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Abstract

Methods to improve the adversarial robustness
of tree-based ensemble models for classification
tasks have received significant attention in recent
years. In this work, we propose a novel method for
training robust tree-based boosted ensembles. The
method leverages the XGBoost framework and is
applicable to any task that employs a differentiable
loss function. It particularly introduces an analyti-
cal solution to the upper-bound of the robust loss
function, that can be computed in constant time,
enabling the construction of robust splits without
sacrificing computational efficiency. Although our
method is general, we focus its application on re-
gression tasks, extending conventional regression
metrics to better quantify model robustness. An ex-
tensive evaluation on 19 regression datasets from a
widely-used tabular data benchmark demonstrates
that in the face of adversarial perturbations in the
input space, our proposed method results in ensem-
bles that are up to 44% more robust compared to
the present SoA and 113% more robust than the
conventional XGBoost model when considering
norm bounded attacks of radius 0.05.

1 INTRODUCTION

Adversarial examples, small perturbations in the vicinity
of correctly classified inputs that result in misclassification,
have been widely documented in the literature [Szegedy
et al., 2013, Goodfellow et al., 2014]. Although mostly stud-
ied in the context of neural networks, research has demon-
strated that decision-tree ensembles are also susceptible
to adversarial perturbations [Papernot et al., 2016]. Such
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vulnerabilities are particularly concerning in safety-critical
applications, where robust model performance is essential
for deployment [Li and Li, 2020].

Several methods have been put forward to mitigate the im-
pact of adversarial examples in the context of neural net-
works. Some approximate the worst-case loss under adver-
sarial perturbations to be used under training [Goodfellow
et al., 2014, Madry et al., 2018]. Others aim to identify a
provable upper bound to the loss function under adversar-
ial perturbations [Salman et al., 2019, Zhang et al., 2019,
Huang et al., 2021, Müller et al., 2023, De Palma et al.,
2024]

Similar approaches have been proposed for decision-tree en-
sembles, particularly with respect to the derivation of robust
splits and the minimisation of the worst-case adversarial loss
within the ensemble building process [Kantchelian et al.,
2016, Chen et al., 2019, Andriushchenko and Hein, 2019,
Vos and Verwer, 2021, Guo et al., 2022]. A common theme
among these works is the utilisation of specific properties
of specific loss functions, such as the gini-impurity [Vos
and Verwer, 2021], margin-based classification loss func-
tions [Andriushchenko and Hein, 2019], and the binary
loss function [Guo et al., 2022]. The applicability of these
approaches is limited to classification tasks only, thereby
failing to address other tasks such as regression prevalent in
domains such as finance. To the best of our knowledge, only
the method described in [Chen et al., 2019] supports robust
training for general loss functions, however, this method
relies on a heuristic to estimate the loss under an adversar-
ial perturbation, which can lead to suboptimal robustness.
Therefore, the derivation of approaches for robust learning
of ensembles with particular applicability to regression tasks
remains largely unexplored.

To overcome these shortcomings, we present a novel ap-
proach to construct robust ensembles in the XGBoost frame-
work that can be generally applied across various tasks and
loss functions, with particular applicability to regression
tasks. Our contributions can be summarised as follows:
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• We introduce an efficient analytical solution to the up-
per bound of the robust loss when building XGBoost
trees. This incorporates the impact of worst-case ad-
versarial perturbations in the recursive node splitting
procedure in O(1) time, leading to an overall complex-
ity of O(n log n). Our solution is general and can be
applied to XGBoost ensembles with any loss function,
and adversarial attack model.

• We study the robustness of XGBoost ensembles in
the regression task, and highlight how conventionally
trained models are extremely sensitive to input per-
turbations. We demonstrate that our proposed robust-
splitting criterion significantly improves the robustness
of the model, particularly on attacks with large pertur-
bation magnitudes.

The rest of this work is organised as follows. We begin with
a review of related work in Section 2. Section 3 provides
an overview of the XGBoost algorithm and the adversarial
attack model used in this work. Section 4 describes our
proposed robust-splitting criterion; Section 5 evaluates the
approach and compares it with related work on a variety of
datasets. Finally, Section 6 concludes the work and discusses
potential future directions.

2 RELATED WORK

Early seminal work in the robust training of tree-based
models considered the augmentation of adversarial ex-
amples into the training process in successive boosting
rounds [Kantchelian et al., 2016]. The work also demon-
strated that identifying optimal adversarial examples under
input constraints is NP-hard for an ensemble of trees, and
provides a MILP formulation solution to exactly compute
the minimal adversarial distance for a boosted ensemble.
Although their training method is computationally efficient,
it relies on sampling a finite number of adversarial examples
when constructing trees, which is equivalent to optimizing
a lower bound of the robust loss and ultimately results in
suboptimal certified robustness. In contrast, our approach
optimizes a certified upper bound of the robust loss, thereby
achieving superior robustness.

More recent contributions aimed to increase the robustness
of tree-based models by considering the worst-case adversar-
ial loss when evaluating the quality of a candidate split. In
particular, Chen et al. [2019] presents a framework to deter-
mine the worst-case splitting score for a candidate split with
inputs perturbed with an L∞ perturbation. It specifically
gives a gini-impurity scoring function that can be computed
exactly inO(n) time, and further presents a heuristic to esti-
mate the worst-case adversarial loss for any scoring function
in O(1) time. The method is integrated within the XGBoost
algorithm, and is used to train robust decision trees and
boosted ensembles. However, since the heuristic effectively

provides only a lower bound on the robust loss, it can lead
to suboptimal robustness during tree construction. An exten-
sion to the framework is provided by Calzavara et al. [2020],
which considers an asymmetrical, non-uniform attack model
characterized by axis-aligned perturbations and introduces
the concept of an attack budget, limiting the number of
points that can be perturbed. In this work, the attack model
is integrated into a robust-loss function that is computed
exactly per split. The complexity of this method is thus very
high and is not scalable to large datasets. In contrast to these
approaches, our method computes an upper bound to the
robust loss inO(1) time which leads to improved robustness
without compromising computational efficiency.

Similarly, Vos and Verwer [2021] presents an exact analyti-
cal solution for the worst-case gini-impurity score under an
adversarial perturbation that can be computed in O(1) time.
The work proves in particular that the robust loss function
used in the split construction process is concave and can thus
be solved analytically. However, the solution is specific to
the gini-impurity score and the construction of independent
classification trees. Therefore, it cannot be used to build
boosted ensembles or trees for other tasks.

Other methods have been proposed to determine an upper
bound on the robust loss over boosted ensembles and to
train successive trees that minimize this loss. In particu-
lar, Andriushchenko and Hein [2019] introduces a method
for obtaining an upper bound on the robust loss for binary
classification tasks using a margin-based loss function over
the ensemble, with a computational complexity of O(n).
This approach is further optimized in Guo et al. [2022],
where a 0-1 loss function is employed for AdaBoost en-
sembles [Freund and Schapire, 1997], resulting in a robust
loss computation per split in O(1) time. However, these
formulations are tailored specifically for classification tasks
and are not easily extended to other domains. Moreover, the
optimization in Guo et al. [2022] exploits unique properties
of the 0-1 loss function, rendering the approach inapplica-
ble to other convex loss functions. In contrast, our method
provides an analytical solution for an upper bound on the
robust loss that can be applied to any loss function, thereby
offering greater flexibility and broader applicability across
various tasks.

Similarly to Chen et al. [2019], our work targets the compu-
tation of robust splitting scores. However, instead of consid-
ering an approximate heuristic to estimate the robust loss,
we propose an efficient analytical solution that computes an
upper bound on the worst-case loss in O(1) time using a
linear relaxation formulation of the splitting score used in an
XGBoost tree. As the XGBoost algorithm constructs succes-
sive trees to minimise a second order Taylor approximation
of the loss function, our method supports all differentiable
loss functions and can be applied across various tasks.

Other related works propose more computationally intensive



approaches, such as MILP formulations for robust optimal
trees [Vos and Verwer, 2022a], and post-training methods
to prune and relabel tree leaves [Vos and Verwer, 2022b],
to achieve robustness. However, due to their exponential or
high polynomial time complexity, these methods are imprac-
tical for large-scale datasets compared to our approach.

3 BACKGROUND

In this section we fix the notation of the paper, recall gradient
boosted ensembles and the XGBoost algorithm, and outline
adversarial robustness and robust training for tree-based
models.

Gradient Boosted Ensembles. Let D =
{(xi, yi)} (|D| = n,xi ∈ Rm, yi ∈ R), be a dataset
with m features and n datapoints. Gradient boosting [Fried-
man, 2001] is the process of sequentially adding weak
learners to an ensemble of learners to minimise a certain
loss function on D. The prediction ŷi of an ensemble F
with K weak learners is

ŷi = F (xi) =

K∑
k=1

fk (xi) , (1)

where each fk is an independent weak learner. The total loss
of the ensemble at iteration t is

L(t) =

n∑
i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
, (2)

where l is an arbitrary, differentiable loss function. In gen-
eral, while any model can be used as a weak learner, de-
cision trees are often chosen because of their expressivity
and ease of training. In this work, we consider greedily
trained binary trees with coordinate aligned splits of the
form ft(xi) = wq(xi), where q(xi) is the tree traversal func-
tion that maps an input xi to a leaf node with value wq(xi).
The tree traversal function qxi

is learned using a greedy
algorithm that recursively splits the input space to minimise
the loss function.

The XGBoost algorithm. The XGBoost algorithm [Chen
and Guestrin, 2016] is a popular implementation of gradient
boosting that is widely used in various tasks because of its ef-
ficiency and scalability. The algorithm constructs new weak
learners by optimising a second-order Taylor approximation
of the loss function. For their construction, it introduces
regularisation to penalise complex tree structures and large
leaf node values, thereby weakening overfitting. Concretely,
the loss function from Equation 2 is approximated as

L(t) ≃
n∑

i=1

[
l
(
yi, ŷ

(t−1)
)
+ gift (xi)

+
1

2
hif

2
t (xi)

]
+Ω(ft) ,

(3)

where gi and hi are the first and second-order gradient statis-
tics on the loss function, and Ω(f) = γT + 1

2λ∥w∥
2 is the

regularisation term with hyperparameters γ and λ used to
respectively control the penalisation of the number of leaf
nodes T and leaf node values w. Using this approximate loss
formulation, the optimal value of a leaf z can be computed
as:

w∗
z = −

∑
i∈Iz

gi∑
i∈Iz

hi + λ
, (4)

where Iz is the set of indices of datapoints that reach leaf z.
The algorithm recursively identifies the best series of splits
to minimise the loss function. In the exact greedy algorithm,
each feature value is considered as a potential split. The split
with the greatest loss reduction, or split score S , is selected.
The split score is a function of the threshold value η and
the feature index j. When splitting a parent node containing
the set of training data points I into left and right child
nodes, containing the set of points IL and IR respectively,
we express the split score as a function of IL and IR as:

S(IL, IR) =
1

2

[ (∑
i∈IL

gi
)2∑

i∈IL
hi + λ

+

(∑
i∈IR

gi
)2∑

i∈IR
hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ.

(5)

Robust Learning for Boosted Ensembles. Adversarial ex-
amples are imperceptible perturbations to a correctly pre-
dicted input that cause incorrect predictions by the model in
question. Consider an input region ∆ϵ(x) centered around
a datapoint x with a radius of ϵ under the L∞ norm:

∆ϵ(x) = {x′ ∈ Rm | ∥x′ − x∥∞ ≤ ϵ} . (6)

Given an input x, an adversarial example x′ can be com-
puted as:

x′ = argmax
x′∈∆ϵ(x)

{L (F (x′) , y)}. (7)

Thus, an ensemble can be trained to be robust against adver-
sarial examples by minimising the loss under the worst-case
adversarial perturbation for each training example, as for-
mulated by Madry et al. [2018]:

min
F

n∑
i=1

max
x′∈∆ϵ(xi)

L (F (x′) , yi) . (8)

In tandem with the minimisation of this adversarial loss,
the construction of a weak learner at iteration t of gradient
boosting requires the optimisation of the following loss
function:

L(t)
rob =

n∑
i=1

max
x′∈∆ϵ(xi)

l

yi,

(t−1)∑
k=1

fk (x
′) + ft (x

′)

 .

(9)



4 ROBUST XGBOOST TREES

In this section we introduce a robust splitting criterion which
we incorporate into the XGBoost algorithm. Differently
from conventional approaches, which target the minimisa-
tion of the loss function with respect to the training data,
our method targets the robustness of the derived trees to
adversarial perturbations. This is achieved by integrating
an analytical upper bound of the adversarial loss within the
recursive splitting procedure of the individual decision trees.

4.1 ROBUST SPLITTING IN XGBOOST TREES

At the core of our robust training procedure is a splitting cri-
terion that modifies Equation 5 to incorporate the worst-case
adversarial loss within the recursive splitting procedure of in-
dividual decision trees. Instead of simply considering static
sets of points IL and IR for the left and right child nodes,
this new formulation additionally contains the ambiguity set
∆I, which contains all data points that could change child
nodes under an adversarial perturbation. We here consider
perturbations within an L∞ ball centred around a training
data point (7). When using axis-aligned splits, the computa-
tion of the worst-case robust loss function with respect to
these perturbations can be computed by treating each feature
independently. In particular, when splitting on feature j, per-
turbations on other features have no impact on which child
node a data point ends up in; therefore only perturbations of
±ϵ along feature j need to be considered.

To define and analyse the robust splitting criterion, we bor-
row the following notation from Chen et al. [2019] on vari-
ous sets of data points for a given split with a threshold η
on feature j.

Table 1: Definitions of all sets used in the robust splitting
criterion, when considering a split on feature j with thresh-
old η, under an L∞ perturbation of radius ϵ.

Notation Definition

I Set of examples in the node being split
IL I ∩ {(xi, yi)|x(j)

i ≤ η}
IR I ∩ {(xi, yi)|x(j)

i > η}
∆I I ∩ {(xi, yi)|η − ϵ < x

(j)
i ≤ η + ϵ}

I0
L IL \∆I

I0
R IR \∆I

Intuitively, the ambiguity set ∆I contains all points that
could switch child nodes under an adversarial perturbation.
In the context of an L∞ attack model, this essentially corre-
sponds to all points that are within a distance of ϵ from the
threshold η. The sets I0L and I0R contain all points that are
further than ϵ from the threshold η and are thus guaranteed
to remain in the left and right child nodes respectively under
any perturbation.

The robust splitting criterion can then be defined as:

Srob(I0L, I0R,∆I) =min
ri

1

2

[ (∑
i∈I0

L
gi +

∑
i∈∆I rigi

)2

∑
i∈I0

L
hi +

∑
i∈∆I rihi + λ

+

(∑
i∈I0

R
gi +

∑
i∈∆I(1− ri)gi

)2

∑
i∈I0

R
hi +

∑
i∈∆I(1− ri)hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ,

(10)

where ri is a binary variable that indicates whether a dat-
apoint i in the ambiguity set ∆I moves to the left child
node. Computing the optimal value of ri is a combinatorial
optimisation problem with exponential complexity, and thus
computationally intractable to solve forO(∥I∥m) candidate
splits.

We can instead derive a lower bound to the problem by
considering a linear relaxation on the binary variables ri:

Srob(I0L, I0R,∆I) ≥ S lb
rob = min

p,q

1

2

[ (∑
i∈I0

L
gi + p

)2

∑
i∈I0

L
hi + q + λ

+

(∑
i∈I0

R
gi +

∑
i∈∆I gi − p

)2

∑
i∈I0

R
hi +

∑
i∈∆I hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ,

(11)

where p and q are continuous variables that represent the
sum of the first and second derivatives of the points from
the ambiguity set that move to the left child node. This
relaxation results in a continuous optimisation problem with
an analytical solution that can be computed in constant
time. The lower bound for the robust split score given by
this solution can be used to upper bound the robust loss
function and can therefore be used to evaluate candidate
splits towards optimising the latter upper bound.

4.2 TIGHTENING THE LINEAR RELAXATION

The previously described linear relaxation of the robust split-
ting criterion is generally quite loose because the optimal
values for p and q may not satisfy the binary constraints
imposed on ri. This discrepancy can lead to substantial
under-approximation errors in the robust split scores, effec-
tively diminishing the distinction between high-quality and
low-quality candidate splits. As a result, the decision tree
may fail to identify effective splits, ultimately compromising
its predictive performance.



To alleviate this shortcoming, we now tighten the relaxation
by introducing box constraints around the minimum and
maximum values of p and q. In particular, we observe the
following:

• The first derivative of the loss function can be positive
or negative, therefore the minimum value of p is the
sum of all negative elements in the set {gi | i ∈ ∆I},
and the maximum value of p is the sum of all pos-
itive elements in the set {gi | i ∈ ∆I}. Hence,
p ∈

[∑
i∈∆I min(0, gi),

∑
i∈∆I max(0, gi)

]
.

• The second derivative of any convex loss function is
always positive, therefore q ∈

[
0,
∑

i∈∆I hi

]
.

While the box constraints greatly tighten the linear relax-
ation, they do not capture the combinatorial nature of the
binary variables ri. We can further tighten the relaxation
by approximating the feasible region of the values p and
q that are consistent with the points in the ambiguity set
moving between the left and right child nodes. In particular,
we aim to capture the constraint that if a point i moves to
the left node, then both the first and the second derivatives
of the point must contribute to the sums p and q, and vice
versa. This can be achieved by considering the maximum
and minimum values of the first and second derivatives of
the points in the ambiguity set.

To define the constraints we introduce some preliminary
notation. Let u be an auxiliary variable that denotes the num-
ber of points in the ambiguity set that move to the left child
node. Let g(∆I)

min , g(∆I)
max , h(∆I)

min and h
(∆I)
max be the minimum

and maximum values of the first and second derivatives of
the points in the ambiguity set, respectively. Furthermore,
let G(∆I) and H(∆I) be the sums of the first and second
derivatives of the points in the ambiguity set. These can be
used to construct linear constraints between p, q and u as
follows:

g
(∆I)
min · u ≤ p ≤ g(∆I)

max · u,

h
(∆I)
min · u ≤ q ≤ h(∆I)

max · u,

g
(∆I)
min (|∆I| − u) ≤ G(∆I) − p ≤ g(∆I)

max (|∆I| − u),

h
(∆I)
min (|∆I| − u) ≤ H(∆I) − q ≤ h(∆I)

max (|∆I| − u).
(12)

Solving for the auxiliary variable in these inequalities results
in the following linear constraints between p and q:

p ≤ q · c1,

p ≥ q · c2,

p ≥ G(∆I) − c1(H
(∆I) − q),

p ≤ G(∆I) − c2(H
(∆I) − q),

(13)

where the parameters c1 and c2 are defined as follows:

c1 =


g(∆I)
max

h
(∆I)
min

, g
(∆I)
max ≥ 0,

g(∆I)
max

h
(∆I)
max

, g
(∆I)
max < 0,

c2 =


g
(∆I)
min

h
(∆I)
max

, g
(∆I)
min ≥ 0,

g
(∆I)
min

h
(∆I)
min

, g
(∆I)
min < 0.

(14)

The optimal values of p and q can be computed analytically
in constant time by solving the constrained optimisation
problem. The detailed analytical solution is given in Ap-
pendix B.

We have thus derived a tight formulation for the robust split-
ting criterion that can be used to evaluate candidate splits
in the tree building procedure. The key advantages of this
formulation are threefold: (i) it can be solved analytically in
constant time, (ii) it can be integrated within the XGBoost
algorithm to build robust gradient boosted ensembles with
limited computational overhead, and (iii) it is agnostic to the
choice of loss function, and can thus be used with any differ-
entiable loss function for various tasks such as regression,
classification, and ranking.

4.3 CONSTRUCTING ROBUST TREES

We now integrate the robust splitting criterion with the XG-
Boost algorithm. The underlying tree building procedure is
modified to evaluate candidate splits using the robust split-
ting criterion, and select the split that maximises the robust
score.

Similarly to previous work [Guo et al., 2022] [Vos and Ver-
wer, 2021], we consider all features j ∈ [m] and thresholds
η ∈Wj as candidate splits, where

Wj =
⋃
i∈I
{x(j)

i − ϵ, x
(j)
i , x

(j)
i + ϵ}. (15)

To evaluate the robust score for each candidate split using
Equation 11, the values of

∑
i∈I0

L
gi,

∑
i∈I0

R
gi,

∑
i∈∆I gi,∑

i∈I0
L
hi,

∑
i∈I0

R
hi,

∑
i∈∆I hi, g

(∆I)
min , g(∆I)

max , h(∆I)
min and

h
(∆I)
max for each feature j and threshold η ∈ Wj need to

be computed. All thresholds are efficiently evaluated by
considering a sorted Wj and maintaining running sums,
minimums and maximums of the first and second derivatives
for the fixed and ambiguous sets respectively. This enables
the robust split score to be computed in constant time for
each candidate split. The proposed algorithm iterates over a
larger set of candidate splits compared to the exact XGBoost
algorithm, however this presents a constant time overhead
for the overall training procedure, and the exploration of
the additional candidate splits leads to more robust trees in
practice.

The sorting operation has a time complexity of O(n log n),
and the evaluation of the robust score for each candidate



split has a time complexity of O(1). Thus, the overall time
complexity of finding an optimal split over m features is
O(mn log n). This is the same as the time complexity of
the exact XGBoost tree building procedure. The detailed
algorithm for constructing robust trees is provided in Algo-
rithm 1.

Once an optimal split is identified, we assign leaf weights
to the left and right child nodes based on the optimal values
of pη and qη of the threshold that maximises the robust
splitting criterion:

w∗
L = −

∑
i∈I0

L
gi + pη∑

i∈I0
L
hi + qη + λ

w∗
R = −

∑
i∈I0

R
gi +

∑
i∈∆I gi − pη∑

i∈I0
R
hi +

∑
i∈∆I hi − qη + λ

.

(16)

Finally, as in conventional greedy tree building procedures
[Mingers, 1989] and in the XGBoost algorithm, we apply
pruning to the tree once it is constructed. We start with the
leaf nodes and iteratively prune the tree by removing nodes
that have a robust splitting score below γ. This post-training
pruning step accounts for the greediness of the building
procedure which cannot guarantee that the robust loss is
decreasing at successive splits. As opposed to alternative
methods of early stopping [Guo et al., 2022], by pruning
after training, we allow certain splits to be made that may
not lead to a local loss reduction, but may have a greater
loss reduction in subsequent splits.

Thus, we propose a greedy certified training method, that
is guaranteed to minimise the upper bound of the robust
loss function is minimised at each split. In principle, this
should lead to significantly more robust trees than a heuristic
approach to estimate the robust loss function per split.

5 EXPERIMENTAL EVALUATION

We evaluate the robust training procedure introduced in
the previous section by comparing it with the state-of-the-
art approaches on a variety of datasets and with respect to
different performance metrics.

Performance metrics. Given a sample (x, y), let ŷadv de-
note the output of the model F under a worst-case adversar-
ial perturbation on the input x. For regression tasks with a
mean squared error loss, ŷadv is equal to:

ŷadv = F (x′) where x′ = argmax
x′∈∆ϵ(x)

|F (x′)− y| . (17)

On the basis of ŷadv we define the robust R2 score as:

R2
rob = 1−

∑n
i (yi − ŷadv,i)

2∑n
i (yi − ȳ)2

, (18)

Algorithm 1: Robust Splits for XGBoost Trees
Input: Training set D = {(xi, yi)}|ni=1, xi ∈ Rm,

yi ∈ R, ϵ, the radius of the L∞ ball
Input: Node indices I, per-instance gradients {gi}i∈I ,

Hessians {hi}i∈I , regularization parameter λ,
minimum gain γ

for j ← 1 to m do
for i in sorted(I, ascending by xj

i ) do
for η ∈ {xj

i − ϵ, xj
i , x

j
i + ϵ} do

I0L = {(xi, yi)|xj
i ≤ η − ϵ};

I0R = {(xi, yi)|xj
i > η + ϵ};

∆I = {(xi, yi)|η − ϵ < x
(j)
i ≤ η + ϵ} ;

Update sums
∑

i∈I0
L
gi,

∑
i∈I0

R
gi,∑

i∈∆I gi,
∑

i∈I0
L
hi,

∑
i∈I0

R
hi,∑

i∈∆I hi;
Update values g(∆I)

min , g(∆I)
max , h(∆I)

min and
h
(∆I)
max ;

S lb
rob ← Lower bound of robust split score
from Equation 11;
pη , qη ← argminS lb

rob;
end

end
end
m∗, η∗, p∗η , q∗η ← argmaxS lb

rob;

Output: Best split: feature m∗, threshold η∗, optimal
values p∗η , q∗η

where ȳ is the mean of the labels on the test dataset. This
can be used to effectively summarise the lower bound of
the performance over a test set under adversarial attacks of
radius ϵ. Furthermore, given ŷ = F (x), let ŷdev denote the
output of the model that maximises the deviation from the
true output, i.e.,

ŷdev = F (x′) where x′ = argmax
x′∈∆ϵ(x)

|F (x′)− ŷ| . (19)

On the basis of ŷdev, we define the robust mean absolute
deviation (MAD) as:

MAD =
1

n

n∑
i

|ŷi − ŷdev,i|. (20)

The MAD metric gives an upper bound to the average devi-
ation in the model’s predictions under L∞ norm-bounded
adversarial attacks. In the following, we use the MILP-based
method originally introduced in Kantchelian et al. [2016] to
compute the outputs ŷadv and ŷdev for each test point.

In addition to R2
rob and MAD, we introduce a robust accu-

racy metric, analogous to those used in the literature for
classification tasks. In our case, we define robust accuracy
as the proportion of test data points for which the model’s



output remains within a specified threshold τ of the true
label under adversarial perturbations, i.e., a point is deemed
robust if |ŷadv − y| ≤ τ .

To ensure consistency in our evaluation across the various
datasets (which have different label ranges), we vary the
threshold τ , weighted by the range of output values in the
test set, i.e., τ = wτ · (max{y} −min{y}).

We refer to the robust accuracy metric as acc(wτ )
rob , where, for

our experiments, we consider wτ ∈ {0.2, 0.4}. The metric
allows us to evaluate the robustness of a model against
perturbations that cause a change in the output by a specified
fraction of the range of the output values.

Baselines. We consider two baseline methods for evaluating
the performance of our robust training method:

• XGBoost [Chen and Guestrin, 2016]: The conventional
XGBoost method with the mean squared error objec-
tive.

• Robust-GBDT 1 [Chen et al., 2019]: The robust XG-
Boost training method that uses heuristics to estimate
the worst-case robust loss at a split. To our knowledge,
this is the only method in the literature that directly
supports robust training for general loss functions.

Table 2: Average results over 19 regression datasets for the
proposed robust-splitting criterion, Robust-GBDT, and XG-
Boost under an L∞ adversarial attack for various ϵ values.
MAD
yrange

refers to the mean absolute deviation of the model
normalised by the range of the output values in the test set.

ϵ Method R2 R2
rob

MAD
yrange

acc(0.2)rob acc(0.4)rob

0.005
xgboost 0.678 0.220 0.062 0.794 0.967
RGBDT 0.701 0.572 0.032 0.895 0.985

ours 0.690 0.636 0.015 0.910 0.987

0.01
xgboost 0.678 -0.186 0.093 0.730 0.929
RGBDT 0.697 0.421 0.050 0.855 0.976

ours 0.669 0.582 0.023 0.896 0.986

0.05
xgboost 0.678 -3.828 0.278 0.382 0.683
RGBDT 0.632 -1.268 0.166 0.564 0.856

ours 0.521 0.189 0.049 0.813 0.966

0.1
xgboost 0.678 -7.191 0.396 0.190 0.505
RGBDT 0.565 -4.440 0.255 0.371 0.719

ours 0.301 -0.049 0.055 0.742 0.945

Datasets and Hyperparameters. We consider 19 regres-
sion datasets from a widely used tabular data benchmark
introduced in Grinsztajn et al. [2022]. This benchmark is
chosen as it provides a diverse collection of real-world re-
gression tasks, facilitating a comprehensive evaluation of
the robustness of the proposed method. As our approach
uses the L∞ attack model, which is only applicable on con-

1Code taken from https://github.com/chenhongge/RobustTrees

tinuous features, we consider the datasets in the benchmark
that only contain continuous features.

We tune the hyperparameters of the three approaches to
maximise the conventional R2 score on the validation set of
each dataset, as this approach closely mirrors the application
of such models in practice. The hyperparameters for the
XGBoost baseline are obtained from the same benchmark,
which presents the best grid-search hyperparameters on
each dataset. For the two robust methods, we conduct a grid-
search over the maximum tree depth, the L2 regularisation
parameter λ, and the minimum loss reduction γ, using the
hyperparameters from the XGBoost baseline as a starting
point. We further limit the number of trees in the ensemble
to 100 to mitigate the scalability issues associated with
certifying large models with the MILP solver.

We scale all feature values in the training data to [0, 1] to en-
sure uniformity in the perturbations across features. We con-
duct experiments on the datasets with a range of adversarial
perturbation radii ϵ ∈ {0.005, 0.01, 0.05, 0.1}. All results
are obtained by averaging over a 5-fold cross-validation.

The average performance of the proposed robust-splitting
criterion, Robust-GBDT, and XGBoost over the 19 regres-
sion datasets for various ϵ values is outlined in Table 2. We
present more granular results across different datasets for
a perturbation radius of 0.05 in Table 3. Results for other
values of perturbation radii can be found in Tables 5, 6
and 7 in the appendix. The results clearly demonstrate the
improved robustness of the proposed method compared to
the baselines, especially when observing larger perturbation
radii. The results also highlight fragilities with the conven-
tional XGBoost models, which appear unable to maintain
their performance under adversarial perturbations. Indeed,
even small input perturbations lead to large deviations in the
output values, completely degrading its predictive perfor-
mance, as indicated by the large negative R2

rob values. This
strongly underscores the need for considering robustness in
regression tasks.

In contrast, the Robust-GBDT method obtains much higher
robustness than the conventional XGBoost model, and ex-
hibits good performance when considering small pertur-
bations. However, it is significantly less effective than the
proposed robust-splitting criterion at higher perturbation
radii, where it obtains large negative values of R2

rob in some
cases. The table additionally shows that the Robust-GBDT
method obtains higher standard R2 scores than the proposed
method. This can be intuitively explained by the fact that
Robust-GBDT uses a simple heuristic to estimate the worst-
case robust loss, while our method determines a provable
upper bound to the robust loss at each candidate split. This
ultimately makes the proposed approach more robust at the
expense of a drop in predictive performance.

Comparison with exact robust loss. In addition to the
experiments conducted on the tabular data benchmark, we

https://github.com/chenhongge/RobustTrees


Table 3: Comparisons of standard and robust regression metrics for the proposed robust-splitting criterion, Robust-GBDT,
and XGBoost over 19 regression benchmark datasets for an L∞ adversarial attack of radius ϵ = 0.05. The MADratio column
describes the ratio of MAD obtained by the baseline compared to our approach.

Dataset ours RGBDT xgboost
yrange

MADratio
R2 R2

rob MAD R2 R2
rob MAD R2 R2

rob MAD RGBDT XGBoost

Ailerons 0.742 0.431 0.000 0.765 0.360 0.000 0.758 0.365 0.000 0.003 - -
Bike_Sharing_Demand 0.508 0.049 31.434 0.605 -0.422 52.997 0.613 -0.328 43.569 410.200 1.686 1.386

Brazilian_houses 0.745 0.626 0.253 0.838 -0.100 0.768 0.986 -18.806 3.507 4.776 3.036 13.862
MiamiHousing2016 0.722 0.148 0.369 0.830 -0.727 0.708 0.865 -0.991 0.743 3.533 1.919 2.014

abalone 0.323 0.203 0.622 0.465 -0.280 1.962 0.364 -0.815 2.741 22.400 3.154 4.407
cpu_act 0.979 0.933 3.289 0.984 0.882 5.475 0.975 -16.297 78.840 99.000 1.665 23.971

delays_zurich_transport 0.055 0.009 0.120 0.108 -0.154 0.619 0.101 -0.459 1.060 10.272 5.158 8.833
diamonds 0.939 0.382 0.120 0.957 -0.009 0.361 0.966 -2.341 0.731 2.264 3.008 6.092
elevators 0.597 -0.090 0.004 0.823 -5.457 0.016 0.822 -4.351 0.015 0.057 4.000 3.750

house_16H 0.255 0.052 0.165 0.320 -0.287 0.393 0.295 -2.199 1.037 11.112 2.382 6.285
house_sales 0.741 0.440 0.193 0.830 -0.184 0.474 0.836 -0.478 0.521 3.745 2.456 2.699

houses 0.750 0.438 0.248 0.788 -0.297 0.502 0.853 -1.740 0.794 2.671 2.024 3.202
medical_charges -0.004 -0.220 0.111 0.412 -7.816 0.787 0.908 -5.596 0.748 1.852 7.090 6.739

nyc-taxi-green-dec-2016 0.003 -0.003 0.005 0.193 -3.068 1.029 0.440 -7.020 1.498 3.270 205.800 299.600
pol 0.943 0.519 16.551 0.969 0.376 21.964 0.976 0.152 27.053 100.000 1.327 1.635

sulfur 0.780 -0.793 0.035 0.918 -2.205 0.077 0.909 -3.372 0.090 0.861 2.200 2.571
superconduct 0.573 0.402 5.242 0.757 -1.855 40.668 0.784 -3.442 54.040 129.840 7.758 10.309
wine_quality 0.245 0.063 0.156 0.381 -1.305 0.830 0.390 -1.752 0.927 5.400 5.321 5.942
yprop_4_1 0.003 -0.004 0.000 0.062 -1.553 0.024 0.049 -3.253 0.041 0.149 inf inf

evaluate the empirical performance and the tightness of the
approximation of the proposed lower bound of the robust
splitting criterion and the heuristic from Chen et al. [2019]
against the exact robust loss, computed by exactly solving
the mixed integer optimisation problem in Eq. 10 in Figure
1. We observe that our method indeed provides a principled
lower bound to the exact solution, and with a much tighter
approximation compared to the heuristic method.
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Figure 1: Comparison of robust splitting scores obtained by
our method, the heuristic from Chen et al. [2019], and an
exact solution to the robust splitting score from Equation
10 across threshold values, with ϵ = 0.1. These scores are
computed from the root node of the first tree of the ensemble,
on the optimal feature for splitting.

Additionally, we compare the robustness profile of the pro-
posed method, the exact splitting score, and the heuristic
method from Chen et al. [2019] by computing and plotting
the R2

rob of models under varying perturbation radii ϵ. As the
exact robust loss is extremely computationally expensive to
compute, we limit our evaluation to 5 datasets from the tab-
ular data benchmark. A subset of the results is presented in
Figure 2 below, with the full results available at Figure 3 in
the appendix. We additionally compare the performance of
the heuristic method with a relaxed perturbation radius (2x
the original radius) to evaluate its robustness-performance
trade-off.

The empirical robustness results in Figure 2 and the tight-
ness of the approximation shown in Figure 1 demonstrate
that our proposed lower bound of the robust splitting score
achieves performance closely aligned with the exact robust
splitting score across diverse datasets and training radii. This
suggests that the proposed lower bound yields empirically
comparable models in terms of both performance and robust-
ness. In some cases, the relaxation even leads to more robust
and accurate models. Thus, employing the proposed lower
bound of the robust splitting score closely approximates the
models obtained by the exact robust splitting score, while
being significantly more computationally efficient.

Furthermore, the proposed approach leads to models with
greater robustness compared to the heuristic approach, even
with a relaxed radius, obtaining a very different robustness
profile with a more favourable trade-off between robust-
ness and predictive performance, which becomes more pro-
nounced at higher perturbation radii.

Indeed, we observe a robustness and predictive performance
trade-off between the three methods evaluated. Nonethe-
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Figure 2: Comparison of the robustness profile of the mod-
els obtained by our method, the heuristic from Chen et al.
[2019], the same heuristic set with a relaxed perturbation
radius, and an exact solution to the robust splitting score
from Equation 10.

less, we believe our proposed robust-splitting criterion is
particularly compelling for applications where robustness
is paramount. By delivering markedly improved empirical
robustness against adversarial perturbations—especially at
higher perturbation levels—our approach presents a valu-
able alternative to both conventional XGBoost and existing
robust training methods.

6 CONCLUSIONS

In this work we have proposed methods to improve and
evaluate the adversarial robustness of tree-based ensemble
models in the context of regression tasks. We introduce a
novel method to construct splits that are robust to adversarial

perturbations in the context of the XGBoost algorithm. Our
method is based on an analytical solution to the upper-bound
of the Taylor approximation of the loss function typically
used within XGBoost, that can be computed in constant time.
This enables us to construct robust splits while maintaining
the computational efficiency of the original algorithm. Our
formulation is generalisable to any differentiable loss func-
tion and can thus be extended to various use-cases, including
regression.

Furthermore, we proposed a series of novel metrics to quan-
tify the robustness of regression models and evaluate the
robustness of the XGBoost algorithm. Our results show that
the models are highly sensitive to adversarial perturbations
in the input space, which leads to significant performance
degradation. Extensive experiments highlight that our pro-
posed robust XGBoost algorithm derives models that are
more robust to perturbations in the input space. We addition-
ally observe a trade-off between robustness and predictive
performance in several experiments.

Limitations and Future Work: There are some limitations
in the proposed method that provide several promising di-
rections for future work:

• The procedure considers a simplification of the robust
loss function, by considering the worst-case loss per
split, thereby constructing robust trees in isolation. Per-
turbations in the previous trees in the ensemble are not
currently considered. A future work in this direction
is to consider the robust loss over the entire ensemble,
and build a procedure that certifiably minimises the
robust loss over the complete ensemble.

• The current work primarily focusses on L∞ norm ad-
versarial attacks on numerical features, which limits
its applicability on mixed and categorical data which
are common in tabular datasets. As the proposed lin-
ear relaxation approach is highly general (and only
requires the creation of an ambiguity set), it is exten-
sible to other types of data and adversarial attacks.
This presents a promising direction for future work to
explore a framework for creating ambiguity sets for
categorical and mixed data types, as well as for other
types of adversarial attacks.
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A EXPERIMENTS

A.1 HYPERPARAMETERS USED

The hyperparameters for the conventional XGBoost models are detailed in Table 4, obtained from the grid-search conducted
in the tabular data benchmark [Grinsztajn et al., 2022]. The hyperparameters for the robust XGBoost models were further
tuned using these as a starting point.

Table 4: Details of the hyperparameters used in the experiments, obtained from the hyperparameter tuning conducted in the
tabular data benchmark presented in Grinsztajn et al. [2022]. The number of trees was restricted to 100 for all experiments
due to computational constraints of the MILP based solver used to compute the robust metrics.

dataset No. of Trees Max Depth γ Learning Rate Minimum samples per Leaf λ

cpu_act 100 9 0.0011 0.0272 5 2.978
pol 100 11 0.0000 0.0272 4 2.525

elevators 100 7 0.0000 0.0407 18 1.297
wine_quality 100 11 0.0000 0.0118 2 1.417

Ailerons 100 7 0.0000 0.0219 77 1.515
houses 100 10 0.0001 0.0319 2 3.303

house_16H 100 11 0.0002 0.0044 3 3.183
diamonds 100 5 0.0003 0.0635 4 2.056

Brazilian_houses 100 4 0.0000 0.0722 1 3.204
Bike_Sharing_Demand 100 9 0.0000 0.0143 3 1.660
nyc-taxi-green-dec-2016 100 3 0.1054 0.2163 2 2.335

house_sales 100 11 0.2247 0.0222 1 2.168
sulfur 100 6 0.0000 0.1523 2 1.469

medical_charges 100 4 0.0236 0.0289 14 1.516
MiamiHousing2016 100 9 0.0310 0.0314 2 3.226

superconduct 100 10 0.0066 0.0173 15 1.497
yprop_4_1 100 11 0.0007 0.0119 1 1.224

abalone 100 10 0.0000 0.0062 29 1.415
delays_zurich_transport 100 10 0.0130 0.0061 24 3.043

†This work was conducted between November 2024 and April 2025 while Panagiotis Kouvaros was also affiliated with the University
of Limassol.
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A.2 ADDITIONAL RESULTS

This section outlines the detailed results of the experiments described in Section 5 for the L∞ adversarial attacks of radii
ϵ = 0.005, ϵ = 0.01 and ϵ = 0.1.

Table 5: Comparisons of standard and robust regression metrics for an L∞ adversarial attack of radius ϵ = 0.005.

Dataset
ours RGBDT xgboost

yrange
MADratio

R2 R2
rob MAD R2 R2

rob MAD R2 R2
rob MAD RGBDT XGBoost

Ailerons 0.800 0.791 0.000 0.786 0.779 0.000 0.758 0.751 0.000 0.003 - -
Bike_Sharing_Demand 0.706 0.697 1.122 0.710 0.707 0.414 0.613 0.608 0.557 410.200 0.369 0.496

Brazilian_houses 0.935 0.876 0.154 0.944 0.668 0.396 0.986 -0.997 1.052 4.776 2.571 6.831
MiamiHousing2016 0.876 0.827 0.067 0.878 0.805 0.089 0.865 0.771 0.100 3.533 1.328 1.493

abalone 0.482 0.405 0.369 0.496 0.399 0.437 0.364 0.198 0.597 22.400 1.184 1.618
cpu_act 0.986 0.978 0.934 0.981 0.971 1.152 0.975 0.951 1.801 99.000 1.233 1.928

delays_zurich_transport 0.137 0.133 0.011 0.134 0.077 0.171 0.101 -0.047 0.388 10.272 15.545 35.273
diamonds 0.962 0.960 0.005 0.965 0.949 0.035 0.966 0.907 0.108 2.264 7.000 21.600
elevators 0.866 0.842 0.000 0.869 0.825 0.001 0.822 0.781 0.001 0.057 inf inf

house_16H 0.382 0.283 0.105 0.401 0.248 0.128 0.295 -0.985 0.682 11.112 1.219 6.495
house_sales 0.848 0.821 0.035 0.853 0.806 0.056 0.836 0.749 0.087 3.745 1.600 2.486

houses 0.810 0.757 0.059 0.838 0.570 0.188 0.853 0.435 0.237 2.671 3.186 4.017
medical_charges 0.813 0.729 0.067 0.906 0.649 0.139 0.908 0.625 0.121 1.852 2.075 1.806

nyc-taxi-green-dec-2016 0.304 0.127 0.124 0.357 -0.174 0.265 0.440 -0.592 0.435 3.270 2.137 3.508
pol 0.986 0.974 1.784 0.985 0.961 2.786 0.976 0.945 2.968 100.000 1.562 1.664

sulfur 0.897 0.830 0.008 0.909 0.813 0.012 0.909 0.546 0.014 0.861 1.500 1.750
superconduct 0.815 0.682 5.573 0.817 0.542 9.779 0.784 -0.876 30.349 129.840 1.755 5.446
wine_quality 0.429 0.319 0.105 0.432 0.230 0.176 0.390 0.136 0.194 5.400 1.676 1.848
yprop_4_1 0.067 0.050 0.000 0.062 0.038 0.001 0.049 -0.719 0.015 0.149 inf inf

Table 6: Comparisons of standard and robust regression metrics for an L∞ adversarial attack of radius ϵ = 0.01.

Dataset
ours RGBDT xgboost

yrange
MADratio

R2 R2
rob MAD R2 R2

rob MAD R2 R2
rob MAD RGBDT XGBoost

Ailerons 0.800 0.753 0.000 0.785 0.723 0.000 0.758 0.703 0.000 0.003 - -
Bike_Sharing_Demand 0.714 0.704 1.053 0.714 0.699 1.882 0.613 0.591 2.460 410.200 1.787 2.336

Brazilian_houses 0.906 0.843 0.174 0.936 0.711 0.323 0.986 -2.579 1.459 4.776 1.856 8.385
MiamiHousing2016 0.865 0.758 0.120 0.878 0.716 0.161 0.865 0.648 0.186 3.533 1.342 1.550

abalone 0.470 0.355 0.477 0.493 0.304 0.730 0.364 0.053 0.999 22.400 1.530 2.094
cpu_act 0.985 0.974 1.195 0.981 0.961 1.875 0.975 -1.275 12.555 99.000 1.569 10.506

delays_zurich_transport 0.129 0.125 0.013 0.133 0.070 0.176 0.101 -0.094 0.501 10.272 13.538 38.538
diamonds 0.960 0.941 0.016 0.965 0.922 0.068 0.966 0.843 0.156 2.264 4.250 9.750
elevators 0.858 0.814 0.001 0.871 0.817 0.001 0.822 0.765 0.001 0.057 1.000 1.000

house_16H 0.335 0.204 0.119 0.392 0.196 0.182 0.295 -1.161 0.738 11.112 1.529 6.202
house_sales 0.838 0.795 0.053 0.854 0.764 0.094 0.836 0.657 0.145 3.745 1.774 2.736

houses 0.802 0.701 0.099 0.827 0.375 0.270 0.853 0.058 0.370 2.671 2.727 3.737
medical_charges 0.682 0.547 0.088 0.899 0.257 0.226 0.908 0.204 0.215 1.852 2.568 2.443

nyc-taxi-green-dec-2016 0.241 0.044 0.130 0.354 -1.261 0.620 0.440 -1.396 0.639 3.270 4.769 4.915
pol 0.983 0.949 3.782 0.984 0.942 4.080 0.976 0.923 4.340 100.000 1.079 1.148

sulfur 0.888 0.724 0.012 0.876 0.589 0.019 0.909 0.099 0.026 0.861 1.583 2.167
superconduct 0.783 0.592 7.229 0.804 0.208 16.294 0.784 -1.458 37.067 129.840 2.254 5.128
wine_quality 0.395 0.187 0.175 0.426 -0.017 0.322 0.390 -0.164 0.356 5.400 1.840 2.034
yprop_4_1 0.070 0.042 0.001 0.071 0.018 0.001 0.049 -0.951 0.018 0.149 1.000 18.000



Table 7: Comparisons of standard and robust regression metrics for an L∞ adversarial attack of radius ϵ = 0.1.

Dataset
ours RGBDT xgboost

yrange
MADratio

R2 R2
rob MAD R2 R2

rob MAD R2 R2
rob MAD RGBDT XGBoost

Ailerons 0.562 0.025 0.000 0.726 -0.399 0.000 0.758 -0.431 0.000 0.003 - -
Bike_Sharing_Demand 0.274 -0.664 46.494 0.578 -1.781 86.108 0.613 -1.726 78.848 410.200 1.852 1.696

Brazilian_houses 0.615 0.307 0.375 0.718 -1.457 1.184 0.986 -20.624 3.674 4.776 3.157 9.797
MiamiHousing2016 0.283 -0.162 0.251 0.816 -3.269 1.202 0.865 -3.275 1.191 3.533 4.789 4.745

abalone 0.111 0.042 0.299 0.331 -0.241 1.555 0.364 -1.346 3.532 22.400 5.201 11.813
cpu_act 0.964 0.862 5.382 0.981 0.746 8.559 0.975 -16.530 79.775 99.000 1.590 14.823

delays_zurich_transport -0.004 -0.004 0.001 0.072 -0.145 0.487 0.101 -0.649 1.315 10.272 487.000 1315.000
diamonds 0.002 -0.019 0.099 0.928 -7.332 1.628 0.966 -9.919 1.857 2.264 16.444 18.758
elevators 0.313 -0.222 0.003 0.800 -16.935 0.029 0.822 -16.461 0.028 0.057 9.667 9.333

house_16H 0.165 -0.036 0.101 0.271 -0.683 0.526 0.295 -3.748 1.371 11.112 5.208 13.574
house_sales 0.476 0.201 0.216 0.805 -1.201 0.705 0.836 -1.797 0.775 3.745 3.264 3.588

houses 0.614 0.153 0.303 0.789 -1.222 0.726 0.853 -3.219 1.039 2.671 2.396 3.429
medical_charges -0.290 -0.297 0.021 -0.115 -13.729 0.942 0.908 -13.566 1.135 1.852 44.857 54.048

nyc-taxi-green-dec-2016 0.007 -0.056 0.055 0.155 -1.003 0.474 0.440 -13.888 2.193 3.270 8.618 39.873
pol 0.850 -0.164 29.583 0.946 -0.982 46.064 0.976 -1.444 54.829 100.000 1.557 1.853

sulfur 0.452 -0.904 0.038 0.878 -29.388 0.310 0.909 -16.217 0.219 0.861 8.158 5.763
superconduct 0.206 0.033 5.157 0.640 -2.533 43.676 0.784 -4.386 60.570 129.840 8.469 11.745
wine_quality 0.121 -0.027 0.140 0.361 -2.104 1.054 0.390 -3.173 1.288 5.400 7.529 9.200
yprop_4_1 0.000 -0.003 0.000 0.060 -0.703 0.014 0.049 -4.222 0.047 0.149 inf inf



A.3 ROBUSTNESS PROFILE

This section outlines the complete results of the comparison between the robustness profiles of the proposed method, to the
exact robust splitting criterion, and the heuristic presented in Chen et al. [2019].
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Figure 3: Comparison of the robustness profile of the models obtained by our method, the heuristic from Chen et al. [2019],
the same heuristic set with a relaxed perturbation radius, and an exact solution to the robust splitting score from Equation 10.



B ANALYTICAL SOLUTION TO THE LINEAR RELAXATION OF ROBUST SPLITTING
CRITERION

We need to compute the robust splitting criterion:

Srob(I0L, I0R,∆I) ≥ S lb
rob = min

p,q

1

2

[ (∑
i∈I0

L
gi + p

)2

∑
i∈I0

L
hi + q + λ

+

(∑
i∈I0

R
gi +

∑
i∈∆I gi − p

)2

∑
i∈I0

R
hi +

∑
i∈∆I hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ,

(21)

subject to the constraints:

p ∈

[ ∑
i∈∆I

min(0, gi),
∑
i∈∆I

max(0, gi)

]
,

q ∈

[
0,

∑
i∈∆I

hi

]
,

p ≤ q · c1,

p ≥ q · c2,

p ≥ G(∆I) − c1(H
(∆I) − q),

p ≤ G(∆I) − c2(H
(∆I) − q),

(22)

where the parameters c1 and c2 are defined as follows:

c1 =


g(∆I)
max

h
(∆I)
min

, g
(∆I)
max ≥ 0,

g(∆I)
max

h
(∆I)
max

, g
(∆I)
max < 0,

c2 =


g
(∆I)
min

h
(∆I)
max

, g
(∆I)
min ≥ 0,

g
(∆I)
min

h
(∆I)
min

, g
(∆I)
min < 0.

(23)

The minimisation problem in Eq. 21 can be simplified, by only considering the contributions of the left and right child nodes
to determine optimal values of p and q, as the contribution of the parent node is constant and does not depend on the split.

f(p, q) =
(A+ p)2

C + q
+

(B + T − p)2

D +Q− q
(24)

where we consider the following simplified notation for the sums of the first and second derivatives:

A =
∑
i∈I0

L

gi, C =
∑
i∈I0

L

hi,

B =
∑
i∈I0

R

gi, D =
∑
i∈I0

R

hi,

T =
∑
i∈∆I

gi, Q =
∑
i∈∆I

hi,



Taking partial derivatives of Eq. 24 with respect to p and q gives us the following equations:

∂f

∂p
=

2(A+ p)

C + q
− 2(B + T − q)

D +Q− q
= 0, (25)

∂f

∂q
= − (A+ p)2

(C + q)2
+

(B + T − p)2

(D +Q− q)2
= 0 (26)

Both equations reduce to the same proportionality condition

A+ p

C + q
=

B + T − p

D +Q− q
= µ (27)

Adding the two numerators and denominators shows

µ =
A+B + T

C +D +Q
(28)

Hence every stationary point must lie on the central line

p = µ(C + q)−A. (29)

Substituting Eq. 29 back into the objective function Eq. 24 yields a constant minimum for f :

f(p, q) =
A2 +B2 + T 2 + 2(AB +AT +BT )

C +D +Q
. (30)

If any point on the line segment (Eq. 29) satisfies the constraints in Eq. 22, then it is a global minimum of the objective
function. If not, the minimum must be attained at one of the extreme points of the feasible polygon defined by the constraints.
This involves minimising the analytical value of f for each of the 8 constraint edges, as well as at their corners. We now
enumerate the possible minimisation cases.

Case 1 p = k q (k ∈ {c1, c2}):

q⋆ =
AD +AQ−BC − CT

A+B − k(C +D +Q) + T
, p⋆ = kq⋆. (31)

Case 2 p = T − k (Q− q) (k ∈ {c1, c2}):

q⋆ =
AD +AQ−BC − kQ(C +D +Q) +DT +QT

A+B − k(C +D +Q) + T
, p⋆ = T − k(Q− q⋆). (32)

Case 3 fixed p = p̄ (p̄ ∈ {
∑

i∈∆I min(0, gi),
∑

i∈∆I max(0, gi)}):

q⋆ =
AD +AQ−BC − CT + p̄(C +D +Q)

A+B + T
, p⋆ = p̄. (33)

Case 4 fixed q ∈ {0, Q}: similar formulas with roles of p and q swapped.

Case 5 Vertices of the bounding box defined by p ∈ {pmin, pmax} and q ∈ {0, Q}:

(p⋆, q⋆) ∈ {(pmin, 0), (pmin, Q), (pmax, 0), (pmax, Q)}. (34)

Case 6 Intersection of p = kaq and p = T − kb(Q− q), where ka, kb ∈ {c1, c2} and ka ̸= kb :

q⋆ =
T − kbQ

ka − kb
, p⋆ = kaq

⋆. (35)

Case 7 Intersection of p = c1q with p = c2q (if c1 ̸= c2), and intersection of p = T − c1(Q− q) with p = T − c2(Q− q)
(if c1 ̸= c2):

For p = c1q, p = c2q : p⋆ = 0, q⋆ = 0. (36)
For p = T − c1(Q− q), p = T − c2(Q− q) : q⋆ = Q, p⋆ = T. (37)



Case 8 Intersection of p = kq with q = Q, where k ∈ {c1, c2} and intersection of p = T − k(Q− q) with q = 0, where
k ∈ {c1, c2}:

For p = kq and q = Q : p⋆ = kQ, q⋆ = Q. (38)
For p = T − k(Q− q) and q = 0 : p⋆ = T − kQ, q⋆ = 0. (39)

Case 9 Intersection of p = T − k(Q− q) with p = p̄, where k ∈ {c1, c2} and p̄ ∈ {pmin, pmax}:

p⋆ = p̄, q⋆ =
p̄+ kQ− T

k
(if k ̸= 0). (40)

Case 10 Specific points (p⋆, q⋆) = (p̄, k/p̄), where p̄ ∈ {pmin, pmax} and k ∈ {c1, c2} :

p⋆ = p̄, q⋆ =
k

p̄
(if p̄ ̸= 0). (41)

Thus, computing the global minimum corresponds to checking the feasibility of the unconstrained analytical solution, 8
edges, and 24 vertices of the bounding polygon. In practice, several of the intermediate values are cached, which leads to the
minimum being computed efficiently, and in constant time.
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