
Temporal-Difference Variational Continual Learning

Luckeciano C. Melo∗1,2 Alessandro Abate† 2 Yarin Gal† 1
1 OATML, University of Oxford 2 OXCAV, University of Oxford

Abstract

Machine Learning models in real-world applications must continuously learn new
tasks to adapt to shifts in the data-generating distribution. Yet, for Continual Learn-
ing (CL), models often struggle to balance learning new tasks (plasticity) with
retaining previous knowledge (memory stability). Consequently, they are suscepti-
ble to Catastrophic Forgetting, which degrades performance and undermines the
reliability of deployed systems. In the Bayesian CL literature, variational methods
tackle this challenge by employing a learning objective that recursively updates
the posterior distribution while constraining it to stay close to its previous estimate.
Nonetheless, we argue that these methods may be ineffective due to compounding
approximation errors over successive recursions. To mitigate this, we propose new
learning objectives that integrate the regularization effects of multiple previous
posterior estimations, preventing individual errors from dominating future posterior
updates and compounding over time. We reveal insightful connections between
these objectives and Temporal-Difference methods, a popular learning mechanism
in Reinforcement Learning and Neuroscience. Experiments on challenging CL
benchmarks show that our approach effectively mitigates Catastrophic Forgetting,
outperforming strong Variational CL methods.

1 Introduction

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

PermutedMNIST-Hard
Method

Online MLE
Batch MLE

VCL
VCL CoreSet

N-Step TD-VCL
TD()-VCL

Figure 1: Average accuracy across observed
tasks in the PermutedMNIST-Hard benchmark.
The TD-VCL approach, proposed in this work,
leads to a substantial improvement against stan-
dard VCL and non-variational approaches.

A fundamental aspect of robust Machine Learn-
ing (ML) models is to learn from non-stationary
sequential data. In this scenario, two main prop-
erties are necessary: first, models must learn
from new incoming data — potentially from a
different task -– with satisfactory asymptotic per-
formance and sample complexity. This capabil-
ity is called plasticity. Second, they must retain
the knowledge from previously learned tasks,
known as memory stability. When this does not
happen, and the performance of previous tasks
degrades, the model suffers from Catastrophic
Forgetting [1, 2]. These two properties are the
central core of Continual Learning (CL) [3, 4],
being strongly relevant for ML systems suscep-
tible to test-time distributional shifts.

Given the critical importance of this topic, ex-
tensive literature addresses the challenges of CL
in traditional ML methods [3, 5, 2, 6] and, more

∗Correspondence to: luckeciano.carvalho.melo@cs.ox.ac.uk
†Denotes equal supervision.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Figure 2: An intuitive illustration of how TD-VCL functions in comparison to vanilla VCL. At
each timestep t, a new task dataset Dt arrives. Both methods aim to learn variational parameters qt(θ)
over a family of distributions Q that approximates the true posterior p(θ | D1:t) via minimizing the
KL divergence DKL(qt(θ) || p(θ | D1:t)). VCL optimization (left) is only constrained by the most
recent posterior, which compounds approximation errors from previous estimations and potentially
deviates far from the true posterior. TD-VCL (right) is regularized by a sequence of past estimations,
alleviating the impact of compounded errors.

recently, for overparameterized models [7, 1, 8]. In this work, we focus on Bayesian CL methods,
for two reasons. First, it provides a principled, self-consistent framework for learning in online or
low-data regimes [9]. Second, Bayesian models express their own uncertainty over predictions, which
is crucial for safety-critical applications [10] and for enabling principled data selection [11, 12].

Particularly, we investigate Variational Continual Learning (VCL) approaches [13]. As detailed
in Section 3, VCL identifies a recursive relationship between subsequent posterior distributions
over tasks. A variational optimization objective then leverages this recursion, which regularizes the
updated posterior to stay close to the very latest posterior approximation. Nevertheless, we argue
that solely relying on a single previous posterior estimate for building up the next optimization target
may be ineffective, as the approximation error propagates to the next update and compounds after
successive recursions. If a particular estimation is especially poor, the error will be carried over to the
next step entirely, which can dramatically degrade model’s performance.

In this work, we show that the same optimization objective can be represented as a function of a
sequence of previous posterior estimates and task likelihoods. We thus propose a new Continual
Learning objective, n-Step KL VCL, that explicitly regularizes the posterior update considering
several past posterior approximations. By considering multiple previous estimates, the objective
dilutes individual errors, allows correct posterior approximates to exert a corrective influence, and
leverages a broader global context to the learning target, reducing the impact of compounding errors
over time. Figure 2 illustrates the underlying mechanism.

We further generalize this unbiased optimization target to a broader family of CL objectives, namely
Temporal-Difference VCL, which constructs the learning target by prioritizing the most recent
approximated posteriors. We reveal a link between the proposed objective and Temporal-Difference
(TD) methods, a popular learning mechanism in Reinforcement Learning [14] and Neuroscience [15].
Furthermore, we show that TD-VCL represents a spectrum of learning objectives that range from
vanilla VCL to n-Step KL VCL. Finally, we present experiments on several challenging and popular
CL benchmarks, demonstrating that they outperform standard VCL (as shown in Figure 1), other
VCL-based methods, and non-variational baselines, effectively alleviating Catastrophic Forgetting.

2 Related Work

Continual Learning has been studied throughout the past decades, both in Artificial Intelligence
[3, 5, 16] and in Neuro- and Cognitive Sciences [17, 6, 2]. More recently, the focus has shifted

2

towards overparameterized models, such as deep neural networks [7, 1, 8, 18]. Given their powerful
predictive capabilities, recent literature approaches CL from a wide range of perspectives. For
instance, by regularizing the optimization objective to account for old tasks [19–21]; by replaying
an external memory composed by a set of previous tasks [22–24]; or by modifying the optimization
procedure or manipulating the estimated gradients [25–27]. We refer to Wang et al. for an extensive
review of recent approaches. Our proposed method is placed between regularization-based and
replay-based methods.

Bayesian CL. In the Bayesian framework, prior methods exploit the recursive relationship between
subsequent posteriors that emerge from the Bayes’ rule in the CL setting (Section 3). Since Bayesian
inference is often intractable, they fundamentally differ in the design of approximated inference.
We highlight works that learn posteriors via Laplace approximation [29, 30], sequential Bayesian
Inference [31, 32], and Variational Inference (VI) [13, 33, 34]. Our work and proposed method lies
in the latter category.

Variational Inference for CL. Variational Continual Learning (VCL) [13] introduced the idea of
online VI for the Continual Learning setting. It leverages the Bayesian recursion of posteriors to
build an optimization target for the next step’s posterior based on the current one. Similarly, our work
also optimizes a target based on previous approximated posteriors. On the other hand, rather than
relying on a single past posterior estimation, it bootstraps on several previous estimations to prevent
compounded errors. Nguyen et al. [13] further incorporate an heuristic external replay buffer to
prevent forgetting, requiring a two-step optimization. In contrast, our work only requires a single-step
optimization as the replay mechanism naturally emerges from the learning objective.

Other derivative works usually blend VCL with architectural and optimization improvements [35,
33, 36–40] or different posterior modeling assumptions [34, 41–44]. We specifically highlight UCB
[38], which adapts the learning rate according to the uncertainty of the Bayesian model, and UCL
[43], which introduces a different implementation for the VCL objective by proposing the notion of
node-wise uncertainty. While their contribution are orthogonal to ours, we adopt UCB and UCL as
comparison methods to further show that our proposed objective may also be combined with other
variational methods and enhance their performance.

3 Preliminaries

Problem Statement. In the Continual Learning setting, a model learns from a streaming of tasks,
which forms a non-stationary data distribution throughout time. More formally, we consider a task
distribution T and represent each task t ∼ T as a set of pairs {(xt, yt)}Nt , where Nt is the dataset
size. At every timestep t3, the model receives a batch of data Dt for training. We evaluate the model
in held-out test sets, considering all previously observed tasks.

In the Bayesian framework for CL, we assume a prior distribution over parameters p(θ), and the
goal is to learn a posterior distribution p(θ | D1:T) after observing T tasks. Crucially, given the
sequential nature of tasks, we identify a recursive property of posteriors:

p(θ | D1:T) ∝ p(θ)p(D1:T | θ) i.i.d
= p(θ)

T∏
t=1

p(Dt | θ) ∝ p(θ | D1:T−1)p(DT | θ), (1)

where we assume that tasks are i.i.d. Equation 1 shows that we may update the posterior estimation
online, given the likelihood of the subsequent task.

Variational Continual Learning. Despite the elegant recursion, computing the posterior p(θ | D1:T)
exactly is often intractable, especially for large parameter spaces. Hence, we rely on an approximation.
VCL achieves this by employing online variational inference [45]. It assumes the existence of
variational parameters q(θ) whose goal is to approximate the posterior by minimizing the following
KL divergence over a space of variational approximations Q:

qt(θ) = argmin
q∈Q

DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ)), (2)

3For notational simplicity, we use the index t to denote both tasks and timesteps. Note that neither the VCL
framework nor our proposed methodology requires knowledge of task boundaries, as argued in the Appendix N.

3

where Zt represents a normalization constant. The objective in Equation 2 is equivalent to maximizing
the variational lower bound of the online marginal likelihood:

Lt
V CL(θ) = Eθ∼qt(θ)[log p(Dt | θ)]− DKL(qt(θ) || qt−1(θ)). (3)

We can interpret the loss in Equation 3 through the lens of the stability-plasticity dilemma [4].
The first term maximizes the likelihood of the new task (encouraging plasticity), whereas the KL
term penalizes parametrizations that deviate too far from the previous posterior estimation, which
supposedly contains the knowledge from past tasks (encouraging memory stability).

4 Temporal-Difference Variational Continual Learning

Maximizing the objective in Equation 3 is equivalent to the optimization in Equation 2, but its
computation relies on two main approximations. First, computing the expected log-likelihood term
analytically is not tractable, which requires a Monte-Carlo (MC) approximation. Second, the KL
term relies on a previous posterior estimate, which may be biased from previous approximation errors.
While updating the posterior to account for the next task, these biases deviate the learning target from
the true objective. Crucially, as Equation 3 solely relies on the very latest posterior estimation, the
error compounds with successive recursive updates.

Alternatively, we may represent the same objective as a function of several previous posterior
estimations and alleviate the effect of the approximation error from any particular one. By considering
several past estimates, the objective dilutes individual errors, allows correct posterior approximates to
exert a corrective influence, and leverages a broader global context to the learning target, reducing
the impact of compounding errors over time.

4.1 Variational Continual Learning with n-Step KL Regularization

We start by presenting a new objective that is equivalent to Equation 2 while also meeting the
aforementioned desiderata:
Proposition 4.1. The standard KL minimization objective in Variational Continual Learning (Equa-
tion 2) is equivalently represented as the following objective, where n ∈ N0 is a hyperparameter:

qt(θ) = argmax
q∈Q

Eθ∼qt(θ)

[n−1∑
i=0

(n− i)

n
log p(Dt−i | θ)

]
−

n−1∑
i=0

1

n
DKL(qt(θ) || qt−i−1(θ)). (4)

We present the proof of Proposition 4.1 in Appendix A. We name Equation 4 as the n-Step KL
regularization objective. It represents the same learning target of Equation 2 as a sum of weighted
likelihoods and KL terms that consider different posterior estimations, which can be interpreted as
“distributing" the role of regularization among them. For instance, if an estimate qt−i deviates too
far from the true posterior, it only affects 1/n of the KL regularization term. The hyperparameter n
assumes integer values up to t and defines how far in the past the learning target goes. If n is set to 1,
we recover vanilla VCL.

An interesting insight comes from the likelihood term. It contains the likelihood of different tasks,
weighted by their recency. Hence, the idea of re-estimating old task likelihoods, commonly leveraged
as a heuristic in CL methods, fundamentally emerges in the proposed objective. We may estimate
these likelihood terms by replaying data from different tasks simultaneously, alleviating the violation
of the i.i.d assumption that happens given the online, sequential nature of CL [7].

4.2 From n-Step KL to Temporal-Difference Targets

The learning objective in Equation 4 relies on several different posterior estimates, alleviating the
compounding error problem. A caveat is that all estimates have the same weight in the final objective.
One may want to have more flexibility by giving different weights for them – for instance, amplifying
the effect from the most recent estimate while drastically reducing the impact of previous ones. It is
possible to accomplish that, as shown in the following proposition:

4

Proposition 4.2. The standard KL minimization objective in VCL (Equation 2) is equivalently
represented as the following objective, with n ∈ N0, and λ ∈ [0, 1) hyperparameters:

qt(θ) = argmax
q∈Q

Eθ∼qt(θ)

[n−1∑
i=0

λi(1− λn−i)

1− λn
log p(Dt−i | θ)

]
−

n−1∑
i=0

λi(1− λ)

1− λn
DKL(qt(θ) || qt−i−1(θ)). (5)

The proof is available in Appendix B. We call Equation 5 the TD(λ)-VCL objective4. It augments
the n-Step KL Regularization to weight the regularization effect of different estimates in a way that
geometrically decays – via the λi term – as far as it goes in the past. Other λ-related terms serve as
normalization constants. Equation 5 provides a more granular level of target control.

Interestingly, this objective relates intrinsically to the λ-returns for Temporal-Difference (TD) learning
in valued-based reinforcement learning [46]. More broadly, both objectives of Equations 4 and 5
are compound updates that combine n-step Temporal-Difference targets, as shown below. First, we
formally define a TD target in the CL context:

Definition 4.3. For a timestep t, the n-Step Temporal-Difference target for Variational Continual
Learning is defined as, ∀n ∈ N0, n ≤ t:

TDt(n) = Eθ∼qt(θ)

[
n−1∑
i=0

log p(Dt−i | θ)]

]
− DKL(qt(θ) || qt−n(θ)). (6)

In Appendix C, we reveal the connection between Equation 6 and the TD targets employed in
Reinforcement Learning, justifying the adopted terminology. From this definition, it follows that:

Proposition 4.4. ∀n ∈ N0, n ≤ t , the objective in Equation 2 can be equivalently represented as:

qt(θ) = argmax
q∈Q

TDt(n), (7)

with TDt(n) as in Definition 4.3. Furthermore, the objective in Equation 5 can also be represented
as:

qt(θ) = argmax
q∈Q

1− λ

1− λn

[
n−1∑
k=0

λkTDt(k + 1))

]
.︸ ︷︷ ︸

Discounted sum of TD targets

(8)

The proof is in Appendix D. Proposition 4.4 states that the TD(λ)-VCL objective is a sum of
discounted TD targets (up to a normalization constant), effectively representing λ-returns. In parallel,
one can show that the n-Step KL Regularization objective, as a particular case, is a simple average of
n-Step TD targets. Fundamentally, the key idea behind these objectives is bootstrapping: they build a
learning target estimate based on other estimates. Ultimately, the “λ-target" in Equation 5 provides
flexibility for bootstrapping by allowing multiple previous estimates to influence the objective.

The TD-VCL objectives generalize a spectrum of Continual Learning algorithms. As a final
remark, in Appendix E, we show that, based on the choice of hyperparameters, the TD(λ)-VCL
objective forms a family of learning algorithms that span from Vanilla VCL to n-Step KL Regulariza-
tion. Fundamentally, it mixes different targets of MC approximations for expected log-likelihood
and KL regularization. This process is similar to how TD(λ) and n-step TD mix MC updates and
TD predictions in Reinforcement Learning, effectively providing a mechanism to strike a balance
between the variance from MC estimations and the bias from bootstrapping [46].

4We refer to both n-Step KL Regularization and TD(λ)-VCL as TD-VCL objectives.

5

5 Experiments and Discussion

Our central hypothesis is that for Bayesian CL, leveraging multiple past posterior estimates mitigates
the impact of compounded errors inherent to the VCL objective, thus alleviating the problem of
Catastrophic Forgetting. We now provide an experimental setup for validation. Specifically, we
evaluate this hypothesis by analyzing the questions highlighted in Section 5.1.

Implementation. We use a Gaussian mean-field approximate posterior and assume a Gaussian prior
N (0, σ2I), and parameterize all distributions as deep networks. For all variational objectives, we
compute the KL term analytically and employ Monte Carlo approximations for the expected log-
likelihood terms, leveraging the reparametrization trick [47] for computing gradients. We employed
likelihood-tempering [33] to prevent variational over-pruning [48]. Lastly, for test-time evaluation,
we compute the posterior predictive distribution by marginalizing out the approximated posterior via
Monte-Carlo sampling. We provide further detail about architecture and training in Appendix G and
our code5.

Comparison Methods. We compare TD-VCL and n-Step KL VCL against several methods. We first
evaluate non-variational naive methods for CL: Online MLE naively applies maximum likelihood
estimation in the current task data. It serves as a lower bound for other methods, as well as a way to
evaluate how challenging the benchmark is. Batch MLE applies maximum likelihood estimation
considering a buffer of current and old task data. Next, we adopt the following variational methods
for direct comparison in the Bayesian CL setting: VCL, introduced by Nguyen et al. [13], optimizes
the objective in Equation 3. VCL CoreSet is a VCL variant that incorporates a replay set to mitigate
any residual forgetting [13]. UCL [43] is another variational method that implements adaptive
regularization based on the notion of node-wise uncertainty. Finally, UCB [38] also optimizes the
objective of Equation 3 but adapts the learning rate for each parameter based on their uncertainty.
Particularly for UCL and UCB, we compare them with the proposed TD-UCL and TD-UCB, which
incorporate the introduced objective into UCL and UCB, respectively.

Benchmarks. We evaluate five benchmarks for Continual Learning (CL). First, we introduce
three new benchmarks: PermutedMNIST-Hard, SplitMNIST-Hard, and SplitNotMNIST-Hard.
These are more challenging versions of traditional CL benchmarks with similar names. They are
significantly harder due to two key restrictions. First, the amount of replay memory that any method
can use is limited in both dataset size and the number of tasks. As empirically shown in Appendix
I, this creates a much more acute scenario of Catastrophic Forgetting. Second, they enforce the
adoption of single-head classifiers. As also shown in Appendix H, this requires the model to
account for the potential negative transfer learning among tasks, which makes MNIST/NotMNIST-
based benchmarks non-trivial for current research. Next, we also evaluate on two other popular
CL benchmarks: CIFAR100-10 and TinyImageNet-10. Both benchmarks are very challenging
classification problems, particularly in our setting where no pre-trained representations are used. In
Appendix J, we detail all benchmark tasks and specific constraints adopted for robust evaluation.

5.1 Experiments

We highlight and analyze the following questions to evaluate our hypothesis and proposed method:

Do the TD-VCL objectives effectively alleviate Catastrophic Forgetting in challenging CL
benchmarks? Tables 1 and 2 present the results for all benchmarks. Each column presents the
average accuracy across the past t observed tasks, and we show the results starting from t = 2 as
t = 1 is simply single-task learning. For PermutedMNIST-Hard, all methods present high accuracy
for t = 2, suggesting that they could fit the data successfully. As the number of tasks increases, they
start manifesting Catastrophic Forgetting at different levels. While Online and Batch MLE drastically
suffer, variational approaches considerably retain old tasks’ performance. The Core Set slightly
helps VCL, and both n-Step KL and TD-VCL outperform them by a considerable margin, attaining
approximately 90% average accuracy after all tasks. For completeness, Figure 1 graphically shows
the results. We emphasize the discrepancy between variational approaches and naive baselines and
highlight the performance boost by adopting TD-VCL objectives.

For SplitMNIST-Hard, we highlight that the TD-VCL objectives also surpass baselines in all
configurations, but with a decrease in performance for t = 5, suggesting a more challenging setup for

5Our code is available at https://github.com/luckeciano/TD-VCL

6

https://github.com/luckeciano/TD-VCL

Table 1: Quantitative comparison on the PermutedMNIST-Hard, SplitMNIST-Hard, and
SplitNotMNIST-Hard benchmarks. Each column presents the average accuracy across the past t
observed tasks. Results are reported with two standard deviations across ten seeds. Top two results
are in bold, while noticeably lower results are in gray. TD-VCL objective consistently outperforms
standard VCL variants, especially when the number of observed tasks increase.

PermutedMNIST-Hard
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Online MLE 0.87±0.07 0.77±0.06 0.73±0.08 0.69±0.08 0.65±0.13 0.57±0.16 0.51±0.14 0.46±0.11 0.40±0.08

Batch MLE 0.95±0.01 0.93±0.01 0.88±0.04 0.83±0.04 0.77±0.10 0.71±0.13 0.64±0.12 0.57±0.11 0.51±0.06

VCL 0.95±0.00 0.94±0.01 0.93±0.02 0.91±0.02 0.89±0.03 0.86±0.03 0.83±0.04 0.80±0.06 0.78±0.04

VCL CoreSet 0.96±0.00 0.95±0.00 0.94±0.00 0.93±0.02 0.91±0.01 0.89±0.02 0.86±0.03 0.84±0.04 0.81±0.03

n-Step TD-VCL 0.95±0.01 0.94±0.00 0.94±0.00 0.93±0.01 0.92±0.01 0.91±0.01 0.90±0.02 0.89±0.01 0.88±0.02
TD(λ)-VCL 0.97±0.00 0.96±0.00 0.95±0.00 0.94±0.01 0.93±0.01 0.92±0.01 0.91±0.01 0.90±0.01 0.89±0.02

SplitMNIST-Hard SplitNotMNIST-Hard
t = 2 t = 3 t = 4 t = 5 t = 2 t = 3 t = 4 t = 5

Online MLE 0.86±0.02 0.61±0.03 0.75±0.04 0.57±0.06 0.72±0.02 0.61±0.05 0.61±0.00 0.51±0.04

Batch MLE 0.95±0.04 0.65±0.04 0.82±0.04 0.59±0.03 0.71±0.02 0.65±0.03 0.61±0.00 0.50±0.06

VCL 0.87±0.02 0.66±0.04 0.82±0.03 0.64±0.11 0.69±0.04 0.63±0.03 0.60±0.00 0.51±0.06

VCL CoreSet 0.93±0.04 0.68±0.07 0.84±0.04 0.62±0.03 0.69±0.04 0.65±0.02 0.60±0.01 0.51±0.07

n-Step TD-VCL 0.98±0.01 0.79±0.08 0.88±0.04 0.67±0.04 0.72±0.04 0.73±0.05 0.70±0.04 0.58±0.08
TD(λ)-VCL 0.98±0.01 0.81±0.07 0.89±0.03 0.66±0.02 0.74±0.02 0.73±0.03 0.69±0.03 0.58±0.09

Table 2: Quantitative comparison on the CIFAR100-10 and TinyImagenet-10 benchmarks. Each
column presents the average accuracy across the past t observed tasks. Results are reported with
two standard deviations across five seeds. TD-VCL variants consistently outperform the baselines
in harder benchmarks with more complex architectures, such as Bayesian CNNs. The full table is
available in the Appendix M.

CIFAR100-10 TinyImageNet-10
t = 4 t = 6 t = 8 t = 10 t = 4 t = 6 t = 8 t = 10

Online MLE 0.57±0.06 0.56±0.03 0.53±0.06 0.52±0.04 0.45±0.02 0.44±0.01 0.45±0.02 0.44±0.03

Batch MLE 0.58±0.04 0.58±0.05 0.56±0.06 0.54±0.07 0.48±0.02 0.48±0.02 0.50±0.02 0.51±0.03

VCL 0.63±0.02 0.60±0.02 0.61±0.05 0.66±0.01 0.51±0.03 0.51±0.03 0.51±0.02 0.51±0.02

VCL CoreSet 0.63±0.03 0.63±0.02 0.61±0.02 0.65±0.02 0.51±0.02 0.51±0.02 0.54±0.02 0.54±0.02

n-Step TD-VCL 0.67±0.02 0.65±0.01 0.68±0.04 0.69±0.02 0.55±0.02 0.54±0.02 0.56±0.02 0.56±0.02
TD(λ)-VCL 0.66±0.04 0.66±0.02 0.67±0.01 0.71±0.01 0.56±0.02 0.55±0.03 0.56±0.02 0.56±0.02

addressing Catastrophic Forgetting that opens a venue for future research. We discuss SplitMNIST-
Hard results in more detail in Appendix K. Next, SplitNotMNIST-Hard is a harder benchmark, as
the letters come from a diverse set of font styles. Furthermore, we purposely decided to employ a
modest network architecture (as for previous benchmarks). Facing hard tasks with less expressive
parametrizations will result in higher posterior approximation error. Our goal is to evaluate how
the variational methods behave in this setting. Once again, n-step KL and TD-VCL surpassed the
baselines after observing more than three tasks. The effect is more pronounced after increasing
the number of observed tasks. These objectives are the only ones whose resultant models achieved
non-trivial average accuracy after observing all tasks.

Lastly, we analyze the results on CIFAR100-10 and TinyImageNet-10 in Table 2. These are
considerably harder benchmarks, as the distribution of images and classes is much richer than the
previous benchmarks. Furthermore, they necessarily require better architectures to attain non-trivial
performance. Following previous work [8, 49, 50], we adopt an AlexNet architecture [51]. This
setup is ideal for evaluating how the learning objective functions at a larger scale with more complex,
deep architectures such as (Bayesian) convolutional networks. Once again, TD-VCL objectives
attain superior performance, particularly for later timesteps, where Catastrophic Forgetting is more
pronounced in the baselines. This suggests that leveraging multiple posterior estimates for learning is
better than only the latest one, even when the approximation error is high.

7

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Task 1

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1.0
Task 2

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.2

0.4

0.6

0.8

1.0
Task 3

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1.0
Task 4

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1.0
Task 5

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Task 6

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1.0
Task 7

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.2

0.4

0.6

0.8

1.0
Task 8

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1.0
Task 9

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1.0
Task 10

Method
Online MLE
Batch MLE
VCL
VCL CoreSet
N-Step TD-VCL
TD()-VCL

PermutedMNIST-Hard: Per Task Performance

Figure 3: Per-task performance (accuracy) over time in the PermutedMNIST-Hard benchmark.
Each plot represents the accuracy of one task (identified in the plot title) while the number of observed
tasks increases. We highlight a stronger effect of Catastrophic Forgetting on earlier tasks for the
baselines, while TD-VCL objectives are noticeably more robust to this phenomenon.

How do the TD-VCL objectives affect per-task performance? While the previous question
analyze the performance averaged across different tasks, we now investigate the accuracy of each task
separately in the course of online learning. This setup is relevant since solely considering the averaged
accuracy may hide a stronger Catastrophic Forgetting effect from earlier tasks by “compensating"
with higher accuracy from later tasks. We show the results for PermutedMNIST-Hard in Figure 3 (we
defer additional per-task results for Appendix K). It presents a sequence of plots, where each figure
represents the accuracy of one task while the number of observed tasks increases. Naturally, the tasks
that appear at later stages present fewer data points: for instance, “Task 10" has a single data point as
it does not have test data for earlier timesteps.

As observed, per-task performance explicitly shows a stronger effect of Catastrophic Forgetting for
earlier tasks in the adopted baselines. We particularly highlight how non-variational approaches fail
for them. In this direction, TD-VCL objectives presented a more robust performance against others.
For instance, we highlight the results for Task 1. After observing all tasks, the proposed methods
demonstrated accuracy of around 80% and 85%. The VCL baselines dropped to 50% and 60%, and
MLE-based methods failed with only 20% of accuracy.

How does TD-VCL (and variants) perform against other Bayesian CL methods?

In this work, we focus on Continual Learning with a Bayesian lens. As highlighted in Section 1,
it provides a formal, uncertainty-aware framework crucial for safety-critical applications and data-
efficient learning. Thus, we analyze the TD objective (Equation 5) on other Bayesian CL methods.
UCL and UCB are variational methods that optimize the objective in Equation 2 but propose new
mechanisms for regularization and learning rate adaptation. Since these enhancements are orthogonal
to the objective, we incorporate the proposed TD objective with these methods, resulting in TD-UCL
and TD-UCB, respectively. We aim to show that the TD objectives for CL work across different base
methods and promote a performance boost on them.

Table 3 compares the base methods (VCL, UCL, and UCB) with their TD-enhanced counterparts
(complete results in Appendix M). While there is no dominant base method across the benchmarks,
the TD counterparts consistently improve upon their respective base methods, especially at later
timesteps. These results indicate that the TD objective is robust among different Bayesian CL
algorithms and may be incorporated effectively into methods that rely on the variational objective in
Equation 2.

How do the TD-VCL objectives behave with the choice of the hyperparameters n, λ, and
the likelihood-tempering parameter β? The proposed learning objectives introduce two new

8

Table 3: Quantitative comparison between Bayesian CL methods and their TD-enhanced
counterparts. The TD-enhanced methods incorporate the objective in Equation 5 in each base
method. Although no single base method consistently outperforms the others across all benchmarks,
their TD-enhanced versions consistently achieve better performance, particularly at later timesteps.
The full table is avaliable in Appendix M.

PermutedMNIST-Hard SplitMNIST-Hard
t = 4 t = 6 t = 8 t = 10 t = 2 t = 3 t = 4 t = 5

VCL 0.93±0.02 0.89±0.03 0.83±0.04 0.78±0.04 0.87±0.02 0.66±0.04 0.82±0.03 0.64±0.11

TD(λ)-VCL 0.95±0.00 0.93±0.01 0.91±0.01 0.89±0.02 0.98±0.01 0.79±0.08 0.88±0.04 0.67±0.04
UCL 0.94±0.00 0.89±0.02 0.83±0.06 0.73±0.12 0.88±0.04 0.68±0.03 0.83±0.03 0.66±0.06

TD(λ)-UCL 0.95±0.00 0.92±0.02 0.88±0.04 0.84±0.04 0.97±0.01 0.85±0.06 0.90±0.02 0.70±0.04
UCB 0.92±0.01 0.89±0.02 0.86±0.02 0.83±0.02 0.85±0.16 0.79±0.12 0.83±0.06 0.75±0.10

TD(λ)-UCB 0.93±0.00 0.91±0.01 0.90±0.01 0.88±0.02 0.93±0.02 0.89±0.03 0.87±0.03 0.80±0.03

CIFAR100-10 TinyImageNet-10
t = 4 t = 6 t = 8 t = 10 t = 4 t = 6 t = 8 t = 10

VCL 0.63±0.02 0.60±0.02 0.61±0.05 0.66±0.01 0.51±0.03 0.51±0.03 0.51±0.02 0.51±0.02

TD(λ)-VCL 0.66±0.04 0.66±0.02 0.67±0.01 0.71±0.01 0.56±0.02 0.55±0.03 0.56±0.02 0.56±0.06
UCL 0.64±0.05 0.60±0.05 0.58±0.02 0.62±0.02 0.52±0.03 0.51±0.02 0.52±0.02 0.50±0.03

TD(λ)-UCL 0.64±0.01 0.70±0.02 0.66±0.03 0.67±0.03 0.54±0.01 0.54±0.01 0.55±0.01 0.56±0.01
UCB 0.66±0.02 0.66±0.03 0.65±0.01 0.66±0.01 0.51±0.02 0.48±0.04 0.45±0.02 0.42±0.03

TD(λ)-UCB 0.66±0.01 0.67±0.01 0.68±0.01 0.70±0.01 0.52±0.01 0.51±0.02 0.50±0.03 0.47±0.02

hyperparameters: n (the number of considered previous posterior estimates in the learning target)
and λ for TD(λ)-VCL (which controls the level of influence for each past posterior estimate).
Furthermore, it also inherits the β parameter from VCL. Hence, we evaluate the sensitivity of the
proposed objectives concerning these hyperparameters, presenting results and detailed discussion
in Appendix L. We highlight three main findings. First, similarly to VCL, TD-VCL objectives are
sensitive to the likelihood-tempering hyperparameter. Second, increasing n is beneficial up to a
certain point, from which it becomes detrimental, suggesting the existence of an optimal range for
leveraging posterior estimates. Lastly, TD-VCL objectives present robustness over the choice of λ,
with a more pronounced effect when the number of observed tasks increases.

6 Closing Remarks

In this work, we presented a new family of variational objectives for Continual Learning, namely
Temporal-Difference VCL. TD-VCL is an unbiased proxy of the standard VCL objective but lever-
ages several previous posterior estimates to alleviate the compounding error caused by recursive
approximations. We showed that TD-VCL represents a spectrum of Continual Learning algorithms
and is equivalent to a discounted sum of n-step Temporal-Difference targets. Lastly, we empirically
presented that it helps address Catastrophic Forgetting, surpassing Bayesian CL baselines in several
challenging benchmarks.

Limitations. Despite being theoretically principled and attaining superior performance, TD-VCL
presents limitations. First, the hyperparameters n and λ depend on the evaluated setting, which may
require certain tuning. Second, the objectives rely on past posterior estimates, which may increase
memory requirements. Still, we believe this is not a major limitation as TD-VCL suits well modern
deep Bayesian architectures that target smaller parameter subspaces for posterior approximation
[52, 53, 12].

Future Work. While presenting connections with Temporal-Difference methods, TD-VCL is not an
RL algorithm. Further mathematical connections with Markov Decision/Reward Processes formalism
are left as future work. Another interesting direction is to apply TD-VCL objectives for other
problems that involve sequential variational inference, such as probabilistic meta-learning [54, 55].

9

Acknowledgments and Disclosure of Funding

The authors thank Panagiotis Tigas for insightful discussions on variational inference. Luckeciano C.
Melo acknowledges funding from the Air Force Office of Scientific Research (AFOSR) European
Office of Aerospace Research & Development (EOARD) under grant number FA8655-21-1-7017.
Yarin Gal is supported by a Turing AI Fellowship financed by the UK government’s Office for
Artificial Intelligence, through UK Research and Innovation (grant reference EP/V030302/1) and
delivered by the Alan Turing Institute.

References
[1] Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation

of catastrophic forgetting in gradient-based neural networks. In International Conference on Learning
Representations, pages 1–10, 2015.

[2] Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. Psychology of Learning and Motivation, 24:109–165, 1989. URL https://api.
semanticscholar.org/CorpusID:61019113.

[3] Jeffrey C. Schlimmer and Douglas Fisher. A case study of incremental concept induction. In Proceedings
of the Fifth AAAI National Conference on Artificial Intelligence, AAAI’86, page 496–501. AAAI Press,
1986.

[4] Wickliffe C. Abraham and Anthony Robins. Memory retention – the synaptic stability versus plas-
ticity dilemma. Trends in Neurosciences, 28(2):73–78, 2005. ISSN 0166-2236. doi: https://doi.
org/10.1016/j.tins.2004.12.003. URL https://www.sciencedirect.com/science/article/pii/
S0166223604003704.

[5] Richard S. Sutton and Steven D. Whitehead. Online learning with random representations. In Proceedings
of the Tenth International Conference on International Conference on Machine Learning, ICML’93, page
314–321, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. ISBN 1558603077.

[6] Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences,
3(4):128–135, 1999. ISSN 1364-6613. doi: https://doi.org/10.1016/S1364-6613(99)01294-2. URL
https://www.sciencedirect.com/science/article/pii/S1364661399012942.

[7] Raia Hadsell, Dushyant Rao, Andrei A. Rusu, and Razvan Pascanu. Embracing change: Continual learning
in deep neural networks. Trends in Cognitive Sciences, 24(12):1028–1040, 2020. ISSN 1364-6613.
doi: https://doi.org/10.1016/j.tics.2020.09.004. URL https://www.sciencedirect.com/science/
article/pii/S1364661320302199.

[8] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forgetting
with hard attention to the task. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4548–4557. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/serra18a.
html.

[9] Tom Rainforth, Adam Foster, Desi R. Ivanova, and Freddie Bickford Smith. Modern Bayesian Experimental
Design. Statistical Science, 39(1):100 – 114, 2024. doi: 10.1214/23-STS915. URL https://doi.org/
10.1214/23-STS915.

[10] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision?
In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17,
page 5580–5590, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

[11] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, page
1183–1192. JMLR.org, 2017.

[12] Luckeciano C. Melo, Panagiotis Tigas, Alessandro Abate, and Yarin Gal. Deep bayesian active learning
for preference modeling in large language models, 2024. URL https://arxiv.org/abs/2406.10023.

[13] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learning. In
International Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=BkQqq0gRb.

10

https://api.semanticscholar.org/CorpusID:61019113
https://api.semanticscholar.org/CorpusID:61019113
https://www.sciencedirect.com/science/article/pii/S0166223604003704
https://www.sciencedirect.com/science/article/pii/S0166223604003704
https://www.sciencedirect.com/science/article/pii/S1364661399012942
https://www.sciencedirect.com/science/article/pii/S1364661320302199
https://www.sciencedirect.com/science/article/pii/S1364661320302199
https://proceedings.mlr.press/v80/serra18a.html
https://proceedings.mlr.press/v80/serra18a.html
https://doi.org/10.1214/23-STS915
https://doi.org/10.1214/23-STS915
https://arxiv.org/abs/2406.10023
https://openreview.net/forum?id=BkQqq0gRb
https://openreview.net/forum?id=BkQqq0gRb

[14] Richard S. Sutton. Learning to predict by the methods of temporal differences. Mach. Learn., 3(1):9–44,
August 1988. ISSN 0885-6125. doi: 10.1023/A:1022633531479. URL https://doi.org/10.1023/A:
1022633531479.

[15] Wolfram Schultz, Peter Dayan, and P. Read Montague. A neural substrate of prediction and reward. Science,
275(5306):1593–1599, 1997. doi: 10.1126/science.275.5306.1593. URL https://www.science.org/
doi/abs/10.1126/science.275.5306.1593.

[16] Mark B. Ring. Child: A first step towards continual learning. Mach. Learn., 28(1):77–104, jul 1997. ISSN
0885-6125. doi: 10.1023/A:1007331723572. URL https://doi.org/10.1023/A:1007331723572.

[17] Timo Flesch, Andrew Saxe, and Christopher Summerfield. Continual task learning in natural and
artificial agents. Trends in Neurosciences, 46(3):199–210, 2023. ISSN 0166-2236. doi: https:
//doi.org/10.1016/j.tins.2022.12.006. URL https://www.sciencedirect.com/science/article/
pii/S0166223622002600.

[18] Tameem Adel, Han Zhao, and Richard E. Turner. Continual learning with adaptive weights (CLAW). In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=Hklso24Kwr.

[19] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Has-
sabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences, 114:3521 – 3526, 2016. URL
https://api.semanticscholar.org/CorpusID:4704285.

[20] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, page
3987–3995. JMLR.org, 2017.

[21] Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Riemannian walk
for incremental learning: Understanding forgetting and intransigence. In Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision – ECCV 2018, pages 556–572, Cham,
2018. Springer International Publishing. ISBN 978-3-030-01252-6.

[22] David Lopez-Paz and Marc' Aurelio Ranzato. Gradient episodic memory for continual learn-
ing. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
f87522788a2be2d171666752f97ddebb-Paper.pdf.

[23] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow memory:
Continual learning with a memory of diverse samples. In 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8214–8223, 2021. doi: 10.1109/CVPR46437.2021.00812.

[24] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, G. Sperl, and Christoph H. Lampert. icarl: Incremental
classifier and representation learning. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5533–5542, 2016. URL https://api.semanticscholar.org/CorpusID:206596260.

[25] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent pro-
cessing in neural networks. Nature Machine Intelligence, 1:364 – 372, 2018. URL https://api.
semanticscholar.org/CorpusID:52908642.

[26] Khurram Javed and Martha White. Meta-learning representations for continual learning. Curran Associates
Inc., Red Hook, NY, USA, 2019.

[27] Hao Liu and Huaping Liu. Continual learning with recursive gradient optimization. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=7YDLgf9_
zgm.

[28] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. IEEE transactions on pattern analysis and machine intelligence, PP,
February 2024. ISSN 0162-8828. doi: 10.1109/tpami.2024.3367329. URL https://arxiv.org/pdf/
2302.00487.

[29] Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations for
overcoming catastrophic forgetting. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 3742–3752, Red Hook, NY, USA, 2018. Curran Associates
Inc.

11

https://doi.org/10.1023/A:1022633531479
https://doi.org/10.1023/A:1022633531479
https://www.science.org/doi/abs/10.1126/science.275.5306.1593
https://www.science.org/doi/abs/10.1126/science.275.5306.1593
https://doi.org/10.1023/A:1007331723572
https://www.sciencedirect.com/science/article/pii/S0166223622002600
https://www.sciencedirect.com/science/article/pii/S0166223622002600
https://openreview.net/forum?id=Hklso24Kwr
https://api.semanticscholar.org/CorpusID:4704285
https://proceedings.neurips.cc/paper_files/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://api.semanticscholar.org/CorpusID:206596260
https://api.semanticscholar.org/CorpusID:52908642
https://api.semanticscholar.org/CorpusID:52908642
https://openreview.net/forum?id=7YDLgf9_zgm
https://openreview.net/forum?id=7YDLgf9_zgm
https://arxiv.org/pdf/2302.00487
https://arxiv.org/pdf/2302.00487

[30] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye Teh,
Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual learning. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 4528–4537. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/schwarz18a.html.

[31] Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, and Yee Whye
Teh. Functional regularisation for continual learning with gaussian processes. In International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=HkxCzeHFDB.

[32] Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard E. Turner, and Mo-
hammad Emtiyaz Khan. Continual deep learning by functional regularisation of memorable past. In
Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS ’20,
Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[33] Noel Loo, Siddharth Swaroop, and Richard E Turner. Generalized variational continual learning. In
International Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=_IM-AfFhna9.

[34] Tim G. J. Rudner, Freddie Bickford Smith, Qixuan Feng, Yee Whye Teh, and Yarin Gal. Continual learning
via sequential function-space variational inference. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 18871–18887.
PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/rudner22a.html.

[35] Noel Loo, Siddharth Swaroop, and Richard E Turner. Combining variational continual learning with fiLM
layers. In 4th Lifelong Machine Learning Workshop at ICML 2020, 2020. URL https://openreview.
net/forum?id=fZBEGA1d-4Y.

[36] Liu Guimeng, Guo Yang, Cheryl Wong Sze Yin, Ponnuthurai Nagartnam Suganathan, and Ramasamy
Savitha. Unsupervised generative variational continual learning. In 2022 IEEE International Conference
on Image Processing (ICIP), pages 4028–4032, 2022. doi: 10.1109/ICIP46576.2022.9897538.

[37] Hanna Tseran. Natural variational continual learning. 2018. URL https://api.semanticscholar.
org/CorpusID:155098533.

[38] Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach. Uncertainty-guided continual
learning with bayesian neural networks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=HklUCCVKDB.

[39] Jeevan Thapa and Rui Li. Bayesian adaptation of network depth and width for continual learning. In
Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org, 2025.

[40] Djohan Bonnet, Kellian Cottart, Tifenn Hirtzlin, Tarcisius Januel, Thomas Dalgaty, Elisa Vianello, and
Damien Querlioz. Bayesian continual learning and forgetting in neural networks, 2025. URL https:
//arxiv.org/abs/2504.13569.

[41] Sayantan Auddy, Jakob Hollenstein, and Matteo Saveriano. Can expressive posterior approximations
improve variational continual learning? Workshop on Lifelong Learning for Long-term Human-Robot
Interaction of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2020.

[42] Yang Yang, Bo Chen, and Hongwei Liu. Memorized variational continual learning for dirichlet process
mixtures. IEEE Access, 7:150851–150862, 2019. doi: 10.1109/ACCESS.2019.2947722.

[43] Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual learning
with adaptive regularization. Curran Associates Inc., Red Hook, NY, USA, 2019.

[44] Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task-agnostic continual learning using online
variational bayes with fixed-point updates. Neural Computation, 33(11):3139–3177, 10 2021. ISSN
0899-7667. doi: 10.1162/neco_a_01430. URL https://doi.org/10.1162/neco_a_01430.

[45] Zoubin Ghahramani and H. Attias. Online variational bayesian learning. In NeurIPS Workshop on Online
Learning, NeurIPS, 2000.

[46] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA, 2018. ISBN 0262039249.

12

https://proceedings.mlr.press/v80/schwarz18a.html
https://openreview.net/forum?id=HkxCzeHFDB
https://openreview.net/forum?id=_IM-AfFhna9
https://openreview.net/forum?id=_IM-AfFhna9
https://proceedings.mlr.press/v162/rudner22a.html
https://openreview.net/forum?id=fZBEGA1d-4Y
https://openreview.net/forum?id=fZBEGA1d-4Y
https://api.semanticscholar.org/CorpusID:155098533
https://api.semanticscholar.org/CorpusID:155098533
https://openreview.net/forum?id=HklUCCVKDB
https://arxiv.org/abs/2504.13569
https://arxiv.org/abs/2504.13569
https://doi.org/10.1162/neco_a_01430

[47] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, 2014.

[48] Brian Trippe and Richard Turner. Overpruning in variational bayesian neural networks, 2018.

[49] Abhishek Kumar, Sunabha Chatterjee, and Piyush Rai. Bayesian structural adaptation for continual
learning. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 5850–5860. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/kumar21a.html.

[50] Tatsuya Konishi, Mori Kurokawa, Chihiro Ono, Zixuan Ke, Gyuhak Kim, and Bing Liu. Parameter-level
soft-masking for continual learning. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

[51] Alex Krizhevsky. Learning multiple layers of features from tiny images. In Technical Report, University of
Toronto, 2009. URL http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[52] Adam X. Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation for
large language models. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=FJiUyzOF1m.

[53] Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
exploration for LLMs. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=PpPZ6W7rxy.

[54] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems, NIPS’18, page 9537–9548,
Red Hook, NY, USA, 2018. Curran Associates Inc.

[55] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning. In
International Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=Hkl9JlBYvr.

[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
neural networks. Commun. ACM, 60(6):84–90, May 2017. ISSN 0001-0782. doi: 10.1145/3065386. URL
https://doi.org/10.1145/3065386.

[57] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), San Diego, CA, USA, 2015.

[58] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255,
2009. doi: 10.1109/CVPR.2009.5206848.

[59] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa
Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural networks. In
Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 2171–2180, Lille, France,
07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/snoek15.html.

13

https://proceedings.mlr.press/v139/kumar21a.html
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=FJiUyzOF1m
https://openreview.net/forum?id=PpPZ6W7rxy
https://openreview.net/forum?id=Hkl9JlBYvr
https://openreview.net/forum?id=Hkl9JlBYvr
https://doi.org/10.1145/3065386
https://proceedings.mlr.press/v37/snoek15.html

A Derivation of the n-Step KL Regularization Objective

In this Section, we prove Proposition 4.1:
Proposition 4.1. The standard KL minimization objective in Variational Continual Learning (Equa-
tion 2) is equivalently represented as the following objective, where n ∈ N0 is a hyperparameter:

qt(θ) = argmax
q∈Q

Eθ∼qt(θ)

[n−1∑
i=0

(n− i)

n
log p(Dt−i | θ)

]
−

n−1∑
i=0

1

n
DKL(qt(θ) || qt−i−1(θ)). (4)

Proof. Starting from Equation 2, we can expand it as a sum of equal terms and utilize the recursive
property (Equation 1) to expand these terms:

qt(θ) = argmin
q∈Q

DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ))

= argmin
q∈Q

n

n
DKL(q(θ) ||

1

Zt
qt−1(θ)p(Dt | θ))

= argmin
q∈Q

1

n

[
DKL(q(θ) ||

1

Zt
qt−1(θ)p(Dt | θ))

+ DKL(q(θ) ||
1

ZtZt−1
qt−2(θ)p(Dt | θ)p(Dt−1 | θ)) + . . .

+ DKL(q(θ) ||
1∏n−1

i=0 Zt−i

qt−n(θ)

n−1∏
i=0

p(Dt−i | θ))

]

= argmin
q∈Q

1

n

[
DKL(qt(θ) || qt−1(θ))− Eθ∼qt(θ)[log p(Dt | θ)]

+ DKL(qt(θ) || qt−2(θ))− Eθ∼qt(θ)[log p(Dt | θ) + log p(Dt−1 | θ)] + . . .

+ DKL(qt(θ) || qt−n(θ))− Eθ∼qt(θ)[

n−1∑
i=0

log p(Dt−i | θ)]

]

= argmin
q∈Q

1

n

[
n−1∑
i=0

DKL(qt(θ) || qt−i(θ))− Eθ∼qt(θ)

[
n log p(Dt | θ)

+ (n− 1) log p(Dt−1 | θ) + · · ·+ log p(Dt−n+1 | θ)
]]

= argmax
q∈Q

Eθ∼qt(θ)

[n−1∑
i=0

(n− i)

n
log p(Dt−i | θ)

]
−

n−1∑
i=0

1

n
DKL(qt(θ) || qt−i−1(θ)).

(9)

14

B Derivation of the Temporal-Difference VCL Objective

Before proving Proposition 4.2, we start by presenting a well known result for the sum of geometric
series:

Lemma B.1. The finite sum of a geometric series with n terms, common ratio λ and initial term a is
given by:

n−1∑
k=0

λka =
a(1− λn)

(1− λ)
(10)

Proof. Let sn =
∑n

k=0 λ
ka. Hence,

sn − λsn =

n−1∑
k=0

λka− λ

n−1∑
k=0

λka = a− aλn

⇐⇒ sn(1− λ) = a(1− λn)

⇐⇒ sn =
a(1− λn)

(1− λ)
.

(11)

Now, we prove Proposition 4.2.

Proposition 4.2. The standard KL minimization objective in VCL (Equation 2) is equivalently
represented as the following objective, with n ∈ N0, and λ ∈ [0, 1) hyperparameters:

qt(θ) = argmax
q∈Q

Eθ∼qt(θ)

[n−1∑
i=0

λi(1− λn−i)

1− λn
log p(Dt−i | θ)

]
−

n−1∑
i=0

λi(1− λ)

1− λn
DKL(qt(θ) || qt−i−1(θ)). (5)

Proof. We can use Lemma B.1 to expand the sum of KL terms:

15

qt(θ) = argmin
q∈Q

DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ))

= argmin
q∈Q

1− λ

1− λn

1− λn

1− λ
DKL(q(θ) ||

1

Zt
qt−1(θ)p(Dt | θ))

= argmin
q∈Q

1− λ

1− λn

[
DKL(q(θ) ||

1

Zt
qt−1(θ)p(Dt | θ))

+ λDKL(q(θ) ||
1

ZtZt−1
qt−2(θ)p(Dt | θ)p(Dt−1 | θ)) + . . .

+ λn−1DKL(q(θ) ||
1∏n−1

i=0 Zt−i

qt−i(θ)

n−1∏
i=0

p(Dt−i | θ))

]

= argmin
q∈Q

1− λ

1− λn

[
DKL(qt(θ) || qt−1(θ))− Eθ∼qt(θ)[log p(Dt | θ)]

+ λDKL(qt(θ) || qt−2(θ))− λEθ∼qt(θ)[log p(Dt | θ) + log p(Dt−1 | θ)] + . . .

+ λn−1DKL(qt(θ) || qt−n(θ))− λn−1Eθ∼qt(θ)[

n−1∑
i=0

log p(Dt−i | θ)]

]

= argmin
q∈Q

1− λ

1− λn

[
n−1∑
i=0

λiDKL(qt(θ) || qt−i−1(θ))− Eθ∼qt(θ)

[n−1∑
i=0

λi log p(Dt | θ)

+

n−1∑
i=1

λi log p(Dt−1 | θ) + · · ·+ λn−1 log p(Dt−n+1 | θ)
]]

= argmin
q∈Q

1− λ

1− λn

[
n−1∑
i=0

λiDKL(qt(θ) || qt−i−1(θ))− Eθ∼qt(θ)

[1− λn

1− λ
log p(Dt | θ)

+
λ(1− λn−1)

1− λ
log p(Dt−1 | θ) + · · ·+ λn−1 log p(Dt−n+1 | θ)

]]

= argmax
q∈Q

Eθ∼qt(θ)

[n−1∑
i=0

λi(1− λn−i)

1− λn
log p(Dt−i | θ)

]
−

n−1∑
i=0

λi(1− λ)

1− λn
DKL(qt(θ) || qt−i−1(θ)).

(12)

16

C The connection of TD Targets in TD-VCL and Reinforcement Learning

In the Section 4, we formalize the concept of n-Step Temporal-Difference for the Variational CL
objective (Definition 4.3). In this Section, we reveal the connections between this definition and the
widely used Temporal-Difference methods in Reinforcement Learning. Our aim is to clarify why
Equation 6 indeed represents a temporal-difference target, both in a broad and strict senses.

In a broad sense, bootstrapping characterizes a Temporal-Difference target: building a learning target
estimate based on previous estimates. Crucially, the leveraged estimates are functions of different
timesteps. TD-VCL objectives applies bootstrapping in the KL regularization term, by considering
one or more of posteriors estimates from previous timesteps.

In a strict sense, we can show that Equation 6 deeply resembles TD targets in Reinforcement
Learning. RL assumes the formalism of a Markov Decision Process (MDP), defined by a tuple M =
(S,A,P,R,P0, γ,H), where S is a state space, A is an action space, P : S ×A× S → [0,∞) is a
transition dynamics, R : S ×A → [−Rmax, Rmax] is a bounded reward function, P0 : S → [0,∞)
is an initial state distribution, γ ∈ [0, 1] is a discount factor, and H is the horizon.

The standard RL objective is to find a policy that maximizes the cumulative reward:

π∗
θ = argmax

π
Eπ[

H∑
k=0

γkR(st+k, at+k)], (13)

with at ∼ πθ(at | st), st ∼ P(st | st−1, at−1), and s0 ∼ P0(s), where πθ : S × A → [0,∞) is a
policy parameterized by θ. Hence, we can define the following learning target, which represents a
“value" function at each state st:

vπ(st) := Eπ[

H∑
k=0

γkR(st+k, at+k) | s = st],∀st ∈ S. (14)

Naturally, it follows that π∗
θ = argmaxπ vπ(s), ∀s ∈ S. Crucially, we can expand Equation 14 as

follows:

vπ(st) := Eπ[

H∑
k=0

γkR(st+k, at+k) | s = st]

= Eπ[R(st, at) +

H∑
k=1

γkR(st+k, at+k) | s = st]

= Eπ[R(st, at) + γvπ(st+1)],

= Eπ[R(st, at) + γR(st+1, at+1) + γ2vπ(st+2)],

= Eπ[

n−1∑
k=0

γkR(st, at) + γnvπ(st+n)],∀st ∈ S, n ≤ H. (15)

Temporal-Difference methods estimates a learning target directly from Equation 15:

v̂π(s) := TDRL(n) = Eπ[

n−1∑
k=0

γkR(st, at)]︸ ︷︷ ︸
Estimated via MC Sampling

+ γnv̂π(st+n)︸ ︷︷ ︸
Bootstrapped via past estimations

,∀st ∈ S, n ≤ H. (16)

Now, we turn our attention back to our Variational Continual Learning setting. The standard VCL
objective is given by Equation 2:

17

qt(θ) = argmin
q∈Q

DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ)).

We can similarly define a learning target as a “value" function which we aim to maximize:

uq(θ)(t) := −DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ))

= Eθ∼qt(θ)

[
log p(Dt | θ)] + logZt

]
− DKL(qt(θ) || qt−1(θ))

= Eθ∼qt(θ)

[
log p(Dt | θ)] + logZt

]
− DKL(qt(θ) ||

1

Zt−1
qt−2(θ)p(Dt−1 | θ))

= Eθ∼qt(θ)

[
log p(Dt | θ)] + logZt

]
+ uq(θ)(t− 1)

= Eθ∼qt(θ)

[
n−2∑
i=0

log p(Dt−i | θ)] +
n−2∑
i=0

logZt−i

]
+ uq(θ)(t− n+ 1), n ∈ N0, n ≤ t.

(17)

Similarly to the RL case, it follows that qt(θ) = argmaxq∈Q uq(θ)(t). Lastly, we assume the
following estimation of the “value" function defined in Equation 17:

ûq(θ)(t) = Eθ∼qt(θ)

[
n−2∑
i=0

log p(Dt−i | θ)] +
n−2∑
i=0

logZt−i

]
+ ûq(θ)(t− n+ 1)

= Eθ∼qt(θ)

[
n−1∑
i=0

log p(Dt−i | θ)]

]
︸ ︷︷ ︸

Estimated via MC Sampling

− DKL(qt(θ) || qt−n(θ))︸ ︷︷ ︸
Bootstrapped via past posterior estimations

+

[
n−1∑
i=0

logZt−i

]
︸ ︷︷ ︸

Constant w.r.t θ

.

(18)

We notice that Zt is constant with respect to θ, hence we can disregard it and still have the same
learning target. Thus, we have:

qt(θ) = argmax
q∈Q

ûq(θ)(t)

= argmax
q∈Q

Eθ∼qt(θ)

[
n−1∑
i=0

log p(Dt−i | θ)]

]
− DKL(qt(θ) || qt−n(θ)) +

[
n−1∑
i=0

logZt−i

]

= argmax
q∈Q

Eθ∼qt(θ)

[
n−1∑
i=0

log p(Dt−i | θ)]

]
− DKL(qt(θ) || qt−n(θ))︸ ︷︷ ︸

TDCL(n)

. (19)

Equation 19 is exactly n-Step Temporal-Difference target in Definition 4.3 from Section 4. The main
differences from the CL recursion in Equation 17 and the RL one in Equation 15 are two-fold. First,
the CL setup is not discounted (or, equivalently, assumes the discount factor γ = 1). Second, the
RL recursion looks over future timesteps, while the CL one looks over past timesteps. Besides these
two differences, both scenarios are strongly connected. Particularly, they share the same purpose
for leveraging TD targets: to strike a balance between MC estimation (which incurs variance) and
bootstrapping (which incurs bias) while estimating the learning objective.

18

D TD(λ)-VCL is a discounted sum of n-Step TD targets

In Section 4, we mention that the TD-VCL learning target is a compound update that averages n-step
temporal-difference targets, as per Proposition 4.4, which we prove below.
Proposition 4.4. ∀n ∈ N0, n ≤ t , the objective in Equation 2 can be equivalently represented as:

qt(θ) = argmax
q∈Q

TDt(n), (7)

with TDt(n) as in Definition 4.3. Furthermore, the objective in Equation 5 can also be represented
as:

qt(θ) = argmax
q∈Q

1− λ

1− λn

[
n−1∑
k=0

λkTDt(k + 1))

]
.︸ ︷︷ ︸

Discounted sum of TD targets

(8)

Proof. We start by proving the equivalence between Equation 2 and Equation 7:

qt(θ) = argmin
q∈Q

DKL(q(θ) ||
1

Zt
qt−1(θ)p(Dt | θ))

= argmin
q∈Q

DKL(q(θ) ||
1∏n−1

i=0 Zt−i

qt−n(θ)

n−1∏
i=0

p(Dt−i | θ))

= argmax
q∈Q

Eθ∼qt(θ)

[
n−1∑
i=0

log p(Dt−i | θ)]

]
− DKL(qt(θ) || qt−n(θ))

= argmax
q∈Q

TDt(n).

(20)

Now, we show that Equation 5 is a discounted sum of n-Step targets:

qt(θ) = argmax
q∈Q

1− λ

1− λn

[
Eθ∼qt(θ)[log p(Dt | θ)− DKL(qt(θ) || qt−1(θ))]

+ λEθ∼qt(θ)[log p(Dt | θ) + log p(Dt−1 | θ)]− λDKL(qt(θ) || qt−2(θ)) + . . .

+ λn−1Eθ∼qt(θ)[

n−1∑
i=0

log p(Dt−i | θ)]− λn−1DKL(qt(θ) || qt−n(θ))

]

= argmax
q∈Q

1− λ

1− λn

[
TDt(1) + λTDt(2) + . . . λn−1TDt(n)

]

= argmax
q∈Q

1− λ

1− λn

[
n−1∑
k=0

λkTDt(k + 1))

]
.︸ ︷︷ ︸

Disconted sum of TD targets

(21)

In Equation 7, if we set n = 1, the n-Step TD target recovers the VCL objective. Furthermore, it
is worth highlighting that an n-Step TD target is not the same as n-Step KL Regularization. The
latter leverages several previous posterior estimates, while the former only relies on a single estimate.
Lastly, we can follow a similar idea to prove that the n-Step KL Regularization objective is a simple
average of n-step TD targets, by leveraging the expansion in Equation 9 and identifying the sum of
TD targets.

19

E TD-VCL: A spectrum of Continual Learning algorithms

In this Section, we describe how TD-VCL spans a spectrum of algorithms that mix different levels
of Monte Carlo approximation for expected log-likelihood and KL regularization. Our goal is to
show that by choosing specific hyperparameters for Equation 5, one may recover vanilla VCL in one
extreme and n-Step KL regularization in the opposite.

Let us consider the TD-VCL objective in Equation 5:

argmax
q∈Q

Eθ∼qt(θ)

[n−1∑
i=0

λi(1− λn−i)

1− λn
log p(Dt−i | θ)

]
−

n−1∑
i=0

λi(1− λ)

1− λn
DKL(qt(θ) || qt−i−1(θ)).

Trivially, if we set λ = 0, assuming 00 = 1, it recovers the Vanilla VCL objective, as stated in
Equation 3, regardless of the choice of n.

More interestingly, we investigate the learning target as λ → 1:

lim
λ→1

{
Eθ∼qt(θ)

[n−1∑
i=0

λi(1− λn−i)

1− λn
log p(Dt−i | θ)

]
−

n−1∑
i=0

λi(1− λ)

1− λn
DKL(qt(θ) || qt−i−1(θ))

}

= Eθ∼qt(θ)

[n−1∑
i=0

lim
λ→1

{λi(1− λn−i)

1− λn

}
︸ ︷︷ ︸

(I)

log p(Dt−i | θ)
]
−

n−1∑
i=0

lim
λ→1

{λi(1− λ)

1− λn

}
︸ ︷︷ ︸

(II)

DKL(qt(θ) || qt−i−1(θ))

Let us develop (I) and (II) separately by applying the L’Hôpital’s rule. First, for (I):

lim
λ→1

{λi(1− λn−i)

1− λn

}
= lim

λ→1

{ iλi−1(1− λn−i)− λi(n− i)λn−i−1

−nλn−1

}
= lim

λ→1

{ iλi−1 − iλn−1 − (n− i)λn−1

−nλn−1

}
=

n− i

n
.

(22)

Now, for (II):

lim
λ→1

{λi(1− λ)

1− λn

}
= lim

λ→1

{ iλi−1(1− λ)− λi

−nλn−1

}
=

1

n
. (23)

Applying Equations 22 and 23 to TD-VCL objective, we obtain:

argmax
q∈Q

Eθ∼qt(θ)

[n−1∑
i=0

(n− i)

n
log p(Dt−i | θ)

]
−

n−1∑
i=0

1

n
DKL(qt(θ) || qt−i−1(θ)),

which is exactly the N-Step KL Regularization objective.

20

F Impact Statement

This work develops a novel learning objective for Bayesian Continual Learning. As such, we believe
our work has a positive impact on fundamental research for Machine Learning for three reasons. First,
we argue that advancing Continual Learning research is crucial for ensuring the long-term quality of
ML models in production systems, as they are vulnerable to potential distributional shifts in the data
generation distribution. We also argue that CL is crucial for developing safe autonomous learning
agents, as Catastrophic Forgetting may be a dangerous challenge while interacting with the physical
or digital world. Second, our particular focus on the Bayesian framework is relevant for designing
uncertainty-aware models, which, as argued in Section 1, is crucial for robust Machine Learning and
general AI safety. Lastly, we provide a solid theoretical connection between Variational Continual
Learning methods and Temporal-Difference methods, effectively bridging two seemingly distant
disciplines into a unified family of algorithms. We believe this will inspire further research in the
intersection of both areas.

G Implementation Details and Reproducibility

Operationalization. For all experiments, we use a Gaussian mean-field approximate posterior and
assume a Gaussian prior N (0, σ2I) for the variational methods. We parameterize all distributions as
deep networks. For all considered objectives, we compute the KL term analytically and employ the
Monte Carlo approximations for the expected log-likelihood terms, leveraging the reparametrization
trick [47] for computing gradients. Lastly, we employ likelihood-tempering [33] to prevent variational
over-pruning [48].

Model Architecture and Hyperpatameters. We adopt fully connected neural networks for
PermutedMNIST-Hard, SplitMNIST-Hard and SplitNotMNIST-Hard. We choose different depths
and sizes depending on the benchmark, and we provide a full list of hyperparameters in Appendix
H. For CIFAR100-10 and TinyImageNet-10, we implement a Bayesian version of the AlexNet
[56], a traditional convolutional neural network architecture, as in prior Bayesian CL literature [39].
Crucially, also following prior literature [38], we do not use pre-trained representations, as our goal is
to evaluate how the proposed objectives perform in the CL setting, which also requires learning their
own robust representations. Finally, for training, we adopt the Adam optimizer [57] and employ early
stopping with a patience parameter of five epochs, which drastically reduces the number of epochs
needed for each new task in comparison to previous work [13].

Hyperparamter Tuning Protocol. We conduct hyperparameter tuning for all methods in the
paper, including the baselines (VCL, UCL, UCB). We follow a random search for each evaluated
benchmark. For a fair comparison, we ensure that all methods use approximately the same compute
of 1 GPU day. We provide the search space for each method in our released code. For the proposed
methods, we mainly tuned three hyperparameters: n (as in n-Step KL), λ (as in TD-VCL), and β
(the likelihood tempering parameter). We conducted a grid search for each evaluated benchmark,
with n ∈ {1, 2, 3, 5, 8, 10}, λ ∈ {0.0, 0.1, 0.5, 0.8, 0.9, 0.99}, and β ∈ {1e− 5, 1e− 4, 1e− 3, 5e−
3, 1e− 2, 5e− 2, 1e− 1, 1.0}.

Reproducibility. Reported results are averaged across ten different seeds for PermutedMNIST-Hard,
SplitMNIST-Hard, and SplitNotMNIST-Hard, and five seeds for CIFAR100-10 and TinyImageNet-
10. Error bars represent 95% confidence intervals, while tables show 2-sigma errors up to two
decimal places. We execute all experiments using a single GPU RTX 4090. We provide our
implementation code for the proposed methods (TD-VCL, TD-UCB, TD-UCL, and n-Step), as
well as considered baselines (Batch MLE, Online MLE, VCL, VCL CoreSet, UCB, and UCL) in
https://github.com/luckeciano/TD-VCL.

21

https://github.com/luckeciano/TD-VCL

H Hyperparameters

Table 4 provides the shared hyperparameters used in each benchmark. Tables 5 and 6 provided the
specific hyperparameters for the proposed methods and baselines, respectively.

PermMNIST-Hard SplitMNIST-Hard SplitNotMNIST-Hard CIFAR100-10 TinyImageNet-10
Batch Size 256 256 256 256 256
Max Epochs 100 100 100 100 100
NN Architecture [100, 100] [256, 256] [150, 150, 150, 150] AlexNet AlexNet
Number of Heads 1 1 1 10 10
Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3

Table 4: Training hyperparameters. These are shared across all evaluated methods.

PermMNIST-Hard SplitMNIST-Hard SplitNotMNIST-Hard CIFAR100-10 TinyImageNet-10

n-Step KL n 5 4 5 5 2
β 5e-3 5e-2 5e-2 3e-5 1e-9

TD(λ)-VCL
n 8 4 3 10 2
λ 0.5 0.8 0.1 0.5 0.1
β 1e-3 5e-2 1e-3 1e-5 1e-9

TD(λ)-UCL
n 8 4 3 5 2
λ 0.5 0.8 0.1 0.8 0.5
β 1e-3 5e-2 1e-3 1e-5 1e-7

TD(λ)-UCB
n 8 4 3 8 3
λ 0.5 0.8 0.1 0.8 0.1
β 1e-3 5e-2 1e-3 1e-5 1e-5

Table 5: Hyperparameters for different methods across benchmarks.

PermMNIST-Hard SplitMNIST-Hard SplitNotMNIST-Hard CIFAR100-10 TinyImageNet-10
VCL β 5e-3 5e-3 5e-3 5e-4 1e-5

UCL

α 1.0 10.0 0.5 1.0 10.0
β 0.001 1.0 0.001 0.001 1.0
γ 0.01 1.0 1.0 0.005 0.1
r 0.5 0.5 0.5 0.5 0.5
βkl 5e-3 1e-3 1e-5 1e-4 1e-7

UCB α 1.0 1.0 0.1 10.0 100.0
β 1e-2 1e-2 5e-2 5e-5 1e-5

Table 6: Hyperparameters for different methods across benchmarks.

22

I PermutedMNIST-Hard, SplitMNIST-Hard, and SplitNotMNIST-Hard:
Introducing Higher Standards for MNIST/NotMNIST-based Continual
Learning Benchmarks

Popular Continual Learning benchmarks, such as PermutedMNIST, SplitMNIST, and SplitNotMNIST,
[1, 20, 13] provide an effective experimental setup. These benchmarks offer tasks that, while
conceptually simple in isolation, present a challenging task-streaming setup that highlights the
phenomenon of Catastrophic Forgetting. This combination facilitates the study of Continual Learning
methods through rapid iterations and modest deep architectures, making it ideal for academic settings.
Nonetheless, we argue that the “unrestricted” versions of these benchmarks are either trivially
addressed by simple baselines or do not reflect a challenging evaluation setup for Catastrophic
Forgetting in current Bayesian CL research. This observation motivates our work to incorporate
certain restrictions in the considered methods, resulting in a more challenging setup for Continual
Learning while maintaining the benchmarks’ original desiderata.

1 2 3 4 5 6 7 8 9 100.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Method
T = 10, B = 60000
T = 10, B = 10000
T = 10, B = 1000
T = 10, B = 200
T = 10, B = 50
T = 10, B = 10
Online MLE

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Method
T = 5, B = 60000
T = 5, B = 10000
T = 5, B = 1000
T = 5, B = 200
T = 5, B = 50
T = 5, B = 10
Online MLE

1 2 3 4 5 6 7 8 9 100.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Method
T = 2, B = 60000
T = 2, B = 10000
T = 2, B = 1000
T = 2, B = 200
T = 2, B = 50
T = 2, B = 10
Online MLE

PermutedMNIST: Replay Buffer Analysis

Figure 4: A Replay Buffer analysis on the PermutedMNIST. Each curve represents a model
re-trained on a buffer composed of “T " previous tasks, “B" examples of each. Online MLE only
considers the current task. Allowing “unlimited" access to previous task data trivializes the CL
setting, and a simple MLE baseline is enough to attain strong results. Nevertheless, as we restrict the
replay buffer in size and number of tasks, the benchmark becomes substantially more challenging
and shows signs of Catastrophic Forgetting.

Restricting replay memory size imposes a new challenge for MNIST/NotMNIST CL bench-
marks. Figure 4 presents MLE models trained on different levels of previous tasks‘ data (besides the
data from the current task) for the classic PermutedMNIST benchmark. Online MLE means no usage
of data from previous tasks. On the flip side, we re-train the remaining models considering the data
of T previous tasks, with B examples of each. It shows that allowing access to all the old tasks is
enough for an MLE model to maintain high accuracy even when presenting to only a set as tiny as
200 examples. As we reduce the number of old tasks in the buffer, performance decreases, showing
clear signs of Catastrophic Forgetting. For T = 2, all models present an accuracy lower than 60%
regardless of the volume of old task data. Therefore, in order to impose a harder evaluation setup, we
impose additional restrictions for re-training in prior tasks. For PermutedMNIST-Hard, we restrict
re-training to the two most recent past tasks, with 200 examples per task; for SplitMNIST-Hard
and SplitNotMNIST-Hard, we allow only the most recent past task with 40 examples. As shown in
Figure 4, MLE-based methods do not perform well in this setting. Crucially, these adopted replay
buffers are very small in comparison with the training data of the current task, which is more realistic
than retaining the full data. Nonetheless, they strictly follow the core set sizes used in prior work
[13], ensuring that the adopted baselines (e.g., VCL CoreSet) work as proposed and promoting a fair
comparison.

“Single-Head" Classifiers prevents the saturation of PermutedMNIST, SplitMNIST, and Split-
NotMNIST. “Multi-Head" networks train a different classifier for each task on top of a shared
backbone. The goal is to alleviate Catastrophic Forgetting by disregarding the effect of negative
transfer among tasks. While this may be acceptable for harder datasets where multi-head architec-

23

ture is necessary to avoid trivial performance, current methods with multi-head classifiers already
saturates the classic MNIST/NotMNIST benchmarks, achieving accuracy above 99%. For empirical
evidence, we evaluate the methods on SplitMNIST (which allows multi-head architecture, Figure 5)
and SplitMNIST-Hard (which restricts to a single-head classifier, Figure 6 in Appendix K). In the
former, all baselines trivially attain high average accuracy; in the latter, all methods face a much more
challenging setup. Hence, PermutedMNIST-Hard, SplitMNIST-Hard, and SplitNotMNIST-Hard
enforces single-head architecture.

1 2 3 4 50.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Task '0/1'

1 2 3 4 5
Number of Observed Tasks

0.6

0.7

0.8

0.9

1.0
Task '2/3'

1 2 3 4 50.6

0.7

0.8

0.9

1.0
Task '4/5'

1 2 3 4 50.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Task '6/7'

1 2 3 4 5
Number of Observed Tasks

0.6

0.7

0.8

0.9

1.0
Task '8/9'

Method
Online MLE
Batch MLE
VCL
VCL CoreSet
N-Step TD-VCL
TD()-VCL

1 2 3 4 50.6

0.7

0.8

0.9

1.0
Average

SplitMNIST: Per Task Performance

Figure 5: SplitMNIST results. The first five plots show results per task, and the last one is an average
across tasks. As a consequence of multi-head networks simplifying the Continual Learning challenge,
all methods attain high accuracy. In particular, variational methods accuracies ranging from 97%
and 98%. In constrast, SplitMNIST-Hard in Figure 6, provides a considerably more challenging CL
benchmark.

Lastly, we highlight that all evaluated methods – including the proposed ones – are subject to the
adopted restrictions highlighted in this Section. Therefore, they are trained in the same data with the
same parametrization, ensuring a fair comparison setup.

24

J Benchmarks Description

PermutedMNIST-Hard. This benchmark uses the MNIST dataset. Each task corresponds to a
different permutation of the pixels in the MNIST data. Similarly to MNIST, PermutedMNIST is a
multi-class classification problem to recognize the handwritten digit associated with the image. The
benchmark runs 10 successive tasks, and each evaluation iteration considers the performance in all
past tasks. For the “Hard" version, we restrict any method in two ways, as described in Appendix I:
first, replay buffers are restricted to the two most recent tasks, with a fixed set of 200 data points per
task; second, we restrict the model architectures to single-head classifiers.

SplitMNIST-Hard. This benchmark also considers the MNIST dataset but in a binary classification
setting. The model selects between two different digits. Five tasks from the MNIST dataset arrive in
sequence: 0/1, 2/3, 4/5, 6/7, and 8/9, and evaluation considers the performance in all past tasks. For
the “Hard" version, we apply the similar restrictions: replay buffers restricted to the most recent task,
with a fixed set of 40 data points. We also restrict the model architectures to single-head classifiers.

SplitNotMNIST-Hard. This benchmark contains a similar structure to SplitMNIST-Hard, but it
leverages the notMNIST dataset. This more challenging task contains characters from diverse font
styles, comprising 400,000 examples. The five tasks are A/F, B/G, C/H, D/I, and E/J. The “Hard"
version applies the same restrictions as in SplitMNIST-Hard.

CIFAR100-10. This challenging benchmark contains 10 different tasks, each of them comprising
20 distinct classes from the CIFAR-100 dataset [51]. Evaluation considers the performance in all
previous tasks. The dataset contains 50,000 images (5,000 per task) for training/validation and 10,000
images (1,000 per task) for evaluation. For this benchmark, we restrict the replay buffer to contain
200 data points per task.

TinyImageNet-10. This challenging benchmark also contains 10 different tasks, each of them
comprising 20 distinct classes from the ImageNet dataset [58]. The dataset contains 100,000 images
(10,000 per task) for training/validation and 10,000 images (1,000 per task) for evaluation. Particularly
for TinyImageNet-10, we also adopt a memory restriction: replay buffers are restricted to the three
most recent tasks, with a fixed set of 200 data points per task.

25

K Per Task Performance: Additional Results

K.1 SplitMNIST-Hard

Figure 6 presents the per-task performance for the SplitMNIST-Hard results. As expected, the
performance of all methods drops substantially in comparison to traditional SplitMNIST, as the CL
becomes considerably harder. However, we highlight that n-Step KL and TD-VCL presented better
results than VCL and VCL CoreSet, demonstrating again the effectiveness of the proposed learning
objectives.

Interestingly, the average accuracy does not decrease monotonically, as one might typically expect
due to Catastrophic Forgetting. Instead, it drops significantly after Task 3 and then rises again. This
evidence indicates two potential dynamics of transfer learning: a negative transfer from Task 1 while
learning Task 3, and a positive transfer from Task 1 while learning Task 4. For instance, the digit “0"
from Task 1 is rounded, similar to the digits “5" and “6" in Tasks 3 and 4, respectively. Additionally,
the digit “1" is composed of straight lines, much like the digits “4" and “7." We believe that the
employed architecture, given its inherent and intended simplicity, relies on features of this nature.
Therefore, more expressive architectures that better disentangle these features may potentially prevent
the negative transfer. However, exploring this possibility is beyond our scope, as our focus is on
studying the effects of Catastrophic Forgetting in Continual Learning.

1 2 3 4 5
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Task '0/1'

1 2 3 4 5
Number of Observed Tasks

0.2
0.4
0.6
0.8
1.0 Task '2/3'

1 2 3 4 5
0.2
0.4
0.6
0.8
1.0 Task '4/5'

1 2 3 4 5
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Task '6/7'

1 2 3 4 5
Number of Observed Tasks

0.2
0.4
0.6
0.8
1.0 Task '8/9'

Method
Online MLE
Batch MLE
VCL
VCL CoreSet
N-Step TD-VCL
TD()-VCL

1 2 3 4 50.55
0.65
0.75
0.85
0.95

Average

SplitMNIST-Hard: Per Task Performance

Figure 6: SplitMNIST-Hard results. In this more robust evaluation setting, tasks are enforced to
share a single classifier with restricted replay memory. Consequently, the effect of Catastrophic
Forgetting (and task negative transfer) is explicit. TD-VCL objectives present slightly better average
accuracy across tasks in comparison with standard VCL variants.

K.2 SplitNotMNIST-Hard

In this section, we show per-task performance for SplitNotMNIST-Hard. As highlighted in Section 5.1,
NotMNIST is a considerably harder dataset than MNIST, and the choice of simpler deep architectures
naturally results in higher approximation errors. Our goal is to evaluate how the presented methods
behave under this circumstance.

Figure 7 presents the results. As expected, even learning the current task is challenging. This
characteristic contrasts with MNIST-based benchmarks, where all models could at least fit the current
task almost perfectly. MLE methods fit the current task slightly better since their objectives are not
regularized by the prior or previous posterior. However, this same reason caused them to suffer from
Catastrophic Forgetting more drastically, as they tend to focus on fitting the current task and disregard
past ones. Overall, TD-VCL objectives maintained the best trade-off between plasticity and memory
stability, aligning with the results in the other benchmarks.

26

1 2 3 4 5
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

Task 'A/F'

1 2 3 4 5
Number of Observed Tasks

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Task 'B/G'

1 2 3 4 5
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Task 'C/H'

1 2 3 4 5
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

Task 'D/I'

1 2 3 4 5
Number of Observed Tasks

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Task 'E/J'
Method

Online MLE
Batch MLE
VCL
VCL CoreSet
N-Step TD-VCL
TD()-VCL

1 2 3 4 5
0.5

0.6

0.7

0.8
Average

SplitNotMNIST-Hard: Per Task Performance

Figure 7: SplitNotMNIST-Hard results. The first five plots show results per task, and the last one
is an average across them. SplitNotMNIST-Hard is considerably harder to fit with modest deep
architectures, leading to a setup where posteriors induce high approximation errors. As a result, the
standard VCL variants performs similarly to non-variational approaches. TD-VCL surpasses all
methods and shows more robustness to Catastrophic Forgetting under this high approximation error
setting.

K.3 CIFAR100-10

Figure 8 displays the per-task performance in the CIFAR100-10 benchmark. Non-variational baselines
consistently struggle with Catastrophic Forgetting, even in more recent tasks. VCL and VCL CoreSet
also show a consistent drop in accuracy as the number of observed tasks increases, although this
decline is less noticeable in some cases and occasionally followed by a slight increase in accuracy for
certain tasks. In contrast, the proposed TD-VCL objectives demonstrate a significant improvement
over the baselines and show little indication of Catastrophic Forgetting, despite the harder challenge
posed by the CIFAR100 dataset.

Interestingly, variational methods, which experience less Catastrophic Forgetting, exhibit a surprising
effect in some tasks: their accuracy initially drops after observing a few consecutive tasks before
subsequently increasing again. For example, in Task 3, this effect is evident across all variational
methods. As a result, the average accuracy tends to rise as the total number of observed tasks
increases, which is also reported in prior work (see Figure 7a in Ahn et al. [43], and Table 2 in Thapa
and Li [39])). We hypothesize that the process of explicit posterior regularization, combined with
training on successive tasks, leads to a parameterization that learns features more generalizable across
tasks, incurring positive transfer learning.

K.4 TinyImageNet-10

Lastly, Figure 9 illustrates the per-task performance in the TinyImageNet-10 benchmark. As seen in
previous scenarios, Online MLE consistently fails to achieve continual learning. Interestingly, VCL
also encounters difficulties in this more challenging benchmark, showing per-task performance similar
to Batch MLE. VCL CoreSet outperforms the standard VCL and achieves performance comparable to
the TD-VCL objectives in some tasks. Nevertheless, the TD-VCL objectives consistently demonstrate
superior performance across all tasks, reinforcing the findings from the earlier benchmarks.

27

1 2 3 4 5 6 7 8 9 100.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Task 1

1 2 3 4 5 6 7 8 9 100.50

0.55

0.60

0.65

0.70

0.75
Task 2

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.50

0.55

0.60

0.65

0.70

0.75
Task 3

1 2 3 4 5 6 7 8 9 100.50

0.55

0.60

0.65

0.70

0.75
Task 4

1 2 3 4 5 6 7 8 9 100.50

0.55

0.60

0.65

0.70

0.75
Task 5

1 2 3 4 5 6 7 8 9 100.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Task 6

1 2 3 4 5 6 7 8 9 100.50

0.55

0.60

0.65

0.70

0.75
Task 7

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.50

0.55

0.60

0.65

0.70

0.75
Task 8

1 2 3 4 5 6 7 8 9 100.50

0.55

0.60

0.65

0.70

0.75
Task 9

1 2 3 4 5 6 7 8 9 100.50

0.55

0.60

0.65

0.70

0.75
Task 10

Method
Online MLE
Batch MLE
VCL
VCL CoreSet
N-Step TD-VCL
TD()-VCL

CIFAR100-10: Per Task Performance

Figure 8: Per-task performance (accuracy) over time in the CIFAR100-10 benchmark. Each plot
illustrates the accuracy of a specific task (as indicated in the plot title) as the number of observed tasks
increases. Non-variational baselines consistently struggle with catastrophic forgetting, while VCL
and VCL CoreSet show a mild effect. However, the TD-VCL objectives demonstrate a noticeable
improvement over these methods, even in the more challenging setup.

1 2 3 4 5 6 7 8 9 100.40

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

Task 1

1 2 3 4 5 6 7 8 9 100.40

0.45

0.50

0.55

0.60

0.65
Task 2

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.40

0.45

0.50

0.55

0.60

0.65
Task 3

1 2 3 4 5 6 7 8 9 100.40

0.45

0.50

0.55

0.60

0.65
Task 4

1 2 3 4 5 6 7 8 9 100.40

0.45

0.50

0.55

0.60

0.65
Task 5

1 2 3 4 5 6 7 8 9 100.40

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

Task 6

1 2 3 4 5 6 7 8 9 100.40

0.45

0.50

0.55

0.60

0.65
Task 7

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.40

0.45

0.50

0.55

0.60

0.65
Task 8

1 2 3 4 5 6 7 8 9 100.40

0.45

0.50

0.55

0.60

0.65
Task 9

1 2 3 4 5 6 7 8 9 100.40

0.45

0.50

0.55

0.60

0.65
Task 10

Method
Online MLE
Batch MLE
VCL
VCL CoreSet
N-Step TD-VCL
TD()-VCL

TinyImageNet-10: Per Task Performance

Figure 9: Per-task performance over time in the TinyImageNet-10 benchmark.. In the most
challenging benchmark presented in this work, we observe similar trends to the previous ones, where
TD-VCL objectives show superior performance across tasks.

28

L Hyperparameters Robustness Analysis

In this Section, we present robustness studies in the PermutedMNIST-Hard benchmark with respect to
the relevant hyperparameters. Our goal is to evaluate how they affect the performance of the proposed
methods.

L.1 n-Step KL Regularization

Figure 10 presents the ablation study of the n-step KL Regularization method in the PermutedMNIST-
Hard benchmark. We designed this study to highlight the two most sensitive hyperparameters: n, the
n-step size, and β, the likelihood-tempering parameter.

Similarly to VCL, this method is sensitive to the choice of β. Higher values will prevent the model
from fitting new tasks, a manifestation of variational over-pruning. On the other hand, lower values
will not retain knowledge properly, suffering from Catastrophic Forgetting. Mild values (0.001, 0.005,
0.01) balanced well this trade-off.

In terms of n, we observe benefits of up to 5 steps. Beyond that, the effect saturates, even becoming
slightly detrimental. This observation suggests the existence of an optimal range for n while
leveraging past posterior estimates.

1 2 3 4 5 6 7 8 9 100.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n-Step = 1

 = 1e-05
 = 0.0001
 = 0.001
 = 0.005
 = 0.01
 = 0.05

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.5
0.6
0.7
0.8
0.9
1.0

n-Step = 2

1 2 3 4 5 6 7 8 9 100.5
0.6
0.7
0.8
0.9
1.0

n-Step = 3

1 2 3 4 5 6 7 8 9 100.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

n-Step = 5

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.5
0.6
0.7
0.8
0.9
1.0

n-Step = 8

1 2 3 4 5 6 7 8 9 100.5
0.6
0.7
0.8
0.9
1.0

n-Step = 10

PermutedMNIST-Hard: N-Step TD-VCL Ablation

Figure 10: Hyperparameter Robustness Analysis for n-Step KL Regularization in
PermutedMNIST-Hard. The plots show the effect of the likelihood-tempering parameter β for
different n. For β, too high values negatively affect fitting new tasks, and too low values disregard the
regularization of previous posteriors, leading to Catastrophic Forgetting. For n, we observe benefits
while increasing up to n = 5, and the effect saturates.

L.2 TD(λ)-VCL

Figure 11 shows the ablation study for TD-VCL. For this setup, we considered a fixed value of β, as
our hyperparameter search suggested the same trends for n-Step KL Regularization and TD-VCL.
Hence, we simplify the analysis to consider only n and λ.

TD-VCL presents mild sensitivity to the choice of λ. The effect is more pronounced as the method
observes more tasks, with a slight preference for lower values for some choices of n. We believe
that the choice of λ will fundamentally depend on how most recent estimates are better and more
informative than old ones. In the case where they present similar approximation errors, the choice of
λ causes less impact, and, therefore, there is less difference between leveraging N-Step TD-VCL and
TD(λ)-VCL objectives.

29

1 2 3 4 5 6 7 8 9 100.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

n-Step: 1

 = 0.0
 = 0.1
 = 0.5
 = 0.8
 = 0.9
 = 0.99

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.75
0.80
0.85
0.90
0.95
1.00

n-Step: 2

1 2 3 4 5 6 7 8 9 100.75
0.80
0.85
0.90
0.95
1.00

n-Step: 3

1 2 3 4 5 6 7 8 9 100.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

n-Step: 5

1 2 3 4 5 6 7 8 9 10
Number of Observed Tasks

0.75
0.80
0.85
0.90
0.95
1.00

n-Step: 8

1 2 3 4 5 6 7 8 9 100.75
0.80
0.85
0.90
0.95
1.00

n-Step: 10

PermutedMNIST-Hard: TD()-VCL Ablation

Figure 11: Hyperparameter Robustness Analysis for TD(λ)-VCL in PermutedMNIST-Hard.
The plots show the effect of λ for different choices of n. The learning objective presents mild
sensitivity to the choice of λ in this benchmark, and the effect is more pronounced as the number of
observed tasks increases.

30

M Full Table Results

In this Appendix, we report the full version of Tables 1 and 3, for the sake of completeness. Table
7 shows the results on CIFAR100-10 and TinyImageNet-10, considering all timesteps from t = 2
to t = 10. Table 8 shows the results for all benchmarks, including SplitNotMNIST-Hard, for the
Bayesian CL methods and their TD-enhanced counterparts.

Table 7: Full table for quantitative comparison on the CIFAR100-10 and TinyImagenet-10
benchmarks. Each column presents the average accuracy across the past t observed tasks. Results
are reported with two standard deviations across five seeds. TD-VCL variants consistently outperform
the baselines in harder benchmarks with more complex architectures, such as Bayesian CNNs.

CIFAR100-10
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Online MLE 0.56±0.05 0.56±0.06 0.57±0.06 0.56±0.04 0.56±0.03 0.55±0.03 0.53±0.06 0.51±0.04 0.52±0.04

Batch MLE 0.57±0.03 0.58±0.04 0.58±0.04 0.59±0.04 0.58±0.05 0.58±0.06 0.56±0.06 0.54±0.05 0.54±0.07

VCL 0.64±0.02 0.63±0.03 0.63±0.02 0.60±0.02 0.60±0.02 0.60±0.03 0.61±0.05 0.65±0.02 0.66±0.01

VCL CoreSet 0.64±0.05 0.65±0.03 0.63±0.03 0.62±0.03 0.63±0.02 0.63±0.02 0.61±0.02 0.64±0.03 0.65±0.02

n-Step TD-VCL 0.67±0.01 0.68±0.01 0.67±0.02 0.67±0.01 0.65±0.01 0.66±0.01 0.68±0.04 0.69±0.01 0.69±0.02
TD(λ)-VCL 0.66±0.02 0.67±0.02 0.66±0.04 0.66±0.01 0.66±0.02 0.66±0.01 0.67±0.01 0.69±0.02 0.71±0.01

TinyImagenet-10
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Online MLE 0.48±0.03 0.45±0.02 0.45±0.02 0.46±0.02 0.44±0.01 0.44±0.02 0.45±0.02 0.45±0.02 0.44±0.03

Batch MLE 0.50±0.02 0.47±0.02 0.48±0.02 0.49±0.02 0.48±0.02 0.48±0.02 0.50±0.02 0.50±0.02 0.51±0.03

VCL 0.53±0.06 0.50±0.02 0.51±0.03 0.52±0.02 0.51±0.03 0.49±0.01 0.51±0.02 0.51±0.02 0.51±0.02

VCL CoreSet 0.52±0.03 0.50±0.02 0.51±0.02 0.53±0.01 0.51±0.02 0.52±0.01 0.54±0.02 0.55±0.02 0.54±0.02

n-Step TD-VCL 0.56±0.02 0.54±0.03 0.55±0.02 0.55±0.02 0.54±0.02 0.54±0.01 0.56±0.02 0.56±0.01 0.56±0.02
TD(λ)-VCL 0.57±0.03 0.55±0.02 0.56±0.02 0.56±0.01 0.55±0.03 0.55±0.03 0.56±0.02 0.57±0.02 0.56±0.02

31

Table 8: Full table for quantitative comparison between Bayesian CL methods and their TD-
enhanced counterparts. The TD-enhanced methods incorporate the objective in Equation 5 in
each base method. Although no single base method consistently outperforms the others across all
benchmarks, their TD-enhanced versions consistently achieve better performance, particularly at later
timesteps.

PermutedMNIST-Hard
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

VCL 0.95±0.00 0.94±0.01 0.93±0.02 0.91±0.02 0.89±0.03 0.86±0.03 0.83±0.04 0.80±0.06 0.78±0.04

TD(λ)-VCL 0.97±0.00 0.96±0.00 0.95±0.00 0.94±0.01 0.93±0.01 0.92±0.01 0.91±0.01 0.90±0.01 0.89±0.02
UCL 0.97±0.00 0.95±0.01 0.94±0.01 0.92±0.02 0.89±0.02 0.86±0.04 0.83±0.06 0.78±0.09 0.73±0.12

TD(λ)-UCL 0.97±0.00 0.97±0.00 0.95±0.00 0.94±0.01 0.92±0.02 0.90±0.02 0.88±0.04 0.85±0.09 0.84±0.04
UCB 0.93±0.01 0.93±0.01 0.92±0.01 0.90±0.01 0.89±0.02 0.87±0.02 0.86±0.02 0.85±0.01 0.83±0.02

TD(λ)-UCB 0.94±0.00 0.93±0.00 0.93±0.00 0.92±0.00 0.91±0.01 0.91±0.01 0.90±0.01 0.89±0.02 0.88±0.02

SplitMNIST-Hard SplitNotMNIST-Hard
t = 2 t = 3 t = 4 t = 5 t = 2 t = 3 t = 4 t = 5

VCL 0.87±0.02 0.66±0.04 0.82±0.03 0.64±0.11 0.69±0.04 0.63±0.03 0.60±0.00 0.51±0.06

TD(λ)-VCL 0.98±0.01 0.79±0.08 0.88±0.04 0.67±0.04 0.74±0.02 0.73±0.03 0.69±0.03 0.58±0.09
UCL 0.88±0.04 0.68±0.03 0.83±0.03 0.66±0.06 0.71±0.01 0.63±0.04 0.61±0.00 0.52±0.04
TD(λ)-UCL 0.97±0.01 0.85±0.06 0.90±0.02 0.70±0.04 0.72±0.03 0.71±0.06 0.63±0.02 0.51±0.06
UCB 0.85±0.16 0.79±0.12 0.83±0.06 0.75±0.10 0.70±0.08 0.63±0.06 0.61±0.01 0.61±0.05

TD(λ)-UCB 0.93±0.02 0.89±0.03 0.87±0.03 0.80±0.03 0.72±0.01 0.72±0.01 0.70±0.02 0.63±0.03

CIFAR100-10
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

VCL 0.64±0.02 0.63±0.03 0.63±0.02 0.60±0.02 0.60±0.02 0.60±0.03 0.61±0.05 0.65±0.02 0.66±0.01

TD(λ)-VCL 0.66±0.02 0.67±0.02 0.66±0.04 0.66±0.01 0.66±0.02 0.66±0.01 0.67±0.01 0.69±0.02 0.71±0.01
UCL 0.65±0.03 0.66±0.07 0.64±0.05 0.62±0.04 0.60±0.05 0.60±0.04 0.58±0.02 0.61±0.02 0.62±0.02

TD(λ)-UCL 0.68±0.02 0.67±0.02 0.64±0.01 0.70±0.04 0.70±0.02 0.68±0.03 0.66±0.03 0.65±0.06 0.67±0.03
UCB 0.65±0.01 0.65±0.02 0.66±0.02 0.66±0.03 0.66±0.03 0.66±0.01 0.65±0.01 0.64±0.01 0.66±0.01

TD(λ)-UCB 0.64±0.02 0.65±0.02 0.66±0.01 0.67±0.01 0.67±0.01 0.68±0.01 0.68±0.01 0.68±0.02 0.70±0.01

TinyImagenet-10
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

VCL 0.53±0.06 0.50±0.02 0.51±0.03 0.52±0.02 0.51±0.03 0.49±0.01 0.51±0.02 0.51±0.02 0.51±0.02

TD(λ)-VCL 0.57±0.03 0.55±0.02 0.56±0.02 0.56±0.01 0.55±0.03 0.55±0.03 0.56±0.02 0.57±0.02 0.56±0.02
UCL 0.55±0.02 0.52±0.03 0.52±0.03 0.52±0.02 0.51±0.02 0.50±0.02 0.52±0.01 0.52±0.01 0.50±0.03

TD(λ)-UCL 0.55±0.03 0.53±0.01 0.54±0.01 0.55±0.01 0.54±0.01 0.54±0.01 0.55±0.01 0.56±0.01 0.56±0.01
UCB 0.52±0.06 0.51±0.04 0.51±0.02 0.50±0.02 0.48±0.04 0.46±0.01 0.45±0.02 0.44±0.03 0.42±0.03

TD(λ)-UCB 0.54±0.04 0.54±0.01 0.52±0.01 0.52±0.02 0.51±0.02 0.50±0.02 0.50±0.03 0.49±0.02 0.47±0.02

32

N Does TD-VCL Assume Knowledge of Task Boundaries?

In this Section, we argue that the TD-VCL objective (and VCL objectives in general) does not require
knowledge of task boundaries, and we provide theoretical and empirical evidence for that. The
theoretical argument comes from the principle that the Bayesian framework is self-consistent: given a
stream of data, the final posterior distribution should be the same regardless of how many Bayesian
updates are executed.

Based on that, the key thing is to realize that the number of updates does not need to be equal to
the number of tasks. Mathematically, suppose we have a stream of T tasks (represented by t). At
a particular update k, we may consider a Bayesian update that includes data from multiple (m)
sequential tasks (e.g., from ta to ta+m):

Dk =

m⋃
j=0

Dj . (24)

Crucially, this does not impose any assumptions on boundaries. Rather, once we decide where to
start and end the data stream for the Bayesian update, there could be potentially many tasks included.
Under the same assumptions stated in Section 3, we have that:

p(Dk | θ) =
m∏
j=0

p(Dj | θ). (25)

And, the recursive relationship (Equation 1) also follows:

p(θ | D1:k) ∝ p(θ | D1:k−1)

m∏
j=0

p(Dk | θ). (26)

Finally, following the same variational objective and ELBO derivation, we arrive at

Lk(θ) = Eθ∼qk(θ)

 m∑
j=0

log p(Dk | θ)

−DKL(qk(θ) ∥ qk−1(θ)). (27)

Therefore, the objective itself does not discriminate or require task boundaries. TD-VCL will estimate
the likelihood terms for multiple terms simultaneously, which is something already done while
replaying past tasks.

Table 9: StreamingPermutedMNIST-Hard re-
sults. We observe no negative impact in
the TD-VCL methods in comparison with
PermutedMNIST-Hard, suggesting that these meth-
ods do not require knowledge of task boundaries.

StreamingPermutedMNIST-Hard

Method t = 10

Online MLE 0.54±0.09

Batch MLE 0.64±0.09

VCL 0.82±0.05

VCL CoreSet 0.85±0.04

N-Step TD-VCL 0.89±0.02
TD(λ)-VCL 0.89±0.02

Empirical Evidence. We highlight that most
benchmarks – including the ones presented
in this work – isolate tasks, which makes
it convenient to consider one Bayesian up-
date per task. To provide further practical
evidence that the method does not require
knowledge of boundaries, we present another
benchmark called StreamingPermutedMNIST-
Hard. This benchmark does not provide any
boundary between tasks. From the full data
stream of T tasks, we create sequential streams
of data where boundaries are placed randomly
and provide them to the methods for contin-
ual learning. We execute an evaluation after
the complete data stream, considering held-out
splits composed of all tasks. We report the av-
erage accuracy across them, equivalently to the
t = 10 column in Tables 2 and 3. Table 9 shows
the empirical results over 10 seeds. We observe no negative impact in the VCL/TD-VCL methods
in comparison with PermutedMNIST-Hard. In fact, some methods improved performance, because
we are likely replaying the same task into different chunks, alleviating the catastrophic forgetting
challenge. The proposed objectives still outperform all other methods.

33

O Further Questions

This Appendix presents additional clarification questions aimed at improving the understanding of
the proposed method and experiments. These questions were raised during the peer-review process,
and we refer to the OpenReview page for the full discussion.

O.1 What is the computational cost associated with TD-VCL?

We analyze the computational cost from three aspects: training, inference, and hyperparameter search.

Training Cost. The training cost arises from the computation of Equations 4 and 5, which depend on
two components: (I) Monte Carlo estimation of the likelihood term, and (II) the KL regularization
term. (I) corresponds to the standard cross-entropy loss for classification, averaged over samples of θ
from the variational distribution. In practice, we approximate this average with a single sample, so the
cost is equivalent to standard classification under the MLE objective. (II) is the KL regularization term,
which can be computed in closed form. This computation is lightweight since it does not involve data
or forward passes through the network. Overall, the training costs of VCL and TD-VCL are nearly
identical, as the main bottleneck lies in (I), which is similar in both methods. Additionally, we employ
early stopping, which reduces the number of training epochs and thereby lowers computational
requirements compared to prior implementations.

Inference Cost. Bayesian inference is approximated by the posterior predictive distribution
p(y∗ | x∗,D1:t) = Eqt(θ)

[
p(y∗ | θ,x∗,D1:t)

]
, which we estimate via Monte Carlo sampling.

The computational cost of this step depends on the number of parameter samples θ. In our experi-
ments, we use a single sample to ensure computational fairness across all baselines. With this choice,
inference reduces to a single forward pass through the network, identical to a standard classifier.
Using more samples increase the cost proportionally but also improve predictive performance.

Hyperparameter Search Cost. The cost of hyperparameter search can be managed by constraining
the computational budget. As described in Appendix H, we restrict all methods (including baselines)
to a budget of at most one GPU-day. Our method introduces two additional hyperparameters beyond
those of VCL (n and λ). Results in Appendix L show moderate to good robustness to these choices,
suggesting that the search cost could be further reduced if necessary.

O.2 What is the memory cost of TD-VCL?

We analyze memory usage in terms of maintaining the replay buffer and storing the previous
posteriors.

Replay Buffer Cost. The buffer has memory complexity O(n), where n is the n-Step hyperparameter.
This cost is no greater than that of the core sets used in VCL CoreSet. In our benchmarks, the replay
buffer is intentionally limited to at most 200 data points from previously observed tasks, which is
negligible compared to the 60,000 data points in the current task. As a result, the replay buffer does
not represent a major bottleneck.

Posterior Storage Cost. The storage of posteriors also has memory complexity O(n). For smaller
networks (such as those used in the MNIST and NotMNIST benchmarks), the memory usage is
comparable to that of the replay buffer: for example, storing 200 MNIST data points requires about
0.60 MB, while storing the posterior requires about 0.68 MB (assuming float32 precision). Naturally,
the memory required for posteriors increases with larger and deeper networks.

O.3 Is maintaining previous posteriors a major bottleneck? Can we optimize this cost?

As noted in the Limitations (Section 6), TD-VCL may increase memory requirements. However, this
is not necessarily a major limitation, and we also discuss strategies to reduce memory usage.

Memory Complexity is a function of n, which the user controls. The buffer size and number of
posteriors are defined by n. If memory is a bottleneck, one can control n to satisfy memory constraints.
Crucially, n is not always equal to the number of tasks. Our robustness analysis (Appendix L) shows
that performance increases monotonically with n up to a level where it may saturate. Therefore, any
n > 1 should be better than vanilla VCL, and, if performance is expected to saturate, one can also set

34

n to be much lower than the number of tasks. The employed hyperparameters (Appendix H) suggest
that we can usually assume a value of n that is lower than the number of tasks.

Assume a memory-efficient variational family Q. Since memory may be a challenge for large
Bayesian networks, there are alternative architectures, such as last-layer variational methods or
bayesian LoRA adapters [59, 12, 52], which approximates the posterior distribution in a fixed number
of parameters. These methods drastically reduce the required memory at the cost of expressiveness
of the variational family.

Store previous posteriors in cheaper memory alternatives. Since TD-VCL does not use previous
posteriors for inference but only for computing the KL regularization, they do not need to occupy
GPU memory. In fact, the regularization term could be computed asynchronously on CPU (or even
with an external computer) while the GPU is used to generate predictions and estimate the likelihood
terms. While implementation is more involved, it allows the use of both CPU/GPU and avoids having
previous posteriors in GPU memory, which is usually the bottleneck.

Estimate TD objective with fewer posteriors but covering older timesteps. A corollary of
Proposition 4.4 is that we can represent the learning target as any combination of n-step TD targets.
This means that we may store posteriors at every m steps, instead of every step. In this case, given T
tasks, we only store T/m posteriors. Naturally, this leads to a different way of estimating the learning
objective, but ensures that it is covering older tasks to prevent catastrophic forgetting.

Lastly, we highlight that there are realistic Continual Learning settings where storing posteriors is
not a major bottleneck. For instance, when continually learning on embedded systems with access
to a cloud storage. These embedded systems (mobile phones, wearables) usually present limited
storage/GPU memory onboard. Some problems require on-the-fly model adaptation and, for privacy-
related reasons, the data must be kept on the device for a limited time. Nonetheless, we may upload
model snapshots to the cloud without problems (sometimes this upload is required to conduct quality
evaluation or audits). A concrete example is an on-device speech recognition model on a smartwatch
adapting to a user’s voice. We believe our TD-VCL objective is well-suited for this problem setting.

O.4 When should one use n-Step TD-VCL or TD(λ)-VCL?

TD(λ)-VCL is a generalization of n-Step TD-VCL. As we presented in Appendix E, TD(λ)-VCL
forms a spectrum of CL algorithms, and we recover n-Step TD-VCL when λ → 1. Therefore, the
"choice" depends on λ, which controls how much the learning objective should prioritize recent
posteriors. If one believes that the most recent posterior retains the knowledge of previous tasks,
then a higher λ should work better. Otherwise, one should use lower values as past estimates contain
information that has not propagated over the recursive updates. In practice, it depends on the continual
learning problem and the potential transfer/interference among tasks. The recommendation is to start
from TD(λ)-VCL and tune the λ hyperparameter.

35

O.5 What is the impact of Early Stopping in the presented methods?

We perform an ablation study to evaluate the impact of Early Stopping, with results reported in Table
10. We find that removing Early Stopping does not significantly impact the performance of TD-VCL,
while VCL shows a slight degradation. The methods most negatively affected are the MLE baselines.
This result is expected, since these models lack any form of regularization, and training without Early
Stopping leads to overfitting. Notably, experiments without Early Stopping required approximately 5
to 10 times more training time. As discussed in the main paper, Early Stopping substantially reduces
computational cost.

Table 10: Results without Early Stopping. We observe that TD-VCL maintains strong performance
even without early stopping, while VCL shows slight degradation and MLE baselines suffer from
overfitting. Training without early stopping also took 5–10× longer.

PermutedMNIST-Hard
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Online MLE 0.75±0.04 0.58±0.07 0.55±0.07 0.44±0.05 0.42±0.05 0.36±0.04 0.34±0.05 0.31±0.04 0.30±0.04

Batch MLE 0.94±0.01 0.89±0.02 0.82±0.04 0.69±0.03 0.64±0.04 0.55±0.03 0.52±0.03 0.46±0.04 0.45±0.03

VCL 0.96±0.01 0.94±0.01 0.92±0.01 0.89±0.04 0.86±0.04 0.84±0.04 0.80±0.09 0.78±0.11 0.71±0.15

VCL CoreSet 0.96±0.00 0.95±0.01 0.94±0.01 0.92±0.02 0.90±0.02 0.88±0.02 0.85±0.02 0.83±0.03 0.79±0.09

N-Step TD-VCL 0.95±0.00 0.95±0.00 0.94±0.00 0.93±0.00 0.92±0.01 0.92±0.01 0.89±0.01 0.88±0.02 0.85±0.04

TD(λ)-VCL 0.97±0.00 0.97±0.00 0.96±0.01 0.95±0.00 0.94±0.01 0.93±0.01 0.91±0.01 0.91±0.02 0.89±0.02

36

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All the claims are accompanied with either a theoretical development or
experimental validation, which are found in Section 5.1 and appendices.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Refer to Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

37

Justification: Please refer to Sections 3 and 4, and appendices A, B, C, D, E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

38

Answer: [Yes]

Justification: Please refer to the codebase shared as a link in Section 5.1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This information is shared in Section 5.1 and Appendices G and J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experimental results are reported with two standard deviations across ten or
five seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Refer to Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors reviewed the NeurIPS Code of Ethics and the research conforms
to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Refer to Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

40

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets are properly referenced throughout the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

41

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All the details of the code and newly introduced benchmarks are available in
the paper and released codebase.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

42

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

43

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	Temporal-Difference Variational Continual Learning
	Variational Continual Learning with n-Step KL Regularization
	From n-Step KL to Temporal-Difference Targets

	Experiments and Discussion
	Experiments

	Closing Remarks
	Derivation of the n-Step KL Regularization Objective
	Derivation of the Temporal-Difference VCL Objective
	The connection of TD Targets in TD-VCL and Reinforcement Learning
	TD()-VCL is a discounted sum of n-Step TD targets
	TD-VCL: A spectrum of Continual Learning algorithms
	Impact Statement
	Implementation Details and Reproducibility
	Hyperparameters
	PermutedMNIST-Hard, SplitMNIST-Hard, and SplitNotMNIST-Hard: Introducing Higher Standards for MNIST/NotMNIST-based Continual Learning Benchmarks
	Benchmarks Description
	Per Task Performance: Additional Results
	SplitMNIST-Hard
	SplitNotMNIST-Hard
	CIFAR100-10
	TinyImageNet-10

	Hyperparameters Robustness Analysis
	n-Step KL Regularization
	TD()-VCL

	Full Table Results
	Does TD-VCL Assume Knowledge of Task Boundaries?
	Further Questions
	What is the computational cost associated with TD-VCL?
	What is the memory cost of TD-VCL?
	Is maintaining previous posteriors a major bottleneck? Can we optimize this cost?
	When should one use n-Step TD-VCL or TD()-VCL?
	What is the impact of Early Stopping in the presented methods?

