *Advances in Neural*
554 *Information Processing Systems*, 36:20577–20612, 2023.

555 Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
556 data representations in deep neural networks. *Advances in Neural Information Processing Sys-*
557 *tems*, 32, 2019.

559 Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
560 drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
561 Bayesian Optimization. In *Advances in Neural Information Processing Systems*, volume 33, pp.
562 21524–21538, 2020.

563 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
564 clustering. *Advances in neural information processing systems*, 14, 2001.

566 James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. *Journal of*
567 *Machine Learning Research*, 13(10):281–305, 2012.

569 Paul G Constantine, Eric Dow, and Qiqi Wang. Active subspace methods in theory and practice:
570 applications to kriging surfaces. *SIAM Journal on Scientific Computing*, 36(4):A1500–A1524,
571 2014.

572 Tiangang Cui, James Martin, Youssef M Marzouk, Antti Solonen, and Alessio Spantini. Likelihood-
573 informed dimension reduction for nonlinear inverse problems. *Inverse Problems*, 30(11):114015,
574 2014.

575 Ian Dewancker, Michael McCourt, and Scott Clark. Bayesian optimization for machine learning: A
576 practical guidebook. *arXiv:1612.04858 [cs.LG]*, 2016.

578 David Eriksson and Martin Jankowiak. High-dimensional bayesian optimization with sparse axis-
579 aligned subspaces. In *Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial*
580 *Intelligence*, volume 161, pp. 493–503. PMLR, 2021.

581 David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
582 global optimization via local bayesian optimization. *Advances in neural information processing*
583 *systems*, 32, 2019.

585 Runa Eschenhagen, Aaron Defazio, Tsung-Hsien Lee, Richard E. Turner, and Hao-Jun Michael Shi.
586 Purifying shampoo: Investigating shampoo’s heuristics by decomposing its preconditioner. In
587 *The Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025.

588 Jacob Gardner, Chuan Guo, Kilian Weinberger, Roman Garnett, and Roger Grosse. Discovering and
589 exploiting additive structure for bayesian optimization. In *Artificial Intelligence and Statistics*, pp.
590 1311–1319. PMLR, 2017.

592 Joshua P Gardner, Juan Carlos Perdomo, and Ludwig Schmidt. Large scale transfer learning for tab-
593 ular data via language modeling. In *The Thirty-eighth Annual Conference on Neural Information*
Processing Systems, 2024.

594 Anurag Garg, Muhammad Ali, Noah Hollmann, Lennart Purucker, Samuel Müller, and Frank Hutter.
 595 Real-tabPFN: Improving tabular foundation models via continued pre-training with real-world
 596 data. *arXiv preprint arXiv:2507.03971*, 2025.

597 Léo Grinsztajn, Klemens Flöge, Oscar Key, Felix Birkel, Philipp Jund, Brendan Roof, Benjamin
 598 Jäger, Dominik Safaric, Simone Alessi, Adrian Hayler, et al. TabPFN-2.5: Advancing the state of
 599 the art in tabular foundation models. *arXiv preprint arXiv:2511.08667*, 2025.

600 Eric Han, Ishank Arora, and Jonathan Scarlett. High-dimensional bayesian optimization via tree-
 601 structured additive models. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 602 volume 35, pp. 7630–7638, 2021.

603 Nikolaus Hansen, Anne Auger, Dimo Brockhoff, and Tea Tušar. Anytime performance assessment
 604 in blackbox optimization benchmarking. *IEEE Transactions on Evolutionary Computation*, 26
 605 (6):1293–1305, 2022.

606 Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
 607 that solves small tabular classification problems in a second. *arXiv preprint arXiv:2207.01848*,
 608 2022.

609 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
 610 Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
 611 foundation model. *Nature*, 637(8045):319–326, 2025.

612 Sture Holm. A simple sequentially rejective multiple test procedure. *Scandinavian Journal of
 613 Statistics*, 6(2):65–70, 1979.

614 Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla Bayesian optimization performs great
 615 in high dimensions. In *Proceedings of the 41st International Conference on Machine Learning*,
 616 volume 235, pp. 20793–20817. PMLR, 2024.

617 Donald R Jones. Large-scale multi-disciplinary mass optimization in the auto industry. In *MOPTA
 618 2008 Conference (20 August 2008)*, volume 64, 2008.

619 Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional bayesian opti-
 620 misation and bandits via additive models. In *International conference on machine learning*, pp.
 621 295–304. PMLR, 2015.

622 Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in
 623 deep neural networks: Mean field approach. In *The 22nd International Conference on Artificial
 624 Intelligence and Statistics*, pp. 1032–1041. PMLR, 2019.

625 Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast Bayesian
 626 Optimization of Machine Learning Hyperparameters on Large Datasets. In *Proceedings of the
 627 20th International Conference on Artificial Intelligence and Statistics*, volume 54, pp. 528–536.
 628 PMLR, 2017.

629 Takehisa Kohira, Hiromasa Kemmotsu, Oyama Akira, and Tomoaki Tatsukawa. Proposal of bench-
 630 mark problem based on real-world car structure design optimization. In *Proceedings of the Ge-
 631 netic and Evolutionary Computation Conference Companion*, pp. 183–184, 2018.

632 Abhishek Kumar, Guohua Wu, Mostafa Z Ali, Rammohan Mallipeddi, Ponnuthurai Nagaratnam
 633 Suganthan, and Swagatam Das. A test-suite of non-convex constrained optimization problems
 634 from the real-world and some baseline results. *Swarm and Evolutionary Computation*, 56:100693,
 635 2020.

636 Nilay Kumar, Mayesha Sahir Mim, Alexander Dowling, and Jeremiah J Zartman. Reverse engineer-
 637 ing morphogenesis through bayesian optimization of physics-based models. *npj Systems Biology
 638 and Applications*, 10(1):49, 2024.

639 Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approx-
 640 imation for natural gradient descent. *Advances in neural information processing systems*, 32,
 641 2019.

648 Ben Letham, Roberto Calandra, Akshara Rai, and Eytan Bakshy. Re-examining linear embeddings
 649 for high-dimensional bayesian optimization. In *Advances in Neural Information Processing Sys-
 650 tems*, volume 33, pp. 1546–1558, 2020.

651

652 Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
 653 of objective landscapes. In *International Conference on Learning Representations*, 2018.

654

655 Matthew TC Li, Youssef Marzouk, and Olivier Zahm. Principal feature detection via ϕ -sobolev
 656 inequalities. *Bernoulli*, 30(4):2979–3003, 2024.

657

658 Matthew TC Li, Tiangang Cui, Fengyi Li, Youssef Marzouk, and Olivier Zahm. *Information and
 659 Inference: A Journal of the IMA*, 14(3):iaaf021, 2025.

660

661 Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When gaussian process meets big data:
 662 A review of scalable gps. *IEEE transactions on neural networks and learning systems*, 31(11):
 663 4405–4423, 2020.

664

665 Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman, and Eric-Jan Wagenmak-
 666 ers. A tutorial on fisher information. *Journal of Mathematical Psychology*, 80:40–55, 2017.

667

668 Junwei Ma, Valentin Thomas, Rasa Hosseinzadeh, Alex Labach, Jesse C. Cresswell, Keyvan
 669 Golestan, Guangwei Yu, Anthony L. Caterini, and Maksims Volkovs. TabDPT: Scaling tabular
 670 foundation models on real data. In *The Thirty-ninth Annual Conference on Neural Information
 671 Processing Systems*, 2025.

672

673 Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
 674 formers can do bayesian inference. In *International Conference on Learning Representations*,
 675 2022.

676

677 Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. PFNs4BO: In-context learning
 678 for Bayesian optimization. In *Proceedings of the 40th International Conference on Machine
 679 Learning*, volume 202, pp. 25444–25470. PMLR, 2023.

680

681 Thomas Nagler. Statistical foundations of prior-data fitted networks. In *Proceedings of the 40th
 682 International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning
 683 Research*, pp. 25660–25676. PMLR, 23–29 Jul 2023.

684

685 Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for Bayesian optimiza-
 686 tion in embedded subspaces. In *Proceedings of the 36th International Conference on Machine
 687 Learning*, volume 97, pp. 4752–4761. PMLR, 2019.

688

689 Ismail Nejjar, Faez Ahmed, and Olga Fink. Im-context: In-context learning for imbalanced regres-
 690 sion tasks. *Transactions on Machine Learning Research*, 2024.

691

692 Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the scope as you learn: Adap-
 693 tive bayesian optimization in nested subspaces. *Advances in Neural Information Processing Sys-
 694 tems*, 35:11586–11601, 2022.

695

696 Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. *arXiv preprint
 697 arXiv:1301.3584*, 2013.

698

699 Jeffrey Pennington and Pratik Worah. The spectrum of the fisher information matrix of a single-
 700 hidden-layer neural network. *Advances in neural information processing systems*, 31, 2018.

701

702 Herilalaina Rakotoarison, Steven Adriaensen, Neeratoyoy Mallik, Samir Garibov, Eddie Bergman,
 703 and Frank Hutter. In-context freeze-thaw Bayesian optimization for hyperparameter optimiza-
 704 tion. In *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 705 *Proceedings of Machine Learning Research*, pp. 41982–42008. PMLR, 2024.

706

707 Siddharth Ramchandran, Manuel Haussmann, and Harri Lähdesmäki. High-dimensional bayesian
 708 optimisation with gaussian process prior variational autoencoders. In *The Thirteenth International
 709 Conference on Learning Representations*, 2025.

702 Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, and Svetha Venkatesh. High dimensional Bayesian
 703 optimization with elastic Gaussian process. In *Proceedings of the 34th International Conference*
 704 *on Machine Learning*, volume 70, pp. 2883–2891. PMLR, 2017.

705 Arik Reuter, Tim G. J. Rudner, Vincent Fortuin, and David Rügamer. Can transformers learn full
 706 bayesian inference in context? In *Forty-second International Conference on Machine Learning*,
 707 2025.

708 Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional bayesian
 709 optimization via additive models with overlapping groups. In *International conference on artifi-*
 710 *cial intelligence and statistics*, pp. 298–307. PMLR, 2018.

711 Maria Laura Santoni, Elena Raponi, Renato De Leone, and Carola Doerr. Comparison of high-
 712 dimensional bayesian optimization algorithms on bbob. *ACM Transactions on Evolutionary*
 713 *Learning*, 4(3):1–33, 2024.

714 Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
 715 learning algorithms. *Advances in Neural Information Processing Systems*, 25, 2012.

716 Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
 717 tion in the bandit setting: no regret and experimental design. In *Proceedings of the 27th Interna-*
 718 *tional Conference on International Conference on Machine Learning*, ICML’10, pp. 1015–1022.
 719 Omnipress, 2010.

720 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 721 In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp. 5026–5033.
 722 IEEE, 2012.

723 Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization
 724 in the latent space of deep generative models via weighted retraining. *Advances in Neural Infor-*
 725 *mation Processing Systems*, 33:11259–11272, 2020.

726 Ke Wang and Alexander W Dowling. Bayesian optimization for chemical products and functional
 727 materials. *Current Opinion in Chemical Engineering*, 36:100728, 2022.

728 Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-box
 729 optimization using monte carlo tree search. *Advances in Neural Information Processing Systems*,
 730 33:19511–19522, 2020.

731 Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian
 732 optimization. *ACM Computing Surveys*, 55(13s):1–36, 2023.

733 Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian
 734 optimization in high-dimensional spaces. In *Proceedings of the Twenty-First International Con-*
 735 *ference on Artificial Intelligence and Statistics*, volume 84, pp. 745–754. PMLR, 2018.

736 Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian op-
 737 timization in a billion dimensions via random embeddings. *Journal of Artificial Intelligence*
 738 *Research*, 55:361–387, 2016.

739 Frank Wilcoxon. Individual comparisons by ranking methods. *Biometrics Bulletin*, 1(6):80–83,
 740 1945.

741 David H Wolpert and William G Macready. No free lunch theorems for optimization. *IEEE trans-*
 742 *actions on evolutionary computation*, 1(1):67–82, 1997.

743 Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng. Hyperparameter
 744 optimization for machine learning models based on bayesian optimization. *Journal of Electronic*
 745 *Science and Technology*, 17(1):26–40, 2019.

746 Zhitong Xu, Haitao Wang, Jeff M. Phillips, and Shandian Zhe. Standard gaussian process is all you
 747 need for high-dimensional bayesian optimization. In *The Thirteenth International Conference on*
 748 *Learning Representations*, 2025.

756 Han-Jia Ye, Si-Yang Liu, and Wei-Lun Chao. A closer look at tabpfn v2: Understanding its strengths
757 and extending its capabilities, 2025.

758

759 Rosen Ting-Ying Yu, Cyril Picard, and Faez Ahmed. Fast and accurate bayesian optimization with
760 pre-trained transformers for constrained engineering problems. *Structural and Multidisciplinary*
761 *Optimization*, 68(3):66, 2025.

762

763 Olivier Zahm, Tiangang Cui, Kody Law, Alessio Spantini, and Youssef Marzouk. Certified dimen-
764 sion reduction in nonlinear bayesian inverse problems. *Mathematics of Computation*, 91(336):
765 1789–1835, 2022.

766

767 Yichi Zhang, Daniel W Apley, and Wei Chen. Bayesian optimization for materials design with
768 mixed quantitative and qualitative variables. *Scientific reports*, 10(1):4924, 2020.

769

770 Juliusz Krzysztof Ziomek and Haitham Bou Ammar. Are random decompositions all we need in
771 high dimensional bayesian optimisation? In *International Conference on Machine Learning*, pp.
772 43347–43368. PMLR, 2023.

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 TABLE OF CONTENTS FOR APPENDICES
811

812	A Theoretical Analysis	17
813	A.1 Preliminaries	17
814	A.2 Assumptions	17
815	A.3 Confidence Bounds for TabPFN-based Surrogates	18
816	A.4 Subspace Information Gain Analysis	19
817	A.5 Acquisition Function Analysis	19
818	A.6 Main Regret Bounds	20
819	A.7 Information Gain Bounds for High-Dimensional Subspaces	20
820	A.8 Convergence Rate	20
821		
822	B Ablation Studies	21
823	B.1 Why $r = 10$? — Parameter Sweep ablation of GI subspace’s principal dimension r	21
824	B.2 Why sampling-based UCB? — Ablation study on different β factor of UCB Acquisition Function	22
825	B.3 Why uniform sampling in the gradient-informed subspace? — Ablation Studies over GI Subspace Sampling	22
826	B.4 Why GI subspace? — Ablation study on applying subspace identification on TabPFN for high-dimensional BO	23
827	B.5 Why UCB? — Ablation study on different Acquisition Functions	23
828	B.6 Why $x_{\text{ref}} = \bar{x}_{\text{obs}}$? — Ablation study on $x_{\text{ref}} = \bar{x}_{\text{obs}}$ vs. $x_{\text{ref}} = x_{\arg \max y_{\text{obs}}}$	24
829	B.7 Why $N_{\text{init}} = 200$? — Ablation study on different N_{init}	24
830	B.8 Will finetuning TabPFN further improve GIT-BO’s performance? — Ablation study on TabPFN vs. finetuned TabPFN	26
831	B.9 How sensitive is GIT-BO to origin-centered optima? — Ablation on shifted synthetic functions (GIT-BO vs. BAxUS)	26
832		
833	C Experimental Analysis on Gradient-Informed Active Subspace Identification	27
834		
835	D Performance and runtime results analysis on 60 benchmarks	28
836		
837	E High-dimensional Benchmark Algorithms Implementation Details	29
838		
839	F Benchmark Problems Implementation Details	29
840		
841	G Additional Implementation Details	33
842		
843	G.1 Hardware and Operating System	33
844	G.2 GIT-BO Algorithm Implementation Details	33
845		
846	H LLM Usage Statement	34
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 A THEORETICAL ANALYSIS
865

866 In this section, we establish the theoretical foundations for GIT-BO by developing confidence
867 bounds and regret guarantees. Our analysis builds upon the framework of Srinivas et al. (2010)
868 for GP-UCB while accounting for the unique properties of TabPFN as a surrogate model and our
869 gradient-informed subspace identification.

870
871 A.1 PRELIMINARIES
872

873 **Problem Setup.** We consider the optimization problem:

$$874 \quad \mathbf{x}^* \in \arg \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \\ 875$$

876 where $\mathcal{X} = [0, 1]^D$ is a compact domain and $f : \mathcal{X} \rightarrow \mathbb{R}$ is an unknown objective function. At each
877 optimization iteration t , we observe $y_t = f(\mathbf{x}_t) + \epsilon_t$ where ϵ_t is σ -sub-Gaussian noise.

879 **TabPFN Surrogate Properties.** Let $q_{\theta}(y|\mathbf{x}, D_t)$ denote the TabPFN's posterior predictive dis-
880 tribution at point \mathbf{x} given observed data $D_t = \{(\mathbf{x}_i, y_i)\}_{i=1}^t$. We denote the predictive mean and
881 variance as:

$$882 \quad \mu_t(\mathbf{x}) = \mathbb{E}_{q_{\theta}}[y|\mathbf{x}, D_t], \quad \sigma_t^2(\mathbf{x}) = \text{Var}_{q_{\theta}}[y|\mathbf{x}, D_t] \\ 883$$

884 **Reference GP class & Information Gain.** For a kernel k and noise σ^2 , define the (maximal)
885 information gain

$$886 \quad \gamma_T = \max_{A:|A|=T} I(y_A; f_A) = \max_A \frac{1}{2} \log \det(I + \sigma^{-2} K_A). \quad (1) \\ 887 \\ 888$$

889 In GP-UCB, cumulative regret admits the canonical bound $R_T = O(\sqrt{T\beta_T\gamma_T})$, with β_T a confi-
890 dence parameter depending on δ and the RKHS norm $\|f\|_k$ (Srinivas et al., 2010).

892 A.2 ASSUMPTIONS
893

894 **Assumption 1** (TabPFN Approximation Quality). Based on the empirical results in Müller et al.
895 (2022) and the statistical analysis from Nagler (2023) showing that TabPFN can approximate GP
896 posteriors with high fidelity, there exists a constant $C_{\text{approx}} > 0$ such that for any dataset \mathbb{D}_t and
897 query point $\mathbf{x} \in \mathbb{X}$:

$$898 \quad |\mu_t(\mathbf{x}) - \mu_t^{GP}(\mathbf{x})| \leq C_{\text{approx}} \epsilon_{\text{approx}}(t) \\ 899 \quad |\sigma_t^2(\mathbf{x}) - (\sigma_t^{GP}(\mathbf{x}))^2| \leq C_{\text{approx}} \epsilon_{\text{approx}}(t)$$

900 where $\mu_t^{GP}(\mathbf{x})$ and $\sigma_t^{GP}(\mathbf{x})$ are the corresponding GP posterior mean and standard deviation, and
901 $\epsilon_{\text{approx}}(t) \rightarrow 0$ as the TabPFN training data size increases.

903 **Assumption 2** (Bounded Function Complexity). The true function f has bounded RKHS norm:
904 $\|f\|_k \leq B$ for some reproducing kernel k and constant $B > 0$.

905 **Assumption 3** (Gradient-Informed Subspace). Following Li et al. (2025; 2024), let μ be a reference
906 measure (e.g., standard Gaussian) and define the diagnostic/Fisher matrix

$$907 \quad H = \mathbb{E}_{\pi} [\nabla \log \ell(X) \nabla \log \ell(X)^\top], \quad \text{with } d\pi(x) \propto \ell(x) d\mu(x).$$

909 Let $V_r \in \mathbb{R}^{D \times r}$ contain the top- r eigenvectors of H . The best r -dimensional ridge approximation
910 $\tilde{\pi}_r$ to π enjoys a certified error

$$912 \quad D_{\alpha}(\pi \| \tilde{\pi}_r) \leq \mathcal{J}_{\alpha} \left(C_{\alpha}(\mu) \sum_{k=r+1}^D \lambda_k(H) \right), \\ 913 \\ 914$$

916 for all $\alpha \in (0, 1]$, where $\lambda_k(H)$ are the eigenvalues of H in descending order and $C_{\alpha}(\mu)$ depends
917 only on μ . Thus choosing V_r by Fisher-eigenvectors minimizes a tight majorant of the divergence,
918 with sharper (dimensional) certificates available for $\alpha = 1$ (KL). We use this to quantify subspace

truncation error. The certificate above follows from φ -Sobolev / logarithmic-Sobolev bounds that (i) deliver the same V_r for KL and Hellinger and (ii) upper-bound the divergence by the tail trace $\sum_{k>r} \lambda_k(H)$ (Li et al., 2024). Dimensional LSI further sharpens the KL majorant and yields matching minorants at the minimizer (Li et al., 2025).

In BO the exact score $\nabla \log \ell(x)$ is unavailable, so we adopt the widely used empirical-Fisher approximation based on surrogate gradients $g(x)$ (Pascanu & Bengio, 2013; Kunstner et al., 2019; Eschenhagen et al., 2025), setting

$$H = \mathbb{E}_\mu[g(x)g(x)^\top], \quad g(x) := \nabla_x \mu_m(x)$$

Prior Fisher-spectral analyses Pennington & Worah (2018); Karakida et al. (2019) and likelihood-informed subspace theory Zahm et al. (2022) show that the leading eigenvectors of such approximate Fisher matrices still recover the dominant sensitivity directions, validating the use of H as the GI-subspace estimator.

Empirical Verifications of Assumption 1 To assess whether the approximation error of TabPFN’s predictive posterior remains small in the regimes relevant for GIT-BO, we measure the approximation error between TabPFN’s predictive mean and a GP fitted on the same context set D_t . We report the average discrepancy $\epsilon_{\text{approx}}(t)$ across five high-dimensional benchmarks: Ackley 100D, Rosenbrock 100D, Levy 100D, Dixon-Price 100D, and the 118D Reactive Power Phase problem. For each benchmark and each data-sample size $t \in [10, 5000]$, we evaluate both models on a fixed candidate grid and compute $\epsilon_{\text{approx}}(t) = \text{MSE}(\mu_t^{\text{TabPFN}}, \mu_t^{\text{GP}})$. Figure 6 shows that empirically the approximation error decreases sharply as the dataset grows — consistent with Assumption 1, where $\epsilon_{\text{approx}}(t) \rightarrow 0$ as the context length increases.

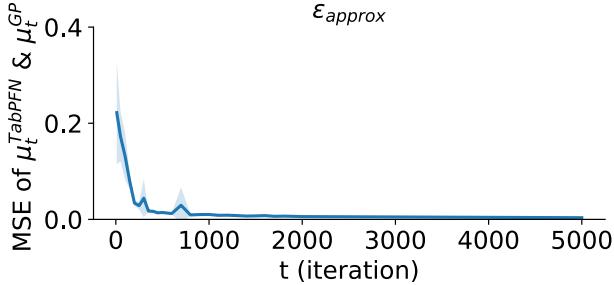


Figure 6: Average approximation error $\epsilon_{\text{approx}}(t)$ between TabPFN and GP predictive means across five problems (Ackley 100D, Rosenbrock 100D, Levy 100D, Dixon-Price 100D, Reactive Power Phase 118D). The plot shows the mean-squared difference evaluated on a fixed candidate grid as the context size t grows from 10 to 5000. The rapid decay demonstrates that TabPFN’s predictive posterior converges toward the GP surrogate as more data are incorporated, confirming Assumption 1 empirically.

A.3 CONFIDENCE BOUNDS FOR TABPFN-BASED SURROGATES

Define:

$$\beta_t = 2B^2 + 2 \log \left(\frac{\pi^2 t^2}{3\delta} \right) + 2C_{\text{approx}}^2 \epsilon_{\text{approx}}^2(t)$$

Lemma 1 (TabPFN-UCB Confidence Bounds). With probability at least $1 - \delta$, for all $t \geq 1$ and $x \in \mathcal{X}$:

$$|f(x) - \mu_t(x)| \leq \sqrt{\beta_t} \sigma_t(x)$$

This follows the martingale concentration approach of Srinivas et al. (2010) but includes an additional approximation error term $C_{\text{approx}} \epsilon_{\text{approx}}(t)$ to account for the difference between TabPFN and the ideal GP posterior. The bounded RKHS norm assumption ensures the function lies in a

972 well-defined function class, while the approximation quality assumption controls the deviation from
 973 GP-based confidence bounds.
 974

975 **A.4 SUBSPACE INFORMATION GAIN ANALYSIS**
 976

977 To analyze GIT-BO’s regret, we must characterize how much information can be gained about the
 978 objective function when optimization is restricted to the gradient-informed subspace.
 979

980 **Definition 1** (Subspace Information Gain). For a subspace $\mathbb{S} \subset \mathbb{X}$ and set of points $A =$
 981 $\{x_1, \dots, x_T\} \subset \mathbb{S}$, the subspace information gain is:
 982

$$\gamma_{T,\mathbb{S}} := \max_{A \subset \mathbb{S}, |A|=T} I(y_A; f_A)$$

983 where $I(y_A; f_A) = \frac{1}{2} \log |\mathbf{I} + \sigma^{-2} K_A|$ is the mutual information between observations y_A and
 984 function values f_A .
 985

986 **Lemma 2** (Subspace Approximation Error). Under Assumption 3, the approximation error for re-
 987 stricting optimization to the gradient-informed subspace V_r satisfies:
 988

$$989 D_{KL}(\pi_{\text{full}} \parallel \pi_r) \leq \frac{1}{2} \sum_{k=r+1}^d \lambda_k(H)$$

990 where π_{full} represents the target distribution in the full space and π_r is its approximation in the
 991 subspace V_r .
 992

993 **Lemma 3** (Subspace Information Gain Bound). Under Assumption 3, the information gain in the
 994 gradient-informed subspace V_r satisfies:
 995

$$996 \gamma_{T,V_r} \geq \alpha \gamma_{T,\text{full}} - C_{\text{sub}} T^{1/2}$$

997 where $\gamma_{T,\text{full}}$ is the information gain in the full space and C_{sub} is a constant depending on the subspace
 998 construction quality. This follows from Assumption 3, which ensures that the Fisher eigenvectors
 999 V_r minimize a Sobolev-type divergence between the full distribution and its subspace projection.
 1000 The information gain in V_r is therefore lower-bounded by the variation captured in the retained
 1001 eigenvalues, linking subspace structure directly to the information-theoretic quantity.
 1002

1003 **A.5 ACQUISITION FUNCTION ANALYSIS**
 1004

1005 We adopt the Upper Confidence Bound (UCB) acquisition, a standard principle in Bayesian opti-
 1006 mization (Srinivas et al., 2010). At each iteration t , given a predictive posterior with mean $\mu_t(x)$
 1007 and standard deviation $\sigma_t(x)$, UCB selects:
 1008

$$1009 x_t = \arg \max_{x \in \mathcal{X}} \alpha_t(x), \quad \alpha_t(x) = \mu_t(x) + \beta_t \sigma_t(x),$$

1010 where $\beta_t > 0$ balances exploration and exploitation.
 1011

1012 We instantiate β_t in two equivalent ways:
 1013

1014 **Definition 1** (Sampling-UCB). Draw S i.i.d. samples $\tilde{y}_t(x) \sim \mathcal{N}(\mu_t(x), \sigma_t^2(x))$ and set
 1015

$$1016 \alpha_t(x) = \max_{i=1, \dots, S} \tilde{y}_i(x).$$

1017 By extreme-value theory, the corresponding exploration parameter satisfies
 1018

$$1019 \beta_t \approx \Phi^{-1} \left(1 - \frac{1}{S} \right),$$

1020 which asymptotically behaves as $\sqrt{2 \log S}$ with standard corrections (Srinivas et al., 2010).
 1021

Definition 2 (Quantile-UCB fro (Müller et al., 2023)). For a one-sided Gaussian quantile $q \in (0, 1)$, set

$$\beta_t = \Phi^{-1}(q),$$

where Φ^{-1} is the standard normal inverse CDF. Then

$$\alpha_t(x) = \text{Quantile}_q \left[\mathcal{N}(\mu_t(x), \sigma_t^2(x)) \right].$$

This corresponds to selecting the q -th posterior quantile, with higher q producing more exploration. In code, this is parameterized by a “rest probability” p_{rest} , where $q = 1 - p_{\text{rest}}$.

Lemma 4 (Equivalence). Quantile-UCB with quantile level $q = 1 - 1/S$ is asymptotically equivalent to Sampling-UCB with S posterior draws. Both implement the same exploration policy, differing only in whether the quantile is computed analytically or via sampling.

Remark A.5. In practice, we adopt the sampling formulation of UCB, which introduces mild stochasticity by drawing finite posterior samples. This choice yields trajectories that may vary more across runs, akin to the exploratory effect of UCB. By contrast, the quantile formulation produces a deterministic acquisition rule given the posterior, leading to more stable and less variable optimization behavior. We provide an ablation of both variants in Appendix B.2. Presenting the two side by side highlights their close equivalence while ensuring transparency in how exploration is controlled.

A.6 MAIN REGRET BOUNDS

We now establish our main theoretical result for GIT-BO's regret performance.

Theorem 1 (GIT-BO Regret Bound). Under Assumptions 1-3, let $\delta \in (0, 1)$ and run GIT-BO with confidence parameter:

$$\beta_t = 2B^2 + \sqrt{2 \log S} + 2 \log \left(\frac{\pi^2 t^2}{3\delta} \right) + 2C_{\text{approx}}^2 \epsilon_{\text{approx}}^2(t)$$

Then with probability at least $1 - \delta$, the cumulative regret after T iterations satisfies:

$$R_T \leq \sqrt{C_1 T \beta_T \gamma_{T, V_r}} + \sum_{t=1}^T (1-\alpha) \sqrt{\beta_t \sigma_t^2(\mathbf{x}_t)} + T C_{\text{approx}} \epsilon_{\text{approx}}(T)$$

where $C_1 = 8/\log(1 + \sigma^{-2})$ and the second term accounts for subspace approximation error.

A.7 INFORMATION GAIN BOUNDS FOR HIGH-DIMENSIONAL SUBSPACES

Lemma 5 (Polynomial Information Gain). For common kernel functions (RBF, Matérn) restricted to an r -dimensional subspace where $r \ll D$, the information gain satisfies:

$$\gamma_{T,V} = O(r(\log T)^{r+1})$$

This represents a significant improvement over the full-dimensional case where $\gamma_{T,\text{full}} = O(D(\log T)^{D+1})$. This follows the spectral analysis of kernel functions in lower-dimensional spaces, adapting the techniques of Srinivas et al. (2010) to the subspace setting.

A.8 CONVERGENCE RATE

Combining our results, we obtain the following convergence guarantee:

Corollary 1 (Convergence Rate). Under the conditions of Theorem 1, if the TabPFN approximation error satisfies $\epsilon_{\text{TabPFN}}(t) = O(t^{-\xi})$ for some $\xi > 1/2$, then:

$$\lim_{T \rightarrow \infty} \frac{R_T}{T} = 0$$

1080 with convergence rate $R_T = O(\sqrt{rT(\log T)^{r+2}})$ when $r \ll D$.
 1081

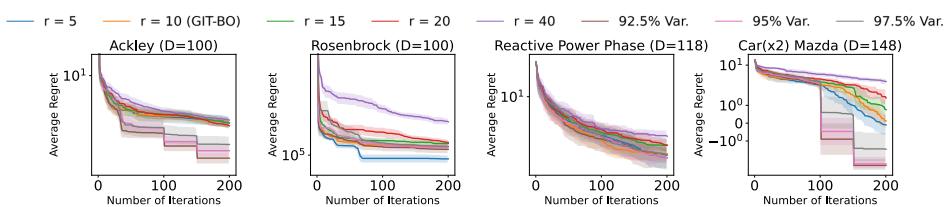
1082 This demonstrates that GIT-BO achieves sublinear regret with dimension-independent rates when
 1083 the effective dimensionality r is small, addressing the curse of dimensionality that plagues standard
 1084 GP-based methods.

1085 B ABLATION STUDIES

1088 B.1 WHY $r = 10$? — PARAMETER SWEEP ABLATION OF GI SUBSPACE’S PRINCIPAL 1089 DIMENSION r

1091 To evaluate the sensitivity of GIT-BO to the dimensionality of the gradient-informed active subspace,
 1092 we conducted a parameter sweep across both fixed subspace dimensions ($r = 5, 10, 15, 20, 40$) and
 1093 variance-explained criteria (92.5%, 95%, 97.5%) for a subset of four problems. The results, summa-
 1094 rized in Figure 7 and Table 1, highlight two consistent trends. First, very high-dimensional subspaces
 1095 (e.g., $r = 40$) exhibit clear performance degradation, indicating that overly broad subspaces dilute
 1096 the effectiveness of the gradient-informed search direction. Second, low- to moderate-dimensional
 1097 subspaces and variance-based selections generally perform better, though the best choice of r varies
 1098 across problem families. For example, $r = 5$ yields the top average rank among different r s, while
 1099 variance-based selection at the 92.5% and 95% thresholds achieves the top overall results.

1100 To ensure fairness and avoid additional hyperparameter tuning, we fixed $r = 10$ for all benchmarks
 1101 reported in the main text. This choice provides a stable middle ground, neither overly restrictive
 1102 nor excessively large, while still yielding competitive performance across diverse problem classes.
 1103 Notably, adaptive variance-based selection strategies further improve performance on average, un-
 1104 derscoring the potential benefit of problem-dependent tuning, but we leave such extensions for future
 1105 work. Overall, these ablation results confirm that GIT-BO remains robust to the specific choice of r ,
 1106 with consistent advantages over GP-based baselines even under a fixed setting.



1114
 1115 Figure 7: Performance of GIT-BO under different gradient-informed subspace dimensions (r) and
 1116 variance-explained criteria. Median optimization regret across 20 trials is shown, with shaded
 1117 regions denoting 95% confidence intervals. High-dimensional subspaces (e.g., $r = 40$) con-
 1118 sistently degrade performance, while smaller fixed dimensions and adaptive variance-based selec-
 1119 tions achieve stronger results. We fix $r = 10$ across all benchmarks in the main text for fairness, as it
 1120 provides a balanced and competitive setting without tuning.

1121
 1122 Table 1: Average performance rank of GIT-BO across different fixed subspace dimensions r and
 1123 variance-based adaptive selections.

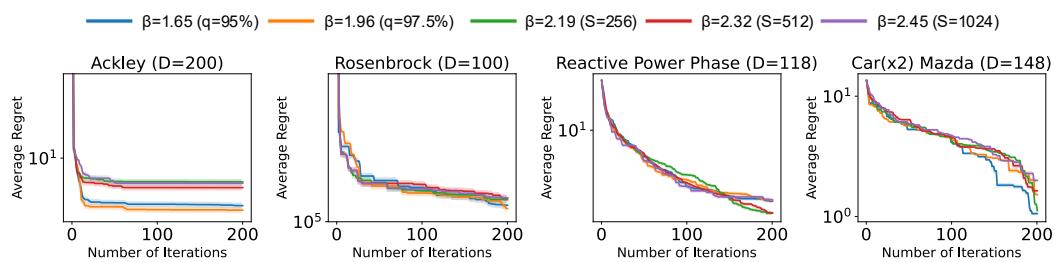
Selection of r	Average Rank
92.5% Variance	1.75
95% Variance	2.25
97.5% Variance	3.5
$r = 5$	3.25
$r = 10$	5.5
$r = 15$	5.5
$r = 20$	6.35
$r = 40$	8.0

1134 **B.2 WHY SAMPLING-BASED UCB? — ABLATION STUDY ON DIFFERENT β FACTOR OF UCB**
 1135 **ACQUISITION FUNCTION**

1137 We compared two equivalent parameterizations of UCB: (1) quantile-UCB, which uses the analytic
 1138 Gaussian quantile, and (2) sampling-UCB, which approximates it via the maximum over S posterior
 1139 draws. Both induce similar exploration levels for $\alpha = 1 - 1/S$, but differ in that sampling introduces
 1140 mild stochasticity. Our ablation results in Figure 8 and Table 2 shows that moderate exploration
 1141 ($\beta \approx 1.86 - 1.96$, i.e., quantile 95% - 97.5% or sampling with $S \approx 250$) achieves the best ranks.
 1142 Larger β values ($S = 512, 1024$) lead to over-exploration and degraded performance.

1143 In the main body of the paper we pre-committed to a single, conservative default ($S = 512$) across
 1144 all 60 tasks and 500 iterations per task. We did this deliberately for three reasons: 1. Fairness and
 1145 reproducibility: Using one global setting avoids per-benchmark tuning (or hindsight “cherry picking”) and makes results easy to reproduce and audit across a large suite. 2. Isolating the algorithmic
 1146 contribution: We wanted to attribute gains to the proposed GI subspace + TabPFN framework rather
 1147 than to problem-specific hyperparameter search. A fixed β keeps the evaluation focused on the
 1148 method, not tuning effort. 3. Practicality and compute parity: Sweeping β across 60 problems \times
 1149 500 iterations would multiply the already substantial compute; fixing a robust default is closer to
 1150 how one would deploy the method under realistic constraints.

1151 Despite this conservative choice (which the ablation shows is not the best), GIT-BO still outper-
 1152 formed all baselines in our main results. The ablation simply reveals additional headroom: modestly
 1153 smaller β values improve performance further. Designing an *automatic* β adaptation (e.g., schedule
 1154 or data-driven calibration) is promising future work, but is orthogonal to the core contribution and
 1155 therefore left out of the main comparison.



1159 Figure 8: Ablation study of UCB with different exploration factors (β) using quantile- and sampling-
 1160 based parameterizations. Moderate β values (quantile 95–97.5% or sampling $S = 250$) yield the
 1161 best performance, while larger β (e.g., $S = 512, 1024$) leads to over-exploration and weaker results

1166 **Table 2: Average performance rank of GIT-BO across different β from quantile-based and sampling-
 1167 based UCB.**

Selection of β	Average Rank
$\beta = 1.65 (q = 95\%)$	2.0
$\beta = 1.96 (q = 97.5\%)$	2.25
$\beta = 2.19 (S = 256)$	2.75
$\beta = 2.32 (S = 512)$	3.25
$\beta = 2.45 (S = 1024)$	4.75

1183 **B.3 WHY UNIFORM SAMPLING IN THE GRADIENT-INFORMED SUBSPACE? — ABLATION**
 1184 **STUDIES OVER GI SUBSPACE SAMPLING**

1186 We conducted an ablation study to evaluate the impact of three different GI subspace sampling
 1187 methods on GIT-BO’s optimization performance: uniform (default), random, and Sobol sampling.
 1188 Figure 9 shows the comparative convergence results.

Our findings indicate mixed results without a universally optimal sampling strategy. Uniform sampling generally provided stable and reliable convergence, while random sampling occasionally achieved better outcomes but with greater variance, similar as Sobol sampling. These observations highlight the potential for adaptive strategies in selecting GI subspace sampling methods based on problem-specific characteristics, representing an important area for future exploration.

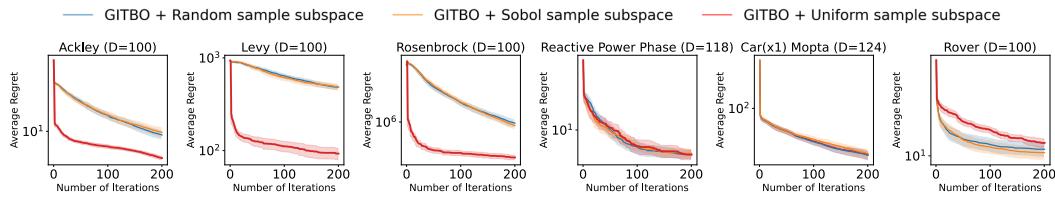


Figure 9: Comparative convergence of uniform, random, and Sobol sampling strategies within the GI subspace on selected benchmarks. Shaded regions represent 95% confidence intervals over 20 trials. Random and Sobol sampling can achieve similar or superior performance than uniform sampling GI subspace in engineering problems, while struggling at the synthetic tasks.

B.4 WHY GI SUBSPACE? — ABLATION STUDY ON APPLYING SUBSPACE IDENTIFICATION ON TABPFN FOR HIGH-DIMENSIONAL BO

We compare using vanilla TabPFN v2 with three other subspace identification methods:

1. **TabPFN:** Using vanilla TabPFN v2 for BO without any subspace identification method.
2. **TabPFN + TR:** TabPFN v2 BO with Trust Region (TR) (Eriksson et al., 2019; Papenmeier et al., 2022).
3. **TabPFN + BAxUS Projection:** TabPFN v2 BO with the SOTA method that combined subspace projection method with TR from BAxUS (Papenmeier et al., 2022).
4. **TabPFN + GI-Subspace (GIT-BO):** our GIT-BO algorithm with TabPFN v2 and GI-subspace method

With other hyperparameters, acquisition function, and initial samples remains fixed across the tested algorithms, we run each algorithm 10 time and plot the average regret results in Figure 10. We observe that though TR and BAxUS contribute improvements to the algorithm performance, where BAxUS projection improve the performance significantly on the synthetic problems. However, GI-subspace identification still outperform both other methods in the optimality of final result, maintaining its leading performance in both synthetic and real-world problem, confirming that our gradient subspace aligned exploration is more effective than local restriction.

We believe that the reason why TR and BAxUS projection is not as effective as GI-subspace is due to the inevitable implementation differences of TR for GP- and TFM-based BO. For our TabPFN + TR calculation, since TabPFN does not have kernel structure as GP, we can only equally weighted the TR hypercube search area but not weighted based on the GP kernel length scales as designed in the original algorithm for the TR construction (Eriksson et al., 2019). This is the main reason why we explore alternatives than the existing SOTA subspace identification method.

B.5 WHY UCB? — ABLATION STUDY ON DIFFERENT ACQUISITION FUNCTIONS

We tested GIT-BO on two different acquisition functions: Expected Improvement (EI) and Upper Confidence Bound (UCB, default acquisition function for GIT-BO). The average regret result from 10 trial runs on the five problems with all combinations of different subspace embedding methods listed in B.4 are shown in Figure 11.

The ablation result highlights that between acquisition functions, UCB outperforms EI across all settings by minor difference, consistent with prior findings that EI suffers numerical vanishing in

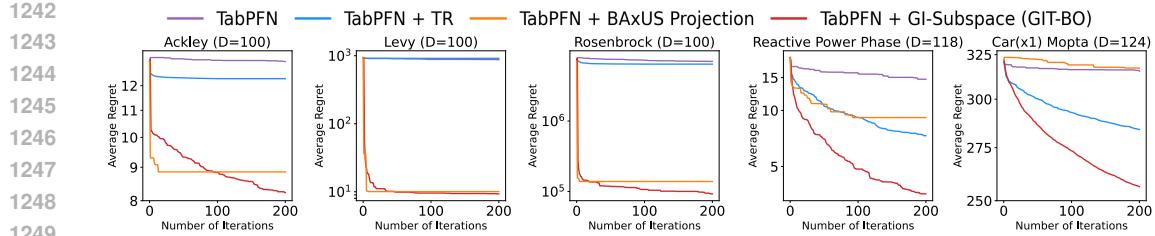


Figure 10: Ablation on different subspace identification strategies: Trust Region (TR), BAxUS Projection, and GI-subspace (our method). Adding TR and BAxUS projection provides less performance gains compared to GI-subspace used by GIT-BO with the best overall performance.

high dimensions Ament et al. (2023) and that UCB remains more stable under such conditions Xu et al. (2025). Hence, GIT-BO adopts UCB and GI-subspace identification as its default configuration for reliable high-dimensional optimization with TabPFN v2.

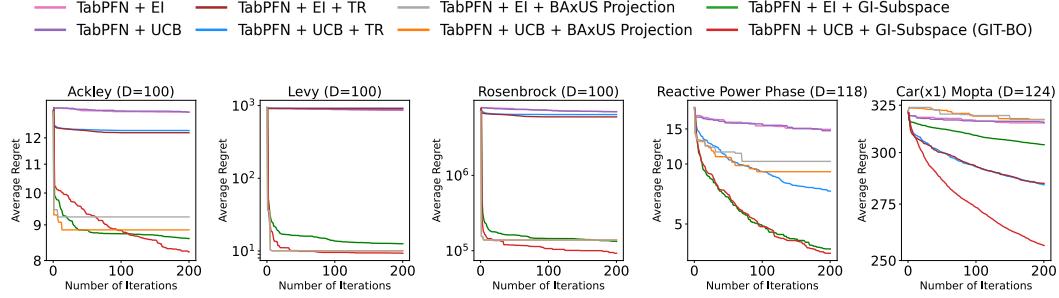


Figure 11: Ablation on two acquisition functions: EI and UCB. UCB-based methods consistently outperform EI, validating GIT-BO’s choice of UCB + GI (red line) as the main setup.

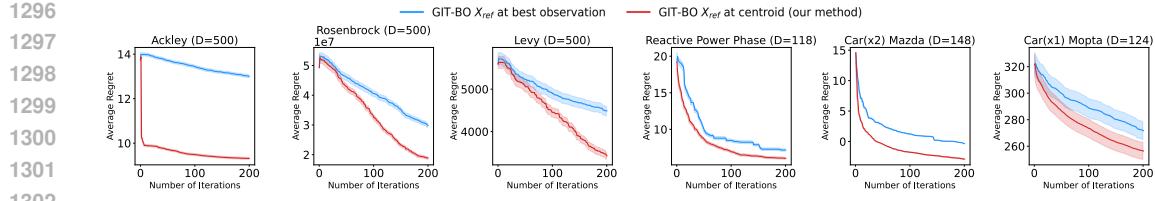
B.6 WHY $x_{\text{REF}} = \bar{x}_{\text{OBS}}$? — ABLATION STUDY ON $x_{\text{REF}} = \bar{x}_{\text{OBS}}$ VS. $x_{\text{REF}} = x_{\arg \max y_{\text{obs}}}$

Existing high-dimensional BO methods such as BAxUS and TuRBO center their local search trust regions on the incumbent $x_{\arg \max y_{\text{obs}}}$, where we get the best observation so far (Eriksson et al., 2019; Papenmeier et al., 2022). To assess whether GIT-BO should follow the same choice, we compare two reference points x_{ref} for generating GI-subspace candidates: the final incumbent $x_{\arg \max y_{\text{obs}}}$ versus the centroid of observed data \bar{x}_{obs} .

Across the average regret plot of six representative benchmarks over 10 trial runs shown in Figure 12, using the incumbent systematically worsens regret and slows convergence, and thus we empirically select \bar{x}_{obs} as our reference point. We hypothesize that the centroid offers a more stable anchor by avoiding over-concentration around a incumbent stuck in local optimal location and by keeping candidate generation within the well-sampled region where TabPFN’s in-context predictions are most reliable, which is consistent with the observations of TabPFN’s locality and imbalance analysis in recent work (Ye et al., 2025; Nejjar et al., 2024).

B.7 WHY $N_{\text{INIT}} = 200$? — ABLATION STUDY ON DIFFERENT N_{INIT}

Our choice of $N_{\text{init}} = 200$ in the main paper follows the dimensionality-aware scaling used in prior high-dimensional BO work. For example, TuRBO increases its N_{init} initialization from 20 (10D problem) to 50 (12D problem) to 200 (200D problem) (Eriksson et al., 2019). As the number of initial sample may affect the algorithm performance, we ablate the effect of initialization size by testing $N_{\text{init}} \in \{20, 50, 200, 1000\}$ with GIT-BO and the baseline algorithms. The average regret results from 10 trial runs on the five problems are shown in Figure 13.



1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 12: Ablation study comparing two choices of the reference point x_{ref} for generating GI-subspace candidates: the incumbent best observation ($x_{\arg \max y_{\text{obs}}}$, blue) vs. the centroid of the observed data (\bar{x}_{obs} , red). Across all six benchmark problems, centering the GI-subspace at the centroid yields consistently lower regret and faster convergence, empirically supporting our choice $x_{\text{ref}} = \bar{x}_{\text{obs}}$ in GIT-BO (Ye et al., 2025).

Figure 13 demonstrated that across all initialization sizes, GIT-BO consistently attains the best statistical rank, even in the large-data setting ($N_{\text{init}} = 1000$) that favors GP-based competitors and should disadvantage TabPFN’s amortized inference. Notably, while Vanilla BO and SAASBO are sensitive to the choice of N_{init} , GIT-BO’s performance remains remarkably stable, with only minor variation across all regimes. To complement these convergence results, Table 3 reports the corresponding runtime profiles. The runtimes show the same trend: GIT-BO’s computational cost remains nearly constant across initialization regimes, while the GP-based methods incur substantial overhead as the initial dataset grows.

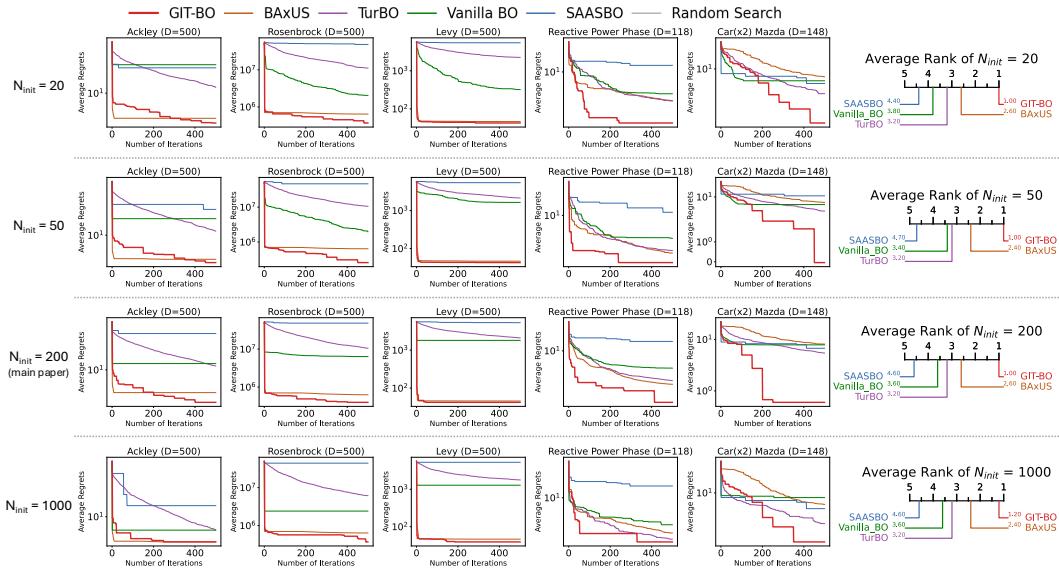


Figure 13: Convergence behavior of five BO algorithms under varying initialization sizes. Across all $N_{\text{init}} = \{20, 50, 200, 1000\}$ values, GIT-BO exhibits stable convergence with minimal sensitivity to initialization size, whereas several GP-based baselines (e.g., Vanilla BO, SASASBO) degrade or fluctuate noticeably as N_{init} changes. The average statistical rank of each algorithm of each N_{init} also shows that GIT-BO remains the top-ranked method across all four regimes.

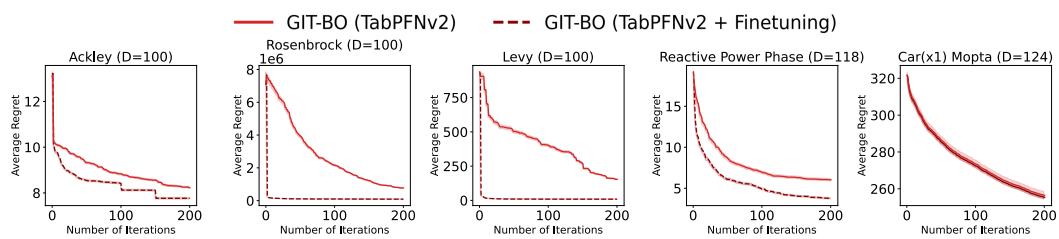
1350
 1351 Table 3: Average wall-clock time (in seconds) required to complete 500 BO iterations for all al-
 1352 gorithms under $N_{\text{init}} = \{20, 50, 200, 1000\}$. These results complement Figure 13 by showing that
 1353 GIT-BO maintains stable runtime across initialization scales.

BO Algorithm	$N_{\text{init}} = 20$ Average Runtime	$N_{\text{init}} = 50$ Average Runtime	$N_{\text{init}} = 200$ Average Runtime	$N_{\text{init}} = 1000$ Average Runtime
GIT-BO	2700	2722	2734	3404
BAxUS	3666	3981	4008	4061
TurBO	430	445	444	1137
Vanilla BO	2708	2557	2708	4650
SAASBO	13406	12617	13870	16663

1361
 1362 **B.8 WILL FINETUNING TABPFN FURTHER IMPROVE GIT-BO’S PERFORMANCE? —**
 1363 **ABLATION STUDY ON TABPFN VS. FINETUNED TABPFN**

1364
 1365 Recent work on tabular foundation models consistently shows that continued pre-training or light
 1366 task-specific finetuning can improve surrogate accuracy on domain-specialized objectives (Gardner
 1367 et al., 2024; Ma et al., 2025; Garg et al., 2025; Grinsztajn et al., 2025). Motivated by these findings,
 1368 we investigate whether finetuning TabPFN on each benchmark can further enhance GIT-BO’s per-
 1369 formance beyond the frozen-TFM setting. For every problem, we generate 1,000 Latin Hypercube
 1370 samples that are strictly excluded from the BO initialization set for avoiding performance gain from
 1371 data leakage, and use them as the dataset for finetuning. Following the Real-TabPFN (Garg et al.,
 1372 2025) pipeline ¹, we continue pre-training TabPFN for 100 epochs on this task-specific dataset, pro-
 1373 ducing a separately finetuned surrogate for each benchmark. GIT-BO is then run with these finetuned
 1374 models as drop-in replacements for the frozen TabPFN surrogate, evaluating each configuration over
 1375 10 independent BO trials and reporting the mean regret curves.

1376 Across all benchmarks, finetuning consistently improves the surrogate’s accuracy and yields uni-
 1377 formly stronger optimization curves when inserted into GIT-BO. While the frozen TabPFN already
 1378 provides competitive performance, finetuning enables noticeable gains on domain-specific struc-
 1379 ture, demonstrating that GIT-BO can further benefit from TFM adaptation when additional data are
 1380 available.



1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390 Figure 14: Ablation comparing GIT-BO using the default TabPFNv2 surrogate versus a finetuned
 1391 TabPFNv2 model. Finetuning on 1,000 task-specific samples consistently improves optimization
 1392 performance across synthetic and engineering benchmarks, demonstrating that domain adaptation
 1393 can further boost GIT-BO beyond the frozen-TFM setting.

1394
 1395
 1396 **B.9 HOW SENSITIVE IS GIT-BO TO ORIGIN-CENTERED OPTIMA? — ABLATION ON SHIFTED**
 1397 **SYNTHETIC FUNCTIONS (GIT-BO VS. BAXUS)**

1398
 1399 One concern from previous research is that a synthetic benchmark with an optimum at the origin
 1400 could yield free wins for subspace projection methods. The BAxUS paper (Papenmeier et al., 2022)
 1401 highlights that its sparse random embeddings contain the global optimum whenever it lies at the
 1402 origin, a situation common in synthetic functions such as Ackley, Rastrigin, Powell, and Griewank

1403
 1404 ¹TabPFN finetuning code from Prior Labs

1404 with their optimum at origin $(0, 0, \dots)^D$ in our benchmark problems. Thus, BAxUS and methods
 1405 with such subspace embedding can exploit these problems and achieve efficient convergence.
 1406

1407 In this section, we elaborate mathematically and empirically why this is not a concern for GIT-BO
 1408 even though it is also projecting a low-dimensional subspace to the high-dimensional search space.
 1409

1410 Mathematically, GIT-BO’s gradient-informed subspace fundamentally differs from BAxUS’s sparse
 1411 random embedding. BAxUS constructs a sparse projection matrix S^\top where each input dimension is
 1412 randomly assigned to exactly one target dimension with a random sign. This construction guarantees
 1413 that the origin $(0, \dots, 0)^D$ maps to the origin in the embedded space, since $S^\top \mathbf{0} = \mathbf{0}$ regardless of
 1414 the random assignment. Consequently, any optimum located at the origin is automatically contained
 1415 in BAxUS’s embedded subspace with probability one. In contrast, GIT-BO’s projection is derived
 1416 from the empirical Fisher matrix $H = \mathbb{E}_\mu[g(x)g(x)^\top]$, where $g(x) := \nabla_x \mu_m(x)$ are gradients of
 1417 TabPFN’s predictive mean. The gradient-informed subspace V_r consists of the top- r eigenvectors
 1418 of H , which are determined by the local sensitivity structure of the predictive model conditioned
 1419 on observed data \mathcal{D}_{obs} . Critically, V_r is a **dense matrix** whose structure depends on the gradient
 1420 covariance across the observed samples, not on any pre-specified sparse assignment.
 1421

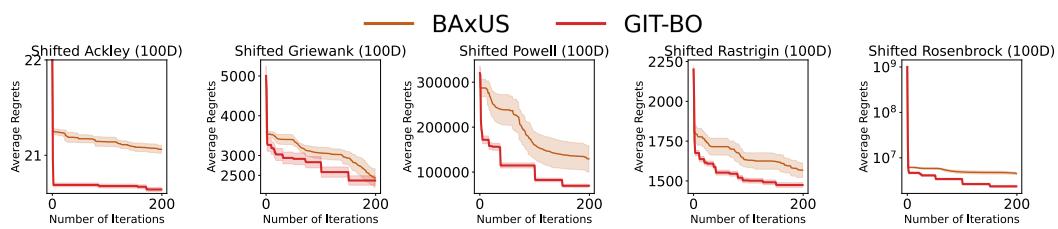
1422 Furthermore, GIT-BO generates candidate points via $X_{\text{GI}} = x_{\text{ref}} + V_r z$, where $x_{\text{ref}} = \bar{x}_{\text{obs}}$ is the
 1423 centroid of observed data and $z \sim \mathcal{U}([-1, 1]^r)$. This centering at \bar{x}_{obs} does not guarantee that
 1424 the origin lies within the explored subspace unless the observed samples themselves are centered
 1425 near the origin. Since the Fisher eigenvectors V_r are data-dependent and the reference point tracks
 1426 the search trajectory, GIT-BO’s subspace does not systematically favor origin-centered optima by
 1427 construction.
 1428

1429 Empirically, we evaluate whether if the origin optima affect optimization performance by replicating
 1430 Papenmeier et al. (2022)’s experimental protocol from their supplementary material. We evaluate
 1431 both BAxUS and GIT-BO with different subspace projection method on shifted versions of five
 1432 100D benchmarks:
 1433

$$f_{\text{ShiftedProblem}}(x) = f_{\text{Problem}}(x + \delta), \quad \delta_i \sim \mathcal{U}(x^{\text{LB}}, x^{\text{UB}}),$$

1434 where $\text{Problem} \in \{\text{Ackley, Griewank, Powell, Rastrigin, Rosenbrock}\}^{D=100}$, \mathcal{U} is a uniform distribution,
 1435 and $x^{\text{LB}}, x^{\text{UB}}$ are the lower bound and upper bound of the search space. In addition to the
 1436 problems with optima at origin $(0, 0, \dots)^D$ (Ackley, Rastrigin, Powell, and Griewank), we included
 1437 Rosenbrock with optima at $(1, 1, \dots)^D$ for a harder shifted problem.
 1438

1439 Figure 15 shows that even with coordinate shifts that displace the optimum away from the origin,
 1440 GIT-BO consistently achieves lower regret than BAxUS across all five benchmarks. This demonstrates
 1441 that GIT-BO does not rely on “free wins” from origin-centered problem structure, confirming
 1442 that its gradient-informed subspace mechanism is robust to optimum location.
 1443



1444 Figure 15: Performance of GIT-BO vs. BAxUS on shifted 100D synthetic benchmarks; GIT-BO
 1445 consistently achieves lower regret despite coordinate shifts that displace the optimum away from the
 1446 origin.
 1447

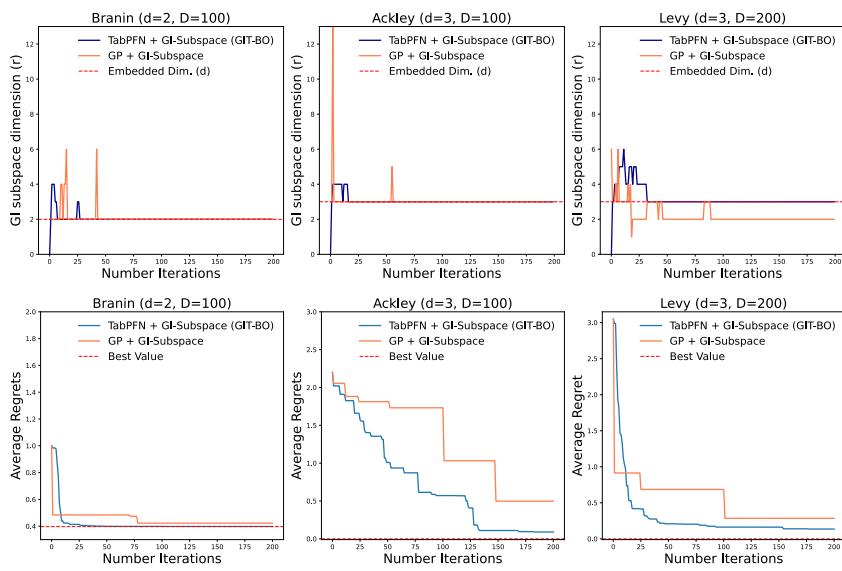
1448 C EXPERIMENTAL ANALYSIS ON GRADIENT-INFORMED ACTIVE SUBSPACE 1449 IDENTIFICATION

1450 A central question for gradient-informed (GI) subspace identification is whether it can reliably re-
 1451 cover the intrinsic dimensionality of a problem when the objective is embedded in high dimen-
 1452

1458 sions. In principle, eigenvalue thresholds on gradient covariance spectra might fail—oscillating
 1459 around spurious directions or overestimating dimensionality—unless the surrogate provides suffi-
 1460 ciently smooth and informative gradients. We were therefore curious to test whether GIT-BO’s GI
 1461 subspace mechanism can autonomously identify the correct intrinsic dimension or not.

1462 To probe this, we evaluate on Branin ($d=2$ embedded in 100D), Ackley ($d=3$ embedded in 100D),
 1463 and Levy ($d=3$ embedded in 200D). GIT-BO with TabPFN surrogates consistently auto-selects a
 1464 subspace dimension r (via a 95% variance threshold on the gradient covariance spectrum) that con-
 1465 verges to the ground-truth d after ~ 50 iterations, while simultaneously reducing regret. These results
 1466 in Figure 16 suggest that TabPFN provides a smooth and informative gradient field that allows the
 1467 GI subspace to identify the correct intrinsic structure of a problem, enabling efficient search in that
 1468 space.

1469 Figure 16 also confirms the generalizability of GI-subspace for GP surrogate. We utilize the
 1470 Vanilla GP BO’s setting of GP² Hvarfner et al. (2024) for this experiment with BoTorch’s
 1471 propagate.grads³ setting for calculating the gradient from GP model. We then implemented
 1472 GI subspace identification using this output GP gradients ($\nabla_x \mu_m^{GP}(x)$). We see that GI subspace on
 1473 GP is similarly effective since it converges to the correct d for Branin ($d = 2$) and Ackley ($d = 2$),
 1474 but having $|r - d| = 1$ for the Levy ($d = 3$) problem, and the average regret is indeed converg-
 1475 ing towards the optimal value. We hypothesize that this behavior is due to the fact that the 95%
 1476 explained-variance threshold not being universally suitable for GPs or this problem. Future work
 1477 can be further investigating the best auto selection mechanism of r for GP-based BO.



1497 Figure 16: GI subspace behavior on high-dimensional embeddings. **Top:** Median (average) re-
 1498 gret (20 trials, 95% CI). **Bottom:** Auto-selected subspace dimension r under a 95% variance rule.
 1499 TabPFN+GI converges to the correct intrinsic dimension ($r \rightarrow d$) with strong regret reduction.
 1500 GP(EI)+GI also shows the convergence of intrinsic dimension in most cases, indicating the general-
 1501 izationability of GI-subspace method. The instability of GP(EI)+GI’s r at the early stage of search could
 1502 be stemmed from the fixed 95% for r selection (maybe 92% or 97.5% are better for Levy).

1505 D PERFORMANCE AND RUNTIME RESULTS ANALYSIS ON 60 BENCHMARKS

1507 We report comprehensive optimization outcomes across all benchmark problems considered in the
 1508 main paper. Figure 17 presents regret trajectories on all 60 benchmarks, and Figure 18 compares
 1509 regret versus runtime.

1510 ²Changes to default BoTorch covariance and likelihood modules #2451

1511 ³botorch.settings.propagate.grads

1512 Overall, GIT-BO exhibits consistently strong performance across diverse high-dimensional prob-
 1513 lems, with clear advantages on most engineering benchmarks (with the exception of the Rover fam-
 1514 ily). This highlights its ability to balance convergence speed and final solution quality relative to
 1515 other state-of-the-art (SOTA) methods.

1516 For synthetic problems, GIT-BO maintains robustness as dimensionality increases, whereas compet-
 1517 ing methods degrade more noticeably. Nevertheless, there are cases where GIT-BO underperforms
 1518 across all D (e.g., Styblinski–Tang and Michalewicz), consistent with the “No Free Lunch” theo-
 1519 rem (Wolpert & Macready, 1997). We also observe plateauing in the convergence of both BAxUS
 1520 and GIT-BO. For GIT-BO, this behavior is aligned with the known bias plateau of TabPFN predic-
 1521 tors under increasing sample sizes (Nagler, 2023). The similar plateau in BAxUS suggests a broader
 1522 phenomenon affecting probabilistic surrogates that merits further investigation.

1523 On real-world engineering problems, GIT-BO ranks first overall, despite poor performance on the
 1524 Rover tasks, again reinforcing “No Free Lunch.” Interestingly, BAxUS, which dominates synthetic
 1525 benchmarks, drops to fourth place on engineering problems. This discrepancy underscores the gap
 1526 between synthetic and real-world benchmarks and motivates the need for more optimization bench-
 1527 mark design and evaluation.

1529 E HIGH-DIMENSIONAL BENCHMARK ALGORITHMS IMPLEMENTATION 1530 DETAILS

1532 We benchmark GIT-BO against four high-dimensional BO methods that GPU can also accelerate
 1533 compute using PyTorch, including TURBO (Eriksson et al., 2019), Vanilla BO (Hvarfner et al.,
 1534 2024), BAxUS (Papenmeier et al., 2022), and SAASBO (Eriksson & Jankowiak, 2021).

- 1536 • TURBO: The implementation is taken from BoTorch’s GitHub repository (Balandat
 1537 et al., 2020) (link: https://github.com/pytorch/botorch/blob/main/tutorials/turbo_1/turbo_1.ipynb, license: MIT license, last accessed: Sep
 1538 21st, 2025)
- 1539 • Vanilla BO: The implementation is taken from (Balandat et al., 2020) BoTorch ver-
 1540 sion 13’s GitHub repository (link: <https://github.com/pytorch/botorch/discussions/2451>, license: MIT license, last accessed: Sep 21st, 2025)
- 1541 • BAxUS: The implementation is taken from BoTorch’s GitHub repository (Balandat
 1542 et al., 2020) (link: <https://github.com/pytorch/botorch/blob/main/tutorials/baxus/baxus.ipynb>, license: MIT license, last accessed: Sep 21st, 2025)
- 1543 • SAASBO: We use the SAASBO-MAP version of the algorithm for comparison. The
 1544 code is taken from Xu et al. (2025) (link: <https://github.com/XZT008/Standard-GP-is-all-you-need-for-HDBO/> commit b60e1c6, license: no
 1545 license, last accessed: Sep 21st, 2025) where they implemented the MAP estimation of
 1546 SAASBO based on the original paper (Eriksson & Jankowiak, 2021), with all the hyperpar-
 1547 ameter settings following precisely the same as the original paper. The reason for not using
 1548 SAASBO-NUT is due to our computational resource limitations. We set a fixed maximum
 1549 time of 10000 seconds for each trial to run, since running all benchmarking experiments
 1550 takes roughly 72 million compute hours. Unfortunately, SAASBO-NUT can only run \sim 310
 1551 iterations given this time budget, making it unfeasible for comparison with other algorithms
 1552 that can finish running 500 iterations under 10000 seconds.

1553 We use Botorch v0.12.0 for all algorithms mentioned above. The environment setups are detailed in
 1554 the provided code zip file.

1561 F BENCHMARK PROBLEMS IMPLEMENTATION DETAILS

1562 The source and license details of our benchmark problems are provided in the following paragraphs.
 1563 We restrict our evaluation to problems with well-maintained, publicly available code to ensure re-
 1564 producibility and stability across our benchmark framework. Benchmarks that require complex or

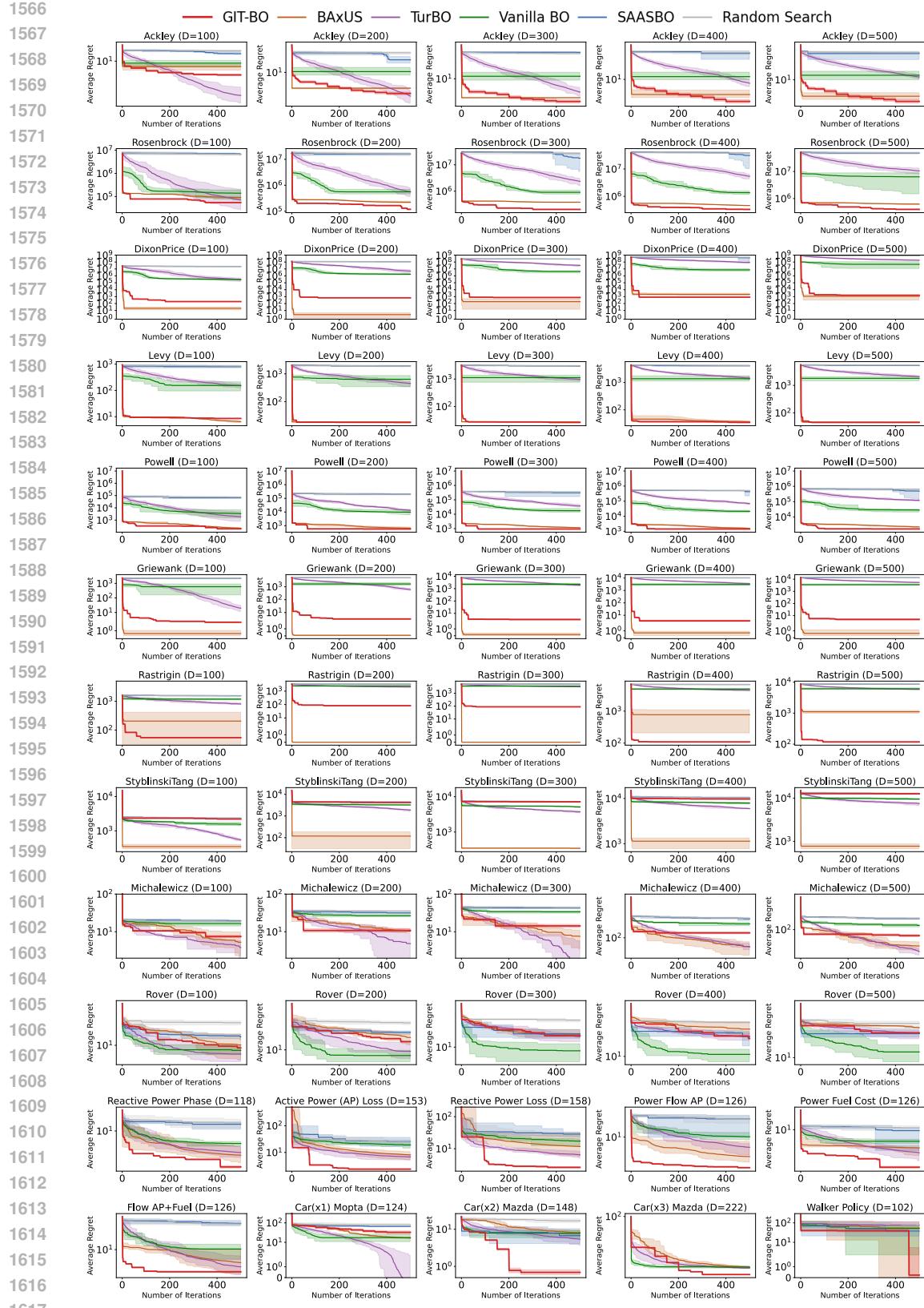


Figure 17: Average (median) regret vs. iterations (# function evaluations) with a budget of 500 iterations for all benchmarks. Average regrets are illustrated by solid lines, with shaded bands denoting 95% confidence intervals. The y-axis is log-scaled. GIT-BO finds the optimal value for 29 out of the total 60 problems. 30

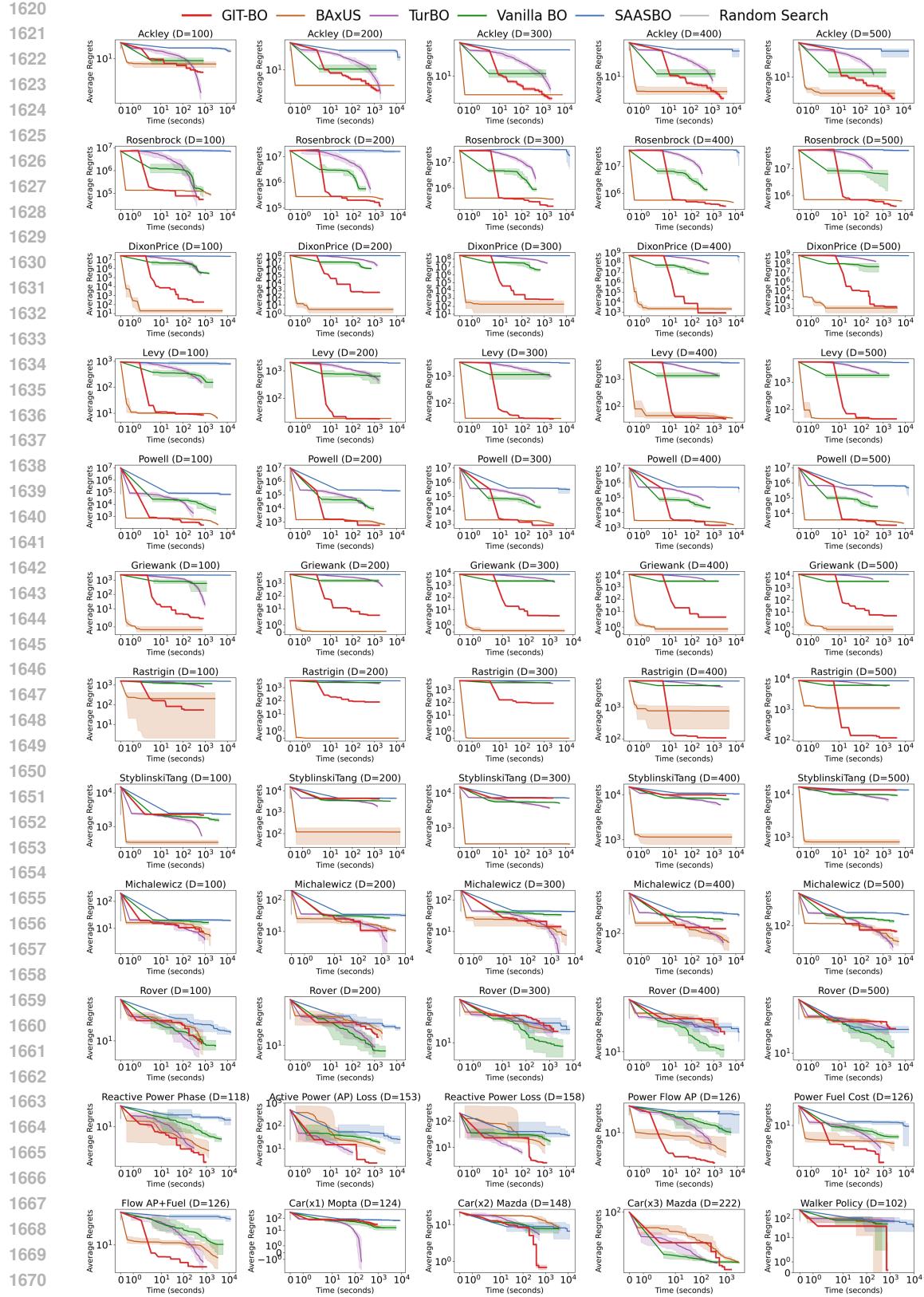


Figure 18: Average (median) regret vs. algorithm runtime (seconds) records of running 500 iterations for all benchmarks. Average regrets are illustrated by solid lines, with shaded bands denoting 95% confidence intervals. Both axes are log-scaled.

1674 incompatible environment configurations are not included in the present study. Looking ahead, we
 1675 advocate for a standardized collection of benchmarks with actively maintained codebases to facilitate
 1676 broader adoption and more rigorous comparisons in future research. If this paper is accepted,
 1677 we will release our Python benchmark library on PyPI alongside the publication.
 1678

1679 **Synthetic Problems:** The implementations for the nine synthetic functions are taken from
 1680 Botorch (Balandat et al., 2020) (link: https://github.com/pytorch/botorch/blob/main/botorch/test_functions/synthetic.py, license: MIT license, last accessed:
 1681 May 1st, 2025). The bounds of each problem are the default implementation in Botorch. De-
 1682 tailed equations for each problem can be found here: <https://www.sfu.ca/~ssurjano/optimization.html>.
 1683

1684 **Power System Problems:** We examine a subset of six problems, specifically those with design
 1685 spaces exceeding 100 dimensions, from the CEC 2020 Real World Constrained Single Objective
 1686 problems test suite (Kumar et al., 2020) (link: <https://github.com/P-N-Suganthan/2020-RW-Constrained-Optimisation>, license: no license, last accessed: May 1st, 2025).
 1687 The code is initially in MATLAB, and we translate it into Python, running pytest to ensure the
 1688 implementations are correct. While these problems incorporate equality constraints ($h_j(x)$), they
 1689 are transformed into inequality constraints ($g_j(x)$) using the methodology outlined in the original
 1690 paper (Kumar et al., 2020), as constraint handling is not the primary focus of this research. These
 1691 transformed constraints are subsequently incorporated into the objective function $f(x)$ as penalty
 1692 terms.
 1693

$$1695 \quad 1696 \quad g_j(x) = |h_j(x)| - \epsilon \leq 0, \epsilon = 10^{-4}, j = 1 \sim C$$

$$1698 \quad 1699 \quad f_{\text{penalty}}(x) = f(x) + \rho \sum_{j=1}^C \max(0, g_j(x))$$

1700 We set a different ρ penalty factor for each problem, respectively, to make the objective and con-
 1701 straint values have a similar effect on $f_{\text{penalty}}(x)$.
 1702

1703 **Table 4: Penalty Transform Factors of Benchmark Problems from CEC 2020**

1704 CEC's Problem Index	1705 Our Naming	1706 ρ
1707 34	1708 Reactive Power Phase	0.01
1709 35	1710 Active Power (AP) Loss	0.0002
1710 36	1711 Reactive Power Loss	0.001
1711 37	1712 Power Flow AP	0.04
1712 38	1713 Power Fuel Cost	0.02
1713 39	1714 Power AP+Fuel	0.04

1715 **Rover:** The implementation is taken from Wang et al. (2018) (link: <https://github.com/zi-w/Ensemble-Bayesian-Optimization>, license: MIT license, last accessed: May 1st,
 1716 2025).
 1717

1718 **Car(x1) Mopta:** The MOPTA08 is originally proposed by Jones (2008). The executable used in
 1719 this study are taken from the paper Papenmeier et al. (2022)'s personal website (link: <https://leonard.papenmeier.io/2023/02/09/mopta08-executables.html>, license: no
 1720 license, last accessed: May 1st, 2025). The MOPTA08 Car's penalty transformation follows the
 1721 formation of Eriksson & Jankowiak (2021)'s supplementary material of a one-car car crash design
 1722 problem.
 1723

1724 **Car(x2) and Car(x3) Mazda Cars Benchmark Problems:** The implementation is taken
 1725 from Kohira et al. (2018) (link: <https://ladse.eng.isas.jaxa.jp/benchmark/>, li-
 1726 cense: no license, last accessed: May 1st, 2025). The Mazda problem has two raw forms: a 4-
 1727 objectives problem 148D optimizing a two-car car design problem (Car(x2)) and a 5-objectives

222D problem three-car car design problem (Car(x3)), and both of them have inequality constraints. For both problems, we equally weight each objective to form a single objective and perform a penalty transform:

$$f_{multiobj_penalty}(x) = \frac{1}{N} \sum_{i=1}^N f(x) + \rho \sum_{j=1}^C \max(0, g_j(x))$$

where N is the number of objectives, C is the number of inequality constraints, and we use $\rho = 10$ for both variants of Mazda problem.

Walker Policy: The problem is originally a locomotion task from MuJoCo (Multi-Joint dynamics with Contact) physics engine (Todorov et al., 2012) (Walker-2D), one of the most popular Reinforcement Learning (RL) benchmarks. The implementation of this RL policy search problem is directly taken from Wang et al. (2020) (link: <https://github.com/facebookresearch/LA-MCTS/tree/main/example/mujoco>, license: CC-BY-NC 4.0 license, last accessed: May 1st, 2025).

Table 5 summarizes the type of problems and their respective tested dimensions.

Table 5: High-Dimensional Benchmark Problems

Problems	Source	Type	Dimension (D) Tested
Ackley	Botorch (Balandat et al., 2020)	Synthetic	100, 200, 300, 400, 500
Dixon-Price	Botorch (Balandat et al., 2020)	Synthetic	100, 200, 300, 400, 500
Griewank	Botorch (Balandat et al., 2020)	Synthetic	100, 200, 300, 400, 500
Levy	Botorch (Balandat et al., 2020)	Synthetic	100, 200, 300, 400, 500
Michalewicz	Botorch (Balandat et al., 2020)	Synthetic	100, 200, 300, 400, 500
Powell	Botorch (Balandat et al., 2020)	Synthetic	100, 200, 300, 400, 500
Rastrigin	Botorch (Balandat et al., 2020)	Synthetic	100, 200, 300, 400, 500
Rosenbrock	Botorch (Balandat et al., 2020)	Synthetic	100, 200, 300, 400, 500
Styblinski-Tang	Botorch (Balandat et al., 2020)	Synthetic	100, 200, 300, 400, 500
Reactive Power Phase	CEC2020 Benchmark Suite (Kumar et al., 2020)	Real-World	118
Active Power (AP) Loss	CEC2020 Benchmark Suite (Kumar et al., 2020)	Real-World	153
Reactive Power Loss	CEC2020 Benchmark Suite (Kumar et al., 2020)	Real-World	158
Power Flow AP	CEC2020 Benchmark Suite (Kumar et al., 2020)	Real-World	126
Power Fuel Cost	CEC2020 Benchmark Suite (Kumar et al., 2020)	Real-World	126
Power AP+Fuel	CEC2020 Benchmark Suite (Kumar et al., 2020)	Real-World	126
Rover	Previous BO studies (Wang et al., 2018)	Real-World	100, 200, 300, 400, 500
MOPTA08 CAR	Previous BO studies (Papenmeier et al., 2022)	Real-World	124
MAZDA	Mazda Car Bechmark (Kohira et al., 2018)	Real-World	222
MAZDA SCA	Mazda Car Bechmark (Kohira et al., 2018)	Real-World	148
Walker Policy	Mujoco (Todorov et al., 2012; Wang et al., 2020)	Real-World	102

G ADDITIONAL IMPLEMENTATION DETAILS

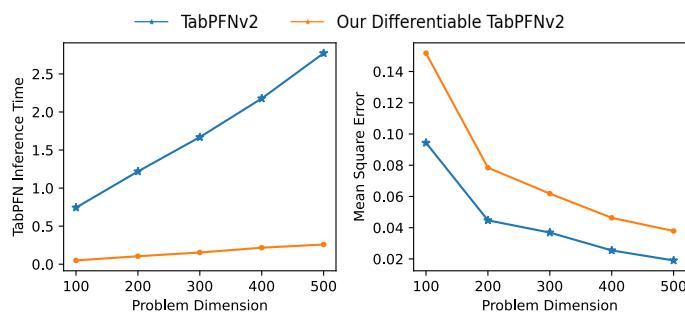
G.1 HARDWARE AND OPERATING SYSTEM

Due to the large number of benchmark problems and random seeds, the experiments are conducted in parallel on a distributed server with nodes of the same compute spec: a node with 22 Intel Xeon Platinum 8480+ CPUs cores and 1 NVIDIA H100 GPUs. All experiments were conducted on a GNU/Linux 6.5.0-15-generic x86_64 system running Ubuntu 22.04.3 LTS as the operating system, ensuring a consistent computational environment across all benchmark tests. As for the environment, we use BoTorch v0.12.0 and PyTorch 2.6.0+cu126 for all underlying optimization frameworks for the benchmark algorithms except GIT-BO.

G.2 GIT-BO ALGORITHM IMPLEMENTATION DETAILS

The GIT-BO algorithm was implemented using Python 3.12 with the TabPFN v2.0.6 implementation and model (link: <https://github.com/PriorLabs/TabPFN> and <https://huggingface.co/Prior-Labs/TabPFN-v2-reg>, license: Prior Lab License (a derivative of the Apache 2.0 license (<http://www.apache.org/licenses/>))).

1782
 1783 **Would making TabPFN differentiable hurt the performance?** Since there is no stable release
 1784 of a TabPFN v2 code that allows full model differentiation as far as we know, we get rid of some
 1785 marginal performance boosting numpy code in the official TabPFN v2 code (e.g., ensembling of 8
 1786 TabPFN v2 for increasing the accuracy marginally ⁴) or rewrite the numpy-based operations (e.g.,
 1787 numerical transformations ⁵) to PyTorch code into a single model TabPFN v2 in complete PyTorch
 1788 code that allows us to use `torch.backward()` for gradient calculations. This change results in
 1789 our implementation as faster inference speed due to the full GPU parallelization of using PyTorch
 1790 and getting rid of the default `n_estimator=8` TabPFN v2 eight ensemble calculation (we use
 1791 `n_estimator=1` with a fixed standardize transformation), but suffers from performance accuracy
 1792 degradation as presented in Figure 19 without transformation permutations with ensembling. That
 1793 said, the GIT-BO method would have even better performance if, in the future, TabPFN v2 releases
 1794 a differentiable option.



1805 Figure 19: Comparison of TabPFN v2 and our implementation of GIT-BO TabPFN v2 across in-
 1806 creasing problem dimensions. **Left:** inference time (seconds) grows substantially for TabPFN v2
 1807 due to ensemble evaluations, while GIT-BO’s PyTorch implementation achieves consistent GPU-
 1808 accelerated speedups. **Right:** mean squared error (MSE) highlights the accuracy trade-off, where
 1809 eliminating TabPFN’s default ensemble (`n_estimator=8` \rightarrow 1) leads to modest degradation. Overall,
 1810 GIT-BO achieves faster inference with competitive accuracy, demonstrating the benefits of differen-
 1811 tiable integration of TabPFN into BO pipelines.

H LLM USAGE STATEMENT

1812
 1813 We acknowledge the use of LLMs (ChatGPT, Claude, and Gemini) only for polishing the writing of
 1814 this paper.

1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
⁴<https://github.com/PriorLabs/TabPFN/blob/main/src/tapfn/preprocessing.py>

⁵https://github.com/PriorLabs/TabPFN/blob/main/src/tapfn/preprocessors/adaptive_quantile_transformer.py