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ABSTRACT

Deciding the computational complexity of algorithms is a really challenging prob-
lem even for human algorithm experts. Theoretically, the problem of deciding the
computational complexity of a given program is undecidable due to the famous
Halting problem. In this paper, we tackle the problem by designing a neural net-
work that comprehends the algorithmic nature of codes and estimates the worst-
case complexity. First, we construct a code dataset called the CodeComplex that
consists of 4,120 Java codes submitted to programming competitions by human
programmers and their complexity labels annotated by a group of algorithm ex-
perts. As far as we are aware, the CodeComplex dataset is by far the largest code
dataset for the complexity prediction problem. Then, we present several baseline
algorithms using the previous code understanding neural models such as Code-
BERT, GraphCodeBERT, PLBART, and CodeT5. As the previous code under-
standing models do not work well on longer codes due to the code length limit,
we propose the hierarchical Transformer architecture which takes method-level
code snippets instead of whole codes and combines the method-level embeddings
to the class-level embedding and ultimately to the code-level embedding. More-
over, we introduce pre-training objectives for the proposed model to induce the
model to learn both the intrinsic property of the method-level codes and the re-
lationship between the components. Lastly, we demonstrate that the proposed
hierarchical architecture and pre-training objectives achieve state-of-the-art per-
formance in terms of complexity prediction accuracy compared to the previous
code understanding models.

1 INTRODUCTION

Worst-case computational (algorithmic) complexity indicates the longest running time W (n) of an
algorithm given any input of size n. Programmers estimate an effective upper bound on the amount
of time required to complete the algorithm by analyzing its worst-case time complexity. We of-
ten describe the worst-case time complexity using the Big O notation using algebraic terms. For
instance, we denote the time complexity of an algorithm that runs in constant time regardless of
the size of input n by O(1). Similarly, we denote the linear-time or quadratic-time algorithm that
requires the amount of time which is linear or quadratic in n by O(n) or O(n2), respectively.

While the worst-case time complexity provides us the effective indicator on the efficiency of a given
algorithm or an actual implementation (a code), it is well-known that the problem of deciding the
worst-case time complexity of an algorithm is undecidable (Turing, 1936). Therefore, there have
been alternative tractable approaches to the problem of measuring the efficiency of an algorithm
or a code using the static code analysis including the cyclomatic complexity (McCabe, 1976), af-
ferent/efferent coupling, and the Master theorem (Bentley et al., 1980). On the other hand, many
researchers also have looked at the dynamic code analysis which is basically based on the real execu-
tion of codes using many test cases in terms of analyzing complexity of codes (Burnim et al., 2009;
Hutter et al., 2014; Nogueira, 2012). Dynamic code analysis is able to detect bugs and measure the
execution time and space during execution time but involves steps for generating suitable test cases
and actually running the code with the test cases.

With the rapid advancement of programming understanding models based on language models with
large-scale code datasets, the concept of ‘AI-powered (AI-assisted) programming’ is inching toward
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reality. Last year, OpenAI introduced GitHub Copilot powered by Codex (Askell et al., 2021) to
assist human programs in integrated development environments (IDEs) by automatically generating
codes from the context of the programming environment. More recently, DeepMind introduced Al-
phaCode (Li et al., 2022) that writes algorithmic programs from natural language specifications of
logical problems from competitive programming. However, it has been also confirmed from recent
studies (Austin et al., 2021; Jain et al., 2021) that the research on ‘genuine’ program understanding
AI is still at early stage. If AI can really understands programs as human programmers do and possi-
bly replace them in future, then it is natural that AI can also understand how to write ‘algorithmically
efficient’ programs rather than just memorize the code patterns seen from the training dataset.

We also expect that the problem of predicting computational complexity of a code is significant for
the educational purpose. Recently, there are a growing number of online coding platforms where
people just log in and write programs in online web IDE interfaces for the purpose of collaborative
programming, coding interview, programming competition, and especially programming education.
We can imagine that AI can help novice programming learners write efficient codes for given prob-
lems by suggesting codes implementing better algorithms than current codes and further advise
them with relative efficiency of the codes written by the learners compared to average or optimal
implementations.

In this paper, we propose the problem of estimating worst-case time complexity using the cutting-
edge deep neural network models and learning algorithms. First of all, we introduce the novel
code complexity benchmark dataset called the CodeComplex dataset which consists of 4,517 actual
program codes submitted to competitive programming platform (Codeforces1) with corresponding
complexity classes annotated by human algorithm experts. As far as we are aware, this is by far
the largest public dataset for the code complexity prediction task especially compared to the sole
existing dataset of its kind, the CoRCoD dataset (Sikka et al., 2020) with 932 Java codes.

Together with the novel benchmark, we also provide several baseline algorithms with their perfor-
mances for the code complexity prediction. Our baseline algorithms include the classical machine
learning algorithms using the hand-crafted features and several state-of-the-art deep learning algo-
rithms such as CodeBERT, GraphCodeBERT, PLBART and CodeT5.

2 THE CODECOMPLEX DATASET

Table 1: Statistical difference between CoR-
CoD and CodeComplex. Numbers in paren-
theses imply the codes from CoRCoD.

Class CoRCoD CodeComplex
O(1) 143 533 (+ 62)
O(n) 382 472 (+ 117)
O(n2) 200 553 (+ 48)
O(n3) 0 579
O(lnn) 54 576 (+ 18)
O(n lnn) 150 518 (+ 72)
NP-hard 0 572

Total 929 3,803 (+ 317)

Our dataset construction process owes much to the
recently released dataset called the CodeContests2, a
competitive programming dataset for machine learn-
ing by DeepMind. We constructed a dataset with the
codes from the CodeContests dataset that are again
sourced from the coding competition platform Code-
forces. Our dataset contains 4,120 codes in seven
complexity classes, where there are new 500 Java
source codes annotated with each complexity class.
The seven complexity classes are constant (O(1)),
linear (O(n)), quadratic (O(n2)), cubic (O(n3)),
O(lnn), O(n lnn), and NP-hard. We also re-use 317
Java codes from CoRCoD as we confirmed that they
also belong to the CodeContests dataset as the other
3,803 codes during the dataset creation process.

Remark that the CoRCoD (Sikka et al., 2020) is the sole previous dataset for the code complexity
prediction problem. The CoRCoD provides us with five classes of codes, O(1), O(n), O(n2),
O(lnn), and O(n lnn). However, the dataset is not well-balanced in terms of the complexity class
as seen in Table 1. Moreover, the size of the dataset is not sufficiently large for recent DL-based
algorithms as there are only 929 code samples in total. We expand the dataset to seven classes from
five, considering the most frequently used complexity classes in algorithmic problems and each class

1https://codeforces.com/
2https://github.com/deepmind/code contests
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Figure 1: A graphical description of the proposed hierarchical Transformer architecture.

has at least 500 codes totaling up to 3,803 codes to boost the study in this field especially in relation
to recent DL-based models.

3 PROPOSED METHOD

We propose a hierarchical Transformer architecture to better capture the hierarchical structure of
Java codes. A Java program consists of a group of classes where each class has its own variables
and methods. We can simply describe the structure of a Java code as a tree by representing the
relationship between a class instance and instance members as a parent-child relationship as shown
in Fig. 2. Since the previous Transformer-based language models used for understanding codes have
maximum length limit (512 in CodeBERT, PLBART, CodeT5 and 256 in GraphCodeBERT), these
models tend to perform worse on longer codes than the maximum length. However, it is inevitable
to comprehend the entire code to analyze the complexity of the code as the complexity should be
computed as a whole. As we can easily expect, a large portion of the algorithmic code dataset
has codes longer than the maximum length limit. For this reason, we propose to use the pre-trained
language model CodeBERT as a submodule of our hierarchical architecture so that it only deals with
code snippets corresponding to a single method or a variable. Then, we aggregate the information of
the entire code by processing the embeddings computed from each code snippet by the higher-level
Transformer.

Together with the hierarchical architecture, we also propose multi-level pre-training objectives for
pre-training our model. In the objectives, we aim to teach the model necessary code-related features
to analyze complexity such as the nested loop depth, existence of recursion, number of parameters,
call relation between methods and so on. Fig. 1 depicts our proposed hierarchical Transformer
architecture.

3.1 HIERARCHICAL MODEL ARCHITECTURE

Since Java is basically an object-oriented programming language, a Java code can be interpreted in a
permutation-invariant manner. For instance, the order of class or method declarations in a code does
not affect its semantics. For this reason, we employ the encoder network of the Set Transformer
that does not take the order of instances into account while learning the latent representations of
instances.

Let S = {c1, c2, . . . , cnc
} be a Java source code, where ci for i ∈ [1, nc] is a class-level code snippet

for the ith class declaration. Note that nc is the number of classes of a code. Then, each code
snippet for the ith class is defined as ci = {mi,1,mi,2, . . . ,mi,ni,m} where mi,j for j ∈ [1, ni,m] is
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a code for the jth element that we call the method-level code snippet that could be either a method
declaration, inner class declaration, field variable or so on. Note that ni,m is the number of method-
level code snippets in the class ci.

Instead of taking the entire code as input to a pre-trained programming understanding model such
as CodeBERT and GraphCodeBERT, we use the method-level code snippet mj which is relatively
shorter than the original code as input to the pre-trained model to obtain a latent representation emj ∈
Rd (d = 768 for BERT-based models) for the snippet.

Now the problem at hand is to learn the representation of each class declaration ci that comprises
information method-level code snippets from m1 to mni,m . Due to the permutation invariance of
method-level code snippets, we employ the permutation equivariant set attention blocks from the
Set Transformer (Lee et al., 2019) architecture. Then we take two different approaches for the
class declarations depending on the existence of the main method as it plays the primary role in
determining the computational complexity of the entire program. When there is no main method
in the class, we apply the max pooling on the ni,m method-level embeddings to obtain a single
class-level embedding eci ∈ Rd. Otherwise, we use the learned representation of the method-level
snippet for the main method in the class declaration as the class-level representation.

3.2 MULTI-LEVEL PRE-TRAINING OBJECTIVES

Class

Class

Var Method Method

Var Var Method

Var

Figure 2: Example of an abstract tree rep-
resentation of a Java code.

We pre-train our model in three levels: 1) token-level
pre-training (MLM), 2) method-level pre-training ob-
jectives and 3) class-level pre-training objectives.

In the method-level pre-training, we further train
the pre-trained programming language model such as
CodeBERT, GraphCodeBERT, PLBART, and CodeT5
using our pre-training objectives for learning the better
representation of codes for complexity prediction task.
With MLM objective for learning token-level informa-
tion, we further employ additional objectives called the
loop depth prediction, nubmer of parameters predic-
tion, hash set existence prediction, hash map existence
prediction, recursion existence prediction and sorting existence prediction for learning complexity-
related features of codes. We utilize MSE loss for the loop depth prediction and number of parame-
ters prediction as the both can be any non-negative integer and binary cross-entropy loss for the next
four objectives.

In the class-level pre-training, we primarily aim to pre-train the set attention blocks which takes the
set of method embeddings as input and computes a single representation for a class. Here we train
the set attention blocks by predicting the existence of edges between methods from a call graph of a
program. A call graph demonstrates the control flow of a code by representing calling relationships
between methods in a program. Let GCallGraph(p) = (V (p), E(p)) be a call graph of a program
p that consists of classes from c1 to cnc and each class ci consists of method-level code snippets
from mi,1 to mi,ni,m . Then, the set of nodes is defined as V (p) =

⋃nc

i=1{mi,1, . . . ,mi,ni,m} and
the set of edges is (mk,ml) ∈ E(p) where mk,ml ∈ V (p) and there is a reference in mk to
ml. Note that δ((mk,ml) ∈ E(p)) = 1 if (mk,ml) ∈ E(p) otherwise 0. Given two latent
representations emk

and eml
for computed from CodeBERT (or any other submodule), we compute

new representations e′mk
and e′ml

obtained from the permutation equivariant set attention blocks
to augment the method-level information with the information from the other method-level code
snippets. Now, let pkl = σ(e′mk

· e′ml
) be the probability of existing an edge (mk,ml) ∈ E(p),

which in turn implies the existence of calling relationship from mk to ml in the program p, where σ
is the sigmoid activation. Then, our class-level pre-training objective induced from the call graph of
a program p is defined as follows:

−
∑

mk,ml∈V (p)

[δ((mk,ml) ∈ E(p)) log pkl + (1− δ((mk,ml) ∈ E(p))) log(1− pkl)]. (1)
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3.3 DEAD CODE ELIMINATION

Since we consider codes submitted to competitive programming platform rather than well-
implemented commercial codes, it is often the case that many codes contain methods and vari-
ables that are not accessed after declarations. We can remove such variables and methods while not
changing the semantics of a code by statically analyzing whether or not each variable or method is
accessed in the code.

Table 4 shows the performance of our model with pre-training objectives on codes where dead
codes are eliminated. While it is observed that the performance gain from the model trained with
pre-training objectives by using the codes after dead code elimination is marginal on average, we
can also observe that the performance on longer codes (1024,∞] performance is best.

4 EXPERIMENTS

4.1 BASELINES

ML-based (Sikka et al., 2020) Simple ML classification algorithms such as decision tree, random
forest and SVM trained with hand-crafted features such as the number of statements, variables,
methods, loops, breaks, states and the existence of data structures (e.g., HashMap and HashSet)
and algorithms (e.g., sorting).

ASTNN (Zhang et al., 2019) A neural network model that encodes the abstract syntax tree (AST)
of a code. After encoding ASTs of statements with a recursive neural network called the statement
encoder, it arranges statement vectors by traversing the AST in preorder and employs a bidirectional
GRU for processing the sequential statement vectors.

CodeBERT (Zhong et al., 2020) A BERT-like pre-trained language model trained on both natural
language (NL) and programming language (PL) like Python, Java, JavaScript.

GraphCodeBERT (Guo et al., 2021) Similar to CodeBERT but leverages data flow information
for pre-training. Note that data flow is a graph that represents relationship between variables by
analyzing where the value of each variable comes from in the entire code.

PLBART (Ahmad et al., 2021) A pre-trained model for program understanding and generation that
uses both encoder and decoder for pre-training.

CodeT5 (Yue Wang & Hoi, 2021) While PLBART only treats codes simply as sequence of to-
kens as for NL sentences, CodeT5 relies on code-related features for pre-training such as identifier
prediction and tagging.

4.2 EXPERIMENTAL SETUP

Hyperparameters For training all Transformer-based models including ours, we use the AdamW
optimizer (Loshchilov & Hutter, 2019) with a learning rate scheduler using a warm-up phase with
a linear decay. For fine-tuning of deep learning based code understanding models including Code-
BERT, GraphCodeBERT, PLBART, and CodeT5, we used a learning rate of 2 · 10−6 and weight
decay of 1 ·10−2. N For the proposed model, we used a learning rate of 2 ·10−5 and applied different
weight decay rates for the CodeBERT submodule and the set attention blocks. For the CodeBERT
and set attention blocks, we used 1 · 10−2 and 1 · 10−3 as weight decay rate, respectively. We train
all models for 15 epochs with a batch size of 6.

For the set attention blocks from the Set Transformer, we use the hidden dimension of 768, 16
inducing points, four attention heads, and four layers of attention blocks.

Code Data Preprocessing We first filter comments, and remove import and package state-
ments that appear on top of codes using a regular expression as they do not affect the complexity of
codes. In order to split the code into class-level and method-level code snippets while maintaining
hierarchical information, we use javalang parser3 to transform Java codes into ASTs and extract
hierarchical information.

3https://github.com/c2nes/javalang
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Table 3: Complexity prediction accuracy of classification methods for each complexity class.

Category Method O(1) O(n) O(n2) O(n3) O(lnn) O(n lnn) NP-h

ML-based
Decision Tree 58.7% 15.1% 71.4% 35.2% 47.9% 67.7% 33.5%
Random Forest 68.1% 18.0% 38.4% 25.0% 48.6% 68.0% 67.9%
SVM 42.6% 17.6% 13.1% 6.0% 27.1% 24.9% 77.0%

AST-based ASTNN 71.4% 26.7% 14.2% 49.5% 56.1% 63.0% 82.0%

Encoder CodeBERT 78.4% 49.1% 44.8% 32.6% 76.4% 71.7% 81.3%
GraphCodeBERT 83.0% 40.7% 59.3% 11.2% 69.5% 73.4% 66.0%

Enc-Dec PLBART 83.4% 56.5% 45.1% 38.2% 75.0% 73.1% 88.4%
CodeT5 77.5% 46.0% 29.9% 17.3% 75.9% 70.2% 83.2%

Ours CodeBERT + HA 79.3% 44.0% 45.1% 32.2% 72.2% 77.9% 89.7%
(+ Pretrain) 70.0% 57.8% 45.6% 39.7% 76.5% 78.8% 88.1%
(+ dead code elim.) 72.9% 61.0% 42.2% 40.0% 79.6% 80.0% 88.6%

After then, we use the byte-pair encoding (BPE) tokenizer of RoBERTa (Liu et al., 2019) for the
tokenization of the codes for the training of DL models.

Dataset Split We split the CodeComplex dataset in two different manners. First, we randomly
split the data in 4:1 ratio. As a result, the training and test datasets contain 3,340 and 754 codes,
respectively. Second, we also randomly split the data in a similar ratio but ensure that the training
and test datasets have no problems in common. In other words, we randomly choose problems
instead of codes and assign the entire codes for the chosen problems into the test dataset until the
test dataset has around 1/5 of codes out of 4,517 codes. In case of split by problem, we perform five-
fold validation and calculate the average accuracy from five iterations as the prediction accuracy
tends to be highly sensitive to the choice of problems. Later, we confirm that the type of split
significantly affects the performance of complexity prediction.

4.3 EXPERIMENTAL RESULTS

Table 2: Complexity prediction performance
on different dataset splits.

Method Random Problem
Decision Tree 53.6% 46.9%
Random Forest 61.0% 45.3%
SVM 40.7% 24.7%

ASTNN 79.3% 51.1%

CodeBERT 86.0% 61.4%
GraphCodeBERT 80.3% 57.2%

PLBART 86.3% 63.8%
CodeT5 85.9% 55.6%

CodeBERT + HA 96.0% 61.3%
(+ Pretrain) 95.3% 64.2%
(+ Dead code) 94.3% 64.8%

Table 2 shows the experimental results of our ap-
proach with compared baselines. Note that HA
is the acronym of the proposed ‘hierarchical ar-
chitecture’. The results show that how to split
the data significantly affects the prediction perfor-
mance. While the classical ML methods based on
the hand-crafted features show worst performance
on both random split and problem split, pre-trained
models for PL exhibit much better performance on
random split. This implies that the models learn
the similarity of codes for the same problem instead
of the operational semantics of codes for complex-
ity prediction. In particular, our models (with/with-
out pre-training) both achieve accuracy higher than
95% which sufficiently surpasses the performance
of state-of-the-art pre-trained models.

ML vs DL for Complexity Prediction It can be
readily seen that ML methods perform poorly on both splits. It should be noted that why the com-
plexity prediction accuracy is much lower in our result than the result reported by Sikka et al. (2020).
The first reason is that the CodeComplex dataset has more classes (7) than CoRCoD dataset (5). Sec-
ond, we speculate that the training and test sets have soft overlap in the experiments as we confirm
that there are duplicated codes in the 929 codes of the CoRCoD dataset. We find that 50 codes
from 929 codes have exactly equivalent codes and two codes have ‘almost equivalent’ codes (which
become exactly equivalent after filtering comments) within the dataset.
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While ML methods do not perform well even on random split, DL models perform robustly on
random split (around 90% accuracy). We can see that the performance boost compared to the case
of problem split comes from the fact that DL models successfully exploit the token names from
raw codes. Due to the certain amount of problem overlap in random split, DL models make use
of specific token names consistently used for the same problem for predicting the same complexity
class with the code seen during the training.

Effectiveness of Pre-training Objectives Tables 2 exhibits that our pre-training objectives are
effective especially for the problem split setting. The performance gap with and without pre-training
is 4.3%p for problem split while the performance slightly gets worse with pre-training for random
split. Considering the fact that the performances of our model for random split are almost saturated
(over 95%) with and without pre-training, we speculate that the high performance mainly relies
on the similarity of code token distributions for the same problem rather than the computational
similarity of codes. On the other hand, the performance boost in problem split can be regarded as
more significant as it shows better understanding of semantics rather than similarity of used tokens.

Relationship between Code Length and Accuracy Table 4 shows the prediction performance of
models on codes of different lengths. We partition the codes in the test set into four groups according
to the length of sequences processed by the javalang tokenizer and calculate the prediction accuracy
for each group. We can confirm the clear tendency that the prediction performance degrades as the
length of code increases in every model. In order to verify the fact that a model performs better for
shorter codes, we perform dead-code elimination which removes codes that do not affect the program
results (unreachable or unused codes) on codes and compare the prediction accuracy. The result
shows that the prediction accuracy is improved in every length group. Moreover, the result shows
exactly what we expect from our hierarchical architecture design. With hierarchical architecture,
the prediction performance is enhanced from vanilla CodeBERT especially in longer length group
(more than 512 tokens) than in shorter length group (less than or equal to 512 tokens).

Error Case Analysis Table 3 and Fig. 3 show the type of errors our model more frequently makes.
We can see that the model is easily confused on polynomial-time algorithms including O(n), O(n2)
and O(n3). Our model makes many mispredictions for O(n) codes by predicting other classes
uniformly except O(2n) and is also frequently confused between quadratic and cubic algorithms.

Fig. 4 shows two failure cases where our model fails to predict the correct complexity class of
codes. Fig. 4a is the case where our model predicts quadratic time complexity for the code with
linear time complexity. At a glance, the code actually seems to be in O(n2) due to the nested for
loops. However, the number of iterations is actually controlled by an integer variable k. Another
example in Fig. 4b is also interesting. Our model predicts the complexity class as O(n2) but the
actual complexity is O(n3) because the method inside the nested for loops named lowestCost
runs in linear time in the size of input. From these error cases, we can deduce that our model focuses
on the computational structure of a code rather than merely the token distribution of a code.

5 RELATED WORK

Analyzing Time Complexity of Programs McCabe (1976) introduced a metric for quantitatively
measuring the complexity of a program called the cyclomatic complexity. Intuitively, the cyclomatic
complexity counts the number of linearly dependent paths. Bentley et al. (1980) presented the Mas-
ter theorem for divide-and-conquer algorithms by describing the time complexity of an algorithm as
a recurrence relation and solving the relation.

More recently, Sikka et al. (2020) studied a learning-based methods for code complexity predic-
tion. They released a novel code dataset with 929 Java codes annotated with runtime complexities
and proposed baselines of machine learning-based models with hand-engineered features. For in-
stance, they first extracted features such as the number of loops, methods, variables, jumps, breaks,
switches and the presence of special data structures or algorithms such as priority queue, hash map,
hash set, and sorting functions. After then, they run the famous ML classification algorithms such as
K-means, random forest, decision tree, SVM and so on. They also reported a similar performance
by embedding the graph structure of a program’s AST with a neural graph embedding framework,
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Table 4: Prediction performance on different code lengths

Method (0, 256] (256, 512] (512, 1024] (1024, ∞]
Decision Tree 57.2% 45.6% 40.0% 38.2%
Random Forest 62.3% 46.8% 40.6% 26.4%
SVM 48.9% 18.1% 18.1% 16.6%

ASTNN 16.7% 52.1% 51.5% 44.2%

CodeBERT 72.4% 62.8% 60.7% 48.0%
GraphCodeBERT 74.6% 61.7% 49.8% 39.4%
PLBART 74.3% 65.1% 62.5% 52.8%
CodeT5 69.5% 56.5% 52.4% 42.4%

CodeBERT + HA 70.6% 60.7% 62.3% 51.3%
CodeBERT + HA + Pretrain 70.3% 63.6% 65.9% 57.8%
CodeBERT + HA + Pretrain + Dead code elim. 71.7% 63.5% 64.5% 60.1%
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Figure 3: Confusion matrices for the predictions of the proposed model.

graph2vec (Narayanan et al., 2017). More recently, Prenner & Robbes (2021) examined the per-
formance of the pre-trained programming language understanding model such as CodeBERT (Feng
et al., 2020) for code complexity prediction and showed that the pre-trained model can be a promis-
ing alternative for the problem.

Programming Language Understanding Models There have been numerous studies on pre-
training methods for understanding programming languages. Feng et al. (2020) proposed Code-
BERT, which is RoBERTa-based model pre-trained on multiple programming languages with
masked language modeling (MLM) and replaced token prediction (RTD) objectives. Guo et al.
(2021) introduced GraphCodeBERT which is strengthened from CodeBERT by incorporating data
flow information in the pre-training stage. Jiang et al. (2021) introduced TreeBERT, a tree-based
pre-trained model that focuses on utilizing the extracted tree structure by encoding an AST as a set
of composition paths. TreeBERT is trained by two novel objectives called tree masked language
modeling (TMLM) and node order prediction (NOP). Rozière et al. (2021) investigated another pro-
gramming langauge-oriented pre-training objective called DOBF, which is based on deobfuscation
of identifier names in source code. Note that we do not use TreeBERT and DOBF as our baseline as
they are mainly for code generation tasks not for classification task.

Recently, Ahmad et al. (2021) proposed PLBART (Program and Language BART), which learns the
interaction between program codes and natural language descriptions by leveraging the idea of de-
noising autoencoder that uses a bidirectional encoder and an auto-regressing decoder. Yue Wang &
Hoi (2021) introduced CodeT5, which leverages the code-specific characteristics in the pre-training
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1 int n = nextInt();
2 int k = nextInt();
3 int[] a = new int[n];
4 for (int i = 0; i < n; i++) {
5 a[i] = nextInt();
6 }
7 Set<Integer> set = new

HashSet<Integer>();
8 for (int i = 0; i < a.length;

i++) {
9 set.add(a[i]);

10 if (set.size() == k) {
11 Set<Integer> set2 = new

HashSet<Integer>();
12 for (int j = i; j >= 0;

j--) {
13 set2.add(a[j]);
14 if (set2.size() == k) {
15 out.print((j + 1) +

" " + (i + 1));
16 out.close();
17 return;
18 }
19 }
20 }
21 }

(a) A code snippet from a program whose complexity
is predicted as O(n2) by our model while the actual
complexity is in O(n).

1 public static void main(String[]
args){

2 for (int i = 0; i < n; i++) {
3 for (int j = 0; j < m;

j++) {
4 if (steps % 2 != 0) {
5 out.print(-1 + " ");
6 } else {
7 out.print(2 *

lowestCost(i, j,
steps / 2) + " ");

8 }
9 }

10 }
11 }
12 private long lowestCost(int i,

int j, int distance) {
13 long minDist = Long.MAX_VALUE;
14 if (i > 0)
15 minDist =

Math.min(minDist,
distI[i - 1][j] +
lowestCost(i - 1, j,
distance - 1));

16 ...
17 return minDist;
18 }

(b) A code snippet from a program whose complexity
is predicted as O(n2) by our model while the actual
complexity is in O(n3).

Figure 4: Failure examples from most frequent cases of mispredictions discovered from confusion
matrix.

stage by employing the new objectives such as masked random token prediction, masked identifier
prediction, and identifier prediction objectives.

6 CONCLUSIONS

In the light of recent studies, we have proposed to employ pre-trained models for the task of predict-
ing algorithmic complexity of codes. In order to utilize the entire code information, we have sug-
gested a hierarchical Transformer architecture where any pre-trained program understanding models
can be used at the bottom level for understanding method-level code snippets. Then, we aggregate
the method-level embeddings using permutation-invariant model Set Transformer to compute the
class-level embedding. Finally, we aggregate the class-level embeddings for the final complexity
prediction. In order to effectively pre-training the proposed architecture, we have proposed multi-
level pre-training objectives. We have demonstrated that the proposed algorithm shows the best
performance compared to the previous state-of-the-art program understanding models in complex-
ity prediction.

In future, we plan to incorporate dynamic program analysis techniques into the proposed deep
learning-based approach. For instance, we can obtain runtime information of a code by actually
executing the code with proper test cases. We can also manipulate the size of test cases to see how
the runtime performance changes asymptotically. In this scenario, the major challenge would be
how to generate proper test cases of a given program so that we can get accurate runtime estimates
for the worst-case complexity analysis.

9
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REPRODUCIBILITY

For reproducing the results of our paper, please find readme.md file from our supplementary
material. The supplementary material contains 3,803 Java codes in data directory. We also include
the five-fold splits of codes by problems for verifying the generalization of our model to unseen
problems. The data files with d contain codes after dead code elimination and r are randomly split
train and test files. One can train the baseline models and our proposed model using the commands
in the readme.md file. Note that all the necessary data files for the entire reproduction of the
experimental results can be accessed from the links provided in the file.
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A OVERVIEW ON CODECOMPLEX DATASET

Our dataset construction process owes much to the recently released dataset called the CodeCon-
tests4, a competitive programming dataset for machine learning by DeepMind. We constructed a

4https://github.com/deepmind/code contests
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dataset with the codes from the CodeContests dataset that are again sourced from the coding com-
petition platform Codeforces. Our dataset contains 4,120 codes in seven complexity classes, where
there are new 500 Java source codes annotated with each complexity class. The seven complexity
classes are constant (O(1)), linear (O(n)), quadratic (O(n2)), cubic (O(n3)), O(lnn), O(n lnn),
and NP-hard. We also re-use 317 Java codes from CoRCoD as we confirmed that they also belong
to the CodeContests dataset as the other 3803 codes during the dataset creation process.

For constructing the dataset, we asked twelve human annotators who have more than five years
of programming experience and algorithmic expertise to inspect the codes manually and classified
them into one of the seven complexity classes. Once each human annotator reported the initial result,
we collected the annotation results and inspected them once again by assigning the initial result to
two different annotators other than the initial annotator. Finally, we have collected 3803 complexity
annotated codes in which there are 500 codes for each complexity class.

First, we selected several problems that are expected to belong to one of the considered complexity
classes, and submitted codes for the problems from Codeforces. The submitted codes contain both
correct and incorrect solutions, and they are implemented in various programming languages such
as C, C++, Java, and Python. We sorted out only the correct Java codes for our dataset construction.

In the second step, before delving into the time complexity of problems, we divide the problems by
the problem-solving strategy such as sorting, DP (dynamic programming), divide-and-conquer, DFS
(depth-first search), BFS (breadth-first search), A*, and so on. This is because it is helpful to know
the type of problem-solving strategy used to solve the problem for human annotators to analyze the
time complexity, and problems solved by the same strategy tend to have similar time complexity.

Third, we uniformly assign problems and correct codes for the problems to human annotators and let
them carefully examine the problem-code pairs to label the time complexity of the codes. Notice that
there can be solutions with different time complexities for a problem depending on how to actually
implement the solutions. We, therefore, provide specific guideline that contains instructions and
precautions to annotators so that human annotators can assign correct and consistent labels to the
assigned codes.

After the initial annotation process, we collect the results and assign them to different annotators
to carefully cross-check the correctness of the initial annotation results. Primarily, we instruct the
annotators again to carefully verify the results in accordance with the precautions provided in the
annotation guideline.

A.1 FURTHER DETAILS ON CODECOMPLEX DATASET CONSTRUCTION

Solution codes 
from CodeForces

Categorize by 
algorithm type

DP

Search

BFSSort

A*Value

Analyze code 
time complexity

Time 
complexity 
separation

𝑶𝑶(𝟏𝟏) 𝑶𝑶(𝒏𝒏𝟑𝟑) 𝑵𝑵𝑵𝑵… …

Verify code 
time complexity

𝑶𝑶(𝒏𝒏𝟐𝟐)

𝑶𝑶(𝒏𝒏𝟑𝟑)

Create dataset 
with metadata

Source: …
Problem: …
Time 
complexity: …

Figure 5: Overall workflow of CodeComplex dataset creation.
We gathered 128,000,000 submissions of Codeforces, where 4,086,507 codes are implemented in
Java language. After discarding the incorrect codes (that do not pass all the test cases), there are
2,034,925 codes and 7,843 problems. Then the problems are split with their tags (e.g. sorting, dfs,
greedy, etc) and given to the annotators with the guidelines in Section A.2. We were able to gather
around 500 problems and 15,000 codes for the seven complexity classes.

As the complexity of codes for the same problem can vary depending on the implemented algo-
rithms, it is obvious that the codes we inspect also have various complexity classes. However, we
only target seven complexity classes that are the most frequently used complexity classes for algo-
rithmic problems. Accordingly, some codes we inspect through belong to other complexity classes
such as O(n5) or O(ln lnn). We inspected around 800 problems and found out that the complexity
classes of approximately 15% of the problems belong outside the chosen complexity classes. Al-
though it is still possible that one might implement codes with complexity class that falls into the
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seven complexity classes, we simply rule out the problems from our dataset to ease the annotation
process.

During this process, we found out that many codes are not optimal for the given problem and some
codes are too difficult to analyze due to their complex code structure. Moreover, there are many
codes with a number of methods that are never used, mainly because the codes come from a coding
competition platform and participants prefer just to include the methods that are frequently used in
problem-solving regardless of the actual usage of the methods.

Our dataset, the CodeComplex dataset is constructed from the code instances from Codeforces plat-
form which are recently revealed from AlphaCode. As Codeforces is a coding competition platform,
our dataset consists of codes that implement various algorithms that are designed to solve algorith-
mically challenging problems. Our dataset offers a larger number of source codes with a broader cat-
egory of complexity classes compared to the sole existing complexity prediction benchmark dataset,
CoRCoD dataset (Sikka et al., 2020). In the section below, we share the detailed guideline provided
to human annotators for the precise code complexity annotation process.

A.2 GUIDELINE OF PRODUCTION

1. Check the variables that are described in the algorithm problems. Each algorithm imple-
mentation can have many variable instances and we only consider the variables that are
given as inputs from the problems for calculating the time complexity.

* For convenience, we use n and m in the guideline to denote the input variable and |n| and
|m| to denote the size of n and m.

2. Considering the input variable the prior step, follow the below instruction for each input
type and calculate the time complexity.
(a) When only a number n is given as an input, calculate the time complexity proportional

to n. Do the same thing when there are two or more variables. For instance, when
only n is given as an input, the variable used to denote the time complexity of a code
is n.

(b) When a number n and m numeric instances are given as inputs, calculate the time
complexity proportional to the one with higher complexity. For instance, when m =
n2, we calulate complexity of a code with m. If the implemented algorithm runs in
O(n2) = O(m), it belongs to linear complexity class.

(c) If the input is given as constant values, the complexity of a given code also belongs
to constant class. For instance, if an algorithm problem states that exactly 3 numeric
values are given as inputs, the solution code only uses constant number of operations.
Therefore, the code belongs to the constant class.

3. Consider the case where the code utilizes the input constraints of the problem. When the
input is given by n ≤ a, the code can use the fixed value a in the problem instead of using
n. Mark these codes as unsuitable.

4. Consider the built-in library that the implemented algorithm is using (e.g. HashMap, sort,
etc) to calculate the time complexity of an entire code. For instance, given n numeric
instances as inputs, when an implemented algorithm uses O(n) iterations of built-in sort
algorithm for n numeric instances, the time complexity for the algorithm is O(n2 lnn).

5. When the code has unreachable codes, only consider the reachable code.
6. Mark the item that does not belong to any of the 7 complexity classes.

• Listing 1 exhibits a failure example where our model predicts O(2n) for a code with
O(lnn) complexity. We suspect that the primary reason is the usage of bitwise operators.
When we filter the codes that use any bitwise operator at least once from our CodeComplex
dataset, about 56% of the codes belong to the class O(2n), which implies NP-hardness. We
find that many implementations for NP-hard problems rely on the bitwise operators as they
can efficiently manage backtracking process by manipulating bit-level flags.

Listing 1: A failure example of our model (GT: O(lnn), Prediction: O(2n)).
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1 public class mad {
2 public static void main(String[] args) {
3 Scanner sc = new Scanner(System.in);
4 int cura = 0, curb = 0;
5 int ver;
6 System.out.println("? 0 0");
7 System.out.flush();
8 ver = sc.nextInt();
9 for (int i = 29; i >= 0; i--) {

10 System.out.println("? " + (cura + (1 << i)) + " " + curb);
11 System.out.flush();
12 int temp1 = sc.nextInt();
13 System.out.println("? " + cura + " " + (curb + (1 << i)));
14 System.out.flush();
15 int temp2 = sc.nextInt();
16 if (temp1 != temp2) {
17 if (temp2 == 1) {
18 cura += (1 << i);
19 curb += (1 << i);
20 }
21 } else {
22 if (ver == 1) cura += (1 << i);
23 if (ver == -1) curb += (1 << i);
24 ver = temp1;
25 }
26 }
27 System.out.println("! " + cura + " " + curb);
28 }
29 }

• Listing 2 demonstrates the case when our model predicts constant time complexity O(1) for
a code that runs in O(n) time. We suspect that our model may have ignored the existence
of the check method which actually determines the O(n) time complexity or considered
the argument of check as constant.

Listing 2: A failure example of our model (GT: O(n), Prediction: O(1)).
1 public class abc {
2 public static int check(StringBuilder s) {
3 int countRemove = 0;
4 if (!s.toString().contains("xxx")) return countRemove;
5 else {
6 for (int i = 1; i < s.length() - 1; i++) {
7 if (s.charAt(i - 1) == ’x’ && s.charAt(i) == ’x’ &&

s.charAt(i + 1) == ’x’) {
8 countRemove++;
9 }

10 }
11 return countRemove;
12 }
13 }
14

15 public static void main(String[] args) {
16 Scanner sc = new Scanner(System.in);
17 int n = sc.nextInt();
18 String s = sc.next();
19 StringBuilder sb = new StringBuilder("");
20 sb.append(s);
21 System.out.println(check(sb));
22 }
23 }
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• Listing 3 shows the case where our model predicts the quadratic time complexity O(n2)
when the ground-truth label is O(n lnn). We guess that our model simply translates the
nested for loops into the quadratic time complexity. However, the outer loop is to repeat
each test case and therefore should be ignored. Then, the O(n lnn) complexity can be
determined by the sort function used right before the nested loops.

Listing 3: A failure example of our model (GT: O(n lnn), Prediction: O(n2)).
1 ppublic class round111A {
2 public static void main(String[] args) {
3 Scanner sc = new Scanner(System.in);
4 int n = sc.nextInt();
5 int[] coins = new int[n];
6 for (int i = 0; i < n; ++i) coins[i] = sc.nextInt();
7 Arrays.sort(coins);
8 int ans = (int) 1e9;
9 for (int i = 1; i <= n; ++i) {

10 int sum1 = 0;
11 int c = 0;
12 int j = n - 1;
13 for (j = n - 1; j >= 0 && c < i; --j, ++c) {
14 sum1 += coins[j];
15 }
16 int sum2 = 0;
17 for (int k = 0; k <= j; ++k) sum2 += coins[k];
18 if (sum1 > sum2) {
19 System.out.println(i);
20 return;
21 }
22 }
23 }
24 }

• Listing 4 shows the case when our model is confused exponential complexity O(2n) with
quadratic complexity O(n2). The code actually runs in exponential time in the worst-case
but our model simply returns quadratic time complexity as it does not take into account the
recursive nature of the method solve.

Listing 4: A failure example of our model (GT: O(2n), Prediction: O(n2)).
1 public class D {
2 static int n, KA, A;
3 static int[] b;
4 static int[] l;
5 static double ans = 0;
6

7 public static void main(String[] args) throws IOException {
8 Scanner in = new Scanner(System.in);
9 n = in.nextInt();

10 KA = in.nextInt();
11 A = in.nextInt();
12 b = new int[n];
13 l = new int[n];
14 for (int i = 0; i < l.length; i++) {
15 b[i] = in.nextInt();
16 l[i] = in.nextInt();
17 }
18 dp = new double[n + 2][n + 2][n * 9999 + 2];
19 go(0, KA);
20 System.out.printf("%.6f\n", ans);
21 }
22

23 public static void go(int at, int k) {
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24 if (at == n) {
25 ans = Math.max(ans, solve(0, 0, 0));
26 return;
27 }
28 for (int i = 0; i <= k; i++) {
29 if (l[at] + i * 10 <= 100) {
30 l[at] += i * 10;
31 go(at + 1, k - i);
32 l[at] -= i * 10;
33 }
34 }
35 }
36

37 static double dp[][][];
38

39 public static double solve(int at, int ok, int B) {
40 if (at == n) {
41 if (ok > n / 2) {
42 return 1;
43 } else {
44 return (A * 1.0) / (A * 1.0 + B);
45 }
46 }
47 double ret = ((l[at]) / 100.0) * solve(at + 1, ok + 1, B) + (1.0 -

((l[at]) / 100.0)) * solve(at + 1, ok, B + b[at]);
48 return ret;
49 }
50

51 }

• Listing 5 shows the case when our model predicts O(lnn) for a code with O(n2) com-
plexity. It is easily seen that the inversions function determines the quadratic time
complexity by the nested for loops. We suspect that somehow our model does not take
into account the inversions function in the complexity prediction and instead focuses
on the modulo (%) operator to draw the wrong conclusion that the complexity is in O(lnn).

Listing 5: A failure example of our model (GT: O(n2), Prediction: O(lnn)).
1 public class maestro {
2 public static long inversions(long[] arr) {
3 long x = 0;
4 int n = arr.length;
5 for (int i = n - 2; i >= 0; i--) {
6 for (int j = i + 1; j < n; j++) {
7 if (arr[i] > arr[j]) {
8 x++;
9 }

10 }
11 }
12 return x;
13 }
14

15 public static void main(String[] args) {
16 Scanner sc = new Scanner(System.in);
17 int n = sc.nextInt();
18 long[] arr = new long[n];
19 for (int i = 0; i < n; i++) arr[i] = sc.nextLong();
20 long m = sc.nextLong();
21 long x = inversions(arr) % 2;
22 for (int i = 0; i < m; i++) {
23 int l = sc.nextInt() - 1;
24 int r = sc.nextInt() - 1;
25 if ((r - l + 1) % 4 > 1) x = (x + 1) % 2;
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26 if (x == 1) System.out.println("odd");
27 else System.out.println("even");
28 }
29 }
30 }

B FURTHER DETAILS ON DEAD CODE ELIMINATION

In a broad sense, the dead code includes redundant code, unreachable code, oxbow code, and so
on. We only focus on eliminating unreachable codes, mainly methods and classes that are declared
but used nowhere in the code. In order to find such dead codes, we first parse a Java code into an
AST, and discover methods and classes that do not exist in any method call, class declaration, and
arguments of methods. Once we discover such unused methods and classes, we remove the codes
corresponding to the declarations of these methods and classes.

Listings 6 and 7 show a running example of the dead code elimination process. From the code in
Listing 6, we can obtain the code in Listing 7 by applying the dead code elimination. It is readily seen
that the number of lines decreases from 211 to 101 by the elimination process. In fact, our model
predicts O(lnn) and O(1) for the complexity of the code before and after dead code elimination,
respectively, while the actual complexity of the code is O(1).

Listing 6: An example code containing many dead codes such as unused methods and variables.
1 public class Main {
2 static long mod = ((long) 1e9) + 7;
3

4 public static int gcd(int a, int b) {
5 if (b == 0) return a;
6 else return gcd(b, a % b);
7 }
8

9 public static long pow_mod(long x, long y) {
10 long res = 1;
11 x = x % mod;
12 while (y > 0) {
13 if ((y & 1) == 1) res = (res * x) % mod;
14 y = y >> 1;
15 x = (x * x) % mod;
16 }
17 return res;
18 }
19

20 public static int lower_bound(int[] arr, int val) {
21 int lo = 0;
22 int hi = arr.length - 1;
23 while (lo < hi) {
24 int mid = lo + ((hi - lo + 1) / 2);
25 if (arr[mid] == val) {
26 return mid;
27 } else if (arr[mid] > val) {
28 hi = mid - 1;
29 } else lo = mid;
30 }
31 if (arr[lo] <= val) return lo;
32 else return -1;
33 }
34

35 public static int upper_bound(int[] arr, int val) {
36 int lo = 0;
37 int hi = arr.length - 1;
38 while (lo < hi) {
39 int mid = lo + ((hi - lo) / 2);
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40 if (arr[mid] == val) {
41 return mid;
42 } else if (arr[mid] > val) {
43 hi = mid;
44 ;
45 } else lo = mid + 1;
46 }
47 if (arr[lo] >= val) return lo;
48 else return -1;
49 }
50

51 public static void main(String[] args) throws java.lang.Exception {
52 Reader sn = new Reader();
53 Print p = new Print();
54 int n = sn.nextInt();
55 while ((n--) > 0) {
56 int a = sn.nextInt();
57 int b = sn.nextInt();
58 int small = Math.min(a, b);
59 int large = Math.max(a, b);
60 long steps = 0;
61 while (small != 0) {
62 steps += (long) (large / small);
63 int large1 = small;
64 small = large % small;
65 large = large1;
66 }
67 p.printLine(Long.toString(steps));
68 }
69 p.close();
70 }
71 }
72

73 class Pair implements Comparable<Pair> {
74 int val;
75 int in;
76

77 Pair(int a, int b) {
78 val = a;
79 in = b;
80 }
81

82 @Override
83 public int compareTo(Pair o) {
84 if (val == o.val) return Integer.compare(in, o.in);
85 else return Integer.compare(val, o.val);
86 }
87 }
88

89 class Reader {
90 final private int BUFFER_SIZE = 1 << 16;
91 private DataInputStream din;
92 private byte[] buffer;
93 private int bufferPointer, bytesRead;
94

95 public boolean isSpaceChar(int c) {
96 return c == ’ ’ || c == ’\n’ || c == ’\r’ || c == ’\t’ || c == -1;
97 }
98

99 public Reader() {
100 din = new DataInputStream(System.in);
101 buffer = new byte[BUFFER_SIZE];
102 bufferPointer = bytesRead = 0;
103 }
104
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105 public Reader(String file_name) throws IOException {
106 din = new DataInputStream(new FileInputStream(file_name));
107 buffer = new byte[BUFFER_SIZE];
108 bufferPointer = bytesRead = 0;
109 }
110

111 public String readLine() throws IOException {
112 byte[] buf = new byte[64];
113 int cnt = 0, c;
114 while ((c = read()) != -1) {
115 if (c == ’\n’) break;
116 buf[cnt++] = (byte) c;
117 }
118 return new String(buf, 0, cnt);
119 }
120

121 public String readWord() throws IOException {
122 int c = read();
123 while (isSpaceChar(c)) c = read();
124 StringBuilder res = new StringBuilder();
125 do {
126 res.appendCodePoint(c);
127 c = read();
128 } while (!isSpaceChar(c));
129 return res.toString();
130 }
131

132 public int nextInt() throws IOException {
133 int ret = 0;
134 byte c = read();
135 while (c <= ’ ’) c = read();
136 boolean neg = (c == ’-’);
137 if (neg) c = read();
138 do {
139 ret = ret * 10 + c - ’0’;
140 } while ((c = read()) >= ’0’ && c <= ’9’);
141 if (neg) return -ret;
142 return ret;
143 }
144

145 public long nextLong() throws IOException {
146 long ret = 0;
147 byte c = read();
148 while (c <= ’ ’) c = read();
149 boolean neg = (c == ’-’);
150 if (neg) c = read();
151 do {
152 ret = ret * 10 + c - ’0’;
153 } while ((c = read()) >= ’0’ && c <= ’9’);
154 if (neg) return -ret;
155 return ret;
156 }
157

158 public double nextDouble() throws IOException {
159 double ret = 0, div = 1;
160 byte c = read();
161 while (c <= ’ ’) c = read();
162 boolean neg = (c == ’-’);
163 if (neg) c = read();
164 do {
165 ret = ret * 10 + c - ’0’;
166 } while ((c = read()) >= ’0’ && c <= ’9’);
167 if (c == ’.’) {
168 while ((c = read()) >= ’0’ && c <= ’9’) {
169 ret += (c - ’0’) / (div *= 10);
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170 }
171 }
172 if (neg) return -ret;
173 return ret;
174 }
175

176 private void fillBuffer() throws IOException {
177 bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
178 if (bytesRead == -1) buffer[0] = -1;
179 }
180

181 private byte read() throws IOException {
182 if (bufferPointer == bytesRead) fillBuffer();
183 return buffer[bufferPointer++];
184 }
185

186 public void close() throws IOException {
187 if (din == null) return;
188 din.close();
189 }
190 }
191

192 class Print {
193 private final BufferedWriter bw;
194

195 public Print() {
196 bw = new BufferedWriter(new OutputStreamWriter(System.out));
197 }
198

199 public void print(String str) throws IOException {
200 bw.append(str);
201 }
202

203 public void printLine(String str) throws IOException {
204 print(str);
205 bw.append("\n");
206 }
207

208 public void close() throws IOException {
209 bw.close();
210 }
211 }

Listing 7: A code obtained from Listing 7 by eliminating dead codes.
1 public class Main {
2 static long mod = ((long) 1e9 + 7);
3

4 public static int gcd(int a, int b) {
5 if ((b == 0)) return a;
6 else return gcd(b, (a % b));
7 }
8

9 public static void main(String[] args) throws java.lang.Exception {
10 Reader sn = new Reader();
11 Print p = new Print();
12 int n = sn.nextInt();
13 while ((n > 0)) {
14 int a = sn.nextInt();
15 int b = sn.nextInt();
16 int small = Math.min(a, b);
17 int large = Math.max(a, b);
18 long steps = 0;
19 while ((small != 0)) {
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20 steps += (long) (large / small);
21 int large1 = small;
22 small = (large % small);
23 large = large1;
24 }
25 p.printLine(Long.toString(steps));
26 }
27 p.close();
28 }
29 }
30

31 class Reader {
32 final private int BUFFER_SIZE = (1 << 16);
33 private DataInputStream din;
34 private byte[] buffer;
35 private int bufferPointer, bytesRead;
36

37 public boolean isSpaceChar(int c) {
38 return (((((c == ’ ’) || (c == ’\n’)) || (c == ’\r’)) || (c ==

’\t’)) || (c == -1));
39 }
40

41 public Reader() {
42 din = new DataInputStream(System.in);
43 buffer = new byte[BUFFER_SIZE];
44 bufferPointer = bytesRead = 0;
45 }
46

47 public Reader(String file_name) throws IOException {
48 din = new DataInputStream(new FileInputStream(file_name));
49 buffer = new byte[BUFFER_SIZE];
50 bufferPointer = bytesRead = 0;
51 }
52

53 public int nextInt() throws IOException {
54 int ret = 0;
55 byte c = read();
56 while ((c <= ’ ’)) c = read();
57 boolean neg = (c == ’-’);
58 if (neg) c = read();
59 do {
60 ret = (((ret * 10) + c) - ’0’);
61 } while ((((c = read()) >= ’0’) && (c <= ’9’)));
62 if (neg) return -ret;
63 return ret;
64 }
65

66 private void fillBuffer() throws IOException {
67 bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
68 if ((bytesRead == -1)) buffer[0] = -1;
69 }
70

71 private byte read() throws IOException {
72 if ((bufferPointer == bytesRead)) fillBuffer();
73 return buffer[bufferPointer++];
74 }
75

76 public void close() throws IOException {
77 if ((din == null)) return;
78 din.close();
79 }
80 }
81

82 class Print {
83 final private BufferedWriter bw;
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84

85 public Print() {
86 bw = new BufferedWriter(new OutputStreamWriter(System.out));
87 }
88

89 public void print(String str) throws IOException {
90 bw.append(str);
91 }
92

93 public void printLine(String str) throws IOException {
94 print(str);
95 bw.append("\n");
96 }
97

98 public void close() throws IOException {
99 bw.close();

100 }
101 }
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