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Abstract

This paper presents a novel approach to multiobjective algorithms aimed at mod-
eling the Pareto set using neural networks. Whereas previous methods mainly
focused on identifying a finite number of solutions, our approach allows for the
direct modeling of the entire Pareto set. Furthermore, we establish an equiva-
lence between learning the complete Pareto set and maximizing the associated
hypervolume, which enables the convergence analysis of hypervolume (as a new
metric) for Pareto set learning. Specifically, our new analysis framework reveals
the connection between the learned Pareto solution and its representation in a po-
lar coordinate system. We evaluate our proposed approach on various benchmark
problems and real-world problems, and the encouraging results make it a poten-
tially viable alternative to existing multiobjective algorithms. Code is available at
https://github.com/xzhang2523/hvpsl/tree/master.

1 Introduction

Pareto solutions [1] effectively balance multiple objectives, making optimal tradeoffs among all
objectives. For a Pareto solution, improving one objective without adversely affecting others is not
possible. The Pareto set (PS) refers to the set of all Pareto solutions, while the Pareto front (PF)
denotes the image of the PS in the objective space. Over the years, numerous methods have been
developed to generate a single Pareto optimal solution [2, 3, 4], or a finite set of Pareto solutions
[5, 6, 7, 8, 9].

Under mild conditions on continuous optimization problems with m objectives, the Pareto set be-
comes a (m-1)-D continuous manifold [10, 11]; given that, the finite set learned from classical
methods might not accurately approximate the continuous manifold. To overcome this issue, Pareto
set learning (PSL) has been recently proposed in [12, 13], with the hope of training a neural net-
work model capable of approximating the entire Pareto set. The significant advantage of learning
the complete Pareto set is that a trained model can generate the optimal solution for any preference
(conceptually the weight of different objectives, see the definition in Lemma 1) in real time, allowing
for comprehensive decisions.

The training approach utilized in prior PSL techniques can be viewed as an extension of
decomposition-based multiobjective optimization strategies [5] to an infinite preference scenario.
However, several unresolved issues existed in prior PSL methods. Firstly, the interpretation of the
sum of aggregation functions under different preferences lacks clarity, simply taking all preferences
as equally important and thus leading to a partial Pareto front. Secondly, aside from the EPO-based
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PSL proposed in [3], there has been limited investigation into the connection between a preference
and its corresponding Pareto solution. Despite the effectiveness of the EPO-based PSL approach,
its computational latency has been identified as a significant obstacle in its ability to handle large-
scale problems. Thirdly, theoretical guarantees of PSL are lacking, and therefore the underlying
mechanism of PSL remains unknown.

After identifying the challenges regarding existing PSL techniques for solving multiobjective opti-
mization problems, we propose a new approach that addresses all these issues. Our method utilizes a
geometric perspective on Pareto set learning, which takes the form of a hypervolume maximization
problem. This approach brings several benefits. Firstly, it provides a clear interpretation of Pareto
set learning as a hypervolume maximization problem, allowing us to build a theoretical bound be-
tween the PSL results and the hypervolume, one of the most important indicators in multiobjective
optimization. Secondly, our approach establishes a clear correspondence between a specific pref-
erence and the resulting Pareto solution in a polar coordinate system. Lastly, the new perspective
implies several important techniques in hypervolume-based PSL to learn an entire Pareto set.

The contributions of this work can be summarized as follows:

1. We provide a novel geometric perspective for Pareto set learning, which recognizes its equivalence
to hypervolume maximization. As a result, the Pareto solutions derived from this method are
aligned precisely with the polar angle under mild conditions, which is the input of the neural
network in use.

2. We provide the first theoretical analysis for Pareto set learning, specifically examining the gap
between the estimated hypervolume and the true hypervolume of the Pareto set. Our analysis
enhances a better understanding of Pareto set learning.

3. We have developed techniques to learn a more complete Pareto front, surpassing previous methods
that obtain a partial solution set. Our approach achieves promising results on various benchmark
problems and real-world problems.

2 Related works

Multiobjective Optimization via Hypervolume Maximization. The hypervolume (hv) indica-
tor measures the quality of multiobjective optimization solution sets and is consistent with Pareto
dominance. Maximizing hypervolume is a basic principle in multiobjective optimization algorithm
design, and several popular algorithms like SMS-EMOA [14], SIBEA [15, 16], and MO-CMA-ES
[17] use it to generate a finite number of optimal solutions. A new method named multiobjective
learning using hv maximization was proposed in [18], which leverages hypervolume maximization
while training neural networks to obtain a finite set of Pareto solutions. This method differs from our
approach as it does not rely on a model to approximate the Pareto set. Instead, it adopts the gradient
search method from [19] for hypervolume maximization. A major drawback of this approach is its
high computational complexity in obtaining the hypervolume gradient.

Pareto Set Learning and Conditional Models. Pareto set learning involves using a neural net-
work conditioned on user preference to learn the entire Pareto set. This concept was first introduced
in [12, 13] and has gained popularity in various areas like drug design [20], multitask image classifi-
cation [21, 22], and multiobjective neural combinatorial optimization [23]. In addition, some studies
have used a similar conditional model to generate a set of diverse solutions, including the works ad-
dressing multiobjective reinforcement learning [24, 25, 26], and the works generating policies under
different conditional levels [27, 28].

3 Background

A multiobjective optimization (MOO) problem with m objectives can be stated as follows:

min
x∈X⊂Rn

f(x) = (f1(x), f2(x), ..., fm(x)), (1)

where x is the decision variable,X is a compact decision space, and f(x) : X → Rm is the objective
function. The objective domain Y = f ◦ X 1. Given two candidate solutions x(a), x(b) ∈ X , we

1The function f applied to set A produces a new set B, denoted as B = {y|f(x), x ∈ A}.
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say x(a) dominates x(b) if and only if ∀ i ∈ [m] 2, fi(x(a)) ≤ fi(x
(b)), and ∃j ∈ [m] \ i such that

fj(x
(a)) < fj(x

(b)). x∗ is a Pareto solution if no other solution x ∈ X dominates x∗;its image
f(x∗) is called a Pareto objective. The set of all Pareto solutions is called the Pareto set (PS).
And the image of PS is called the Pareto front T := f ◦ PS. In a separate note, a solution x′

is called weakly Pareto optimal if there exists no solution x ∈ X such that fi(x) ≺ fi(x
′) 3. A

Pareto solution is a weakly Pareto solution, but a weakly Pareto solution is not necessarily a Pareto
solution.
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Figure 1: Pareto solutions, weakly Pareto
solutions, dominated solutions, and the HV.

The nadir/ideal point of a multiobjective problem is con-
structed by the worst/best objective values of the Pareto
set. ynadir

i = supy∈T {yi}, and similarly, yideal
i =

infy∈T {yi}, ∀i ∈ [m]. The hypervolume indicator is de-
fined as a metric of the optimality of a set of objective
vectors A, detailed as follows.
Definition 1 (The hypervolume (HV) indicator [29]). The
hypervolume indicator of a set A is defined as:

Hr(A) := Λ({q | ∃p ∈ A : p ⪯ q and q ⪯ r}), (2)

where Λ(·) denotes the Lebesgue measure, and r is a ref-
erence vector. We require that r ⪰ ynadir.

Figure 1 depicts the hypervolume indicator of the Pareto
front, represented by the yellow region.

4 Pareto Set Learning via Hypervolume
Maximization
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Figure 2: PSL learns the whole Pareto set.
For a coordinate θ, model xβ(·) learns a cor-
responding Pareto solution xβ(θ).

As shown in Figure 2, Pareto set learning (PSL) aims to
learn the whole Pareto set by a model, which differs from
population-based MOEAs [5, 6]. One straightforward
way is to learn a Pareto neural model xβ(·) : Θ 7→ Rn

that translates a polar coordinate θ ∈ Θ into a Pareto so-
lution x ∈ Rn, where Θ = [0, π

2 ]
m−1. After the train-

ing, for any θ ∈ Θ, the Pareto neural model xβ(·) can
directly generate an approximate Pareto solution in real-
time (<1s).

In this paper, we present a novel geometry view to for-
mulate PSL based on hypervolume maximization. Firstly,
we notice the following equivalence holds:
Proposition 1 (Equivalence between PSL and HV max-
imization). When r is a reference point dominating the
whole Pareto front T , and A is a non-dominated solution
set, we have T = argmaxAHr(A).

Proposition 1 shows that Hr(A) achieves the maximal value if the model xβ(·) learns all Pareto
solutions. So, it is natural to convert the Pareto set learning problem with a parameter β as a hyper-
volume maximization problem:

max
β
Hr(f ◦ xβ(Θ)). (3)

In Equation (3), the subscript r refers to a fixed reference point satisfying y ⪯ r, ∀y ∈ T . The
objective function measures the quality of the Pareto neural model xβ(·) and this objective achieves
optimality only when the model learns all Pareto solutions.

4.1 Pareto Front Hypervolume as an Expectation

2[m] denotes the index set {1, . . . ,m}.
3The symbol “⪰ / ≻” is used to compare two m-D vectors a and b. a ⪰ b when ai ≥ bi, ∀i ∈ [m], and

similarly, a ≻ b when ai > bi,∀i ∈ [m].
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Figure 3: Pareto front hypervolume calculation in the polar coordi-
nate. ρX (θ) is the distance from the reference point to the Pareto
front along angle θ. ρ(x, θ) (used in Equation (6)) is the projected
distance at angle θ.

In this section, we are devoted
to casting the optimal solution of
Equation (3) (i.e., the hypervolume
of the Pareto front) into a polar
coordinate form. To accomplish
this, we leverage an existing tech-
nique to transform the hypervol-
ume calculation of a finite set of
solutions into an expectation prob-
lem, which is formulated as the fol-
lowing lemma,
Lemma 1 (Hypervolume scalariza-
tion of a finite set [30, 31, 32]). Let
A = {y(1), y(2), . . . , y(N)} be set
of finite objective vectors and r is a
reference point, r ⪰ y(i). The hy-
pervolume of set A with r can be expressed in terms of an expectation,

Hr(A) = cmEθ

[(
max
y∈A

min
i∈[m]

{
ri − yi
λi(θ)

})m]
, (4)

where we specify θ follows Unif(Θ), the uniform distribution on Θ. λ(θ) ∈ Sm−1
+ is the prefer-

ence vector: it is the Cartesian coordinate of θ on the positive unit sphere Sm−1
+ , with λ1(θ) =

sin θ1 sin θ2... sin θm−1, λ2(θ) = sin θ1 sin θ2... cos θm−1, . . ., λm(θ) = cos θ1. cm = πm/2

2mΓ(m/2+1)

is a constant that is only dependent on m and Γ(·) is the Gamma function.

We notice that, it is not “economic” to estimate the hypervolume Hr(A) in Lemma 1: numerous
samples from Unif(Θ) are needed, while the expensive Monte Carlo estimation only provides the
hypervolume for a finite set A. Even when A consists of only one point, the calculation of Hr(A)
still relies on the expectation over Unif(Θ). However, extending the scope of the input set A in
Lemma 1, we discover that the hypervolume of a (weakly) Pareto front containing an infinite number
of objective vectors can as well be expressed as an expectation,

Hr(T ) = cmEθ [ρX (θ)
m
] , (5)

with proof provided in Appendix B.2. The distance function denoted as ρX (θ), as illustrated in
Figure 3(a), represents the Euclidean distance between a reference point denoted as r and the Pareto
front at the coordinate of θ. The distance function ρX (θ) can be precisely evaluated using the
equation provided, with the proof available in Appendix B.4.

ρX (θ) = max
x∈X

ρ(x, θ) = max
x∈X

min
i∈[m]

{
ri − fi(x)

λi(θ)

}
. (6)

where ρ(x, θ) = mini∈[m]

{
ri−fi(x)
λi(θ)

}
represents the projected distance of an objective vector f(x)

at coordinate θ, as illustrated in Figure 3(a). Let λ be the shorthand of λ(θ), we have the following
proposition of the optimal solution of Equation (6).

Proposition 2. Given an objective vector y that satisfies r1−y1

λ1
= . . . = rm−ym

λm
. 1 : If y is weakly

Pareto optimal, then y is one of the optimal solutions of g̃(y, λ) = maxy∈Y mini∈[m]

{
ri−yi

λi

}
. 2 :

If y is Pareto optimal, then y is the only optimal solution of g̃(y, λ).

Proof. 1 : If there exists a y′ such that g̃(y′, λ) < g̃(y, λ), then y′ ≺ y, contradicting the weakly
Pareto optimality of y. 2 : If there exists a y′ ̸= y such that g̃(y′, λ) = g̃(y, λ), then y′ ⪯ y, and
there exists at least one index j where y′j < yj . This contradicts the Pareto optimality of y.

Remark 1 (On the “exact” Pareto solution). Proposition 2 establishes a connection between the
polar coordinate θ and the resulting Pareto solution. Once the Pareto neural model is well-trained,
and assuming the absence of weakly Pareto solutions and the existence of an exact solution [3], the
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Pareto neural model can predict the “exact” Pareto solution aligned with the polar angle θ. Since
we only utilize an efficient aggregation function (Equation (6)), this property reveals that there is
no need to solve the optimization problem (Eq. (24) in [3]) in order to achieve the “exact” Pareto
solution.

We close the subsection with a note on the case of disjointed Pareto fronts. With a disjointed Pareto
front T , the function ρX (θ) can serve to measure the distance between the reference point r and
the attainment surface [33]. In this disjointed scenario, the expectation form of the Pareto front
hypervolume by ρX (θ), as specified by Equation (5), still holds (c.f. Appendix B.4).

4.2 Alternative Forms of Hypervolume

In this section, we train the Pareto neural model xβ(·) by maximizing the alternative forms of hyper-
volumes. The optimization of the value ofHr(f ◦ xβ(Θ)) as defined in Equation (1) is challenging.
However, by utilizing Equation (6), we can choose to instead optimize an easy-to-compute form of
hypervolume, denoted byHr(β). This surrogate hypervolume functionHr(β), called PSL-HV1, is
defined as follows:

Hr(β) = cmEθ[ρβ(θ)], ρβ(θ) =

{
ρ(xβ(θ), θ)

m if ρ(xβ(θ), θ) ≥ 0

ρ(xβ(θ), θ) otherwise
. (7)

Here, ρ(xβ(θ), θ) ≤ ρX (θ) is the projected distance at angle θ as defined by Equation (6). When
the Pareto neural model is supposed to learn the whole Pareto set, ρ(xβ(θ), θ) → ρX (θ), ∀θ ∈ Θ

and thusHr(β)→ Hr(T ).
We also provide a second surrogate hypervolume function, denoted as PSL-HV2 (derivation in Ap-
pendix B.5). The Pareto hypervolume can be estimated as the volume difference between the regions
dominating r and those that dominate the Pareto front. PSL-HV2 maximizes the following objective,

Hr(β) =

m∏
i=1

(ri − yideal
i )− cmEθ[ρβ(θ)]. (8)

where ρβ(θ) = ρX (xβ(θ), θ)
m and ρX (θ) is an alternative projected distance function

ρX (xβ(θ), θ) = maxi∈[m]
fi(xβ(θ))−yideal

i

λi(θ)
. Although the Pareto neural model xβ(·) theoretically

has the ability to represent the complete Pareto set [34] with both surrogate hypervolume functions,
our empirical results show that the quality of the learned solutions is sensitive to the specific choice:
Equation (7) and Equation (8) give different performances on various tasks.
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Figure 4: The gradient graph above is used for computing the estimated gradient of the hypervolume.

Algorithm. The goal of HV-based PSL is to maximize the objective function, maxβHr(β). Both
Equation (7) and Equation (8) can be effectively optimized using gradient descent approaches. The
empirical gradient ∇βĤr(β) can be obtained efficiently through backpropagation, as illustrated
in Figure 4. Their analytical forms are provided in Appendix B.5. For practical algorithms, the
empirical gradient is estimated from a batch of N angles θ(1), . . . , θ(N) through sampling from
Unif(Θ). Then the neural network is updated by β ← β + η∇βĤr(β), where η is a learning rate.
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4.3 Discussion on Different PSL Approaches

PSL-HV1 and PSL-HV2 have different designs for their projected distance function ρ(x, θ), with
PSL-HV2 exhibiting significant growth as λ approaches boundary preferences such as [0,1] or [1,0]
(taking the m = 2 case as an example). This property brings both pros and cons compared to
PSL-HV1. The steep gradient may present numerical difficulties, but it also permits PSL to adopt
larger weights and learn boundary solutions more effectively. We have observed that this feature
of PSL-HV2 is particularly useful for learning the complete Pareto set, as opposed to previous PSL
methods that only learned a partial Pareto front.
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Figure 5: The point-wise maximum of
quasi-convex functions preserves quasi-
convexity. A positive-weighted linear com-
bination of quasi-convex functions can result
in a non-quasi-convex function.

To avoid only learning a partial Pareto set, we propose a
simple strategy for PSL-HV1 that involves using a larger
reference point than the nadir point. This approach, which
is common in hypervolume-based optimization methods
[35, 36], gives larger weights to boundary preferences and
allows for a more complete Pareto set.

Before our study, two primary approaches for PSL opti-
mization were followed [12, 37]: optimizing the expec-
tation using EPO/LS and optimizing using Tchebycheff
functions. However, EPO-based PSL is slow for complex
multiobjective problems and solely learns a partial Pareto
set, and LS-based PSL only finds the convex portion of
a Pareto front. Our work extends the approach in [37]
by introducing a hypervolume interpretation for PSL. We
establish a clear relationship between preferences and so-
lutions and develop a theoretical analysis framework for
PSL. Additionally, we propose methods to recover a more
complete Pareto set, thus improving upon the existing ap-
proaches.

5 Statistical Guarantees on Hypervolume Convergence

This section first establishes the bounds for the generalization error of the Pareto front when using
the exact distance function ρX (θ) in Section 5.1. Subsequently, we discuss the generalization bound
of proposed HV-based Pareto set learning in Section 5.2.

5.1 Convergence of the Pareto Front Hypervolume

Proposition 3. 1 : ρ(x, θ) is concave when fi’s are convex. 2 : ρ(x, θ) is quasi-concave when fi’s
are quasi-convex. 3 : ρβ(θ) defined in Equation (7) is quasi-concave w.r.t xβ(θ) when the objective
function f(x) is quasi-convex.

Proof. The statements 1 and 2 are consequences of the preservation of convexity/quasi-convexity
by taking the point-wise maximum of convex/quasi-convex functions. The statement 3 is justified
by the fact that a non-decreasing composition of a quasi-concave function preserves quasi-concavity.
Additionally, it can be observed that the function f(x) = xm for x ≥ 0 (and f(x) = x otherwise)
is a non-decreasing function.

Remark 2. To better understand Proposition 3, we analyze a modified bi-objective VLMOP2
problem from [38]. In this example, let f1(x) = 1.2(1 − exp(−(x+ 1)

2
)) and f2(x) = 1 −

exp(−(x− 1)
2
). Figure 5 illustrates the limitation of the linear scalarization (LS) approach [39].

It shows that the LS-based PSL may yield multiple local optimas when using a non-negative linear
combination of quasi-convex functions f1 and f2, resulting local optimal Pareto models. However,
it is worth noting that the function −ρ(x, θ) considered remains quasi-convex [40].

Assuming that b ≤ ri − yi ≤ B, ∀i ∈ [m], y ∈ T . Let Z(θ) = cmρX (θ)m, then supθ Z(θ) ≤
cmBmmm/2. Let Ĥr(T ) := 1

N

∑N
i=1Z(θ(i)) denote the empirical estimation of Hr(T ) with N

6



samples. Via Hoeffding inequality, similar to [32], we have the following inequality,

Pr(|Ĥr(T )−Hr(T )| ≥ ϵ) ≤ 2 exp

(
−2Nϵ2

c2mB2mmm

)
.

5.2 PSL Generalization Bound

In this section we show that the proposed hypervolume metric can fit into the regular neural net-
work studies and similarly enjoy the statistical guarantees on error

∣∣Hr(β)−Hr(T )
∣∣ for PSL-HV1.

Specifically, the term can be interrupted as the difference between the metric of xβ̂ computed and the
metric of ground truth x∗, indicating the quality of the MLP map xβ̂ . We will shortly show the error
above will converge with regular SGD optimizers and large enough sample size N , as expected.

We can first decompose the aforementioned error as follows,∣∣∣Hr(β̂)−Hr(T )
∣∣∣ ≤ ∣∣∣Hr(β̂)− Ĥr(β̂)

∣∣∣︸ ︷︷ ︸
ε1

+
∣∣∣Ĥr(β̂)− Ĥr(β

∗)
∣∣∣︸ ︷︷ ︸

ε2

+

∣∣∣Ĥr(β
∗)−Hr(β

∗)
∣∣∣︸ ︷︷ ︸

ε3

+
∣∣Hr(β

∗)−Hr(T )
∣∣︸ ︷︷ ︸

ε4

,
(9)

in which we define Ĥr(β) =
cm
N

∑N
i=1[ρ(xβ(θ

(i)), θ(i))m] as the empirical hypervolume estimation
associated with parameter β. β∗ is a set of reference parameters for the MLP map xβ . Those errors
respectively correspond to generalization error (ε1), optimization error (ε2), generalization error
(ε3), and approximation error (ε4). We can conceptually set the reference parameter β∗ as a good
local maxima (in the local region of β̂) for hypervolume maximization so that the approximation
error ε4 is small due to the universal approximation character of the MLP model family [41]. In
our analysis, we assume that regular SGD technique brings β̂ close enough to the local maxima β∗,
resulting in a small optimization error ε2.

The rest steps to show convergence is to control the generalization error ε1 and ε3. We present the
following theorem to give the uniform convergence rate of the generalization error, which applies to
both ε1 and ε3.
Theorem 1 (Generalization error). Let the object functions fi’s all be Lf -Lipschitz, and let xβ be an
L-layer MLP σL (WLσL−1 (· · ·σ1 (W1θ) · · · )), with 1-Lipschitz positive homogeneous activation
σi’s and ∥Wi∥F ≤ Bw,∀i ∈ [L] (under this setting β is the set of Wi’s). The design matrix Xθ

denotes the N collected samples θi’s. We further set the reference point r so that ri − fi(x) ∈
[b, B],∀i, for x ∈ T ∪ f ◦ xβ∗(Θ) ∪ f ◦ xβ̂(Θ) ⊂ Rn. With probability at least 1− δ (δ < 1

2 ), for

β = β∗ or β̂, we have∣∣∣Hr(β)− Ĥr(β)
∣∣∣ ≤ cmBmm

m
2

(
2
√
2mn

Nb
LfB

L
w∥Xθ∥F

(
1 +

√
2L ln(2)

)
+ 3

√
ln(4/δ)

2N

)
.

Remark 3. The results above imply the generalization errors ε1 and ε3 can converge at the rate of
1/
√
N , considering for each row in Xθ its L2-norm is bounded from above by

√
(m− 1)π2/4.

Obtaining the results require adaptations of classical Rademacher complexity techniques. The dif-
ficulty comes from the minimum form of ρ(x, θ) = mini∈[m]

{
ri−fi(x)
λi(θ)

}
, which differs from usual

loss functions. We provide the detailed derivation in Appendix B.6. We further remark the scale
assumption on ri−fi(x) is mild. f ◦xβ∗(Θ) and f ◦xβ̂(Θ) are supposed to approach T , the Pareto
Front, under proper optimization procedures; we are thus able to select a reference point r far away
enough from the set T ∪ f ◦ xβ∗(Θ) ∪ f ◦ xβ̂(Θ) to make the assumption hold.

6 Experiments

Testing problems. This section demonstrates that our method can generate high-quality contin-
uous Pareto solutions by the Pareto neural model for multiobjective synthetic, design, and control
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problems. We evaluated our approach’s performance against established methods using well-known
benchmark problems such as ZDT1-2 (m=2) [42], VLMOP1-2 (m=2) [38], and real-world design
problems like Four Bar Truss Design (RE21, m=2), Hatch Cover Design (RE24, m=2), and Rocket
Injector Design (m=3) [43] as well as MO-LQR (m=2,3) [44]. MO-LQRs serve as multiobjective
reinforcement learning problems. For simplicity, except MO-LQR, all objectives are normalized to
[0,1]. Problem details are described in Appendix A.3.

Neural model architecture and feasibility guarantees. We employed a 4-layer fully connected
neural network, similar to [37], to construct our Pareto neural model xβ(·). The network is optimized
using Stochastic Gradient Descent (SGD) with a batch size of 256 4. For constrained problems, to
conform to the lower bound (l) and upper bound (u) constraints, a sigmoid activation function
mapped the previous layer’s output to these boundaries. For unconstrained problems, the output
solution was derived from a linear combination of xmid. Further architecture details are available in
Appendix A.2.

Baseline methods. Our approaches are compared to existing hypervolume-based multiobjective
evolutionary algorithms (MOEAs) SMS-EMOA [14] and various Pareto set learning (PSL) methods.
Before our approach was developed, three PSL approaches were developed, namely, EPO-based and
Tchebycheff-based. Baseline methods are listed as follows,

1. One hypervolume-based multiobjective evolutionary algorithm: SMS-MOEA [14], which uses
evolutionary algorithms to maximize the hypervolume of a finite set of solutions.

2. The LS-based PSL [12], optimizing minβ Eλ∼Unif(∆m−1)[
∑m

i=1 λifi(xβ(θ))], where ∆m−1 is the
(m− 1)-simplex. Since linear scalarization can only find the convex part of the Pareto front [39],
theoretically, this method cannot recover the full Pareto front.

3. The EPO-based PSL [12], optimizing minβ Eλ∼Unif(∆m−1)[EPO(f(xβ(θ)), λ)], the expectation
of EPO loss [3]. The EPO-based PSL is slow since each solving for each EPO subproblem, which
involves an expensive optimization problem.

4. The Tchebycheff-based PSL [23, 37], optimizing minβ Eλ∼Unif(∆m−1)[maxi∈[m] λifi(xβ(θ))].
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Figure 6: Result comparisons on VLMOP2.
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Figure 7: Result comparisons on the Four Bar Truss Design problem.
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Figure 8: Result comparisons on the Rocket Injector Design problem.

(Metrics.) To evaluate our learned Pareto solutions, we use three indicators. These are: (1) the Hy-
pervolume (HV), which measures the covered objective space, where a high value indicates greater

4Batch size is 128 for EPO-based PSL on LQRs since EPO is extremely slow.
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Table 1: The training/prediction time of PSL-HV, and running time of SMS-EMOA in Rocket Injector Design.

SMS-EMOA MOEA/D Ours (Train) Ours (Predict)

Time 6.2m 1.5m ≈ 40s <1s

coverage; (2) the Range indicator, which measures the extent of the Pareto front learned by the
model, where a larger Range is preferred; and (3) the Sparsity metric, which evaluates the de-
gree of sparsity in the learned Pareto front, where a lower sparsity value indicates a denser Pareto
front. See Appendix A.1 for formal metric definitions.

Key findings from experiments are summarized as follows.

Table 2: PSL results on all problems. For PSL-HV1, r = 0.6+ ynadir. For Tche-based PSL, the reference point
z = 1.1 · yideal, as claimed in their original paper.

ZDT1 ZDT2 VLMOP1

Method HV↑ Range↑ Sparsity↓ Time(s)↓ HV Range Sparsity Time(s) HV Range Sparsity Time(s)

PSL-EPO 10.82 0.94 0.14 90.7 11.21 1.43 0.86 91.1 11.55 1.18 0.11 90.79
PSL-LS 11.89 1.56 1.07 9.17 8.75 0.0 0.0 9.03 12.05 1.56 0.5 9.15
PSL-Tche 11.49 1.37 0.33 21.11 11.19 1.42 0.66 21.65 11.83 1.42 0.22 21.61
PSL-HV1 11.79 1.52 0.72 31.79 11.3 1.46 0.73 36.68 12.07 1.57 0.84 32.24
PSL-HV2 11.77 1.52 0.7 25.71 11.51 1.55 1.0 25.8 12.02 1.54 0.46 25.45

VLMOP2 Four Bar Truss Design Hatch Cover Design

PSL-EPO 11.37 1.49 0.63 90.95 11.2 1.18 0.21 255.44 11.96 1.16 0.07 649.12
PSL-LS 11.51 1.57 7.22 9.57 11.89 1.56 0.94 41.75 12.14 1.5 0.27 113.52
PSL-Tche 11.47 1.52 0.63 22.14 11.5 1.37 0.31 55.37 12.06 1.37 0.08 125.43
PSL-HV1 11.57 1.57 0.98 32.52 11.9 1.56 0.81 66.6 12.18 1.53 0.7 131.36
PSL-HV2 11.56 1.56 0.66 25.78 11.82 1.53 0.65 60.03 12.15 1.51 0.37 130.4

MO-LQR2 Rocket Injector Design MO-LQR3

PSL-EPO 3.42 0.3 0.23 546.81 37.23 0.68 0.81 133.03 2.41 0.31 2.33 1149.4
PSL-LS 3.59 0.5 0.84 296.98 35.55 0.19 0.88 21.35 2.58 0.37 1.9 408.59
PSL-Tche 3.52 0.39 0.44 314.75 37.73 0.19 1.34 34.01 2.54 0.38 2.19 424.15
PSL-HV1 3.61 0.73 3.62 310.01 40.84 0.7 3.31 39.09 2.62 0.59 14.7 430.72
PSL-HV2 3.61 0.59 2.19 312.95 40.94 0.7 5.54 36.63 2.6 0.55 8.93 424.51

1 (Comparison with SMS-EMOA.) PSL and HV-based evolutionary algorithms serve as different
purposes. PSL is designed to find an infinite set of solutions using a neural network model, while
EMOAs aim to find a finite solution set. This difference becomes evident in three-objective prob-
lems, as shown in Figure 8, where 100 evenly distributed solutions by traditional MOEAs fall short
of approximating the full Pareto set/front. PSL requires only several seconds of training time and
can quickly predict highly approximated Pareto solutions for other unknown preferences. In con-
trast, SMS-EMOA typically takes a much longer time, especially for objectives larger than three.
The advantage of evolution-based SMS-EMOA is its ability to find global optimal solutions, while
current PSL models still struggle with handling local optimas.

Table 2 reports the mean results for various PSL approaches under five random seeds. The standard
deviation values can be found in Appendix A.4. All experiments were conducted with 1000 itera-
tions for PSL-HV1, PSL-HV2, LS-based PSL, and Tchebycheff-based PSL, while EPO-based PSL
is limited to 100 iterations due to time limitation.

2 (Comparison with LS-based PSL.) It is well-recognized that LS-based PSL [12] recovers only
the convex part of a Pareto front [39], resulting in finding a small portion of Pareto solutions for
concave problems. For example, in the case of ZDT2, LS-based PSL could only find two extreme
points. We would like to mention another less-discussed limitation of linear scalarization: the non-
uniform distribution of Pareto objectives under uniformly distributed preferences. This issue is
evident in problems like ZDT1 and VLMOP2 where Pareto objectives are densely distributed at the
front’s margins, but fewer objectives are distributed around the center of the front.

3 (Comparison with EPO-based PSL.) As mentioned in Remark 1, both EPO and our proposed
method (under mild conditions) can find the exact Pareto objective aligned with the preference vec-
tor. However, our proposed approach is approximately 40+ times faster than EPO-based PSL. Unlike
the EPO-based PSL method, our approach only requires calculating the gradient of one objective
function, avoiding the need to compute gradients for all objectives and solve complex optimiza-
tion problems as described in their work [3]. This efficiency advantage is particularly evident in
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MO-LQR problems, where EPO-based PSL takes significantly more time to execute. Furthermore,
we have observed that EPO-based PSL does not perform well on tasks ZDT1 and Rocket Injector
Design.

4 (Balancing range and sparsity of a PF.) When simply running PSL, we observed a tendency for
the Pareto objectives to concentrate on the central portion of the Pareto front, neglecting solutions
that correspond to boundary preferences, such as f = [0, 1]/[1, 0] for bi-objective problems. To
address this observation, a simple technique is to assign higher weights to the boundary objectives.
For PSL-HV1, a larger reference point r is suggested to be used in comparison to the nadir point,
and therefore more coordinates will correspond to boundary Pareto objectives (refer to Remark 4 in
Appendix B.4). However, setting the reference point to be excessively large can result in a sparse
learned Pareto front; we empirically set this offset to be 0.6 (the empirical study is in Figure 10 and
11). In PSL-HV2, the preference λ is placed in the denominator, resulting in greater weighting for
the boundary Pareto objectives when the preference value approaches zero.

PSL-HV2 is related to the modified Tchebycheff (mTche) scalarization function [45], but the latter
has different sampling techniques and lacks a hypervolume interpretation. When λ approaches
[0,1] or [1,0], both mTche and PSL-HV2 faces numerical challenges resulting in a large gradient,
which can be effectively addressed the gradient clipping technique [46, 47] with a clipping norm
of a certain value (e.g., 4.0 is used). Figure 9 shows that the learning process is unstable without
gradient clipping but is stabilized when gradient clipping is applied. In contrast, PSL-HV1 involves
minimization rather than maximization in its inner optimization problem and does not suffer from
gradient explosion.

7 Conclusion, Limitation, and Future Work
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Figure 9: Learning curves of PSL-HV2 on VLMOP2.

This paper presented a method to learn the set
of all Pareto solutions through hypervolume
maximization. The method was motivated by
a previous lemma, which allows for hypervol-
ume estimation of infinite solutions. We further
gave a precise geometric perspective on Pareto
set learning; we studied the generalization gap
between estimated and true hypervolumes, and
discussed the key techniques to train a Pareto
neural model that outperformed previous meth-
ods. The proposed method will also be incor-
porated into the Moon library [48].

Limitation and future works. The acknowledged constraint of our work is the reliance on
gradient-based methods, which can result in locally optimal solutions when the objectives fi’s are
non-convex. To overcome this issue and provide more solid statistical guarantee, one feasible direc-
tion is to explore classical nonparametric techniques that can improve the robustness of the method.
Another way is to use some evolutionary methods such as [49, 50, 51, 52] to skip local optimal
solutions. Additionally, we plan to apply the more robust Pareto neural models to large-scale multi-
objective problems, such as molecular design and deep reinforcement learning.
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A Experiment Details

A.1 Metrics

We assess the performance of a Pareto neural model, denoted as xβ(·), by examining its output
with the input of Θ̂. Here, Θ̂ represents a set of N uniformly discrete angles. The resulting output
solution set is denoted as A and can be expressed as A = {y(1), . . . , y(N)}, where A = f ◦ xβ(Θ̂).
The three metrics are:

1. The Hypervolume indicator [29], which measures both the diversity and convergence of
A;

2. The Range indicator, which measure the angular span of A;

3. The Sparsity indicator [53], which measures the average distances between neighbor-
hood points.

(The Hypervolume Indicator.) The hypervolume indicator [29] measuring A is standard, which
has been defined in the main paper,

Hr(A) = Λ({q | ∃p ∈ A : p ⪯ q and q ⪯ r}),

where r is a reference vector, r ⪰ ynadir. For bi-objective problems, the reference point r is set to
[3.5, 3.5], whereas for three-objective problems, the reference point is set to [3.5, 3.5, 3.5].

(The Range Indicator.) The range indicator of a set of solutions A : A =
{
y(1), . . . , y(N)

}
measures the angular span of A in their polar coordinates. Let (ρ(i), θ(i)) be the polar coordinate
of objective vectors y(i) with a reference point r. The relationship between the Cartesian and polar
coordinates is, 

y1 = r1 − ρ sin θ1 sin θ2... sin θm−1

y2 = r2 − ρ sin θ1 sin θ2... cos θm−1

. . .

ym = rm − ρ cos θ1.

(10)

The Range indicator can be defined as the minimal angle span among all angles.

Range(A) = min
i∈[m−1]

max
1≤u<v≤N

{∣∣∣θ(u)i − θ
(v)
i

∣∣∣} . (11)

(The Sparsity Indicator.) The sparsity indicator first introduced in [53]. A small sparsity indicator
is preferred, implying that the learned objective set is dense.

Sparsity(A) =
1

N − 1

m∑
j=1

N−1∑
i=1

(
ỹ
(i)
j − ỹ

(i+1)
j

)2
(12)

where ỹ
(i)
j is the i-th solution, and the j-th objective values in the sorted list by the non-dominating

sorting algorithm [6]. For a better illustration, the unit of the Sparsity indicator is 10−3 for
bi-objective problems and 10−7 for three objective problems.

A.2 Neural Model Architecture and Feasibility Guarantees

We use a 4-layer fully connected neural network similar to [37] for the Pareto neural model xβ(·).
We optimize the network using Stochastic Gradient Descent (SGD) optimizer with a batch size of
256. The first three layers are,

xβ(·) : θ → Linear(m− 1, 64)→ ReLU
→ Linear(64, 64)→ ReLU
→ Linear(64, 64)→ ReLU→ xmid.

(13)
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For constrained problems, to satisfy the constraint that the solution xβ(λ) must fall within the lower
bound (l) and upper bound (u), a sigmoid activation function is used to map the previous layer’s
output to these boundaries,

xmid → Linear(64, n)→ Sigmoid
→ ⊙(u− l) + l→ Output xβ(λ).

(14)

For unconstrained problems, the output solution is obtained through a linear combination of xmid,

xmid → Linear(64, n)→ Output xβ(λ). (15)

A.3 Benchmark Multiobjective Problems

Standard Multiobjective Optimization (MOO) problems. ZDT1-2 [42] and VLMOP1-2 [38]
are widely recognized as standard multi-objective optimization (MOO) problems and are commonly
employed in gradient-based MOO methods. ZDT1 exhibits a convex Pareto front described by
(y2 = 1 − √y1, 0 ≤ y1 ≤ 1). ZDT2 presents a non-convex Pareto front defined by (y2 =

1 − y21 , 0 ≤ y1 ≤ 1), and the LS-based PSL approach can only capture a small number of Pareto
solutions.

Real world designing problem. Three real-world design problems with multi-objective optimiza-
tion are the Four Bar Truss Design (RE21), Hatch Cover Design (RE24), and Rocket Injector Design
(RE37). In order to simplify the optimization process, the objectives have been scaled to a range of
zero to one.

Multiobjective Linear Quadratic Regulator. The Multiobjective Linear Quadratic Regulator
(MO-LQR) problem is first introduced in [44]. MO-LQR is regarded as a specialized form of
multi-objective reinforcement learning, where the problem is defined by a set of dynamics presented
through the following equations: {

st+1 = Ast +Bat
at ∼ N (KLQR · st,Σ).

(16)

In accordance with the settings discussed in the aforementioned work by Parisi et al. [44], A, B,
and Σ are adopted as identity matrices. The initial state for the bi-objective problem is set to s0 =
[10, 10], whereas for the three-objective problem, it is set to s0 = [10, 10, 10]. The reward function
is defined as ri(st, at), where i represents the respective objective. The function is formulated as
follows:

ri(st, at) = −(1− ξ)(s2t,i +
∑
i ̸=j

a2t,i)− ξ(a2t,i +
∑
i ̸=j

s2t,i). (17)

Here, ξ is the hyperparameter value that has been set to 0.1. The ultimate objective of the MO-
LQR problem is to optimize the total reward while simultaneously taking into account the discount
factor of γ = 0.9. The control matrix KLQR is assumed to be a diagonal matrix, and the diagonal
elements of this matrix are treated as decision variables. The objectives are scaled with 0.01 for
better illustration purposes.

Table 3 shows the number of decision variables and objectives used in this paper.

A.4 Results on All Problems

Results for all the examined problems are depicted in Figures 12-20, and combined with the results
tabulated in Table 2 of the main paper, several conclusions can be made.

Behavior of LS-based PSL. The linear scalarization function can only learn the convex part of a
Pareto front [39]. This fact is validated by Figure 13(e), where LS-based PSL can only learn several
discrete solutions.
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Table 3: Problem information for multiobjective synthetic, design, and LQR problems.

Problem m n

ZDT1 2 5
ZDT2 2 5
VLMOP1 2 5
VLMOP2 2 5
LQR2 2 2
Four Bar Truss Design 2 4
Hatch Cover Design 2 2
Rocket Injector Design 3 4
LQR3 3 3

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
f1

0.0

0.2

0.4

0.6

0.8

1.0

f 2

PSL
True
Pref.

(a) r = ynadir + 0.1

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
f1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f 2

PSL
True
Pref.

(b) r = ynadir +0.25

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
f1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f 2

PSL
True
Pref.

(c) r = ynadir + 0.4

0.0 0.5 1.0 1.5
f1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f 2

PSL
True
Pref.

(d) r = ynadir +0.55

0.0 0.5 1.0 1.5 2.0
f1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

f 2

PSL
True
Pref.

(e) r = ynadir +0.70

Figure 10: Hyperparameter study on ZDT1.

However, it is crucial to note that the connection between a solution and its corresponding preference
vector, λ(θ), is non-uniform. This observation was rarely discussed in previous literature. Therefore,
a uniform sampling of preferences will not result in a uniform sampling of Pareto objectives. This
observation is supported by the results depicted in Figures 12(e), 15(e), and 17(e), where the learned
Pareto objectives by LS-based PSL are not uniformly distributed. And as a result, the sparsity
indicators are rather high, which indicates the learned front is sparse in some regions.

Time Consumption of EPO-based PSL. In comparison to our approach, the Exact Pareto Op-
timization [3] algorithm, which serves as the foundation for EPO-based PSL [12], exhibits low
efficiency due to two factors.

1. To execute the Exact Pareto Optimization (EPO) algorithm, it is necessary to compute
the gradients of all objectives, ∇fi(x)’s. This prerequisite entails performing m back-
propagations in pytorch, resulting in higher computational costs. In contrast, our approach
relies just one back-propagation operation, rendering it a more efficient option in compari-
son to EPO.

2. For each iteration, the Exact Pareto Optimization (EPO) algorithm entails solving a com-
plicated optimization problem based on the specific value of fi’s, utilizing the respective
gradients of ∇fi(x)’s. In contrast, our method does not rely on solving optimization prob-
lems for each iteration.

Trade-off between Range and Sparsity. We find that the reference point r plays a crucial role
in the performance of the final learned Pareto front for PSL-HV1. To demonstrate this effect, we
consider different values of r from the set [0.1, 0.25, 0.4, 0.55, 0.7] in addition to the nadir point
of each problem. The results are shown in the following two problems on the ZDT1 and ZDT2
problems.

Based on our empirical findings, emphasizing boundary Pareto objectives is crucial for recovering
a complete Pareto set. From Figure 10 and 11, we observe that treating all coordinates θ equally
(small nadir point) typically results in a partial recovery of the Pareto set. When r exceeds a certain
threshold (e.g., 0.4), raising its value directs Pareto objectives towards the boundary of the Pareto
front, leading to poor uniformity of Pareto objective distribution.
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Figure 11: Hyperparameter study on ZDT2.
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Figure 12: ZDT1.

A.5 Pseudocode

For completeness, we provide the pseudocode of the proposed method. PSL-HV1 is selected as an
example. η is a positive learning rate.

Algorithm 1: PSL-HV1.
Input: The multiobjective function f(·) and initial Pareto neural model parameter β.
for k=1: Niter do

Sample N preference angles θ(1), . . . , θ(N) from the positive unit sphere Sm−1
+ .

Calculate the preference λ(1), . . . , λ(N) by Equation (26).
Calculate the empirical PSL gradient∇βĤr by Equation (28) with N sampled preferences.

Update β by: β ← β + η∇βĤr.
end
Output: The trained Pareto neural model xβ(·).

B Characters of Hypervolume Maximization

B.1 The Notation Table

To enhance the clarity of the paper, we have included a summary of the main notations in Table 4.

B.2 Hypervolume Calculation in the Polar Coordinate

The idea of calculating the hypervolume is similar to the Lemma 5 proved in Appendix of [32]. The
difference is that, we use a distance function ρX (θ) as defined in Equation (6). For completeness,
we provide the proof for Equation (5) in this section.
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Figure 13: ZDT2.
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Figure 14: VLMOP1.
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Figure 15: VLMOP2.
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Figure 16: RE21.
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Figure 17: RE24.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
f1

1.5

2.0

2.5

3.0

3.5

4.0

4.5

f 2

PSL
True
Pref.

(a) HV1

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
f1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f 2

PSL
True
Pref.

(b) HV2

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
f1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f 2

PSL
True
Pref.

(c) Tche

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
f1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f 2

PSL
True
Pref.

(d) EPO

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
f1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f 2

PSL
True
Pref.

(e) LS

Figure 18: MO-LQR2.
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Figure 19: MO-LQR3.
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Figure 20: RE37.

Table 4: The notation table.

Variable Definition

x The decision variable.
X/Y The decision/objective space.
n The number of the decision variables.
N The number of samples.
m The number of objectives.
θ The angular polar coordinate.
λ(θ), λ An m-dimensional preference vector.
β The model parameter.
ynadir/yideal The nadir/ideal point of a given MOO problem.
T The Pareto front.
Hr(A) The hypervolume of set A w.r.t a reference .
Sm−1
+ The (m-1)-D positive unit sphere.

Proof. Hr(T ) can be simplified by the following equations. Here Ω denoted the dominated regions
by the Pareto front, i.e.,Hr(T ) = Λ(Ω, r).

𝒇𝟏

𝒇𝟐

𝒓

dv

𝝆

Figure 21: The hypervolume equals to the integral of dv.
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Hr(T ) =
∫
Rm

IΩdy1 . . . dym

(“dv” denoted the infinitesimal sector area. )

=

∫ π
2

0

. . .

∫ π
2

0︸ ︷︷ ︸
m−1

dv

(dv equals the angle ratio multiplied by ρm multiplied by the unit for volume. )

=

∫ π
2

0

. . .

∫ π
2

0︸ ︷︷ ︸
m−1

cm ·
ρX (θ)m

2π · πm−2
dθ1 . . . dθm−1︸ ︷︷ ︸

dθ

(Re-arranging the terms.)

=
cm

2πm−1

∫ π
2

0

. . .

∫ π
2

0︸ ︷︷ ︸
m−1

ρX (θ)mdθ

=
cm

2πm−1
·
(π
2

)m−1

· Eθ[ρX (θ)m]

= cmEθ[ρX (θ)m].

(18)

We specify θ ∼ Unif(Θ) = Unif([0, π
2 ]

m−1
) in Equation (18).

Line 2 holds since it represents the integral of Ω expressed in polar coordinates, wherein the element
dv corresponds to the volume associated with a segment obtained by varying dθ.

Line 3 calculates the infinitesimal volume of dv by noticing the fact that the ratio of dv to cm is
ρX (θ)m

2π·πm−2 . Line 4 is a simplification of Line 3. And Line 5 and 6 express the integral in its expectation
form.

B.3 MOO Theory

In this section, we give the definitions and give proofs of the propositions used in the main paper.

We first formally define the term of aggregation function.

Definition 2 (Aggregation function (modified from the Definition 2.6.1 in [54])). A function
g(·, λ) : Rm 7→ R representing the preferences of the decision maker among the objective is
called an aggregation function. g(·, λ) : Rm 7→ R is decreasing, indicating that g(y(a), λ) <
g(y(b), λ),when y(a) ≺ y(b).

This definition is slightly different from the original definition in Definition 2.6.1 in [54]), as we
modify the condition from “strictly decreasing” to “decreasing”. The considered aggregation func-
tion ρ(x, θ) does not satisfy the “strictly decreasing” condition in the original definition. When an
aggregation function is only decreasing, the optimal objective can be weakly Pareto optimal. For this
modified version of aggregation function, we have the following Lemma modified from Theorem
2.6.2 in [54].

Lemma 2. Let y∗ belongs to the optimal solution set of g(·, λ), then y∗ is weakly Pareto optimal or
Pareto optimal. Further, if y∗ be the only optimal solution of g(·, λ), then y∗ is Pareto optimal.

We also provide the upper bound of the distance function ρX (θ) in this section by the following
lemma.

Lemma 3 (The bound of in ρX (θ) Equation (6)).

ρX (θ) ≤ Bm1/2, (19)

when b ≤ ri − fi(x) ≤ B, ∀x ∈ X ,∀i ∈ [m] and ∥λ(θ)∥ = 1.
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Proof. We show that the following inequalities hold,

ρX (θ) ≤ max
x∈X ,∥λ(θ)∥=1

(
min
i∈[m]

{
ri − fi(x)

λi(θ)

})
(ri − fi(x) ≤ B)

≤ max
∥λ(θ)∥=1

(
min
i∈[m]

{
B

λi(θ)

})
≤ B

m−1/2
= Bm1/2.

(20)

The transition from line one to line two is due to the fact that the inequality ri − fi(x) ≤ B
holds for all x ∈ X and for all i ∈ [m]. The transition from line two to line three is
max∥λ(θ)∥=1

(
mini∈[m]

{
B

λi(θ)

})
is an optimization problem under the constraint ∥λ(θ)∥ = 1.

The upper bound for this optimization is when λi = . . . = λm = m−1/2.

B.4 ρX (θ) as a Max-Min Problem

In this section, we first present the proof of Equation (6) from the main paper. To begin, we de-
fine the attainment surface AT [33] to handle disjointed PFs. Intuitively, the attainment surface is
continuous, containing the weakly Pareto objectives and Pareto objectives (see Figure 22).
Definition 3 (Attainment surface [33]). The attainment surface AT induced by the Pareto front (PF)
T is defined as the boundary set of the PF.

AT = {y ∈ Rm|∃y′ ∈ T , y′ ⪯ y, y′ ⊀ y}. (21)

With this definition, the distance ρX (θ) between the reference point r and the point coordinated at θ
can be calculated using the following equation:

ρX (θ) = max
x∈X

ρ(x, θ) = max
x∈X

min
i∈[m]

{
ri − fi(x)

λi

}
,

where λi are shorthand’s for λi(θ).

Proof. We first define the point P .

Definition 4. P is defined as the intersection point of the ray from r along angle θ and the attainment
surface.

There are two cases to consider:

1 P is a Pareto objective, i.e., P ∈ T . 2 P belongs to the attainment surface but not to the Pareto
front, i.e., P ∈ (AT \ T ).
Let x∗ be one of the optimal solutions of Problem maxx∈X ρ(x, θ). Next, we will separately demon-
strate the validity of the above-mentioned statements.

1 When P is a Pareto objective, the according to Proposition 2, we have that y = P = f(x∗) is
the only objective of the problem g̃(y, λ) = maxy∈Y mini∈[m]

{
ri−yi

λi

}
. And therefore, ρX (θ) =

ri−fi(x
∗)

λi
,∀i ∈ [m].

2 When y = P ∈ (AT \ T ). Then, according to Proposition 2, y is one of the optimal ob-
jective of problem g̃(y, λ) = maxy∈Y mini∈[m]

{
ri−yi

λi

}
. In such a case, according to the defi-

nition of attainment surface (Equation (21)), we have that there exist at least one index j, where
j = argmin

rj−fj(x
∗)

λj
such that ρX (θ) = maxx∈X ρ(x, θ) = maxx∈X mini∈[m]

{
ri−fi(x)

λi

}
=

mini∈[m]

{
ri−fi(x

∗)
λi

}
=

rj−fj(x
∗)

λj
= ri−Pi

λi
, i ∈ [m].
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Figure 22: Illustration of the attainment surface on a case of a disjointed Pareto front.

The previous discussion explained that, in the case of a disjointed Pareto front, the distance be-
tween r and the attainment surface corresponding to angle θ is denoted by ρX (θ). In Figure 22, the
black dot represents the solution for this scenario. It is worth noting that the integral of the distance
function ρX (θ) yields the hypervolume of a disjointed Pareto front, i.e., Hr (T ) = Hr (AT ). This
property aligns with the purpose of our paper.

In closing this section, we note that the absence of a (weakly) Pareto objective aligned with the
preference angle θ.

Remark 4. When P (in Definition 4) is not a (weakly) Pareto objective, The optimal solution y∗

w.r.t the problem g̃(y, λ) = maxy∈Y mini∈[m]

{
ri−yi

λi

}
belongs to the boundary of the Pareto front

∂T . Further y∗ = argminy∈Y maxi∈[m]

{
yi−Pi

λi

}
.

B.5 Pareto Front Hypervolume Calculation (Type2 and gradients)
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Hypervolume

( )

r

Ideal point

Figure 23: The hypervolume calculation (Type2).

In this section, we provide another form to cal-
culate the Pareto front hypervolume. We first
define region A as the set of points dominating
the Pareto front.

A = {q | ∃p ∈ T : p ⪯ q and q ⪰ pideal}.
(22)

We use the notation Λ(·) to represent the
Lebesgue measure of a set. Geometrically, as
illustrated in Figure 23, it can be observed that:

Λ(A) +Hr(β) =

m∏
i=1

(ri − yideal
i ). (23)

The volume of A can be calculated in a polar
coordinate as follows,

Λ(A) = cm

∫
(0,π2 )m−1

ρX (θ)mdθ, (24)

where cm is a constant and ρX (θ) represents the distance from the ideal point to the Pareto front
at angle θ. This distance function ρX (θ) is obtained by solving the optimization problem assuming
that any ray from θ intersects with the Pareto front.

Problem 1.

ρX (θ) = min
x∈X

ρX (θ, x) = min
x∈X

max
i∈[m]

{
fi(x)− yideal

i

λi(θ)

}
, θ ∈

(
0,

π

2

)m−1

. (25)
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The relationship between preference λ and the polar angle θ is as follows:
λ1(θ) = sin θ1 sin θ2 . . . sin θm−1

λ2(θ) = sin θ1 sin θ2 . . . cos θm−1

...

λm(θ) = cos θ1.

(26)

Combining Equation (24) and Equation (25) implies that Hr(β) can be estimated as an expectation
problem,

Hr(β) =

m∏
i=1

(ri − yideal
i )− 1

m
cmEθ[ρX (xβ(θ), θ)

m
]. (27)

Remark 5. Compared to PSL-HV1, PSL-HV2 has weaker theoretical results due to its reliance
on a stronger assumption. This assumption requires the presence of a (weakly) Pareto objective
aligned on the ray originating from any coordinate θ. An additional challenge with PSL-HV2 is that
the Lipschitz constant cannot be bounded, making generalization theory for PSL-HV2 significantly
more difficult (Equation (30)).

We conclude this section by presenting the analytical expression for ∇βHr(β). The gradient for
PSL-HV1 can be computed using the chain rule, which yields:

∇βHr =



mcmEθ[ρ(xβ(θ), θ)
m−1 ∂ρ(xβ(θ), θ)

∂xβ(θ)︸ ︷︷ ︸
1×n

∂xβ(θ)

∂β︸ ︷︷ ︸
n×d

], ρ(xβ(θ), θ) ≥ 0.

cmEθ[
∂ρ(xβ(θ), θ)

∂xβ(θ)︸ ︷︷ ︸
1×n

∂xβ(θ)

∂β︸ ︷︷ ︸
n×d

], Otherwise.
(28)

where we specify θ to satisfy the law of Unif(Θ). The gradient of PSL-HV2 can be calculated by,

∇βHr = −mcmEθ[ρX (xβ(θ), θ)
m−1

]
∂ρX (xβ(θ), θ)

∂xβ(θ)︸ ︷︷ ︸
1×n

∂xβ(θ)

∂β︸ ︷︷ ︸
n×d

]. (29)

B.6 Proof of Theorem 1

Definitions and preliminaries. The proof will heavily utilize the existing results on Rademacher
complexity of MLPs. We will first provide some useful definitions and facts. We start with the
definition of Rademacher complexity as follows:

Definition 5 (Rademacher complexity, Definition 13.1 in [55]). Given a set of vectors V ⊆ Rn, we
define the (unnormalized) Rademacher complexity as

URad(V ) := E sup
u∈V
⟨ϵ, u⟩,

where each coordinate ϵi is an i.i.d. Rademacher random variable, meaning Pr [ϵi = +1] = 1
2 =

Pr [ϵi = −1]. Furthermore, we can accordingly discuss the behavior of a function class G on S =
{zi}Ni=1 by using the following set:

G|S := {(g (z1) , . . . , g (zN )) : g ∈ G} ⊆ RN ,

and its Rademacher complexity is

URad
(
G|S
)
= E

ϵ
sup

u∈G|S

⟨ϵ, u⟩ = E
ϵ
sup
g∈G

∑
i

ϵig (zi) .

Utilizing Rademacher complexity, we can conveniently bound the generalization error via the fol-
lowing theorem:
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Theorem 2 (Uniform Generalization Error, Theorem 13.1 and Corollary 13.1 in [55]). Let G be
given with g(z) ∈ [a, b] a.s. ∀g ∈ G. We collect i.i.d. samples S = {zi}Ni=1 from the law of random
variable Z. With probability ≥ 1− δ,

sup
g∈G

Eg(Z)− 1

N

∑
i

g (zi) ≤
2

N
URad

(
G|S
)
+ 3(b− a)

√
ln(2/δ)

2N
.

Specifically, the Rademacher complexity in using MLP is provided by the following theorem:

Theorem 3 (Rademacher complexity of MLP, Theorem 1 in [56]). Let 1-Lipschitz positive homo-
geneous activation σi be given, and

GMLP := {θ 7→ σL (WLσL−1 (· · ·σ1 (W1θ) · · · )) : ∥Wi∥F ≤ Bw}

Then

URad
(
GMLP
|S

)
≤ BL

w∥Xθ∥F (1 +
√
2L ln(2)).

We can then utilize the following composition character of Rademacher complexity, to help induce
the final Rademacher complexity of hypervolume.

Lemma 4 (Rademacher complexity of compositional function class, adapted from Lemma 13.3 in
[55]). Let g : Θ → Rn be a vector of n multivariate functions g(1), g(2), . . . , g(n), G denote the
function class of g, and further G(j) be the function class of g(j),∀j. We have a “partially Lipschitz
continuous” function ℓ(g(θ), θ) so that |ℓ(g1(θ), θ)− ℓ(g2(θ), θ)| ≤ Lℓ∥g1(θ) − g2(θ)∥ for all
g1, g2 ∈ G and a certain Lℓ > 0; the associated function class of ℓ is denoted as Gℓ. We then have

URad
(
Gℓ|S
)
≤
√
2Lℓ

n∑
j=1

URad
(
G(j)|S

)
.

Proof. This proof extends Lemma 13.3 in [55] for vector-valued g and “partially Lipschitz continu-
ous” ℓ. We first similarly have

URad
(
Gℓ|S
)
= E sup

g∈G

∑
i

ϵiℓ(g(θi), θi)

=
1

2
E

ϵ2:N
sup
f,h∈G

(
ℓ(f(θ1), θ1)− ℓ(h(θ1), θ1) +

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))

)

≤ 1

2
E

ϵ2:N
sup
f,h∈G

(
Lℓ∥f(θ1)− h(θ1)∥+

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))

)

≤ 1

2
E
ϵ

sup
f(j),h(j)∈G(j)

Lℓ

√
2

∣∣∣∣∣∣
n∑

j=1

ϵ
(j)
1 (f (j)(θ1)− h(j)(θ1))

∣∣∣∣∣∣+
N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))

)
,

where ϵ(j)1 ’s are new i.i.d. Rademacher variables; the last inequality comes from Proposition 6 in [57]
(see Equations (5)-(10) in [57] for more details). We can then get rid of the absolute value by
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considering swapping f and h,

sup
f(j),h(j)∈G(j)

√2Lℓ

∣∣∣∣∣∣
n∑

j=1

ϵ
(j)
1 (f (j)(θ1)− h(j)(θ1))

∣∣∣∣∣∣+
N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))


=max

 sup
f(j),h(j)∈G(j)

√2Lℓ

n∑
j=1

ϵ
(j)
1 (f (j)(θ1)− h(j)(θ1)) +

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))

 ,

sup
f(j),h(j)∈G(j)

√2Lℓ

n∑
j=1

ϵ
(j)
1 (h(j)(θ1)− f (j)(θ1)) +

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))


= sup

f(j),h(j)∈G(j)

√2Lℓ

n∑
j=1

ϵ
(j)
1 (f (j)(θ1)− h(j)(θ1)) +

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))

 .

We can thus upper bounded URad
(
Gℓ|S
)

by

1

2
E
ϵ

sup
f(j),h(j)∈G(j)

√2Lℓ

n∑
j=1

ϵ
(j)
1 (f (j)(θ1)− h(j)(θ1)) +

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))


=E

ϵ
sup

g(j)∈G(j)

√2Lℓ

n∑
j=1

ϵ
(j)
1 g(j)(θ1) +

N∑
i=2

ϵiℓ(g(θi), θi)

 ,

Repeating this procedure for the other coordinates, we can further have

URad
(
Gℓ|S
)
≤
√
2LℓE

ϵ
sup

g(j)∈G(j)

 N∑
i=1

n∑
j=1

ϵ
(j)
i g(j)(θi)

 ≤ √2Lℓ

n∑
j=1

E
ϵ

sup
g(j)∈G(j)

(
N∑
i=1

ϵ
(j)
i g(j)(θi)

)
,

which leads to our claim in the lemma.

Proof of Theorem 1. We are now geared up for the complete proof.

Proof. We first introduce the sketch of the proof. We mainly utilize Theorem 2 to attain the
claimed results in Theorem 1. Specifically, we set the random sample set S = {θi}Ni=1, the
function class G as {θ 7→ cmρ(xβ(θ), θ)

m} (the assumption ri − fi(x) ∈ [b, B] indicates that
ρ(x, θ) = mini∈[m]{ ri−fi(x)

λi(θ)
} ≥ b ≥ 0 and by the definition in Equation (7), ρβ(θ) is thus al-

ways ρ(x(θ), θ)m; xβ(·) is an L-layer MLP to be specified later). Applying Theorem 2, we can
obtain that with probability at least 1− δ

2 ,

sup
g∈G

Eθg(θ)−
1

N

∑
i

g (θi) ≤
2

N
URad

(
G|S
)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N
,

where the definition of URad and G|S can be found in Definition 5. Simply replacing G with
−G := {−g : g ∈ G}, we can have the inequality of the other direction with probability at least
1− δ

2 :

sup
g∈−G

Eθg(θ)−
1

N

∑
i

g (θi) ≤
2

N
URad

(
−G|S

)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N

⇒ sup
g∈G

Eθ − g(θ)− 1

N

∑
i

−g (θi) ≤
2

N
URad

(
−G|S

)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N

⇒ sup
g∈G

1

N

∑
i

g (θi)− Eθg(θ) ≤
2

N
URad

(
G|S
)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N
,
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where we apply the property URad
(
−G|S

)
= URad

(
G|S
)
. We thus, with probability at least 1− δ

(as a result of union bound), can upper bound supg∈G
∣∣Eθg(θ)− 1

N

∑
i g (θi)

∣∣ by

max

{
sup
g∈G

Eθg(θ)−
1

N

∑
i

g (θi) , sup
g∈G

1

N

∑
i

g (θi)− Eθg(θ)

}

≤ 2

N
URad

(
G|S
)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N
.

For the next step, we will upper bound URad
(
G|S
)

by analyzing the structure of cmρ(xβ(θ), θ)
m

and utilizing the existing bound (see Theorem 3) for Rademacher complexity of MLP xβ .

The main idea of controlling URad
(
G|S
)

is to obtain the “partially Lipschitz continuity” that
|ρ(xβ(θ), θ)− ρ(xβ′(θ), θ)| ≤ Lρ∥xβ(θ) − xβ′(θ)∥ for a certain Lρ > 0; with the “partially Lip-
schitz continuity” we can apply Lemma 4 and obtain the desired bound. For simplicity, we denote
xβ(θ), xβ′(θ) respectively as x, x′, and use λj’s as shorthand for λj(θ)’s. We now expand the dif-
ference |ρ(xβ(θ), θ)− ρ(xβ′(θ), θ)| as:∣∣∣∣min

j∈[m]

rj − fj(x)

λj
− min

k∈[m]

rk − fk(x
′)

λk

∣∣∣∣
=max

{
min
j∈[m]

rj − fj(x)

λj
− min

k∈[m]

rk − fk(x
′)

λk
, min
k∈[m]

rk − fk(x
′)

λk
− min

j∈[m]

rj − fj(x)

λj

}
.

If we respectively denote the minima index of the two finite-term minimization as j∗ and k∗, we can
then upper bound |ρ(xβ(θ), θ)− ρ(xβ′(θ), θ)| by

max

{
rk∗ − fk∗(x)

λk∗
− rk∗ − fk∗(x′)

λk∗
,
rj∗ − fj∗(x

′)

λj∗
− rj∗ − fj∗(x)

λj∗

}
=max

{
fk∗(x′)− fk∗(x)

λk∗
,
fj∗(x)− fj∗(x

′)

λj∗

}
≤ max

j∈{j∗,k∗}

|fj(x)− fj(x
′)|

λj

≤ max
j∈{j∗,k∗}

Lf |x− x′|
λj

.

We note there is a special property for λj when j is the minima index: as ∥λ∥ = 1, there must be a
certain λj ≥ 1/

√
m, and since b ≤ rj − fj(x) ≤ B, ∀j, we have

b

λj∗
≤ rj∗ − fj∗(x

′)

λj∗
≤ B

1/
√
m
⇒ λj∗ ≥

b√
mB

. (30)

With this special property, we obtain

|ρ(xβ(θ), θ)− ρ(xβ′(θ), θ)| ≤
√
mB

b
Lf |x− x′| .

We further have

|cmρ(xβ(θ), θ)
m − cmρ(xβ′(θ), θ)m|

=cm |ρ(xβ(θ), θ)− ρ(xβ′(θ), θ)|

(
m∑

k=1

ρ(xβ(θ), θ)
m−kρ(xβ′(θ), θ)k−1

)

≤cm
√
mB

b
Lf |x− x′|m(B

√
m)m−1 = cm

m

b
(B
√
m)mLf |x− x′| ,

which establishes the “partially Lipschitz continuity”. The distance function ρ(xβ(θ), θ) is bounded
by Lemma 3. We can then apply Lemma 4 and have

URad
(
G|S
)
≤
√
2cm

m

b
(B
√
m)mLfnURad

(
GMLP
|S

)
≤
√
2cm

m

b
(B
√
m)mLfn ·BL

w∥Xθ∥F (1 +
√

2L ln(2)).
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Combining the pieces above, we finally have

sup
g∈G

∣∣∣∣∣Eθg(θ)−
1

N

∑
i

g (θi)

∣∣∣∣∣
≤ 2

N
URad

(
G|S
)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N

≤cm(B
√
m)m

(
2
√
2mn

Nb
Lf ·BL

w∥Xθ∥F (1 +
√

2L ln(2)) + 3

√
ln(4/δ)

2N

)
,

which is the generalization error bound we claim.
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