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Abstract—Around 60-80% of radiological errors are 
attributed to overlooked abnormalities, the rate of which 
increases at the end of work shifts. In this study, we run an 
experiment to investigate if artificial intelligence (AI) can 
assist in detecting radiologists’ gaze patterns that correlate 
with fatigue. A retrospective database of lung X-ray images 
with the reference diagnoses was used. The X-ray images 
were acquired from 400 subjects with a mean age of 49 ± 
17, and 61% men. Four practicing radiologists read these 
images while their eye movements were recorded. The 
radiologists passed a series of concentration tests at 
prearranged breaks of the experiment. A U-Net neural 
network was adapted to annotate lung anatomy on X-rays 
and calculate coverage and information gain features from 
the radiologists’ eye movements over lung fields. The lung 
coverage, information gain, and eye tracker-based features 
were compared with the cumulative work done (CDW) label 
for each radiologist. The gaze-traveled distance, X-ray 
coverage, and lung coverage statistically significantly (p < 
0.01) deteriorated with cumulative work done (CWD) for 
three out of four radiologists. The reading time and 
information gain over lungs statistically significantly 
deteriorated for all four radiologists. We discovered a novel 
AI-based metric blending reading time, speed, and organ 
coverage, which can be used to predict changes in the 
fatigue-related image reading patterns. 

 
Index Terms—eye-tracking, artificial intelligence, lung 

fields, chest X-ray, Unet, image segmentation 

 

I. Introduction 

he workload of radiologists has been steadily increasing in 

the last decade mainly due to the increasing number of 
medical images acquired for diagnostic, treatment planning, 

and post-treatment monitoring purposes [1]. Artificial 
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intelligence (AI) seems to be the tool that will significantly aid 

radiologists, especially in the field of computer-assisted 

diagnosis [2]. At the same time, the practical AI integration can 

rarely eliminate humans from the loop, and radiologists are 

usually responsible for the final diagnostic decisions [3]. The 

quality of human decisions is, however, far from being perfect 

with up to 4-10% of erroneous medical image readings [4]. 

Around 60-80% of radiological errors belong to perceptual 

errors, where abnormalities are overlooked, while the rest are 

cognitive errors, where abnormalities are seen but 

misinterpreted [5]. The radiological errors are influenced by 
different factors including the a priori expectations [6], visual 

bias [7], experience [8], and fatigue [9]. Understanding the 

effects of fatigue on the diagnosis and discovering the means 

for radiologists’ fatigue detection has been of significant 

clinical interest [10]. 

Being a subjective feeling of overall tiredness, fatigue can be 

estimated using questionaries, e.g., Swedish Occupational 

Fatigue Inventory (SOFI) and Simulator Sickness 

Questionnaire (SSQ). The questionaries confirmed high fatigue 

levels after night shifts [11] and captured a faster fatigue growth 

for less experienced radiologists [12]. Several studies 
investigated how subjective questionaries can be replaced with 

objective tests. It was demonstrated that fatigue of physicians 

correlated with oxygenated hemoglobin concentrations in the 

prefrontal cortex [13] and electroencephalography changes 

[14]. Although more reliable than questionaries, such tests 

cannot be installed at radiologists’ workstations due to high 

equipment requirements. 

Eye movement analysis was shown to be a reliable and easy-

to-deploy solution for radiologists’ performance evaluation 

[15]. Eye-tracking helped discover two main strategies for 

medical image reading: bottom-up or stimulus-driven approach 
and top-down or knowledge-based systematic scanning 

approach [16]. It was observed that radiologists tend to spot 
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regions with abnormalities in the first several seconds of 

reading, then deeper investigate such regions, and finally 

perform a comprehensive image scanning [17]. The expert read 

images more efficiently than novices and trainees by finding the 

areas of interest faster [18], [19] and paying more attention to 
such regions [20]. Eye-tracking can be used to assist with 

medical image annotation – a process that is usually done 

manually and therefore expensive and time-consuming [21]. 

Alternatively, radiologists' gaze movement patterns can be 

analyzed by machine learning algorithms to improve automated 

disease diagnosis and abnormality annotation [22], [23].  

Fatigue level estimation from eye movements of radiologists 

has been also a topic of interest [24]–[26]. The existing studies 

showed the correlation between fatigue and pupil dilation and 

eyeblink rate [27], [28]. The gaze patterns over the target 

images seem to change with the fatigue growth, which has been 

observed by researchers but not always reflected in numeric 
metrics such as reading time, gaze traveled distance, number of 

fixation points, etc. [29]. 

Our paper, to the best of our knowledge, presents the first 

attempt to incorporate machine learning methods into the 

analysis of radiologists’ gaze patterns during medical image 

examination to estimate their fatigue levels. The core idea is to 

apply deep neural networks for the segmentation of lung fields 

from chest X-rays and use the obtained segmentations to 

automatically measure the lung coverage with radiologists’ 

gaze. The study hypothesis is that the gaze pattern will change 

with fatigue growth and that the proposed automated analysis 
can be used to reliably capture such changes. Four practicing 

radiologists were recruited to read chest X-rays while their eye 

movements were recorded. Four concentration tests were 

conducted after certain experiment milestones to check 

radiologists’ fatigue/concentration loss. The statistical patterns 

in lung coverage other eye-movement features and 

concentration test results were evaluated against the reference 

metric of cumulative work done (CWD). 

II. METHODOLOGY 

A. Database 

A public database VinDr-CXR, consisting of 18,000 

posteroanterior chest X-rays collected from two hospitals in 

Vietnam, was used in this experiment [30]. The images were 

acquired by different modern scanners and were of different 

resolutions ranging from 1624×1775 to 3320×3408 pixels. 
Each image in the database was annotated by three radiologists 

from Vietnam hospitals. The annotations were defined as 

bounding boxes encompassing image areas with chest 

abnormality manifestations. In total, 27 abnormality types were 

labeled. An image was considered healthy if radiologists did not 

place any bounding box. We randomly sampled 400 X-rays 

from this database for this experiment. Among 400 sampled X-

rays, 168 images were from healthy subjects, 60 had 
nodules/masses, 72 had infiltrations, 48 had pneumothorax, 40 

had cardiomegaly, and 12 had atelectasis. For a pathological 

image to be sampled, all three radiologists should agree with 

the diagnosis. The proportion of healthy/pathological cases was 

justified by the distribution of pathologies in the original 

database [30] and by the desire to keep each pathology 

sufficiently present in the data.  The abnormality composition 

and demographic information available for some of the cases 

are summarized in Table 1. Note that one patient could have 

multiple abnormalities or/and one abnormality can be presented 

in multiple places.  

B. Experiment Setup 

Four practicing radiologists were recruited to participate in 

the experiment. Radiologist A reads both X-ray and CT image 

modalities in his everyday clinical work. Radiologist B 

specializes in reading CT images, while Radiologists C and D 

exclusively read the X-ray image modality in their clinical 
work. The clinical experience was 3, 4, 3, and more than 30 

years for Radiologists A, B, C, and D, respectively. The 

radiologists were unaware of the experiment aims so they were 

not tempted to change their image reading behavior. They were 

only informed that we want to analyze their diagnostic 

performance, record their eye movements and ask them to pass 

some concentration/reaction tests during the experiment [31]–

TABLE I 
THE SUMMARY OF THE EXPERIMENT DATABASE WITH THE REFERENCE 

ABNORMALITY REPORTS. 

Characteristic Value 

Patients 400 

Demographics  

   Gender (available), male:female 61%:39% 

   Age, mean and range 49 [4-90] 

Chest abnormality manifestations  

   No finding 168 

   Cardiomegaly 62 

   Aortic enlargement 53 

   Pleural thickening 82 

   Fibrosis 99 

   Nodule/Mass 76 

   Opacity 102 

   Atelectasis 24 

   Infiltration 80 

   Effusion 66 

   Calcification 11 

   Consolidation 44 

   Pneumothorax 49 

   Other lesions 53 

# X-rays with  

   1 abnormality 52 

   2 abnormalities 35 

   3 abnormalities 51 

   4 abnormalities 23 

   5 abnormalities 27 

   > 5 abnormalities 44 

 

 

  

(a) (b) 

Figure 1. Graphical user interfaces for the (a) digit symbol substitution 

(DSST) and (b) reaction time (RTT) tests. These tests were executed at 

specific time points of the eye tracking experiment to estimate the level of 

concentration and reaction of the participating radiologists. 
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[33]. During a one-day session, each radiologist analyzed all 

400 X-rays separated into four batches of 100 X-rays, where the 

proportions of abnormalities and healthy cases matched the 
proportions in the complete database. The batches and X-rays 

inside them were individually shuffled for each radiologist. 

A radiologist workstation was assembled in an isolated room 

at our institution. The workstation was equipped with an LG 

diagnostic 10-bit monitor with a resolution of 3840×2160 pixels 

and a pixel density of 7.21 px/mm, Tobii Eye Tracker 4C, and 

a microphone for voice recording. An in-house developed 

framework for X-ray image analysis was installed on the 
workstation. The framework was designed to minimize the use 

of the keyboard and mouse so that the user’s gaze will be 

minimally distracted from the screen. Controller commands, 

eye tracking, and voice timestamps were recorded and 

synchronized. 

Every radiologist was instructed to follow a predefined 

protocol to standardize the procedure and minimize eye 

movements unrelated to the X-ray reading. Starting, pausing, 
and finishing the reading of each X-ray was controlled by the 

Enter button. The X-ray contrast and brightness were adjustable 

using the mouse if needed. To avoid unnecessary typing, the 

radiologists verbally articulated the decision-making process, 

final diagnosis, and confidence level for each image. The 

information was manually extracted by a human listener from 

the voice recordings. 

C. Experiment Execution 

For each radiologist, the experiment happened on a weekend, 

after a full night's sleep. Before starting the experiment, a 

radiologist went through a 10-minute-tutorial  to get familiar 

with the framework using example chest X-rays. The 

radiologist was asked to adjust the height and inclination of the 
chair to maximize working comfort. A technical assistant 

ensured that the radiologist's position is inside the 

recommended range of the eye-tracking, which lies between 20 

to 37 inches. The distance between the user and eye-tracking 

has been automatically monitored by the framework, and a 

specific sound warned the user if he moves to the margins of 

the eye-tracker operation range. 

The X-rays were analyzed in batches separated by fatigue 
measurements, eye-tracker calibration, and short breaks. After 

the analysis of the first two batches, each radiologist had a 40-

minute lunch break. The level of fatigue was also measured at 

the start and end of the experiment. Due to software issues, the 

fatigue measurements were not correctly recorded for 
Radiologist A. As X-rays can be only shown once to each 

radiologist, there was no option to re-run the experiment for 

Radiologist A. The fatigue measurements were therefore 

analyzed only for Radiologists B-D.  

D. Fatigue/concentration measurements 

We implemented four fatigue/concentration measurement 

tests. The first test was based on fatigue self-evaluation with 

SSQ [31]. This test is a questionnaire that consists of 16 

questions grouped into oculomotor strain, disorientation, and 

nausea subscales. Although SSQ is usually used in virtual 

reality studies, its oculomotor subscale has been shown 

applicable for fatigue estimation in radiology. For example, 

Krupinski et al. [31] and Ikushima et al. [12] have demonstrated 
that the oculomotor subscale of SSQ predicts radiologists’ 

fatigue and significantly correlates with the drop in diagnostic 

accuracy after a day of clinical reading. The oculomotor 

subscale of SSQ includes the following questions: general 

discomfort, fatigue, headache, eye strain, difficulty focusing 

and concentrating, and blurred vision. Each question is assessed 

by the participant on a four-point scale. Thus, the total test score 

is the sum of the points for all questions. A higher score 
corresponds to greater oculomotor fatigue. In the following 

parts of the paper, references to SSQ correspond to the 

oculomotor subscale of SSQ. 

The second evaluation was performed using the digit symbol 

substitution test (DSST) [32]. The participant was asked to 

rapidly recover the sequence of digits encoded with graphical 

symbols using a look-up table with digit-symbol 

correspondences (Fig. 1a). The performance metric on DSST 

was based on the substitution accuracy and elapsed time.  

The third evaluation was performed using a modified circle 

coverage test [33]. A circle with radius 𝑟𝑐𝑖𝑟𝑐𝑙𝑒  was shown in the 

center of the workstation screen. The participant was asked to 

visually traverse the circle contour in a rapid and maximally 

accurate manner. The evaluation metric was defined as a mean 

gaze trajectory deviation normalized to the elapsed time 𝑇: 

𝐷𝑆𝑆𝑇 =
∑ (|𝑝𝑡| − 𝑟𝑐𝑖𝑟𝑐𝑙𝑒)2𝑇

𝑡=0

𝑇
 (1) 

where 𝑝𝑡 is the gaze coordinate at time point 𝑡, normalized 

against the circle center (Fig. 1b).  

The fourth evaluation was performed using a reaction time 

test (RTT). Ten circles were arranged at the corners and center 

of a nonagon shown on the workstation screen. At the start of 

the test, the central circle was colored green and the participant 

was asked to focus the gaze on this circle. Every 3 seconds, the 

currently green circle turned gray and a new random circle 

turned green. The participant was instructed to move his gaze 

to the green circles as fast as he/she can. The test measured the 

average time needed for the participant’s gaze to reach green 

circles. 

E. Deep learning-based gaze coverage analysis 

1) Lung Segmentation  

Although highly personalized, chest X-ray reading usually 

follows specific clinical guidelines. These guidelines are based 

 

 

Figure 2. An example of the information gain histogram. 
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on the idea of consecutive analysis of airways, pleural space, 

cardiomediastinal contour, and bone abnormalities, which 

resulted in various mnemonics such as ABCDE and 
DRSABCDE [34]. The core idea of the guidelines is to ensure 

systematic coverage of all the lung regions where abnormalities 

can be potentially manifested. We used deep learning to 

automate such coverage analysis. 

A deep learning algorithm for automated segmentation of 

lung fields from chest X-rays was implemented. We augmented 

a U-Net segmentation neural network [35] for contour-aware 

segmentation. The network was trained to map an input chest 

X-ray to two masks of the same size as the X-ray, where the 

first mask corresponded to the lung fields, and the second mask 

corresponded to the contour of the lung fields. By explicitly 
requesting both lung fields and lung contours as an output, the 

errors at pixels around the lung borders affected the UNet loss 

function more than the errors at pixels in the middle of the lung 

fields. The correct identification of border pixels is more 

contributive to the overall segmentation quality as the 

segmentation errors inside and outside lungs can be corrected 

using connected component decomposition, morphological 

analysis, etc. The encoder of the U-Net was replaced with a 50-

layer ResNeXt [36] pre-trained on the ImageNet database. The 

loss function of the network was a combination of binary cross-

entropy and Dice coefficient losses.  
For Unet training, publicly available chest X-rays with 

manual segmentations were used [37], [38]. The training 

images were augmented using rotations of up to ±15º, shears of 

up to ±10º, scaling of up to ±20% to the original anatomy size, 

and horizontal flip as described in this work [39]. The Unet was 

trained with Adam optimizer with an initial learning rate of 

0.001 and batch size of 16 images. 

2) Gaze coverage calculation  

The segmented lung fields allow us to quantitatively assess 

the lung coverage by the radiologist’s gaze. An image coverage 

map is first generated from the eye-tracking data. The 

coordinate of the gaze for each time point 𝑡 ∈ 𝑇 is defined as 
(𝐱, 𝑧) ∈ 𝐺(𝑡), where 𝐱 is the 2D coordinate (pixels) of the gaze 

over the target image 𝐼, and 𝑧 is the distance (mm) between the 

monitor and the radiologist’s eyes. The visual image coverage 

𝜓(𝐲, 𝑡) at time point 𝑡, was calculated as: 

𝜓(𝐲, 𝑡) = 𝑒

−
|𝐱−𝐲|2

2(𝑧∙𝜌∙tan
𝜃
2

 )
2

, 
(2) 

where 𝜌 is the pixel density of the monitor and 𝜃 = 2º is the 

visual angle sufficient to capture abnormalities defined from the 

literature on medical imaging reading [40]–[42]. The gaze 

coverage image 𝛹 is calculated by accumulating 𝜓(𝐲, 𝑡) for all 
image pixels: 

𝛹(𝐲, 𝑡) = [∑ 𝜓(𝐲, 𝑟)
𝑡

𝑟=0
]. (3) 

The gaze coverage image 𝛹 allows visualizing the area covered 

by the radiologist’s gaze for each time point 𝑡. 

3) Visual information gain histogram  

We define visual information gain as a dependency between 

the coverage of the lung fields and time. For every time point 𝑡, 
the lung coverage is: 

𝑠(𝑡) =
∑ 𝛹(𝐲, 𝑡) ∙ 𝐼𝑙𝑢𝑛𝑔𝑠(𝐲)𝐲

∑ 𝐼𝑙𝑢𝑛𝑔𝑠(𝐲) ∙𝐲

, (4) 

where 𝐼𝑙𝑢𝑛𝑔𝑠 is the binary array with the segmented lungs. The 

histogram of the accumulated lung coverage with the 

radiologist’s gaze is generated for each time point 𝑡 (Fig. 2). 

Function 𝑠(𝑡) is monotonically increasing with 𝑠(0) = 0, i.e., 
no part of the lungs is covered by the gaze at the time point zero. 

The intuition behind the information gain histogram is to 

capture two different image reading patterns: fast scanning of 

the image followed by focusing on the areas with potential 

abnormalities, and systematic image scanning. We can expect 

that fast image scanning from the first reading pattern will result 

in sharp growth of 𝑠(𝑡) followed by saturation. On the other 

hand, 𝑠(𝑡) will grow more linearly for systematic image 

scanning. 

F. Statistical Analysis 

The number of X-rays analyzed by a radiologist, i.e. CWD, 

was used as a reference metric for the fatigue analysis and 

TABLE II 

THE CORRELATIONS BETWEEN FEATURES THAT CHARACTERIZE X-RAY IMAGE READINGS AND THE CUMULATIVE WORK DONE (CWD) BY EACH 

RADIOLOGISTS. THE FEATURES ARE CALCULATED USING THE RADIOLOGISTS’ GAZE INFORMATION AND/OR DEEP LEARNING-BASED X-RAY IMAGE 

SEGMENTATION. EACH TABLE CELL CONTAINS A PERSON CORRELATION COEFFICIENT WITH 95% CONFIDENCE INTERVAL. STATISTICALLY SIGNIFICANT 

CORRELATIONS ARE HIGHLIGHTED IN GREEN. 

Feature Radiologist A Radiologist B Radiologist C Radiologist D 

Elapsed time -0.16 [-2.8; -0.05] -0.52 [-0.59; -0.44] -0.42 [-0.48; -0.36] -0.23 [-0.31; -0.14] 

Invalid gaze time points 0.04 [-0.07; 0.13] -0.20 [-0.29; -0.13] -0.20 [-0.29; -0.11] -0.03 [-0.15; 0.16] 

Rate of invalid time points 0.27 [0.18; 0.36] -0.10 [-0.19; 0.00] 0.21 [0.12; 0.30] -0.03 [-0.15; 0.16] 

Traveled distance -0.08 [-0.18; 0.02] -0.54 [-0.61; -0.47] -0.44 [-0.50; -0.38] -0.25 [-0.33; -0.15] 

Average gaze speed 0.27 [0.18; 0.36] 0.10 [0.01; 0.19] 0.13 [0.05; 0.22] -0.08 [-0.18; 0.02] 

Confidence in diagnosis -0.01 [-0.11; 0.09] -0.05 [-0.15; 0.05] -0.10 [-0.21; 0.01] 0.15 [0.06; 0.25] 

X-ray coverage -0.00 [-0.11; 0.10] -0.22 [-0.32; -0.12] -0.53 [-0.59; -0.46] -0.28 [-0.37; -0.20] 

Lung coverage -0.20 [-0.29; -0.10] -0.12 [-0.21; -0.03] -0.52 [-0.60; -0.44] -0.28 [-0.37; -0.19] 

Information gain (X-ray) -0.04 [-0.14; 0.56] -0.26 [-0.35; -0.16] -0.53 [-0.59; -0.46] -0.35 [-0.43; -0.26] 

Information gain (lungs) -0.20 [-0.30; -0.10] -0.21 [-0.30; -0.11] -0.52 [-0.58; -0.44] -0.31 [-0.39; -0.22] 
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estimation of predictive powers of numerical features. The 

correlation between the reference CWD and image reading 

features, such as reading speed, eye movement speed, lung 

coverage, visual information gain, etc., was estimated using the 

Pearson correlation coefficient with 𝑝 < 0.01 considered 

statistically significant. The diagnostic performance was 

evaluated with an F-score against the reference consensus of 

three radiologists who annotated the database [30]. To compute 

the correlation between fatigue test results and the diagnostic 

performance, the mean diagnostic performance was computed 

for the X-rays from the current database batch. Wilcoxon 

signed-rank test was used to compare the changes in lung 

coverage at the beginning and end of the experiment. The 95% 

confidence intervals for resulting metrics were obtained using 

the bootstrap method. 

III. RESULTS 

A. Characteristic Features 

We extracted the eye tracker data to compute various 
numerical features and evaluated their correlation with fatigue 

levels. For every X-ray reading, we calculated: 1) the elapsed 

time between the start and end of the reading; 2) the total gaze 

trajectory; 3) the average eye movement speed; 4) the lung field 

coverage, 5) the X-ray coverage; 6) the rate of invalid eye-

tracking time points, e.g., when the eyes of the user are not 

looking at the screen or were not captured for other reasons; 7) 

blinking rate, 8) self-reported confidence in the diagnosis and 

9) the mean information gain. The mean information gain was 

defined by normalizing the information gain histogram to the 

time spent reading the X-ray. The correlation coefficients 

between the features and the reference CWD value, i.e. the 

number of the X-ray in the analysis, are given in Table 2. 

 

Figure 3. The performance of the radiologists in terms of diagnostic 

accuracy calculated for every batch of 100 X-rays. The performance of 

three out of four radiologists improved after the lunch break (200→300). 

Moreover, the performance of three out of four radiologists deteriorated 

at the last 100 X-rays (300→400). 

 

 

  

  

Figure 4. The results of the simulator sickness questionnaire (top-left), digit symbol substitution (top-right), circle coverage (bottom-left) 

and reaction time (bottom-right) tests computed for Radiologist B, C and D participating in this experiment. The tests were expected at 

the beginning of the experiment and after every 100 X-rays analyzed to measure the changes in fatigue, reaction and concentration. An 

additional series of tests was performed after a lunch break after 200 X-rays analyzed. 
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B. Radiologists’ Diagnostic Performance 

The radiologists’ diagnostic performance was calculated as 

the average F-score for each batch, i.e., 100 chest X-rays. The 
diagnosis for each X-ray was manually extracted from the 

radiologists’ voice recordings. If multiple abnormalities 

present, radiologists were encouraged to mention all of them 

during decision-making but asked to select a single abnormality 

as the final diagnosis. The reference diagnosis may include 

multiple abnormalities. The X-ray analysis was considered 

correct when our radiologist’s final diagnosis is among the 

reference abnormalities or when both our radiologist and the 
reference team of radiologists find the X-ray to be normal. The 

F-scores with 95% confidence intervals calculated for each 

radiologist are presented in Fig 3. 
The average reading time was 24.4 sec, 35.1 sec, 21.8 sec, 

and 25.1 sec for Radiologists A, B, C, and D, respectively. The 

reading times significantly correlated (𝑝 < 0.01) with the 

distance traveled by the gaze having the Person correlation 

coefficients of 0.93, 0.87, 0.92, and 0.74 for Radiologists A, B, 

C, and D, respectively. The average coverage was 64%, 65%, 
58%, and 55% for lung fields and 32%, 29%, 30% and 30% for 

whole X-ray images for Radiologists A, B, C, and D, 

respectively. 

C. Fatigue Measurements 

Fatigue measurements computed for Radiologists B, C and 

D were compared to the reference CWD values and diagnostic 

performance. The SSQ test contains seven questions, where 

each question can be graded from 1 to 4 with higher grades 

corresponding to higher discomfort potentially associated with 

fatigue. Radiologists B, C, and D had the self-evaluated level of 

fatigue graded as 7 at the beginning of the test, i.e., no fatigue 

at all, and graded as 15, 8, and 13, respectively, at the end of the 
experiment (Fig. 4, Tab. 3). The DSST performance was 

evaluated as the average time needed to substitute one symbol 

divided by the average substitution accuracy (Fig. 4). Lower 

values of DSST correspond to faster and more accurate 

substitutions. The results of the circle coverage test were 

calculated as the average distance between the radiologist’s 

gaze and the circle contour (Fig. 4). A larger distance indicates 

a higher deviation from the optimal trajectory. The RTT 
evaluated the average time needed to move to the next 

highlighted circle on the screen (Fig. 4). 

   

   

   

Figure 5. The comparison between the information gain histograms computed for some X-rays from the database. Each X-ray was analyzed each of the 

radiologist at different time point of the experiment. The order of colors in the legends of the plots correspond to the order of Radiologist A-D. The colors 

correspond to the order of X-rays presented: red – earliest, black - latest. For example, for left bottom plot, the corresponding X-ray was earliest presented to 

Radiologist C, being 72nd in his collection, second earliest presented to Radiologist B, being 131st in his collection, third earliest presented to Radiologist D, 

being 174th in his collection, and latest presented to Radiologist A, being 299 th in his collection. The histogram comparison illustrates a visual trend of fresh 

radiologists (red lines) to gather more information about the depicted lungs before pronouncing the diagnosis, and of tired radiologists to be quickly satisfied 

after observing a small part of the lungs. For this illustration every 50th X-ray presented for Radiologist A are selected. 
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IV. DISCUSSION 

This paper presents the first attempt at using AI for 

correlating radiologists’ eye movements pattern and fatigue. 

Fatigue in radiology is believed to be one of the main sources 

of radiological errors [4], [23]. The challenges with fatigue 

analysis start with the broad definition of fatigue as an overall 
feeling of tiredness. Due to its inherent subjectivity, fatigue is 

often evaluated using self-reported questionaries such as SOFI 

and SSQ. Although the results of such questionaries are in 

general agreement with the expected fatigue growth after a day 

of work in radiology [23], they have significant disadvantages. 

    
40 125 191 216 

    
2 28 168 333 

    
105 251 294 331 

    
16 33 133 331 

Figure 6. The comparison of gaze maps superimposed over four chest X-rays. The numbers below each X-ray indicate the order in which this X-ray was 
presented to a radiologist whose gaze map is depicted. Each row contains one X-ray presented to all radiologists at different time moments of the experiment. 
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First, the questionaries are not granular enough to capture the 

continuity of fatigue growth. Second, the questionary results are 

highly subjective and do not allow reliable comparison of 
radiologists. The second shortcoming was manifested in our 

study where Radiologist C reported a minimal SSQ score 

growth in comparison to Radiologists B and D whose self-

reported SSQ fatigue score doubled at the end of the experiment 

(Fig. 4). In contrast to self-reported fatigue, the diagnostic 

performance of Radiologist C dropped at the end of the 

experiment while improving for Radiologist B. It is important 

to note that the X-rays were given to the radiologists in a 
different order so Radiologist B may have got “easier” X-rays 

at the end. 

As questionaries are highly subjective, the participants may 

involuntarily adjust their answers to the expected fatigue of an 

average person. We run three alternative tests that measure 

concentration and precision, which correlate with fatigue and 

had been used for fatigue analysis [32], [33], [43], [44]. The 

circle coverage test results deteriorated for Radiologists B and 

C, with CWD growth, using the slope of a linear regression 

fitted to the test performance. The results of the circle coverage 

test of Radiologist D also worsened with the exception of the 

pre-experiment measurement. The DSST and RTT exhibited 
inconsistent results. In contrast to the expectations, Radiologist 

B had improved his performance on digit substitutions in 

DSST, while Radiologist D - on the RTT. Such observations 

may indicate that the radiologists improve the concentration test 

performance with practice, which compensates for fatigue-

related performance degradation. The potential effect of 

practice is supported by the fact that all three radiologists 

improved their performance on the second DSST attempt and 

two out of three radiologists improved their performance on the 

second RTT. We can expect that on the second attempt the 

radiologists have already become well acquainted with the test 
aims but have not yet gotten tired from X-ray reading. 

Reading time exhibited a statistically significant negative 

correlation with the CWD for all radiologists in the experiment. 

The negative correlation between CWD and image reading time 

and positive correlations between image reading time and 

diagnosis quality have been continuously reported in the 

literature [29], [31], [45], [46]. While Krupinski et al. observed 

a slight reading time reduction for bone fracture diagnosis from 

X-ray images [31], Burling et al. found out that radiologists 

spend 30% less time interpreting the last five abdominal CTs 

than the first five during their work shifts [46]. In our study, we 
observed that the X-ray reading time, on average, reduces by 

0.02, 0.09, 0.08, and 0.03 sec/X-ray for Radiologists A, B, C, 

and D, respectively. Despite a statistically significant negative 

correlation between reading time and the CWD for all 

radiologists, the reading time is not a sufficient fatigue 

predictor. The problem is a high inter-radiologist variability of 

the average reading time, which ranges from 21.8 sec for 

Radiologist C to 35.1 sec for Radiologist B. Consequently, the 

reading times for one or several X-rays for an arbitrary 

radiologist cannot predict the CWD without pre-collected 

knowledge on how fast this radiologist reads images when 

he/she is fresh and tired. The distance traveled by the gaze is 
strongly correlated to the reading time metric (correlation 

coefficients are 0.87-0.93) so its patterns and shortcomings are 

similar. The rate of invalid gaze time points is positively 

correlated with the reference CWD, i.e., radiologists more often 

distract their attention from the X-ray at the end of the 

experiment than at the beginning. The confidence in diagnosis 

insignificantly fluctuated for different radiologists (Tab. 2), but 

the confidence in diagnosis significantly correlated with the 
diagnosis quality for all radiologists 

In contrast to the traveled distance, the X-ray and lung 

coverage is not a derivative of the elapsed time. A user could 

spend a lot of time looking at a small image region, which will 

not increase the image coverage. The lung coverage negatively 

correlated with the CWD for Radiologists A, C, and D, while 

no significant correlation was observed for Radiologist B. 

Using the image reading time, traveled distance, gaze speed, 

and lung coverage statistics (Tab. 2), we can reconstruct 

radiologists’ image reading pattern when tired. Radiologist A 

starts to spend less time but tries to rapidly cover the images 

with his gaze. While continuing to cover the X-rays on the same 
level, Radiologist A covers the lungs significantly less with 

CWD growth. This observation suggests that his image reading 

becomes less focused with time. The gaze speed for 

Radiologists B, C, and D mildly change during the experiment, 

which, considering the shortening reading time, resulted in a 

reduction of X-ray coverage with CWD growth. Radiologist C 

demonstrated the most considerable drop of the X-ray and lung 

coverage which is accompanied by the highest relative drop in 

performance (Fig 4) among all radiologists.  
The information gain turned out to be the most reliable 

predictor for the CWD in the experiment. The metric calculated 
for lung fields exhibited a statistically significant correlation 

with fatigue for all radiologists. The correlation coefficients 

suggest that the radiologists need less information to make a 

decision at the end of the experiment than at the beginning. To 

confirm this explanation, we plotted the information gain 

curves for all radiologists for several X-rays (Fig 5). As the X-

rays are shuffled for each radiologist, the same X-ray could be 

analyzed closer to the beginning or end by different 

radiologists. There is a clear pattern that the radiologists try to 

gain more information about the X-ray at the beginning of the 

experiment than at the end (Fig. 6). The average information 

gain of 0.455 for the first batch of X-rays is statistically 
significantly higher than the average information of 0.332 for 

the last batch. 

One of the key advantages of the information gain is that this 

metric blends the reading time, speed, and object coverage 

feature into a single value. Such a metric can mitigate the 

individual X-ray reading patterns observed for tired 

radiologists: faster but imprecise gaze movements (Radiologist 

A), faster reading with low (Radiologist B) or high (Radiologist 

C) number of invalid gaze time points, and faster reading with 

slower gaze movements (Radiologist D).  

V. CONCLUSION 

We have demonstrated that deep-learning-based 

segmentation of anatomical structures on medical images, in 

our case segmentation of lung fields from chest X-rays, can be 

extended further than classical computer-aided diagnosis 

applications. We used lung field segmentation to quantitatively 

assess the lung coverage by radiologists’ gaze and mapped this 

with radiologists' CWD. Such distilling of the gaze over the 
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complete image to the gaze over target areas can become 

essential for further radiologists’ performance evaluation. 

Despite correlations with the CDW values for some 

concentration tests, they did not exhibit significant fatigue-

predictive powers. This fact does not mean that the tests are not 
applicable, but a more elaborated analysis is needed to exclude 

potential factors of improved performance due to practice. The 

presented study has several limitations associated with the 

controlled setting of the experiment. In clinical practice, 

radiologists have irregular breaks during image reading, spend 

time on clinical notes, consult with colleagues, etc. Our settings 

are therefore not truly clinical. At the same time, a standardized 

setup was necessary for a reliable comparison between the 

experiment participants. Another limitation is that we selected 

abnormalities that we unanimously diagnosed by a team of 

radiologists who generated the public database of chest X-rays. 

Although such a unanimity suggests the high quality and 
reliability of the reference labels, it could also indicate that the 

cases might be easier and faster to diagnose than cases with 

unclear diagnoses. The differences in radiologists’ behavior for 

easy and challenging cases will be analyzed in future work. The 

future work will also be focused on a more detailed analysis of 

the eye movement features, such as fixation duration and 

saccade properties [47], and their correlation with radiologists' 

performance. 
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