
Resolving Computational Challenges in Accelerating
Electronic Structure Calculations using Machine

Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent advances in use of machine learned surrogates to accelerate electronic struc-1

ture calculations provide exciting opportunities for materials modeling. While the2

new models are extremely effective, the training of such models require millions3

of samples for predicting the material properties for a configuration of atoms or4

snapshot in a single temperature, atomic density pair. This results in excessively5

high training costs when material properties for multiple snapshots at multiple6

temperatures and densities are needed. We present a novel atom-centered de-7

composition of local density of states for supervision, which reduces the number8

of samples for training and evaluation by orders of magnitude compared to past9

approaches. Combined with a new model for learning atomic environment de-10

scriptions end-to-end, our approach allows resolving downstream quantities such11

as band energy of melting point aluminum at a fraction of the cost of previous12

state of the art, with matching or greater accuracy. We further demonstrate that13

the new models generalize across multiple temperatures of Aluminum reducing14

computational costs even further. Finally, in order to extend the approach even15

further we devise an uncertainty metric to choose the next snapshot for training. We16

demonstrate the efficacy of this metric using liquid and solid aluminum snapshots.17

1 Introduction18

The ability to perform accurate materials modeling across different length and time scales holds19

promise in advancing key directions of material science research. Example applications include the20

discovery of new materials, or their behavior under extreme conditions. The primary challenge is21

being able to extend information from quantum mechanical calculation at microscale (nanometer,22

femtoseconds) to simulations operating at mesoscale and macroscale (centimeter, milliseconds).23

Kohn-Sham density functional theory (DFT) has been the quantum mechanical method of choice24

for calculations fundamental to driving simulations at the microscale due to its accuracy and speed.25

Important outputs from DFT include the energy and forces of a system as a function of the atomic26

positions, which enable moving forward the dynamics of the simulation in time according to physical27

principles. However, effectiveness of DFT is limited to systems on the scale of hundreds of atoms,28

as its computational cost scales as the cube of the system size and becomes prohibitively expensive29

for larger systems. The fundamental bottleneck of DFT calculations is the Kohn-Sham differential30

equations, which has inspired recent efforts to use ML to approximate its solutions [Chandrasekaran31

et al., 2019, del Rio et al., 2020, Ellis et al., 2021]. One of the key quantities characterizing the32
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electronic structure is the electronic density of states (DOS), which describes the energy distribution33

of electrons of an atomic system.34

Recent methods have had success using the local density of states (LDOS) as the supervised target35

[Chandrasekaran et al., 2019, Ellis et al., 2021], from which properties such as DOS and band36

energy can be computed inexpensively. While accurate, the LDOS is computationally expensive as37

it is defined over a 3D grid containing tens of thousands of points per atom, requiring that many38

predictions to resolve the properties of a snapshot. The size of the grid also needs to scale up with the39

size of the system in order to maintain accuracy, presenting a formidable scalability challenge. As40

these approaches have to be used to predict the properties at multiple temperatures and densities, the41

computational costs become infeasible. We solve these problems in three different ways.42

First, we propose a new approach for atom-level supervision, ADOS, that reduces the total work for43

prediction by orders of magnitude by comparison with relatively same accuracy.44

Additionally, existing ML approaches for resolving DOS have so far relied on hand-crafted descriptors45

to extract features (fingerprints) from local atomic environments, as the input to their ML model.46

While much progress has been made in the development of fingerprinting techniques, they share in47

common the constraint of being limited to fitting to fixed basis functions. This work proposes to48

instead use trainable neural descriptors for fingerprinting, specifically focusing on the Concentric49

Spherical Neural Network (CSNN) model [Fox et al., 2022] as extended to the DOS prediction50

problem. This allows the atomic environment fingerprinting to be adapted to the data and target51

problem, with the end goal of generalizing to greater types and complexities of environments within52

a single model. We experimentally evaluate our approach for accurately resolving the band energy53

(calculated from DOS) of aluminum at the melting point. Our overall approach is able to match and54

even surpass the accuracy of previous LDOS-based approach for aluminum [Ellis et al., 2021], at55

a fraction of the time. We demonstrate that the new fingerprinting can accurately predict the band56

energies for several temperature configurations not in the training data.57

Finally, we examine the use of Monte Carlo dropout (or just dropout, for brevity) to assess the58

uncertainty of an ADOS model when predicting band energies of test atomic configurations. We59

show that for a model trained using solid aluminum data, the dropout uncertainty is generally higher60

for liquid configurations, as expected. This finding supports the use of Monte Carlo dropout to gauge61

the accuracy of ADOS models when predicting unlabeled data and for retraining ADOS models.62

We believe our approach resolves the computational challenges in developing the surrogates for DFT63

calculations and also opens the door to resolving DOS for systems containing thousands of atoms or64

more that are beyond existing DFT capabilities.65

2 Related Work66

Molecular dynamics simulations depend on accurate determination of the energy of an atomistic67

system as a function of the atomic positions. Over at least the past decade, there has been an evolving68

body of work on using data to directly learn interatomic potentials (IAPs) that predict this energy.69

While different in their choice of method for the regression problem, these ML-based potentials70

share a need for fingerprints, or feature vector representations of localized atomic environments as71

input. Methods such as Bartók et al. [2010, 2013], Thompson et al. [2015], Huan et al. [2017] rely on72

hand-crafted descriptors for fingerprinting, while more recently some methods [Schütt et al., 2017,73

Lubbers et al., 2018] have used neural descriptors to learn the fingerprint end-to-end.74

Recently there also have been efforts to use ML to approximate solutions to the fundamental bottleneck75

of DFT calculations, the Kohn-Sham differential equations [Chandrasekaran et al., 2019, del Rio76

et al., 2020, Ellis et al., 2021]. Solving these equations involves accurately resolving properties of77

the electronic structure, such as the electronic density of states (DOS). Existing ML approaches78

predict this quantity indirectly through spatially localized contributions, centered around 3D grid79

points [Chandrasekaran et al., 2019, Ellis et al., 2021] or atoms of the system [Schütt et al., 2014,80

Ben Mahmoud et al., 2020, del Rio et al., 2020]. In the former case, grid points correspond to81

supervised quantities from DFT calculation (LDOS), providing millions of training samples for a82

2



single configuration of atoms. However, this leads to computationally intensive training and inference.83

Atom-centered contributions are significantly more cost effective for training and inference, but thus84

far do not have a well-defined formulation for localized supervision. As the only supervision is from85

the total DOS of the system, DFT calculations must be run for many more configurations of atoms86

in order to generate adequate training data, an expensive process. The proposed ADOS approach87

bridges this gap, providing local supervision while avoiding the cost of grid-centered LDOS.88

The greatly reduced cost of the the ADOS approach opens up the possibility of assessing the89

uncertainty of model predictions. A low-cost means of computing uncertainty is of interest because90

it can warn us when model predictions are untrustworthy, and it also suggests how to augment a91

model’s training set. We explored use of Monte Carlo dropout for this purpose. Monte Carlo dropout92

is a well-established technique to reduce overfitting [Hinton et al., 2012]. More recently, it has been93

suggested as a way to estimate the uncertainty of model predictions [Gal and Ghahramani, 2016].94

3 Methods95

This section covers key components of our overall machine learning approach for resolving the elec-96

tronic density of states. Sec. 3.1 discusses the aluminum snapshots used in subsequent experiments.97

Sec. 3.2 presents a partition-of-unity approach for deriving atom-level supervision for the DOS, as98

targets for downstream ML. Sec. 3.3 gives an overview of the proposed neural fingerprinting model.99

3.1 Dataset100

The focus of our experiments is aluminum at ambient density (2.699g/cc) and over a range of101

temperatures between 0K and 1000K. The melting point of Al is 933K, and so this temperature102

range includes both solid and liquid aluminum. We used the electronic structure code Quantum103

ESPRESSO [Giannozzi et al., 2009, 2017, 2020] to generate LDOS for all atomic configurations. The104

configurations were generated from snapshots of DFT-MD trajectories of 256-atom supercells of105

aluminum. The entire dataset comprised approximately 50 such snapshots.106

We considered four training sets. We used 933K liquid and solid snapshots to compare the ADOS-107

CSNN model with the LDOS-SNAP model. In the second set we included four low-temperature108

(100K, 200K) solid snapshots as well as four high-temperature (933K) solid snapshots. One low109

temperature and one high temperature snapshot were used for validation during training. We refer110

to this training set as split-temperature. The final training set we examined included only low111

temperature solid data (four 100K and 200K snapshots), and the third, only high temperature solids112

(four 933K snapshots). We refer to the Appendix (Sec. 6.1) and Ellis et al. [2021] for more details.113

3.2 Atom-Decomposed Density of States114

In order to reduce the number of predictions that are required in order to evaluate the DOS for a given115

system, we wish to replace the LDOS DL(r, E) evaluated at grid points r and energies E with an116

“Atom-Decomposed Density of States” (ADOS) DA
i (E) evaluated for atoms i and energies E. There117

are two requirements for the ADOS: (1) The DOS is given by a sum of the LDOS over grid points118

D(E) =
∑
r

DL(r, E). (1)

Summing the ADOS over atoms should produce the same DOS, i.e.,119 ∑
i

DA
i (E) = D(E). (2)

(2) If DL(r, E) can be accurately approximated as a function of the atomic positions in some local120

region around grid point r, then DA
i (E) can be accurately approximated by some function of the121

atomic positions in some local region around Ri, the position of atom i. Both of the above properties122

can be achieved if DA
i (E) is defined as a weighted sum of DL(r, E) over grid points, and the123

weighted sum is a local partition of unity. In particular, if D(r, E) is the LDOS evaluated at grid124

3



Figure 1: Atom-centered ML workflow: the local atomic environment of each atom, as positions,
are input into the learned fingerprinting module (CSNN). Resulting outputs are mapped through
additional neural layers to predict atom-level DOS. These are then summed to obtain the total
predicted DOS for the system.

point r and energy E, we can define the ADOS associated with atom i as125

DA
i (E) =

∑
r

wi(r)D
L(r, E) (3)

for some weighting functions wi(r). The set of weighting functions wi(r) is a partition of unity if126 ∑
i

wi(r) = 1 ∀r. (4)

Likewise, the partition of unity is local if every wi(r) decays sufficiently rapidly for large ∥r −Ri∥.127

There are many way to define such a partition of unity, the approach that we have chosen is to define128

wi(r) =
exp

[
−∥r −Ri∥2/2σ2

]∑
j exp [−∥r −Rj∥2/2σ2]

. (5)

Given this definition, it is easy to verify that wi(r) is a partition of unity and that Requirement (1)129

above is satisfied. For atom positions Ri that are evenly distributed throughout space, wi(r) decays130

as a Gaussian tail for large ∥r−Ri∥, and the partition of unity is local. For systems that involve large131

regions with no atoms, some of the weighting functions wi(r) can remain substantial throughout132

such regions. However, DL(r, E) is generally small in such regions, at least for energies E that are133

occupied by electrons, and thus, for practical purposes, we believe that Requirement (2) also holds134

for such systems.135

When σ is much less than the distance between atoms, the partition of unity defined above closely136

approximates an approach in which the LDOS at each grid point is assigned to the nearest atom. In137

the opposite limit, which σ is comparable to the distance between atoms, the LDOS at each grid138

point is shared between several atoms. We have picked an intermediate value of σ = 1.3 Angstroms,139

compared to an average nearest neighbor distance of around 2.6 Angstroms. Thus, grid points near to140

an atom will mostly have their LDOS assigned to that atom, while grid points between atoms will141

have their LDOS shared between the nearby atoms.142

Using the above approach, we calculated the ADOS from our previously evaluated LDOS in order143

to generate training data for a model that predicts the ADOS as a function of the local environment144

around each atom. This model can then be used to predict the ADOS directly while avoiding the145

computationally expensive evaluation of the LDOS.146

3.3 Concentric Spherical Neural Network for Atomic Environments147

A workflow of the overall ADOS ML approach is illustrated by Fig. 1. CSNN, the proposed model,148

operates on a concentric spherical spatial sampling of 3D space. Each individual sphere is discretized149
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Figure 2: Example CSNN architecture with R = 3 concentric spheres. Graph convolutions are
followed by radial convolutions at each density of spherical sampling. Graph convolution is applied
within each sphere. 1D convolution is applied between co-radial vertices (3 in this example). Vertex
pooling (not shown) and downsampling then coarsens the spherical sampling. Global pooling is
applied at the end to obtain the final feature representation.

Figure 3: Shown is a 2D cross section of an atomic environment centered at a reference point (black
diamond), for an example sector. (a) Each atom (black dot) in the environment a value of ϕ(r) to
its nearest vertex in 3D space, where r is radial distance from the center and ϕ is a chosen distance
mapping (such as the inverse function). (b) Values incident at any given vertex are summed, resulting
in a scalar input feature per vertex.

by the icosahedral grid, resulting in a highly uniform sampling of spherical space. The grid is150

sub-divided recursively to create higher sampling resolution. The sampling is further extended151

radially, resulting in concentric spheres about a center, which is defined naturally as an atom for152

the ADOS problem. We refer to Fig. 2 for illustration of the concentric spherical grids. An atom’s153

atomic environment is contained within the concentric spherical sampling, and mapped to an initial154

description over the sampling. Fig. 3 provides an illustration of this mapping.155

Two types of convolutions are defined for representation learning over the concentric spherical grid:156

intra-sphere and inter-sphere convolutions. The former is implemented by graph convolutions [Kipf157

and Welling, 2017], with connectivity defined by each vertex’s local neighborhood in the icosahedral158

discretization. Inter-sphere convolutions operate between co-radial vertices, orthogonally to intra-159

sphere convolutions. The combined use of the two convolution types permits extracting of features160

volumetrically over the concentric spherical sampling. Furthermore, the intra-sphere convolutions161

are by design rotationally equivariant to the icosahedral rotation group [Yang et al., 2020], and162

approximately equivariant to the general space of 3D rotations. We refer to Fox et al. [2022] for more163

detailed discussion of the concentric spherical convolutions. We combine the proposed convolutions164

into a hierarchical convolutional architecture, by also utilizing pooling and downsampling over the165

icosahedral grid. Fig. 2 illustrates an example CSNN architecture. Convolutions at different scales of166

spherical sampling enables learning representation of the input atomic environment analogously to167

2D CNNs for images.168
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Method Training Total Test Band Energy Band Energy
Set Training Set Max Error Mean Error

Samples (meV/atom) (meV/atom)

LDOS-SNAP Ellis et al. [2021] 6 liquid 4.8× 107 3 liquid 21.3 17.1
6 solid 4.8× 107 3 solid 39.3 33.6

ADOS-CSNN 6 liquid 1.5× 103 3 liquid 19.9 15.6
6 solid 1.5× 103 3 solid 5.3 3.3

Table 1: Band energy results, comparing the proposed ADOS-CSNN approach to prior LDOS-SNAP
approach. Band energy error is calculated for the test set, and measured in terms of both max and
mean absolute error.

4 Results169

In this section we present main results of our atom-centered ML approach for electronic structure170

calculation, demonstrated for aluminum. Sec. 4.1 shows that the proposed ADOS permits faithful171

reconstruction of the original DOS, and therefore a sufficient target for atom-centered supervision.172

Sec. 4.2 presents band energy results using the proposed CSNN model for learned fingerprinting,173

combined with ADOS training. Finally, Sec. 4.2 demonstrates how the proposed ADOS approach174

leads to significant speedup over LDOS in practice for training and inference.175

4.1 Reconstruction of DOS from ADOS176

For the proposed ADOS to be useful, it must be possible to reconstruct the original DOS derived177

from LDOS. We experimentally verified that simple summation of the ADOS leads to nearly perfect178

reconstruction of the original DOS and the band energy derived from ADOS matches the original179

band energy. These results are shown in the Appendix (Section 6.2).180

4.2 ML Model for Resolving Band Energy of Aluminum181

For experiments, we consider a dataset of 20 total snapshots of aluminum at 933K, consisting of 10182

liquid and 10 solid phase aluminum snapshots. For each phase, 6 snapshots are used for training, 1183

snapshot for validation, and 3 for testing. Band energy is calculated from predicted DOS for each184

snapshot of the test set, and error from ground-truth is measured by meV per atom. We compare the185

proposed approach with LDOS-SNAP [Ellis et al., 2021]. Our approach uses atom-based ADOS186

for supervision, while LDOS-SNAP uses grid-based LDOS. Another key difference, orthogonal to187

the the form of supervision, is the method of fingerprinting. Whereas LDOS-SNAP used SNAP188

[Thompson et al., 2015] for fingerprinting, we use a neural fingerprinting approach, CSNN, to learn189

atomic environment descriptors end-to-end.190

Table 1 presents results for the proposed model and comparisons. By using ADOS instead of LDOS,191

the total number of samples for prediction is reduced by a factor of 32,000 for training. This reduction192

also extends to inference, although not shown in table for brevity. This is a significant reduction, as193

the total number of samples directly reflects the total amount of actual work for the model, all else194

equal. Importantly, this reduction is achieved without any sacrifice to accuracy.195

Compared to LDOS-SNAP , the ADOS-CSNN model reduces band energy error (mean absolute196

error) by 9% in the case of liquid phase aluminum, and by 90% the case of solid phase aluminum.197

For the liquid phase band energy, the ADOS-CSNN model achieves a slight improvement in accuracy198

over LDOS-SNAP. However, for the solid phase band energy, the ADOS-CSNN model achieves199

nearly 10x improvement, which represents a major advance in predictive power. We surmise that this200

large reduction in error is due to difference in the learning model–CSNN learns local environment201

descriptions end-to-end, which could prove beneficial when using a single model for hybrid dataset.202

However, this hypothesis remains to be investigated further.203
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Method Training time (1 epoch) Inference time (1 snapshot)

LDOS-SNAP 76 minutes 54 seconds
ADOS-CSNN 19 seconds 1 second

Table 2: Runtime comparison for training and inference, run on single V100 GPU. LDOS-SNAP
takes grid-centered local descriptors as input to the neural model, but their generation time was not
included in this comparison.

4.3 Runtime204

In this section we explore actual runtime for training and inference of the ADOS-CSNN approach205

compared to the LDOS-SNAP approach. For training we consider the time for a single epoch (12206

training snapshots), and for inference we consider the time to evaluate a single snapshot for its207

local DOS quantities. Both models are run on a single NVIDIA V100 GPU. Results are presented208

in Table 2. ADOS-CSNN provides a 240× speedup in training per epoch and 54× speedup in209

inference compared to LDOS-SNAP . While a very significant and practical improvement, the210

speedups fall short of the factor of reduction (32, 000) in the total amount of samples in switching211

from LDOS to ADOS. This is likely due to the difference in the neural models used in ADOS-CSNN212

vs. LDOS-SNAP . Additionally, while fingerprint generation is part of the neural model in the case of213

ADOS-CSNN , it is not in the case of LDOS-SNAP and was omitted from time comparison. The214

speedup of ADOS-CSNN should therefore be interpreted as a lower bound, especially in the case of215

inference, as the time to generate fingerprint for input cannot be ignored in practice.216

4.4 Split-Temperature Model Predictions217

Figure 4a shows the DFT-computed band energy (that is, the “truth”) for all the snapshots in our218

dataset. A few features are noteworthy. First, for the solids, band energy decreases monotonically219

with temperature. Ideally, a model trained on snapshots at multiple temperatures will reproduce this220

trend. Second, liquids have substantially lower band energy than solids, even when they have the221

same temperature, as occurs at 933K.222

An ADOS model was trained on the split-temperature training set described in 3.1. The hyperparam-223

eters were selected using the procedure described in 6.4 and the experimental design approach is224

described in 6.5. This split-temperature model was used to predict ADOS (and band energy) for all225

snapshots. Inference was performed on the model without dropout. The predictions are shown in226

Figure 4b It can be seen that the model predictions qualitatively capture the two features we noted227

above—the temperature trend and the difference between solids and liquids—and that it is able to do228

so even though no liquids were present in the training set.229

The parity plot in Figure 5a compares the DFT reference and ADOS model predictions directly. Points230

at higher energy are for lower temperatures, and vice versa. For all the solid snapshots, including231

those at intermediate temperatures, which were not included in the training set, very good agreement232

is obtained. The dashed lines on the plot are spaced at ± 10 meV/atom and predictions for solids are233

typically within this band. This result demonstrates that it is possible to generate machine learned234

models using the ADOS approach that exhibit at least some degree of transferability outside of the235

training set, which is an important property for practical use. Although predictions for the liquid236

snapshots are well outside the chemical accuracy window, they are not completely unphysical.237

Figure 5 shows parity plots for models generated from the low-temperature and high-temperature238

training sets. These suggest that training on a single (or narrow range) of temperatures is inadequate to239

produce models that show the same level of transferability that the split-temperature model achieved.240

4.4.1 Dropout Uncertainty241

Monte Carlo dropout was used to compute the uncertainty of the split-temperature model for all242

snapshots. A dropout probability of 0.1 was used. A total of 512 inferences were run, and the standard243
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(a) DFT computed reference band
energies.

(b) Band energies predicted by the
split-temperature ADOS model.

(c) Standard deviation of dropout
predictions.

Figure 4: Split Temperature Expected band energies, predicted band energies and uncertainty. The
red bars are the solid training set snapshots. Blue are solid test snapshots, and green are liquid test
snapshots. The snapshots have been sorted by decreasing uncertainty in (c).

(a) Split Temperature (b) Low Temperature (c) High Temperature

Figure 5: Parity plots for the low temperature and high temperature models. Red: solid training
snapshot; Blue: solid test snapshot; Green: liquid test snapshot. The dash lines are ± 10 meV/atom
above and below the center line.

deviation of the resulting band energies predictions was used. The results are shown in Figure 4c.244

Notably, the dropout uncertainty of many of the test snapshots are lower than that of snapshots that245

were present in the training set. This is perhaps not too surprising, considering how well the model246

predicts the band energies of all the solid snapshots. We also observe that liquid snapshots exhibit,247

for the most part, the greatest uncertainty as expected. There is no discernible step change between248

solid and liquid uncertainty, which may be surprising, considering the large difference between their249

band energies. We point to the success of the model in predicting the band energy of the liquids as250

a possible explanation. Uncertainty predicted using dropout provides a plausible way of selecting251

snapshots with which to augment an existing training set. It correctly indicates that test snapshots252

that intuitively are most different from the training set and that in fact have the greatest error should253

be included. We plan to validate these by augmenting the training set in the future.254

5 Conclusion255

In this work we present a machine learning approach for predicting key materials properties, such256

as the density of states and band energy, at a small fraction of the computational cost of existing257

LDOS approaches and without sacrificing accuracy. The first key piece of the proposed approach258

is to create atom-level supervision, ADOS, using a partition-of-unity approach. This reduces the259

total number of predictions required to resolve DOS compared to LDOS by orders of magnitude,260

for both training and inference. The second piece of our approach is to incorporate a neural model261

based on concentric spherical convolutions for learning atomic environment fingerprints end-to-end.262

We experimentally demonstrate that our overall approach allows resolving DOS and band energy263

many times faster than with LDOS-based approaches. In combination with our neural model for264

learned fingerprinting, we match and even outperform LDOS-based approaches in resolving band265

energy of melting point aluminum. The transferability of the split-temperature model to intermediate266

temperatures is an encouraging result that points to the broader applicability of the ADOS approach.267

In terms of future work, we believe that our atom-centered approach can be very feasibly extended to268

systems of size of O(104) atoms, which is already well beyond the reach of DFT.269
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6 Appendix355

6.1 Dataset356

We expand on Section 3.1 and describe the data generation further here. The LDOS for all the357

Aluminum snapshots is calculated over a finite grid of evenly spaced energy values, with spacing of358

0.1 eV ranging from -10 eV to 14.9 eV. The data for each grid point is then a vector length 250. The359

process used to generate the LDOS data is described in detail in Ref. Ellis et al. [2021], and we refer360

to it for more detailed discussion and justification of the procedures.361

As described in Section 3.1, we considered four initial training sets (i) Solid and liquid snapshots362

at 933K; (ii) four low-temperature (100K, 200K) solid snapshots as well as four high-temperature363

(933K) solid snapshots (split-temperature data set); (iii) low temperature solid data (four 100K and364

200K snapshots); and (iv) only high temperature solids (four 933K snapshots).365

Data set (i) is used to show the efficacy of the ADOS-CSNN model and compare it to the LDOS-366

SNAP model. We selected temperatures at the two extremes of the range for the split-temperaature367

data because we wanted to understand how errors and uncertainty would grow for solid phase test368

data as we moved inward in temperature. That is, we wanted to discover how well a model trained on369

such a training set could “interpolate” at intermediate temperatures.370

Additionally, by including only solids in the split-temperature training set, we set up an easy initial371

test case for the idea of using dropout for experimental design. A model trained only on solids ideally372

should exhibit high dropout uncertainty for liquid test data. This expectation is based partly on373

previous experience with grid-based models, which struggled to make cross-phase predictions, and374

on our physical understanding: liquid snapshots substantially differ from solids in terms of atomic375

positions and energies and hence contain many "out of distribution" inputs. Therefore, if uncertainty376

for liquid snapshots is not clearly higher than for solids, it would tend to argue against using dropout377

uncertainty for experimental design.378

Results from models trained on (iii) and (iv) aided our interpretation of the models trained using (ii).379

6.2 ADOS accuracy380

Resulting ADOS curves are plotted for sampled atoms from liquid and solid snapshots in Fig. 6.381

Overall, the atom-centered DOS appears much more similar within each snapshot than between liquid382

and solid snapshots, with the solid snapshots showing prominent wiggles in the 5 to 8 eV range that383

are remnants of the Van Hove singularities that occur in a perfect crystal. Furthermore, the ADOS384

within each snapshot tends to reflect the profile of the DOS of their respective snapshots (see Fig. 7).385

These results are to be expected since both solid and liquid aluminum are generally homogeneous386

systems with each atom in a similar local environment. There are some fluctuations in the local387

environment, which are reflected in the variations between the ADOS for different atoms within the388

same phase. The local environment varies more for the liquid than for the solid, and correspondingly,389

the variation between the ADOS for different atoms is larger in the liquid. However, even in the390

liquid, these local fluctuations are not as significant as the difference between the solid and liquid391

phases. This shows that the atom-centered DOS profile is able to resolve the differences between392

liquid and solid phase aluminum, as well as fluctuations in the local environment of the atoms.393

We further plot the DOS predicted by ADOS-CSNN to the reference DOS from DFT, and show these394

for example liquid and aluminum snapshots in Fig. 7. These plots confirm that the proposed approach395

is able to produce aluminum DOS closely matching DOS from quantum-mechanical calculation, and396

that the band energy accuracy is not resulting from some degeneracy.397

6.3 List of hyperparameters for the ADOS-CSNN model398

We list the hyperparameter settings for the best-performing ADOS-CSNN model in Table 3. We also399

used batch normalization [Ioffe and Szegedy, 2015], which is not counted in the total number of400

layers. Finally, we also plot training and validation loss for the best-performing model in Fig. 8.401
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(a) ADOS for liquid aluminum, snapshot 9. (b) ADOS for solid aluminum, snapshot 19.

Figure 6: Atom-centered DOS values resulting from partition-of-unity, for liquid and solid aluminum
snapshots at 933K. Shown are DOS from 5 sampled atoms of each snapshot.

(a) DOS of liquid aluminum for snapshot 8. (b) DOS of solid aluminum for snapshot 18.

Figure 7: Density of states for solid and liquid snapshots at 933K. Top row shows DOS curve
predicted by ADOS compared to reference curve from DFT. X-axis is energy range from -5 to 10 eV.
Units for y-axis is eV. Bottom row plots difference between predicted DOS and the reference DOS of
respective snapshots.

Parameter Value

Concentric spheres 16
Spherical resolution 642

Optimizer Adam
Batch size 32

Learning rate 0.01
Activation ReLU

Epochs 200
Layers 18

Total Weights 5.9× 106

Table 3: List of parameter settings for ADOS-CSNN model used for experiments. Spherical resolution
is number of vertices of icosahedral spherical sampling. Number of layers is trainable layers.

6.4 Hyperparameter Tuning402

A full-factorial study of three hyperparameters was performed to identify the model parametrization403

that minimized the validation error for each of the three training sets. These hyperparameters were:404

• Learning rate. This is the initial learning rate provided to the Adam optimizer, which was405

used for training. Permitted values were 0.01, 0.001, and 0.0001.406
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Figure 8: Training and validation loss curves for best-performing version of ADOS-CSNN used in
experiments. Y-axis is mean-squared error loss for ADOS prediction, and x-axis is epoch number.

• Number of hidden output layers. In the ADOS model, the CSNN autoencoder provides407

features to a set of dense layers. Given a parameterization of the CSNN, the width of the408

layers is constant and determined by the output size of the CSNN. The numbers of layers409

considered were 3, 4, 6, 8, and 10.410

• The parameter factor. The parameter factor scales the number of output channels in the411

convolutional layers . Permitted values were 5, 6, 8, 10, and 12.412

Three replicates were performed for each hyperparameter combination. The training was permitted413

to run for a maximum of 600 epochs, which was sufficient for the learning rate convergence criterion414

(1e-5) to be met in nearly all cases.415

Other hyperparameters matched those used in Table 3.416

The optimal hyperparameters for the three training sets are shown in Table 4. The training history for417

the split-temperature model is shown in Figure 9. Because the low- and high- temperature training418

sets were not the primary focus of this work, their training histories are omitted for brevity.419

Table 4: Optimal hyperparameters and resulting number of unknowns for the three training sets.

Training Set Hidden Output Layers Parameter Factor Learning Rate Unknowns
Split Temperature 6 10 0.1 6.22e7
Low Temperature 6 8 0.1 3.99e7
High Temperature 3 12 0.1 6.11e7

6.5 Experimental Design420

Experimental Design refers to the selection of parameter settings at which to run physical or com-421

putational experiments [Santner et al., 2003, Montgomery, 2019]. The goal is to identify the next422

set of atomic configurations which should be run through the DFT calculations to generate more423

training data to improve the ADOS predictions. We did not pursue standard approaches such as424

Bayesian optimal design [Chaloner and Verdinelli, 1995] due to computational feasibility. We wanted425

an approach that would select configurations that are dissimilar to data that are already present and426

for which the current ADOS predictions are poor (there is little reason to add data for which we can427

already make accurate predictions). The approach also should be fast and based only on the input428

atomic configurations (we want to avoid performing costly DFT calculations on candidate data).429

Dropout is a reasonable approach in this context: the test data for which model predictions are highly430

uncertain are good candidates for augmenting an existing training set, which can then be used to431
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Figure 9: Training and validation errors during training for the split-temperature model.

update the model. Importantly, test data need not be labeled to use Monte Carlo dropout. In the context432

of our present problem, this implies that we can use dropout to select atomic configurations before433

incurring the computational expense of calculating their ADOS using DFT. For our experiments,434

dropout probability was set to 0.1. We applied droput both to intra- and inter-sphere convolution and435

in the hidden output layers of the ADOS model.436
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