
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Seldonian Reinforcement Learning for
Ad Hoc Teamwork

Anonymous authors
Paper under double-blind review

Keywords: Offline Reinforcement Learning, Seldonian Algorithms, Ad Hoc Teamwork,
Coordination, Trustworthy Reinforcement Learning

Summary
Most offline RL algorithms return optimal policies but do not provide statistical guarantees

on undesirable behaviors. This could generate reliability issues in safety-critical applications,
such as in some multi-agent domains where agents, and possibly humans, need to interact to
reach their goals without harming each other. In this work, we propose a novel offline RL
approach, inspired by Seldonian optimization, which returns policies with good performance
and statistically guaranteed properties with respect to predefined undesirable behaviors. In
particular, our focus is on Ad Hoc Teamwork settings, where agents must collaborate with new
teammates without prior coordination. Our method requires only a pre-collected dataset, a set
of candidate policies for our agent, and a specification about the possible policies followed by
the other players—it does not require further interactions, training, or assumptions on the type
and architecture of the policies. We test our algorithm in Ad Hoc Teamwork problems and
show that it consistently finds reliable policies while improving sample efficiency with respect
to standard ML baselines.

Contribution(s)
1. We formalize the problem of offline Seldonian reinforcement learning in the context of Ad

Hoc Teamwork. The goal is to select optimal policies with statistical guarantees against
undesirable behaviors considering teammates’ policies explicitly.
Context: Seldonian policy optimization was first proposed in Thomas et al. (2019). An
application to RL for diabetes management was introduced in the same work. The Ad
Hoc Teamwork problem was introduced in Stone et al. (2010) with the goal of designing
agents that can collaborate with new teammates without prior coordination. No other work
formally defines the problem of offline Seldonian optimization for Ad Hoc Teamwork.

2. We provide an offline reinforcement learning algorithm based on Seldonian optimization
for Ad Hoc Teamwork. The algorithm can solve multiagent scenarios due to an extended
version of Doubly-Robust Importance Sampling (Jiang & Li, 2016), which estimates unde-
sirable costs by explicitly representing teammate policies and the transition model.
Context: The Seldonian RL algorithm proposed in Thomas et al. (2019) cannot scale to
large multiagent scenarios because of importance sampling inefficiency. We introduce, into
the estimation process, knowledge about the Ad Hoc Teamwork setting to improve the al-
gorithm efficiency and allow it to scale. Other Seldonian algorithms in the literature (Satija
et al., 2021; Thomas et al., 2015a) cannot deal with policy reliability in Ad Hoc Teamwork.

3. We evaluate our algorithm in three Ad Hoc Teamwork scenarios, showing that it is consis-
tently reliable and efficient compared to standard ML baselines.
Context: The evaluated domains are chain world (Chalkiadakis & Boutilier, 2003), ex-
tended blackjack (Sutton & Barto, 2018) and level-based foraging (Papoudakis et al., 2021).

Seldonian Reinforcement Learning for Ad Hoc Teamwork

Seldonian Reinforcement Learning for
Ad Hoc Teamwork

Anonymous authors
Paper under double-blind review

Abstract

Most offline RL algorithms return optimal policies but do not provide statistical guar-1
antees on undesirable behaviors. This could generate reliability issues in safety-critical2
applications, such as in some multiagent domains where agents, and possibly humans,3
need to interact to reach their goals without harming each other. In this work, we pro-4
pose a novel offline RL approach, inspired by Seldonian optimization, which returns5
policies with good performance and statistically guaranteed properties with respect to6
predefined undesirable behaviors. In particular, our focus is on Ad Hoc Teamwork set-7
tings, where agents must collaborate with new teammates without prior coordination.8
Our method requires only a pre-collected dataset, a set of candidate policies for our9
agent, and a specification about the possible policies followed by the other players—it10
does not require further interactions, training, or assumptions on the type and architec-11
ture of the policies. We test our algorithm in Ad Hoc Teamwork problems and show that12
it consistently finds reliable policies while improving sample efficiency with respect to13
standard ML baselines.14

1 Introduction15

Consider a warehouse environment where multiple robots collect and deliver packages from the16
shelves to the loading area. In such a situation, coordination among the agents would be fundamen-17
tal to increase throughput and avoid conflicts, such as deadlocks and crashes. This coordination,18
however, can be difficult to achieve if we can control only the policy of a single robot, e.g., due to19
proprietary software, or other issues. The difficulty increases when the other agents follow differ-20
ent policies: some of them, for example, might act conservatively, slowing down to avoid crashes,21
whereas others might move faster and more recklessly to guarantee predefined throughput. Intu-22
itively, in this situation, we would like to tailor the agent’s policy to the type of the other agents23
(the teammates) it faces. For instance, if we know a nearby robot is conservative, we might want our24
robot to go faster to deliver packages more quickly. By contrast, if the other robot is not conservative,25
then we might like our robot to be more cautious to reduce the chance of a crash.26

Such non-coordinated environments are dealt with by Ad Hoc Teamwork (AHT) (Stone et al., 2010;27
Mirsky et al., 2022) strategies. However, current state-of-the-art AHT algorithms only consider28
agent returns, not explicit constraints, which are better suited to express more complex behaviors we29
might want from our agent, such as collision avoidance.30

In this work, we propose a novel formalization of these types of problems in the offline setting. In31
particular, we assume having a large dataset of interactions previously collected by our agent using,32
possibly, suboptimal behavior policies, a set of new candidate policies, obtained for example from33
training state-of-the-art (deep) RL algorithms, and a set of constraint functions, used to capture the34
desired behavior of our agent. The goal is to return the best realiable candidate policy, irrespective of35
what the other agents are doing. For best reliable policy we mean the policy with the highest return36
among the candidates that is also guaranteed to satisfy, probabilistically, the given constraints.37

1

Under review for RLC 2025, to be published in RLJ 2025

Moreover, we propose an algorithm to solve this problem, obtained by integrating Ad Hoc Team-38
work strategies (Stone et al., 2010; Mirsky et al., 2022) with the Seldonian optimization framework39
(Thomas et al., 2019). Seldonian optimization allows us to introduce probabilistic constraints (based40
on confidence levels) in offline policy optimization, while AHT suggests explicitly representing the41
other agent’s policy types and the environment transition model in the optimization process, improv-42
ing sample efficiency with respect to state-of-the-art Seldonian approaches (Thomas et al., 2019).43

In summary, this paper provides the following contributions to the state of the art: (i) we propose a44
novel problem formalization for offline AHT where the goal is to obtain the best reliable policy from45
a set of candidates, adopting the Seldonian optimization framework; (ii) we provide a method that is46
statistically guaranteed to return a reliable solution; and (iii) we empirically evaluate our approach47
on increasingly complex environments, showing that it can scale up to standard AHT domains.48

2 Background49

2.1 Markov Decision Process50

A Markov Decision Process (MDP) (Puterman, 2014; Sutton & Barto, 2018) is a tuple51
⟨S,A, T,R, γ⟩, where S is the set of states, A is the set of actions, T : S × A × S → [0, 1] is52
the stochastic transition function, r : S × A → [Rmin, Rmax] is the reward function, and γ ∈ [0, 1]53
is the discount factor. A stochastic policy P : S × A → [0, 1] defines a probability function54
from states to actions such that any agent following the policy P takes action a, in state s, with55
probability P (a|s). Given a policy P and a MDP, we can define for each state s ∈ S the value56
function V P (s), that is, the discounted return that the agent is expected to get by following P57
from s from any timestep t0 onwards: V P (s) ·= E[

∑∞
t=t0

γt−t0r(st, at)|at ∼ P (·|st), s = st].58
Likewise, the state-action value function QP (s, a) is the expected discounted return that the agent59
will get by taking action a in state s in the current timestep t0 and following P afterward:60
QP (s, a) ·= E[

∑∞
t=t0

γt−t0r(st, at)|at+1 ∼ P (·|st+1), s = st, a = at].61

2.2 Seldonian policy optimization62

In Thomas et al. (2019) a Seldonian batch approach is proposed. It consists of a new algorithm63
design framework that shifts focus from maximizing the performance to avoiding undesirable be-64
havior, expressed as a probabilistic constraint. Let P be a set of stochastic or deterministic policies65
of interest for an MDP. Let H be a set of possible histories, where a history h ∈ H is a sequence of66
state-action-reward values collected by interacting with the environment. Each policy, P ∈ P , in-67
duces a distribution overH. We writeH ∼ P to denote that the history-valued random variableH is68
generated using the policy P . Let r : H → R be the return function, with r(H) denoting the return69
of history H . The expected return when using solution P can be written as EH [r(H) | H ∼ P].70

The Seldonian Optimization Problem for RL is defined as:71

argmax
P

EH [r(H) | H ∼ P]

s.t. ∀j ∈ {1, . . . , n} Pr(gj(P) ≥ 0) ≥ 1− δj
(1)

where gj(P) is a deterministic function that defines a measure of undesirable behavior (cost) for72
policy P . This function can, for example, penalize the number of expected collisions obtained by73
policy P , or penalize disagreement in a multiagent environment (Albrecht et al., 2024).74

2.3 Ad Hoc Teamwork75

Ad Hoc Teamwork (AHT) (Stone et al., 2010; Mirsky et al., 2022) is defined as the problem of76
developing agents capable of cooperating on the fly with other unfamiliar agents, without prior77
coordination. The inputs of the AHT problem are domain knowledge (e.g., an MDP definition of78
the environment, which expresses both the learner’s ability, in terms of actions, and the task, in79

2

Seldonian Reinforcement Learning for Ad Hoc Teamwork

terms of reward) and a list of teammates with a (possibly incomplete) list of their attributes (e.g., its80
possible type and related policy). The output of the problem is the learner, represented by a policy81
P , which might be deterministic or stochastic, static or dynamic, depending on the agent’s sensors,82
the available communication channels, and the task definition. The key AHT assumptions are i) no83
prior coordination, ii) no control over teammates, iii) collaborative behaviors of the teammates.84

The main subtasks that need to be tackled to solve the AHT problem are i) the definition of a knowl-85
edge representation, ii) modeling teammates behaviors or inferring their types, iii) policy generation,86
iv) policy adaptation. A complete review of AHT literature is available in Mirsky et al. (2022).87

2.4 Problem definition88

The illustrative case study presented in the introduction is an example of the AHT problem we want89
to solve. The robot we control (ego-agent) and the other robots (teammates) have no predefined90
coordination strategy. The goal is to generate an optimal policy for the ego-agent while having only91
domain knowledge in the form of an MDP definition and the possible types of teammates, which92
must be inferred. In our problem formulation, we make the additional assumption of having a large93
dataset of trajectories collected offline by possibly suboptimal behavior policies and a set of candi-94
date policies {Pi}ℓi=1. Furthermore, our goal is to return the best policy (in terms of return) only95
among those which are reliable according to some user-defined constraints, e.g., collision avoidance.96
In this sense, the problem in the illustrative example is similar to the problem tackled by Seldonian97
policy optimization.98

The problem we aim to solve in this work is, therefore, integrating AHT (Mirsky et al., 2022) with99
Seldonian policy optimization (Thomas et al., 2019). The inputs are: the dataset of trajectories100
D = {(Hk, Pk)}mk=1 composed of m histories H1, . . . ,Hm collected by known behavior poli-101
cies P1, . . . , Pm, where each history is a sequence of tuples ⟨(s0,a0, s1, r1), (s1,a1, s2, r2), . . .⟩102
with st the environment state, at the joint action (of the ego-agent and the teammates), and rt103
the ego-agent reward; the reward function r (we assume it is known); a set of candidate policies104
{P1, . . . , Pℓ} for the ego-agent; a set of possible teammate types {T1, . . . , Tq} with corresponding105
policies PT1

, . . . , PTq
; the number of teammates p; and a set of measures of undesirable behavior106

g1, . . . , gn, which we model as function gj : S × A → R, and their required confidence levels107
δ1, . . . , δn. We define gj(P) as the expected discounted cost gj over the trajectories obtained by P ,108
that is, gj(P) ·= EH [gj(H)|H ∼ P]. The output is the best candidate policy P ⋆ ∈ {P1, . . . , Pℓ},109
in terms of return r(P) ·= EH [r(H)|H ∼ P], among those that satisfy the probabilistic constraints110
g1, . . . , gn on undesirable behaviors with a corresponding confidence level.111

3 Method112

The main idea behind the proposed approach is to adequately take into account in the performance113
estimate ρ̂i,j,k of gj(Pi) (k ∈ {1, . . . ,m} is a trajectory) the transition model T and the p team-114
mates, each having an (unknown) type in the set T = {T1, . . . , Tq} with corresponding policy115
PT1

, . . . , PTq
, and then use a finite sample concentration inequality to satisfy the probability con-116

straint in Eq. (1), while making sure that ρ̂i,j,k is an unbiased estimate of gj(Pi): E[ρ̂i,j,k] = gj(Pi).117

3.1 Performance estimation with Importance Sampling118

Given a target policy Pi, a reward/cost function rj , and a trajectory Hk obtained by a behavior119
policy Pk, an off-policy estimate ρ̂i,j,k of the performance of Pi with respect to the function gj can120
be obtained via Importance Sampling (IS) (Kahn & Marshall, 1953; Precup et al., 2000):121

ρ̂ISi,j,k
·= gj(Hk)

∏
(st,at)∈Hk

Pi(at|st)
Pk(at|st)

(2)

where st and at are the states and actions in the trajectory Hk (we use bold notation for at to122
highlight that it is the joint action of the ego-agent and the teammates), gj(Hk) is the cost return of123

3

Under review for RLC 2025, to be published in RLJ 2025

the behavior policy Pk for the function gj in the trajectory Hk, Pi(at|st) is the probability of policy124
P to pick action at at state st, and Pk(at|st) is the probability of policy Pk to pick action at at st.125

In our multiagent type-based approach, IS is, however, suboptimal since it does not consider the126
types of the other agents and the related policies, which can provide very useful information for im-127
proving the estimate in terms of quality and sample efficiency. We observe that types are unknown,128
but they can be inferred from the dataset D of trajectories if explicitly considered by the estimator.129
If we assume the teammates’ action selection independent from those of the controlled agent (i.e.,130
the probability a teammate selects an action in a state does not depend on the behavior/new policy131
of the controlled agent) and stationary between when we collect the dataset and the optimization132
phase, then we can rewrite the IS estimator in terms of all actions at as:133

ρ̂ISi,j,k
·= gj(Hk)

∏
(st,at)∈Hk

Pi(at|st)
Pk(at|st)

(3)

= gj(Hk)
∏

(st,at)∈Hk

P
(ego)
i (a

(ego)
t |st)P (−ego)

i (a
(−ego)
t |st)

P
(ego)
k (a

(ego)
t |st)P (−ego)

k (a
(−ego)
t |st)

(4)

= gj(Hk)
∏

(st,at)∈Hk

P
(ego)
i (a

(ego)
t |st)

P
(ego)
k (a

(ego)
t |st)

(5)

where P (ego)
i is the policy of the ego-agent and P (−ego)

i is the joint policy of the teammates. The134
equality between Eq. (3) and Eq. (4) follows from independence. The equality between Eq. (4) and135
Eq. (5) stems from stationarity, having that: P (−ego)

i (a
(−ego)
t |st) = P

(−ego)
k (a

(−ego)
t |st). As shown136

in Eq. (5), however, the teammate types and related policies cannot be naturally integrated into IS.137

3.2 Performance estimation with doubly-robust importance sampling138

To explicitly consider teammate types and environment transition function in the performance esti-139
mator, we use the Doubly-Robust Importance Sampling (DR) (Jiang & Li, 2016; Thomas & Brun-140
skill, 2016; Levine et al., 2020; Huang & Jiang, 2020). It combines importance sampling and the141
direct method by introducing an estimate of the Q-function Q̂Pi

j (s, a) inside the importance sam-142
pling formula, reducing the variance, usually very high in standard IS. DR has form:143

ρ̂DRi,j,k
·=

∑
(st,at)∈Hk

γt
(
w≤t(gj(st,at)− Q̂Pi

j (st, a
(ego)
t)) + wHk

≤t−1V̂
Pi
j (st)

)
(6)

where w≤t =
∏

t̄≤t Pi
(ego)(a

(ego)
t̄ |st̄)/P

(ego)
k (a

(ego)
t̄ |st̄) (importance weight), Q̂Pi

j (st, a
(ego)
t) is the144

estimated state-action value of policy Pi for constraint gj in state st and the ego-action a(ego)
t , and145

V̂ Pi(st) is the estimated state value of policy Pi for constraint gj in state st.146

This estimator is unbiased if either the behavior policy Pk is known or the model of the environment147
is known (that is, the estimates Q̂Pi

j (st, a
(ego)
t) and V̂ Pi

j (st) are perfect) (Jiang & Li, 2016; Thomas148
& Brunskill, 2016). In our case, the second condition is not satisfied because it would require per-149
fect knowledge about opponents’ types and environment transition model, but the first condition is150
satisfied since we assume to know the behavior policy Pk by which the trajectory has been collected.151
The idea developed in this work is to explicitly introduce the types of the agents and the transition152
model of the environment in Q̂Pi

j (st, a
(ego)
t) and V̂ Pi(st), which, importantly, still leave the estima-153

tor unbiased (because it only changes the estimates). Considering that (ego) is the ego-agent and154

(−ego) are the teammates, for Q̂Pi
j (st, a

(ego)
t) we have (He & Boyd-Graber, 2016):155

QPi(st, a
(ego)
t) ·=

∑
a
(−ego)
t

Pi
(−ego)(a

(−ego)
t |st)

∑
st+1

T (st,at, st+1) (7)

[Rt(st,at, st+1) + γE
a
(ego)
t+1

[QPi(st+1, a
(ego)
t+1)].

4

Seldonian Reinforcement Learning for Ad Hoc Teamwork

We can similarly derive the formula for V Pi(s), or define it as the expected value, over the actions156

a
(ego)
t taken under the current policy Pi, of QPi(st, a

(ego)
t).157

3.2.1 Estimation of transition model and teammate types158

To compute Eq. (7) we need to estimate the transition model T and the teammate types P (−ego).159
Both are obtained from the dataset of trajectories D using a Maximum Likelihood Estimate (MLE)160
approach. In particular, the transition model probabilities are computed as161

T̂ (st,at, st+1)
·= |(st,at, st+1)|D∑

s∈S |(st,at, s)|D
. (8)

where |(st,at, st+1)|D is the number of times in dataset D the ego-agent transitions from state st162
to state st+1 when the joint action at is performed, and

∑
s∈S |(st,at, s)|D is the total number of163

time in D the ego-agent is in state st and the joint action at has been performed. On the other hand,164
the policy type of each teammate (−ego) is selected by maximizing its log-likelihood in D:165

P̂ (−ego) ·= argmax
P∈PT

∑
(st,a

(−ego)
t)∈D

logP (a
(−ego)
t |st). (9)

3.2.2 Dataset split166

To correctly obtain an unbiased estimate in Eq. (6), we need to split the dataset into two subsets,167
Dtrain and Dval (Jiang & Li, 2016), one for estimating T , Pi

(−ego), and QPi (Eqs. 7, 8, 9), and one168
for estimating ρ̂DRi,j,k, given the other elements. In our experiments, we split the given dataset using169
a manually selected ratio λ (usually between 0.15 and 0.55, see Section 4).170

3.3 Lower-bound performance estimation via concentration inequalities171

To solve the Seldonian optimization problem of Eq (1), we must now find a way to guarantee the172
probabilistic constraints over undesirable behaviors, namely, for each candidate policy Pi we must173
check that ∀j ∈ {1, . . . , n} Pr(gj(P)) ≥ 0) ≥ 1 − δj . We do so by applying finite-sample174
concentration inequalities to get a lower bound on the true estimated value gj(Pi) that holds proba-175
bilistically with the desired confidence level δj ∈ [0, 1]. We consider two concentration inequalities,176
whose formal definitions are reported below.177

Extended Maurer & Pontil’s empirical Bernstein inequality (Maurer & Pontil, 2009; Thomas178
et al., 2015b):

ρDRi,j ≥

(
m∑

k=1

1

ξk

)−1
 m∑
k=1

Yk
ξk
− 7m log(2/δ)

3(m− 1)
−

√√√√√2 log(2/δ)

m− 1

m m∑
k=1

(
Yk
ξk

)2

−

(
m∑

k=1

Yk
ξk

)2



(10)

where ρDRi,j is the true mean cost, ρDRi,j = E[ρ̂DRi,j,k] = gj(Pi), m is the number of trajecto-179
ries over which ρDRi,j is computed (given the candidate policy Pi and the undesired behavior gj),180
Yk
·= min{ρ̂DRi,j,k, ξk}, where ρ̂DRi,j,k are our estimated returns/cost for trajectory k (see line 3 of Al-181

gorithm 1) and ξk are real-value constants that must be tuned to achieve the tightest possible bound.182
We set this value by hand in all our experiments (see Section 4). The lower bound we are looking183
for is the right-hand side of Eq. (10), and this holds with probability 1− δj .184

Eq. (10), however, requires ρ̂DRi,j,k being unbiased and almost surely non-negative,P(ρ̂DRi,j,k ≥ 0) = 1185
(Thomas et al. (2015b), Theorem 1)1. The first one is guaranteed by the properties of the DR186

1Importantly, it does not require the variables to be identically distributed, so it can be used with estimates obtained with
different behavior policies.

5

Under review for RLC 2025, to be published in RLJ 2025

estimator, the second one is not (due to the minus sign in Eq. 6 and the arbitrary values that the187
estimates can take). We can, however, add a constant a to every estimated target ρ̂DRi,j,k, k = 1, . . . ,m188

to force this property on the new estimator ψ̂i,j,k = ρ̂DRi,j,k + a. Of course, this makes it also biased,189

but by a known quantity a. The left-hand-side of Eq. (10) becomes E[ψ̂i,j,k] = E[ρ̂DRi,j,k + a] =190
E[ρ̂DRi,j,k] + a = ρDRi,j + a and we can remove the constant a from the right-hand-side with a suitable191
redefinition of Yk to obtain a valid lower-bound for ρDRi,j .192

Lemma 1 If ψ̂i,j,k = ρ̂DRi,j,k+L(R
max+2V max), with L being the trajectory length,Rmax and V max193

respectively the maximum reward and value, then P(ψ̂i,j,k ≥ 0) = 1.194

Proof sketch. The idea behind this proof is to identify a constant a larger than or equal to |min ρ̂DRi,j,k|195
and to use it to make all terms positive. By analyzing the terms in the sum of Eq. 6 it turns out that196
|min ρ̂DRi,j,k| ≤ L(Rmax + 2V max). Full mathematical details are reported in Supp. Mat. Section B.197

Student’s t-inequality (Student, 1908):

ρDRi,j ≥ mean(ρ̂)−

√
stdev(ρ̂)
|ρ̂|

· T−1
|ρ̂|−1[1− δj] (11)

where ρ̂ is the collection of estimates {ρ̂DRi,j,k}nk=1 and T−1
d [p] is the inverse CDF of the t-student198

distribution with d degrees of freedom for quantile p; mean and stdev are the empirical mean and199
standard deviation. This inequality, which holds with probability 1− δj , assumes that the provided200
estimates {ρ̂DRi,j,k}nk=1 are distributed, in the limit, as a Gaussian, so it does not give the same formal201
finite-sample regime guarantees as Eq. (10); however, it is consistently used in many fields and also202
by (Thomas et al., 2019), so we consider it as a possible estimate in our work. In the following, we203
will call αi,j the right-hand side of this inequality and that of Eq. (10).204

3.4 Seldonian Ad Hoc Teamwork algorithm205

The proposed reliable Ad Hoc Teamwork approach, inspired by (Thomas et al., 2019), is illustrated206
in Algorithm 1. The algorithm receives in input a dataset of trajectories D = {(Hk, Pk)}mk=1,207
a set of cost functions gj , j = 1, . . . , n that evaluate undesirable behaviors, a set of confidence208
levels δj , j = 1, . . . , n, a set of candidate policies Pi, i = 1, . . . , ℓ, a set of possible teammate209
policies PT1 , . . . , PTq , and the split ratio λ. The output is the candidate policy P having the highest210
estimated return among those that satisfy the probabilistic constraints Pr(gj(P) ≥ 0) ≥ 1− δj , or211
NO SOLUTION if no policy satisfies the constraints. The algorithm is divided into two parts:212

1. from line 5 to 13, it computes the set of reliable policies, that is, those that satisfy the constraint.213
To do so it computes, in line 8, m unbiased estimates of gj(Pi) using the m trajectories in the214
dataset D, using the DR estimator Eq. (10). This is done for each candidate Pi, and considering215
all the possible types of the teammates; then, in line 9, it uses them estimates to compute a lower216
bound αi,j on the true expected value using a finite-sample concentration inequality (see Section217
3.3) for each constraint. Lastly, if the lower bound satisfies all constraints (line 11), the candidate218
is put into the set of reliable policies.219

2. from line 15 to 22, if the set of reliable policies is not empty, then a similar procedure is carried220
out: we use the dataset D to compute the estimated return r(P) of each of the found reliable221
policies (using IS or DR), and we return the best one; otherwise, we return NO SOLUTION (lines222
19 and 21).223

4 Experimental Evaluation224

In this section we present the results of our tests on three different settings, of increasing level225
of complexity: Chain World (Chalkiadakis & Boutilier, 2003), Blackjack (Sutton & Barto, 2018;226
Towers et al., 2024), and Level-Based Foraging (Papoudakis et al., 2021; Christianos et al., 2020).227

6

Seldonian Reinforcement Learning for Ad Hoc Teamwork

Algorithm 1: Seldonian Ad Hoc Teamwork
Data: Dataset D = {(Hk, Pk)}mk=1, cost functions {gj}nj=1, confidence levels {δj}nj=1,

candidate policies set {Pi}ℓi=1, possible teammate policies set {PTu
}pu=1, split ratio λ.

Result: Either a reliable policy P ⋆ or NO SOLUTION
1 P ← ∅ (set of reliable policies)
2 Split D into Dtrain with Dval using λ
3 Estimate transition model T using Eq. (8) on Dtrain

4 Estimate teammate types and related policies P (−ego) using Eq. (9) on Dtrain
5 for i = 1, . . . , ℓ do
6 Estimate QPi(st, a

(ego)
t) and V Pi(st) of candidate policy Pi using Eq. (7) on Dtrain

7 for j = 1, . . . , n do
8 Compute m positive unbiased estimates {ρ̂DRi,j,k}mk=1 of gj(Pi) using Eq. (6) + Lemma 1

on Dval
9 Compute the lower bound αi,j of gj(Pi) with confidence level δj/ℓ using Eqs. (10) or

(11) (it holds with confidence level δj simultaneously for all ℓ candidates Thomas
et al. (2019))

10 end
11 if αi,j > 0,∀j = 1, . . . , n then
12 Put Pi into P
13 end
14 end
15 if P is not ∅ then
16 for P ∈ P do
17 Estimate expected return performance r(P) of P using either IS or DR
18 end
19 return P ⋆ ·= argmaxP∈P r(P)

20 else
21 return NO SOLUTION
22 end

We compare our method against two baselines: an unreliable estimator that skips the reliability228
computation and picks the estimated best policy, similarly to the baseline used by Thomas et al.229
(2019), and Algorithm 1 using Per-Decision Importance Sampling estimator (PDIS) estimate instead230
of DR. PDIS (Precup et al., 2000) is more efficient than standard IS, and similarly unbiased. It works231
by computing the importance weights incrementally (more details in Supp. Mat. A). However, this232
estimator does not allow us to explicitly represent the transition model and the teammate types, thus233
it is less efficient than our method. We chose PDIS instead of IS to make the comparison more fair,234
considering the poor results of IS in our tested environments in early tests. Since the Seldonian RL235
algorithm proposed by Thomas et al. (2019) (Fig. S20) uses a (modified) version of IS, and does not236
take into account AHT knowledge, we do not use it as a baseline in our experiments.237

4.1 Chain World238

Chain World (Chalkiadakis & Boutilier, 2003) (Figure 1, left) is a coordination game in which there239
are |S| states, k agents and two actions, 0 and 1. Players start at state s1. If all agents pick action240
0 in state si, they move to the next state si+1 and obtain zero reward. If they all pick action 1, they241
go back to the starting state s1 and receive a small reward r. If they pick conflicting actions, they242
stay in the same state and get zero reward. The goal is to coordinate completely by picking action 0243
|S| − 1 times and reach the end state, where they get a very large reward R.244

In our experiments, we set |S| = 10, k = 3, r = 10 and R = 100. We also define a single cost245
function g which measures the level of non-coordination between the agents. To align ourselves246

7

Under review for RLC 2025, to be published in RLJ 2025

r

R

Figure 1: Environments tested: Chain World, a modified two-player version of Blackjack and Level-
Based Foraging.

with the lower bounds in the second part of Eq. (1), here and in the following sections, we flip247
the semantic of the function g. Namely, instead of considering it a cost function used to penalize248
undesirable behaviors, we use it as a function that rewards desirable behaviors. In Chain World,249
we reward agreement among agents by defining g(st,at) = exp(−x), where x = 0 if all agents’250
actions are identical, and x = 1 otherwise. This creates two contrastive goals: maximizing the251
reward does not imply maximizing the agreement; if the teammates, for example, are more likely252
to take action 0 instead of 1, then an ego-policy that is more likely to take 1 can be better in terms253
of reward but worse in terms of agreement. We use fixed length episodes (L = 200) by having the254
agents restart the game to s1 when reaching the last state and add stochasticity to the transitions.255

Results. For this environment, we handcraft five rule-based policies P1, . . . , P5. These policies256
differ in their likelihood of picking different actions depending on the state si: some have a fixed257
probability, and others have a probability that depends on the state si. We pick two of these policies258
as the actual policies of the teammates, and we do not change them between the offline collection259
phase and the inference phase. Moreover, instead of requiring g ≥ 0 as the probabilistic constraint260
in the second part of Eq (1), we consider a bound of the form g ≥ d, where d is an arbitrarily-picked261
constant chosen so that only a subset of the five policies considered as candidates are reliable. We262
collect data using three different behavior policies, randomly taken from our set of five handcrafted263
policies. In particular, for each behavior policy, we collect 20 datasets for each of the five different264
sizes |s| ∈ {20, 200, 500, 1000, 2000}. As for the candidate policies, we use the remaining four265
policies (besides the behavior). We pick all five policies as possible types from which we need to266
estimate the true teammate types. We test two inequalities for the lower bound: empirical Bernstein267
and Student’s t-inequality (Eqs. 10, 11). We pick δ = 0.15 for both and set the split ratio λ = 0.15.268

We present the results of our method (labeled DR) in Figure 2, similarly as in Thomas et al. (2019).269
Our algorithm (dark and light green curves, plot A) is consistently reliable. In fact, the plot on the270
right shows it never picks an unreliable policy, even with small dataset sizes, whereas the unreliable271
baseline consistently picks bad policies, with a probability between 10% and 25%, depending on the272
dataset size s. Notice that the PDIS-based method also reaches full reliability, but due to, trivially,273
rarely picking a policy (left plot, blue and purple curves). The DR estimator is indeed much more274
efficient than PDIS, with a higher probability of picking a solution for all |s| (x-axis). Moreover, the275
two charts show that, by using the Student’s t-inequality to compute the performance lower bound,276
our algorithm needs less data to be able to pick policies, reaching, for instance, a prob. of solution of277
around 25% with a dataset size of only 20 episodes, while still avoiding unreliable policies. Because278
the unreliable baseline skips the reliability computation, it picks solutions with probability 100%.279

4.2 Blackjack280

Next, we test the scalability of our algorithm and its ability to work with trained policies. We do281
it by applying the algorithm to a more complex environment, a modified multiplayer version of282
Blackjack (Sutton & Barto, 2018; Towers et al., 2024) (Figure 1, center). Blackjack is a stochastic283
environment where a single agent plays against the dealer, with the goal of drawing a hand of greater284
value without going bust (over 21 points). In our modified version, we add a second teammate who285

8

Seldonian Reinforcement Learning for Ad Hoc Teamwork

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00

P
ro

b
.

o
f

so
lu

ti
o
n

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00

P
ro

b
.

o
f

u
n
re

lia
b

le
 s

o
lu

ti
o
n

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00

P
ro

b
.

o
f

so
lu

ti
o
n

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00

P
ro

b
.

o
f

u
n
re

lia
b

le
 s

o
lu

ti
o
n

UNRELIABLE PDIS (Bernstein) PDIS (T-student) DR (Bernstein) DR (T-student)

B - Blackjack

C - Level-Based Foraging

102 103

Dataset size

0.00

0.25

0.50

0.75

1.00

P
ro

b
.

o
f

so
lu

ti
o
n

102 103

Dataset size

0.00

0.25

0.50

0.75

1.00

P
ro

b
.

o
f

u
n
re

lia
b

le
 s

o
lu

ti
o
n

A - Chain World

Figure 2: Results on the three tested environments. Different colors correspond to different estima-
tors used and different concentration inequalities for the lower bound. On the x-axis the size of the
dataset. On the y-axis, on the left the probability of returning a candidate policy as a solution —
higher is better; on the right, the probability of returning a unreliable policy — lower is better. The
shaded areas represent the 95% confidence intervals over multiple runs.

picks among the two actions (hit or stick) independently of the ego-agent. If both pick the same286
action, then the game proceeds as usual; otherwise, a turn passes without anyone drawing any card.287
In that case, the ego-agent and the teammate receive a small reward r (globally). The game ends288
if either the players go bust (which makes them receive a 0 reward, globally) or if the dealer goes289
bust (in this case they receive a large reward R). Alternatively, the game ends when H turns pass290
without anyone going bust; in this case, the hands’ values are compared to determine the winner.291
Having to coordinate with a second player can change the ego-agent strategy from the standard one:292
for example, there might be cases where, even if it would prefer to take the stick action, knowing293
that the teammate is likely to take the hit action could lead him to decide to coordinate with him294
instead to avoid moving to the next turn with no cards drawn, to avoid the end of the episode.295

We set H = 10, r = 0.5 and R = 5. We also make the environment fully observable by showing all296
the cards at all times. In terms of dimension, this environment has 8192 state-action pairs, a much297
greater number than our chain world environment. As for g, we define a single alternative reward298
function g s.t. g(st,at) = 1 if both agents pick the same action, 0 otherwise, rewarding agreement.299

Results. Following the same experimental setting of the previous section, we handcraft three rule-300
based stochastic policies that pick actions based on the player’s hand value and use them as possible301
types for the teammate (we pick one as the actual followed policy and keep it fixed during all302
phases). In terms of ego-agent candidate policies, instead of only testing handcrafted policies we303
also test trained deep RL policies. In particular, we train a PPO policy (Schulman et al., 2017)304

9

Under review for RLC 2025, to be published in RLJ 2025

over 1M steps, take two checkpoints at different levels of training (medium and high), and create305
eight different ε-greedy policies by adding variability in their action selection. We use four of these306
policies as candidates and four as behaviors. As in our previous experiment, we define reliability as307
achieving an expected g ≥ d, where d is handpicked to let only one policy among the candidates308
be reliable. For this environment, we choose dataset sizes |s| ∈ {10, 100, 1000, 5000, 10000}, split309
ratio λ = 0.55 and confidence level δ = 0.05. Given the large state-action space, we follow the310
standard procedure (Jiang & Li, 2016) to reduce the variance of all estimators by limiting the range311
of possible estimates between [Vm, VM] using domain knowledge. We run our algorithm 20 times312
for each size |s| and each behavior, obtaining 95% confidence intervals (represented by the shaded313
areas).314

The results can be seen in Figure 2, plot B. We see, similarly to our previous experiment, that the315
unreliable baseline always selects a policy (left plot) but it often picks unreliable policies (right plot)316
because it focuses only on the reward, a goal not always aligned with the player’s agreement. Our317
algorithm (green lines) requires more data (i.e., |s| ≥ 5000) to start picking policies (left plot), but318
when it does, it is consistently reliable (right plot). Only when the dataset is very small and we319
use Student’s t-inequality our algorithm can pick, still rarely, bad policies (right plot). This does320
not happen when we use the extended Bernstein inequality (Eq. 10). In general, the latter is more321
conservative and we can clearly see that, by using it, our algorithm is less likely to pick policy than322
when we use the looser t-student (i.e., the dark-green line is lower than the light-green one in the left323
plot). Still, when |s| = 10000 our algorithm picks a reliable policy with a 100% chance (or it selects324
no policy). Clearly, the PDIS estimator is not good enough at this size as it cannot find good enough325
estimates to even pick a single policy in all experiments and for all concentration inequalities.326

4.3 Level-Based Foraging327

As a third experiment, we scale even further by testing our algorithm on level-based foraging (Fig-328
ure 1, right), a standard AHT benchmark (Papoudakis et al., 2021; Christianos et al., 2020). This329
environment is much bigger than the others, with more than 31k state-action pairs. In level-based330
foraging, n players must collaborate to collect m foods. Players and foods are assigned different331
levels, and one or more players can collect a piece of food only by getting close to it and selecting332
the load action. When this happens, the total sum of the players’ levels S is compared with the food333
level f : they succeed only if S ≥ f , at which point they receive reward R = f . Every other action334
obtains reward 0. In our experiments, we pick n = 2 and m = 2. We also make the environment of335
fixed length, setting H = 25. As a desired constraint function, we use the expected return, that is,336
the reliability is based on the reward itself. This definition is allowed by Eq. (1) and lets the users337
of our algorithm capture the cases where they want a guarantee lower bounds on the reward before338
committing to a policy. This form was already explored, albeit slightly differently, in (Thomas et al.,339
2019). As before, we require a policy to have g ≥ d, for a handpicked d, to be reliable.340

Results. Again, we follow our previous experimental setting. We consider three handcrafted policies341
for the opponent types, one of which is randomly selected as the actual policy. For the candidates342
and behaviors, we train PPO (Schulman et al., 2017) for 20M steps, pick three different checkpoints,343
and create seven different ε−greedy policies out of them. We pick four as candidates and three as344
behaviors. We also pick the same set sizes, split ratio, and confidence level, and we also limit the345
estimates for each estimator between [Vm, VM] (Jiang & Li, 2016). We run our algorithm 10 times346
each for each size and behavior, obtaining 95% CI (shaded areas).347

The results can be seen in Figure 1, plot C. Owing to the more difficult estimation target, due to348
the environment size, we see that our algorithm needs a large enough dataset size |s| ≥ 5000 to349
consistently pick a reliable policy (left plot). Using Student’s t-inequality makes our algorithm less350
conservative and reaches around 75% probability of picking reliable policies with |s| = 10000. If351
we use the extended Bernstein inequality, we get similar results but slightly worse, especially when352
|s| = 5000. This is expected as it is known to require more data (Thomas et al., 2019; Thomas &353
Brunskill, 2016) than alternatives with fewer guarantees (like Student’s t-inequality). In general, it is354

10

Seldonian Reinforcement Learning for Ad Hoc Teamwork

standard to use a looser bound when reliability is important but not mandatory, and the environment355
is so big that collecting large enough datasets is prohibitive; in particular, the Student’s t-inequality356
is used even in hard scientific field (Thomas et al., 2019). The unreliable has 100% probability357
of picking policies, but only when the dataset size |s| gets big (|s| ≥ 5000) then its probability358
of picking unreliable policies goes to zero. This happens because, by defining the constraint as the359
reward itself, the unreliable baseline starts correctly estimating the policy performance as the dataset360
size gets larger, and hence, by picking the candidate with the largest estimated return, it correctly361
picks reliable policies. Our algorithm, instead, never picks bad policies so it is reliable in this setting.362

5 Related Work363

Seldonian optimization The original Seldonian optimization framework was proposed by364
Thomas et al. (2019). After proposing a shift in perspective in ML algorithmic design, from perfor-365
mance optimization to avoiding undesirable behavior, the authors show how to apply this principle366
to build, in a proof-of-concept diabetes management simulated environment, a safe RL algorithm367
that avoids suggesting policies leading to dangerous low blood sugar levels. Other more recent368
works have focused on extending this approach to handle more specific RL settings. In Satija et al.369
(2021) the authors implement an offline Seldonian algorithm in the Safe Policy Improvement set-370
ting (Thomas et al., 2015a; Ghavamzadeh et al., 2016; Laroche et al., 2019; Castellini et al., 2023;371
Bianchi et al., 2024), by casting the task as a multiple objective optimization problem in a Con-372
strained MDP (Altman, 1999). Their algorithm can return, with statistical guarantees, a new policy373
that performs at least as well as the baseline policy used to collect the data, for any considered374
objective. The work by Chandak et al. (2020), instead, extends the Seldonian problem to handle375
non-stationary MDPs, using a candidate policy search plus a safety test procedure. None of these376
works consider the multiagent (Albrecht et al., 2024) or the AHT setting (Stone et al., 2010).377

Ad Hoc Teammwork Most of the algorithms applied to the AHT problem (Stone et al., 2010;378
Papoudakis et al., 2021) are not able to provide reliability guarantees. State-of-the-art algorithms379
for such setting include SEAC (Christianos et al., 2020), MAPPO (Yu et al., 2022) and MAA2C380
(Papoudakis et al., 2021). In terms of type-based AHT, which is the approach that we take, related381
works usually adopt a Bayesian point-of-view, by considering beliefs on the types of the teammates,382
updated with each subsequent observation (Chalkiadakis & Boutilier, 2003; Albrecht & Stone, 2019)383
or implicitly model the teammates using neural-network approximations (He & Boyd-Graber, 2016).384
More recently, some works for the AHT have explored providing guarantees, for example, robust-385
ness and worst-case performance (Rahman et al., 2024; Villin et al., 2025). However, none of these386
works tackle the offline setting and the Seldonian optimization framework.387

6 Conclusions and future work388

We presented a novel offline RL algorithm that, given enough data, can return a reliable policy389
against predefined undesirable behaviors in non-coordinated environments. The approach solves a390
Seldonian optimization problem in the context of Ad Hoc Teamwork. We showed experimentally391
that the technique can scale to more complex environments and deal with any type of candidate392
policy. Still, our approach presents some limitations that stimulate interesting future extensions.393

First, in its current form, the proposed algorithm needs both a set of candidate policies for the ego-394
agent and a set of possible types for the teammates. We intend to explore different ways to relax such395
requirements, such as searching directly in the space of neural network policies for the candidates or396
estimating the types of teammates using an MLE approach. Second, solving for the exact Q-value397
function in Eq (7) can be a bottleneck, in terms of scalability and computational requirements. In398
our experiments, we tried different approximators, such as neural networks and XGBoost regressors399
(Chen & Guestrin, 2016), with negative outcomes. We believe that investigating these approaches400
further can be key to scaling the algorithm even more, with the goal of reaching real-world scenarios.401
Finally, extending our approach to the fully online setting is interesting future work.402

11

Under review for RLC 2025, to be published in RLJ 2025

References403

Stefano V. Albrecht and Peter Stone. Reasoning about hypothetical agent behaviours and their404
parameters. CoRR, abs/1906.11064, 2019. URL http://arxiv.org/abs/1906.11064.405

Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-Agent Reinforcement Learning:406
Foundations and Modern Approaches. MIT Press, 2024. URL https://www.marl-book.407
com.408

Eitan Altman. Constrained markov decision processes. Routledge, 1999.409

Federico Bianchi, Edoardo Zorzi, Alberto Castellini, Thiago D. Simão, Matthijs T. J. Spaan,410
and Alessandro Farinelli. Scalable safe policy improvement for factored multi-agent mdps.411
In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,412
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=413
Qc5umSsUi8.414

Alberto Castellini, Federico Bianchi, Edoardo Zorzi, Thiago D. Simão, Alessandro Farinelli, and415
Matthijs T. J. Spaan. Scalable safe policy improvement via monte carlo tree search. In Interna-416
tional Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA,417
volume 202 of Proceedings of Machine Learning Research, pp. 3732–3756. PMLR, 2023. URL418
https://proceedings.mlr.press/v202/castellini23a.html.419

Georgios Chalkiadakis and Craig Boutilier. Coordination in multiagent reinforcement learning: a420
Bayesian approach. In Proceedings of the second international joint conference on Autonomous421
agents and multiagent systems, AAMAS ’03, pp. 709–716, New York, NY, USA, July 2003. As-422
sociation for Computing Machinery. ISBN 978-1-58113-683-8. DOI: 10.1145/860575.860689.423
URL https://doi.org/10.1145/860575.860689.424

Yash Chandak, Scott M. Jordan, Georgios Theocharous, Martha White, and Philip S.425
Thomas. Towards safe policy improvement for non-stationary mdps. In Advances426
in Neural Information Processing Systems 33: Annual Conference on Neural In-427
formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-428
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/429
680390c55bbd9ce416d1d69a9ab4760d-Abstract.html.430

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In KDD, pp. 785–794.431
ACM, 2016. ISBN 978-1-4503-4232-2. URL http://dblp.uni-trier.de/db/conf/432
kdd/kdd2016.html#ChenG16.433

Filippos Christianos, Lukas Schäfer, and Stefano Albrecht. Shared experience actor-434
critic for multi-agent reinforcement learning. In Advances in Neural Information Pro-435
cessing Systems, volume 33, pp. 10707–10717. Curran Associates, Inc., 2020. URL436
https://proceedings.neurips.cc/paper_files/paper/2020/file/437
7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf.438

Mohammad Ghavamzadeh, Marek Petrik, and Yinlam Chow. Safe policy improvement by min-439
imizing robust baseline regret. In Advances in Neural Information Processing Systems 29:440
Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,441
Barcelona, Spain, pp. 2298–2306, 2016. URL https://proceedings.neurips.cc/442
paper/2016/hash/9a3d458322d70046f63dfd8b0153ece4-Abstract.html.443

He He and Jordan L. Boyd-Graber. Opponent modeling in deep reinforcement learning. In Proceed-444
ings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY,445
USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 1804–446
1813. JMLR.org, 2016. URL http://proceedings.mlr.press/v48/he16.html.447

12

http://arxiv.org/abs/1906.11064
https://www.marl-book.com
https://www.marl-book.com
https://www.marl-book.com
https://openreview.net/forum?id=Qc5umSsUi8
https://openreview.net/forum?id=Qc5umSsUi8
https://openreview.net/forum?id=Qc5umSsUi8
https://proceedings.mlr.press/v202/castellini23a.html
https://doi.org/10.1145/860575.860689
https://proceedings.neurips.cc/paper/2020/hash/680390c55bbd9ce416d1d69a9ab4760d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/680390c55bbd9ce416d1d69a9ab4760d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/680390c55bbd9ce416d1d69a9ab4760d-Abstract.html
http://dblp.uni-trier.de/db/conf/kdd/kdd2016.html#ChenG16
http://dblp.uni-trier.de/db/conf/kdd/kdd2016.html#ChenG16
http://dblp.uni-trier.de/db/conf/kdd/kdd2016.html#ChenG16
https://proceedings.neurips.cc/paper_files/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2016/hash/9a3d458322d70046f63dfd8b0153ece4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9a3d458322d70046f63dfd8b0153ece4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9a3d458322d70046f63dfd8b0153ece4-Abstract.html
http://proceedings.mlr.press/v48/he16.html

Seldonian Reinforcement Learning for Ad Hoc Teamwork

Jiawei Huang and Nan Jiang. From importance sampling to doubly robust policy gradient. In448
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July449
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 4434–4443.450
PMLR, 2020. URL http://proceedings.mlr.press/v119/huang20b.html.451

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In452
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York453
City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp.454
652–661. JMLR.org, 2016. URL http://proceedings.mlr.press/v48/jiang16.455
html.456

H. Kahn and A. W. Marshall. Methods of Reducing Sample Size in Monte Carlo Computations.457
Operations Research, 1(5):263–278, November 1953. DOI: 10.1287/opre.1.5.263.458

Romain Laroche, Paul Trichelair, and Remi Tachet des Combes. Safe policy improvement with base-459
line bootstrapping. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the460
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,461
California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 3652–3661.462
PMLR, 2019. URL http://proceedings.mlr.press/v97/laroche19a.html.463

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:464
Tutorial, review, and perspectives on open problems. CoRR, abs/2005.01643, 2020. URL465
https://arxiv.org/abs/2005.01643.466

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample-variance penal-467
ization. In COLT 2009 - The 22nd Conference on Learning Theory, Montreal, Quebec, Canada,468
June 18-21, 2009, 2009. URL http://www.cs.mcgill.ca/%7Ecolt2009/papers/469
012.pdf#page=1.470

Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Srid-471
haran, Peter Stone, and Stefano V. Albrecht. A survey of ad hoc teamwork research. In472
Multi-Agent Systems - 19th European Conference, EUMAS 2022, Düsseldorf, Germany, Septem-473
ber 14-16, 2022, Proceedings, volume 13442 of Lecture Notes in Computer Science, pp. 275–474
293. Springer, 2022. DOI: 10.1007/978-3-031-20614-6_16. URL https://doi.org/10.475
1007/978-3-031-20614-6_16.476

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano Albrecht. Benchmarking477
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Proceedings of the478
Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS), 2021.479
URL http://arxiv.org/abs/2006.07869.480

Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy481
evaluation. In Proceedings of the Seventeenth International Conference on Machine Learning,482
ICML ’00, pp. 759–766, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.483
ISBN 1558607072.484

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John485
Wiley & Sons, 2014.486

Muhammad Rahman, Jiaxun Cui, and Peter Stone. Minimum coverage sets for training robust487
ad hoc teamwork agents. In Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI488
2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024,489
Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February490
20-27, 2024, Vancouver, Canada, pp. 17523–17530. AAAI Press, 2024. DOI: 10.1609/AAAI.491
V38I16.29702. URL https://doi.org/10.1609/aaai.v38i16.29702.492

13

http://proceedings.mlr.press/v119/huang20b.html
http://proceedings.mlr.press/v48/jiang16.html
http://proceedings.mlr.press/v48/jiang16.html
http://proceedings.mlr.press/v48/jiang16.html
http://proceedings.mlr.press/v97/laroche19a.html
https://arxiv.org/abs/2005.01643
http://www.cs.mcgill.ca/%7Ecolt2009/papers/012.pdf#page=1
http://www.cs.mcgill.ca/%7Ecolt2009/papers/012.pdf#page=1
http://www.cs.mcgill.ca/%7Ecolt2009/papers/012.pdf#page=1
https://doi.org/10.1007/978-3-031-20614-6_16
https://doi.org/10.1007/978-3-031-20614-6_16
https://doi.org/10.1007/978-3-031-20614-6_16
http://arxiv.org/abs/2006.07869
https://doi.org/10.1609/aaai.v38i16.29702

Under review for RLC 2025, to be published in RLJ 2025

Harsh Satija, Philip S. Thomas, Joelle Pineau, and Romain Laroche. Multi-objective SPIBB:493
seldonian offline policy improvement with safety constraints in finite mdps. In Ad-494
vances in Neural Information Processing Systems 34: Annual Conference on Neural In-495
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.496
2004–2017, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/497
0f65caf0a7d00afd2b87c028e88fe931-Abstract.html.498

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy499
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/500
1707.06347.501

Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosenschein. Ad hoc autonomous agent teams:502
Collaboration without pre-coordination. 24(1):1504–1509, 2010. DOI: 10.1609/aaai.v24i1.7529.503
URL https://ojs.aaai.org/index.php/AAAI/article/view/7529.504

Student. The probable error of a mean. Biometrika, pp. 1–25, 1908.505

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,506
second edition, 2018.507

Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement508
learning. In Proceedings of the 33nd International Conference on Machine Learning, ICML509
2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference510
Proceedings, pp. 2139–2148. JMLR.org, 2016. URL http://proceedings.mlr.press/511
v48/thomasa16.html.512

Philip S. Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High Confidence Policy513
Improvement. In Proceedings of the 32nd International Conference on Machine Learning, pp.514
2380–2388. PMLR, June 2015a.515

Philip S. Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-Confidence Off-516
Policy Evaluation. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), February517
2015b. ISSN 2374-3468. DOI: 10.1609/aaai.v29i1.9541. URL https://ojs.aaai.org/518
index.php/AAAI/article/view/9541. Number: 1.519

Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen Giguere, Yuriy Brun, and520
Emma Brunskill. Preventing undesirable behavior of intelligent machines. Science, 366(6468):521
999–1004, November 2019. DOI: 10.1126/science.aag3311. URL https://www.science.522
org/doi/10.1126/science.aag3311. Publisher: American Association for the Ad-523
vancement of Science.524

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,525
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard526
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.527

Victor Villin, Thomas Kleine Buening, and Christos Dimitrakakis. A minimax-bayes approach to528
ad hoc teamwork. In Proceedings of the 24th International Conference on Autonomous Agents529
and MultiAgent Systems, AAMAS ’25, Detroit, Michigan, USA, May 19 – 23, 2025, 2025.530

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The531
surprising effectiveness of ppo in cooperative multi-agent games. In Proceedings of the 36th532
International Conference on Neural Information Processing Systems, NeurIPS ’22, Red Hook,533
NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.534

14

https://proceedings.neurips.cc/paper/2021/hash/0f65caf0a7d00afd2b87c028e88fe931-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0f65caf0a7d00afd2b87c028e88fe931-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0f65caf0a7d00afd2b87c028e88fe931-Abstract.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://ojs.aaai.org/index.php/AAAI/article/view/7529
http://proceedings.mlr.press/v48/thomasa16.html
http://proceedings.mlr.press/v48/thomasa16.html
http://proceedings.mlr.press/v48/thomasa16.html
https://ojs.aaai.org/index.php/AAAI/article/view/9541
https://ojs.aaai.org/index.php/AAAI/article/view/9541
https://ojs.aaai.org/index.php/AAAI/article/view/9541
https://www.science.org/doi/10.1126/science.aag3311
https://www.science.org/doi/10.1126/science.aag3311
https://www.science.org/doi/10.1126/science.aag3311

Seldonian Reinforcement Learning for Ad Hoc Teamwork

Supplementary Materials535

The following content was not necessarily subject to peer review.536
537

A Per-Decision Importance Sampling538

The Per-Decision Importance Sampling estimator (PDIS) is a similar estimate to IS, unbiased under539
the same assumptions but with lower variance. Its formula is:540

ρ̂PDISi,j,k =
∑

(st,at,rt)∈D

γtrtw≤t (12)

where w≤t
·=
∏

t̄≤t P (at̄|st̄)/Pk(at̄|st̄). The difference with IS is that the importance weight is not541
calculated up to the end of the trajectory in one shot, but incrementally as a function of the steps up542
to that point.543

B Proof of Lemma 1544

Lemma If ψ̂i,j,k = ρ̂DRi,j,k + L(Rmax + 2V max), with L being the trajectory length, Rmax and V max545

respectively the maximum reward (or cost) and value, then P(ψ̂i,j,k ≥ 0) = 1.546

Proof For any random variable X , we have that P(X + a ≥ 0) = 1 if a ≥ |minX|. Therefore, if547
we find a constant a such that a ≥ |min ρ̂DRi,j,k| then P(ρ̂DRi,j,k + a ≥ 0) = 1. First, for simplicity we548
rewrite ρ̂DRi,j,k from Eq. (6) as:549

ρ̂DRi,j,k =
∑

(st,at)∈Hk

(
γtw≤tgj(st,at)− γtw≤tQ̂

Pi
j (st, a

(ego)
t) + γtwHk

≤t−1V̂
Pi
j (st)

)
=

∑
(st,at)∈Hk

(Xt − Yt + Zt) (13)

We have that:550

|min ρ̂DRi,j,k| ≤ max |ρ̂DRi,j,k| (14)

= max

∣∣∣∣∣∣
∑

(st,at)∈Hk

(Xt − Yt + Zt)

∣∣∣∣∣∣ (15)

≤ max
∑

(st,at)∈Hk

|Xt − Yt + Zt| (16)

≤ max
∑

(st,at)∈Hk

(Xt + Yt + Zt) (17)

≤
∑

(st,at)∈Hk

max(Xt + Yt + Zt) (18)

≤
∑

(st,at)∈Hk

(maxXt +maxYt +maxZt) (19)

≤
∑

(st,at)∈Hk

(Rmax + V max + V max) (20)

= L(Rmax + 2V max) (21)

Eq. (16) follows from |
∑

i αi| ≤
∑

i |αi|. Likewise, Eq. (17) follows from |a + (−b) + c| ≤551
|a|+ | − b|+ |c| = |a|+ |b|+ |c| and the fact that Xt, Yt, Zt are all positive, under the design choice552

15

Under review for RLC 2025, to be published in RLJ 2025

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00

Pr
ob

. o
f s

ol
ut

io
n

Bernstein

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00

Pr
ob

. o
f s

ol
ut

io
n

T-student

Randomicity 0.1 0.2 0.3 0.4

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00

Pr
ob

. o
f s

ol
ut

io
n

Bernstein

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00

Pr
ob

. o
f s

ol
ut

io
n

T-student

Randomicity 0.2 0.3 0.4 0.5

Figure 3: Probability of solution as a function of the randomness of the behavior policy. Top:
Blackjack, bottom: Level-Based Foraging. Left: DR using Bernstein, right: DR using Student’s
t-inequality.

of having only positive rewards (because all its terms are positive, although we require to constraint553
the estimated Q-value and Value functions to be positive, which is easily done). Eqs. (18) and (19)554
follow from max(

∑
i αi) ≤

∑
i maxαi.555

Lastly, Eq. (20) follows from the fact that γt, w≤t, w≤t−1 ∈ [0, 1] for all t and all trajectories, and556

that gj(st,at) ≤ Rmax and Q̂Pi
j (st, a

(ego)
t), V̂ Pi

j (st) ≤ V max under the very natural assumption that557
we constraint these estimated functions to be below V max: this is trivially done, as we can just clip558
them — this does not affect the properties of the DR estimator.559

Therefore, if we set a = L(Rmax + 2V max) and ψ̂i,j,k = ρ̂DRi,j,k + L(Rmax + 2V max), the statement560
follows. □561

C Ablation on the randomness of the behavior policy562

We found that the performance of our algorithm, especially the probability of solution, is sensitive563
to the randomicity of the behavior policy used to collect data; for randomicity, we mean the ε564
stochasticity that we add to the raw NN-based policy (see Sections 4.2 and 4.3). Figure 3 presents565
the probability of solution for our algorithm (using DR exclusively) based on this stochasticity. The566
plots are obtained by separating, using the same data of Figure 2, the results obtained using different567
behavior policies (similarly to Figure 4). That is, each line in Figure 3 corresponds to n runs of568
Algorithm 1 (for Chainworld and Blackjack, n = 20, for Level-Based Foraging n = 10) using data569
collected by a single behavior policy.570

We can see that, for all inequality bounds (left, Bernstein, right, Student’s t-inequality) and all en-571
vironments (top, Blackjack, bottom, Level-Based Foraging), collecting data with a more random572
behavior policy lead to improved probability of solution. For both environments, values of ε lower573
than 0.3 (light orange) lead to a very low probability of solution (0 in some cases), whereas by in-574
creasing the randomicity we get higher and higher values, up to 1.0 when the dataset size gets larger.575
The effect is more clear when we use the Bernstein inequality on Blackjack (top-left plot). Still, this576
effect is present even when we use Student’s t-inequality (right plots), even though sometimes the577
differences between different randomicity are not as clear (for example, in Blackjack, top-right).578

16

Seldonian Reinforcement Learning for Ad Hoc Teamwork

102 103

Dataset size

0.00

0.25

0.50

0.75

1.00

Pr
ob

. o
f s

ol
ut

io
n

102 103

Dataset size

0.00

0.25

0.50

0.75

1.00

Pr
ob

. o
f u

nr
el

ia
bl

e
so

lu
tio

n

UNRELIABLE PDIS (Bernstein) PDIS (T-student) DR (Bernstein) DR (T-student)

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00

Pr
ob

. o
f s

ol
ut

io
n

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00

Pr
ob

. o
f u

nr
el

ia
bl

e
so

lu
tio

n

UNRELIABLE PDIS (Bernstein) PDIS (T-student) DR (Bernstein) DR (T-student)

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00

Pr
ob

. o
f s

ol
ut

io
n

101 102 103 104

Dataset size

0.00

0.25

0.50

0.75

1.00
Pr

ob
. o

f u
nr

el
ia

bl
e

so
lu

tio
n

UNRELIABLE PDIS (Bernstein) PDIS (T-student) DR (Bernstein) DR (T-student)

Figure 4: Extended results for Chain World (top), Blackjack (center) and Level-Based Foraging
(bottom). Each line corresponds to n runs of Algorithm 1 using a different behavior policy. See text
for more details.

This behavior can generally be expected as the higher the randomicity the larger the state-action579
space explored, leading to more varied data for the out-of-policy estimations.580

D Extended results581

In Figure 4 we present the same results as in Figure 2 but we do keep data separated depending582
on the behavior policy that was used to collected it. That is each line in Figure 4 corresponds to583
n runs of Algorithm 1, where n depends on the environment (for Chain World and Blackjack we584
have n = 20, for Level-Based Foraging n = 10) starting from data collected by a single behavior585
policy. The shaded areas represent the 95% CI over the n runs. This shows, alongside Figure 3586
(which presents explicitly the same curves for DR of the left plots — the probability of solution —587
based on the randomicity ε of the behavior policies) that the results depend a lot on the behavior588
used to collect data. In some cases, using Bernstein is better than Student’s t-inequality (bottom-left589
plot, which corresponds to the probability of solution for Level-Based Foraging), but in general the590
latter is more efficient and lets us the Algorithm pick more policies and with less data. These plots591
also show that, across all domains and all runs, only a single time our Algorithm with PDIS, the592
second baseline, was able to get a probability of solution greater than zero, in Chain World by using593
Student’s t-inequality (top-left plot, purple line); in all other cases its probability of solution is zero.594
Meanwhile, by using DR we get much better estimations and we are able to pick solutions using595
almost all behaviors.596

17

