
Published as a conference paper at ICLR 2022

PONET: POOLING NETWORK FOR EFFICIENT TOKEN
MIXING IN LONG SEQUENCES

Chao-Hong Tan1∗, Qian Chen2, Wen Wang2, Qinglin Zhang2, Siqi Zheng2, Zhen-Hua Ling1

1National Engineering Laboratory for Speech and Language Information Processing,
University of Science and Technology of China
2Speech Lab, Alibaba Group
1chtan@mail.ustc.edu.cn, zhling@ustc.edu.cn
2{tanqing.cq, w.wang, qinglin.zql, zsq174630}@alibaba-inc.com

ABSTRACT

Transformer-based models have achieved great success in various NLP, vision,
and speech tasks. However, the core of Transformer, the self-attention mechanism,
has a quadratic time and memory complexity with respect to the sequence length,
which hinders applications of Transformer-based models to long sequences.
Many approaches have been proposed to mitigate this problem, such as sparse
attention mechanisms, low-rank matrix approximations and scalable kernels,
and token mixing alternatives to self-attention. We propose a novel Pooling
Network (PoNet) for token mixing in long sequences with linear complexity. We
design multi-granularity pooling and pooling fusion to capture different levels
of contextual information and combine their interactions with tokens. On the
Long Range Arena benchmark, PoNet significantly outperforms Transformer and
achieves competitive accuracy, while being only slightly slower than the fastest
model, FNet, across all sequence lengths measured on GPUs. We also conduct
systematic studies on the transfer learning capability of PoNet and observe that
PoNet achieves 95.7% of the accuracy of BERT on the GLUE benchmark, outper-
forming FNet by 4.5% relative. Comprehensive ablation analysis demonstrates
effectiveness of the designed multi-granularity pooling and pooling fusion for
token mixing in long sequences and efficacy of the designed pre-training tasks
for PoNet to learn transferable contextualized language representations. Our
implementation is available at https://github.com/lxchtan/PoNet.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has become the state-of-the-art (SOTA) architecture for sequence
modeling in a wide variety of fields, including natural language processing (NLP), computer vision,
speech processing, applications to genomics data, etc. The key reason for Transformer’s success is
its self-attention mechanism, which computes dot-product between input representations for each
pair of positions in the full sequence. Proved to be greatly effective in learning contextualized
representations, Transformer becomes the backbone for dominant pre-trained language models
(PLM) in NLP, such as BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019). These
PLMs demonstrate strong transfer learning capabilities and have achieved SOTA widely on NLP
tasks. However, self-attention has quadratic time and memory complexity to the input sequence
length (Vaswani et al., 2017), which becomes the bottleneck for applying the vanilla Transformer to
long sequence modeling tasks and for scaling up Transformer-based PLMs.

A broad spectrum of approaches have been proposed to address the efficiency problem of self-
attention, as summarized in (Tay et al., 2020). One major direction approximates the dense full
self-attention using techniques such as introducing sparsity (Child et al., 2019; Beltagy et al.,
2020; Zaheer et al., 2020; Zhang et al., 2021a; Yang et al., 2021; Zhang et al., 2021b), low-rank
approximations of the softmax attention matrix (Katharopoulos et al., 2020; Wang et al., 2020a;
Zhu & Soricut, 2021; Xiong et al., 2021; Peng et al., 2021; Choromanski et al., 2021), and locality

∗Work is done during the internship at Speech Lab, Alibaba Group.

1

https://github.com/lxchtan/PoNet

Published as a conference paper at ICLR 2022

sensitive hashing (Kitaev et al., 2020). These approximation approaches exploit observations that
token interactions have strong locality, hence the importance and in turn the attention should
decrease with the increase of the distance between a query token and a key token. Several of
these works achieve O(N) theoretical complexity. However, these models often require selecting
relatively large local regions for fine-grained attention in order to approximate full self-attention,
hence the scaling constants hidden by O(N) are often large and hinder significant improvements in
speed and memory usage. It is observed that performance of the approximation approaches is usually
inversely related to their speed (Beltagy et al., 2020; Zaheer et al., 2020). Another major direction
replaces the self-attention structure with more efficient structures, such as MLP-Mixer (Tolstikhin
et al., 2021), FNet (Lee-Thorp et al., 2021), AFT (Zhai et al., 2021), and Fastformer (Wu et al.,
2021). Despite significant accelerations gained by efficient transformers, they are rarely evaluated
both on effectiveness of the inductive bias and the transfer learning capability, except BigBird, FNet,
and Nyströmformer1 as we understand. BigBird-Base (Zaheer et al., 2020) outperforms BERT-Base
on the GLUE benchmark (Wang et al., 2019) without significant speedup (slowdown for input length
< 3K) (Tay et al., 2021). FNet-Base trains 80% faster than BERT on GPUs at 512 input lengths but
only achieves 92% of BERT-Base’s accuracy (Lee-Thorp et al., 2021).

In this work, we propose a novel Pooling Network (PoNet), aiming to simultaneously advance
long sequence modeling capacity and transfer learning capabilities while improving speed and
memory efficiency. PoNet replaces the O(N2) complexity self-attention with a O(N) complexity
multi-granularity pooling block. We design multi-granularity pooling and pooling fusion to model
different levels of token interactions. Multi-granularity pooling incorporates three types of pooling,
from coarse-grained to fine-grained, in each sublayer. Global aggregation aggregates information of
the entire sequence into a single token. Segment max-pooling captures the paragraph or sentence
level information. Local max-pooling captures the more important local information. These three
poolings are fused to produce the output feature of the multi-granularity pooling block. Then through
the residual connection, this output feature is further aggregated into each token.

The contributions of this paper are summarized as follows:

• We propose a novel PoNet architecture as a drop-in replacement for self-attention in Transformer,
achieving linear time and memory complexity. We propose multi-granularity pooling and pooling
fusion to capture different levels of contextual information and comprehensively model token
interactions. To the best of our knowledge, our work is the first to explore the full potential of the
simple pooling mechanism for token mixing and modeling long-range dependencies.

• Extensive evaluations show that PoNet achieves competitive performance on the Long Range
Arena benchmark (Tay et al., 2021) and significantly outperforms Transformer by +2.28 absolute
(+3.9% relative) on accuracy, with efficiency up to 9 times faster and 10 times smaller than
Transformer on GPU. Also, PoNet demonstrates competitive transfer learning capabilities, with
PoNet-Base reaching 95.7% of the accuracy of BERT-Base on the GLUE benchmark. Ablation
analysis further proves effectiveness of designed multi-granularity pooling and pre-training tasks.

2 RELATED WORK

Efficient Transformer Variants Among the models to approximate full self-attention, Long-
former (Beltagy et al., 2020) (O(N)) sparsifies the full self-attention into three attention patterns of
sliding window, dilated sliding window, and global attention. BigBird (Zaheer et al., 2020) (O(N))
combines global attention, local attention, and random attention. Poolingformer (Zhang et al.,
2021a) (O(N)) uses a two-level attention schema, with the first level using a smaller sliding window
to aggregate local information and the second level using a larger window with pooling attention to
reduce time and memory cost. Focal Transformer (Yang et al., 2021) (O(N)) uses both fine-grained
local interactions and coarse-grained global interactions to balance efficiency and effectiveness
of capturing short- and long-range dependencies. Transformer-LS (Zhu et al., 2021) (O(N))
approximates the full attention by aggregating long-range attention via dynamic projections
and short-term attention via segment-wise sliding window. H-Transformer-1D (Zhu & Soricut,
2021) (O(N)) exploits a matrix structure similar to Hierarchical Matrix. AdaMRA (Zhang et al.,
2021b) (O(N)) leverages a multi-resolution multi-head attention mechanism and kernel attention.
Luna (Ma et al., 2021) (O(N)) introduces an additional fixed length sequence served as query to

1Nyströmformer was evaluated only on subsets of GLUE (Xiong et al., 2021).

2

Published as a conference paper at ICLR 2022

attend to the original input while the output is served as key and value to attend to the original input.
Apart from the sparse attention models, other approximation approaches explore locality sensitive
hashing and matrix approximation methods. Reformer (Kitaev et al., 2020) O(NlogN) replaces
self-attention with locality sensitive hashing. Performer (Choromanski et al., 2020; 2021) (O(N))
approximates softmax attention by leveraging random features. Linformer (Wang et al., 2020a)
approximates the self-attention matrix with a low-rank factorization. Nyströmformer (Xiong et al.,
2021) (O(N)) approximates the softmax attention with the Nyström method by sampling a subset
of columns and rows. However, these approximation methods have strengths on certain tasks and
may cause accuracy degradation on many other tasks.

Our work is in another line of research on replacing self-attention with more efficient token
mixing mechanisms. MLP-Mixer (Tolstikhin et al., 2021) (O(N2)) applies two separate linear
transformations on the hidden state dimension and the sequence dimension. FNet (Lee-Thorp
et al., 2021) (O(NlogN)) replaces the self-attention sublayer with 2D-FFT mixing sublayer. AFT-
local/conv (Zhai et al., 2021) (O(sN), s < N) first combines the key and value with a set of
learned position biases and then combines the query with this result via element-wise multiplication.
Fastformer (Wu et al., 2021) (O(N)) first models global context via additive attention then models
interactions between global context and input representations through element-wise product. Shared
Workspace (Goyal et al., 2021) (O(N)) proposes the idea of using a shared bottleneck to tackle the
problem of quadratic dependence in attention.

Pre-training Tasks It has been observed that both underlying model architecture and pre-training
are crucial to performance of PLMs. BERT (Devlin et al., 2019) with a Transformer encoder is pre-
trained with masked language modeling (MLM) and next sentence prediction (NSP) tasks on large-
scale unlabeled text corpora including the English Wikipedia and BooksCorpus. MLM predicts the
masked token from context. NSP predicts whether a sentence pair is contiguous or not in the original
source. Many approaches are proposed to improve these two tasks and show that more challenging
pre-training tasks may help PLMs learn better and more transferable language representations.

Whole word masking (WWM) (Devlin et al., 2019; Cui et al., 2019) and SpanBERT (Joshi et al.,
2020) outperform BERT on many tasks. WWM simultaneously masks all WordPiece tokens
belonging to the same word and forces the model to recover a complete whole word. SpanBERT
randomly samples contiguous spans inside of individual tokens and augments MLM with a new
task to predict the entire masked span. RoBERTa (Liu et al., 2019) reports ineffectiveness of NSP
and removes it from pre-training. ALBERT (Lan et al., 2020) replaces NSP with a sentence-order
prediction (SOP) task to predict whether two consecutive sentences are in the right order or not, for
learning fine-grained inter-sentence coherence. StructBERT (Wang et al., 2020b) extends SOP to
a new sentence structural objective (SSO) as a ternary classification on two sentences (S1, S2) to
decide whether S1 precedes or follows S2 or the two sentences are noncontiguous. More challenging
tasks for learning inter-sentence relations and document/discourse structures (Iter et al., 2020; Lee
et al., 2020; Ding et al., 2021) show promising performance improvements on PLMs.

3 MODEL

Our work is inspired by the External Attention (EA) approach proposed in (Guo et al., 2021)
for visual tasks. An input sequence of tokens x = {x1, ..., xN} are mapped to an embedding
matrix denoted by H(∈ RN×d) = {h1, ...,hN}, where N is the sequence length and d is
the hidden dimension. EA uses two linear layers to implement external and shared memories,
which facilitates learning correlations across all samples and hence serves strong regularization
to and improves generalization of the attention mechanism with linear complexity. We simplify
EA into multi-layer perceptron and softmax, and observe that by infusing the sequence-level
information into each token through the denominator term

∑N
n=1 ehn , softmax provides context

modeling capabilities. However, softmax involves calculations of exponents, which is still slow.
Consequently, we consider using pooling as an alternative to capture contextual information with
significantly reduced complexity. We propose a Pooling Network (PoNet) as a drop-in replacement
for the self-attention sublayer in Transformer, as shown in Figure 1. PoNet models different
levels of contextual information through a multi-granularity pooling (MP) block consisting of
three components, namely, global aggregation (GA), segment max-pooling (SMP), and local max-
pooling (LMP). These pooling features are then aggregated through pooling fusion.

3

Published as a conference paper at ICLR 2022

Input Embedding

Position
Embedding

GA

Add & Norm

Feed Foward

Add & Norm

SMP LMP

Dense

Output Projection

Input

Output

Attention

Query Key Value

AVG

First Stage

Second Stage

Segment Max-pooling

(SMP)

Local Max-pooling

(LMP)

Global Aggregation

(GA)

element-wise product

N X

Pooling Fusion

(PF)

Figure 1: The illustration of the PoNet model architecture. The right enlarged view shows multi-
granularity pooling (GA, SMP, LMP) and pooling fusion (Section 3).

3.1 MULTI-GRANULARITY POOLING

In order to capture contextual information at different levels, we design multi-granularity pooling.
First, different linear projections are applied on the input for poolings at different granularities:

H∗ = HW∗ + b∗, (1)
where ∗ represents Qg,Kg, Vg for GA, s for SMP, l for LMP, and o for pooling fusion, in total six
W∗. W∗ ∈ Rd×d and b∗ ∈ Rd are parameters to be learned. The different H∗ are then used for
different poolings.

3.1.1 GLOBAL AGGREGATION

A Global Aggregation (GA) module is carefully designed aiming to both capture the most important
global information for each token and also to guarantee an overall linear computational complexity.
We calculate the first stage value g for GA by averaging at the sequence level:

g =
1

N

N∑
n=1

hQgn
∈ Rd, (2)

Note that g is only a rough representation of the sequence. Beltagy et al. (2020); Zaheer et al.
(2020) introduced a global attention mechanism, which adds a set of global tokens with randomly
initialized values to always attend to the whole sequence. Inspired by these works, we perform
cross-attention on the first stage value for GA. The first stage value g is used to perform a query on
the input sequence to compute the second stage value g′ for GA, as follows:

g′ = Attention{g,HKg
,HVg

}. (3)

The cross-attention on g enables each token to attend to the whole sequence and hence the resulting
second stage value g′ provides a more accurate sequence representation, compared to g. Note that
since g is a single token with the length equaling 1, the computational complexity of attention in
Eq. 3 is O(N). Theoretically, using average-pooling for generating g, the rough representation
of the sequence, could keep more information for the next step cross-attention and generating the
second stage value for GA, instead of discarding most information and only focusing on the most
salient features as the max-pooling function does. This hypothesis is verified as we observe a better
model performance from using average-pooling for generating g than max-pooling. In contrast, the
outputs of SMP and LMP are directly used as final representations, hence we choose max-pooling
for SMP and LMP, which is also empirically verified to produce a better model performance.

4

Published as a conference paper at ICLR 2022

3.1.2 SEGMENT MAX-POOLING

The information loss from compressing a long sequence into a single global token could be
enormous and hence become detrimental to the sequence modeling capacity. We introduce an
intermediate level between tokens and the global token by segmenting an input sequence into
segments, exploring prior knowledge of structure in the data when available, and introduce Segment
Max-pooling (SMP). The use of structural information for segmentation is adjustable for different
tasks, which is described in detail in Section 4. As explained earlier, max-pooling is performed on
each segment at each dimension j ∈ [1, d], as follows, where K denotes the number of segments:

skj =max{hs
k
0j , hs

k
1j , ..., hs

k
Nkj

}, (4)

sk ={sk1 , ..., skd} ∈ Rd, (5)

S ={s1, ..., sK} ∈ RK×d (6)

3.1.3 LOCAL MAX-POOLING

Many prior works (Zhu & Soricut, 2021; Yang et al., 2021) demonstrate the crucial role of capturing
local information for the sequence modeling capabilities. We introduce Local Max-pooling (LMP),
designed as a standard max-pooling over sliding windows, to capture contextual information from
neighboring tokens for each token. Different from GA and SMP, the window for LMP is overlapped.
Similar to GA, LMP is also applied at the sequence level and the left and right boundaries of the
input sequence are padded to ensure that the output length equals the original input length. The LMP
values L ∈ RN×d are computed. The size and stride of the sliding window are set to 3 and 1 in all
our experiments unless stated otherwise.

3.1.4 POOLING FUSION

First, we model the interactions between GA and each token by computing Gn through the element-
wise product between the second stage value of GA g′ and each token, as follows:

Gn = g′ ◦Hon, (7)

The reason for conducting Eq. 7 instead of directly using g′ as the output is to avoid all tokens from
sharing the same global token. Otherwise, it will cause the token representations to converge to the
same global token in the subsequent addition fusion layer. This effect, in turn, will make the token
representations become more homogeneous, and consequently degrade performance on tasks such
as sentence-pair classifications. The SMP token S is shared by all tokens in each segment. Hence,
for the same rationale of mixing the global token with each token, the same operation is conducted
to mix the SMP token with each token and to compute S′ as:

S′
n = Sk(n) ◦Hon, (8)

where k(n) denotes the segment index of the n-th token. The above three features are added up as
the final output of our multi-granularity pooling block, as illustrated in Figure 1:

P = G+ S′ +L, (9)

where P is used to replace the original self-attention output of Transformer. We compare PoNet to
related models, including Fastformer (Wu et al., 2021), Luna (Ma et al., 2021), Longformer (Beltagy
et al., 2020) and BigBird (Zaheer et al., 2020), in detail in Appendix D.

3.2 COMPLEXITY ANALYSIS

We only analyze the computational complexity of the proposed multi-granularity pooling block,
since we only replace the self-attention sublayer in Transformer with this block and keep other
modules in Transformer unchanged. The six HW∗ in Eq. 1, where ∗ represents Qg,Kg, Vg for
GA, s for SMP, l for LMP, and o for pooling fusion, require 6Nd2 computations. GA requires
2Nd ops (Eq. 3), SMP and LMP have no matrix multiplication, and Pooling Fusion requires 2Nd
ops (Eq. 7 and Eq. 8). Hence, the total number of multiplication ops is 6Nd2 + 4Nd. We further
simplify computations. By switching the order of Eq. 1 and Eq. 2 into first performing the average
pooling then the affine function, computation can be reduced from Nd2 to d2. Adding g′ and S

5

Published as a conference paper at ICLR 2022

Model ListOps(2K) Text(4K) Retrieval(4K) Image(1K) Pathfinder(1K) AVG.

Transformer(1) 36.37 64.27 57.46 42.44 71.40 54.39
Longformer (1) 35.63 62.85 56.89 42.22 69.71 53.46
BigBird (1) 36.05 64.02 59.29 40.83 74.87 55.01
Performer (1) 18.01 65.40 53.82 42.77 77.05 51.41

Transformer(2) 36.06 61.54 59.67 41.51 80.38 55.83
Linear (2) 33.75 53.35 58.95 41.04 83.69 54.16
FNet (2) 35.33 65.11 59.61 38.67 77.80 55.30

Transformer(3) 37.10 65.02 79.35 38.20 74.16 58.77
Performer(3) 18.80 63.81 78.62 37.07 69.87 53.63
Reformer(3) 19.05 64.88 78.64 43.29 69.36 55.04
Linformer(3) 37.25 55.91 79.37 37.84 67.60 55.59
Nyströmformer(3) 37.15 65.52 79.56 41.58 70.94 58.95
FNet 37.40 62.52 76.94 35.55 FAIL 53.10
PoNet (Ours) 37.80 69.82 80.35 46.88 70.39 61.05

Table 1: Results on the Long Range Arena (LRA) benchmark (AVG: average accuracy across all
tasks). Results with (1) are cited from (Tay et al., 2021), with (2) are from (Lee-Thorp et al., 2021),
with (3) are from (Xiong et al., 2021). We implement our PoNet and re-implement FNet based on
the PyTorch codebase from (Xiong et al., 2021) and use the same experimental configurations to
ensure a fair comparison. For each group, the best result for each task and AVG are bold-faced.

first and then performing element-wise product can reduce 2Nd to Nd, compared to conducting
Eq. 7 and Eq. 8 separately. After the simplifications, the total number of multiplication ops is (5N+
1)d2 + 3Nd. The multi-granularity pooling block hence has linear time and memory complexity
with respect to the input length.
4 EXPERIMENTS

We first evaluate PoNet on the Long Range Arena (LRA) benchmark (Tay et al., 2021) and compare
PoNet to the vanilla Transformer and a series of efficient transformer variants on accuracy, training
speed, and memory usage. Next, we study the transfer learning capability of PoNet in the commonly
used paradigm of pre-training followed by fine-tuning. We evaluate the fine-tuning performance on
the GLUE benchmark (Wang et al., 2019) as well as a set of long-text classification tasks. All
baseline models and PoNet use the same “Base” model configuration as BERT-Base (Devlin et al.,
2019). PoNet-Base has 124M parameters (see the first paragraph in Appendix A for more details).
More experimental details, results and analyses, and comparisons to other models are in Appendices.

4.1 LONG-RANGE ARENA BENCHMARK

Comparison on Accuracy The LRA benchmark is designed to assess the general capabilities
of capturing long-range dependencies. LRA consists of six tasks spanning structural reasoning
(ListOps), similarity reasoning (Byte-level Text classification and document Retrieval, Image
classification), and visual-spatial reasoning (Pathfinder). We use the PyTorch codebase from (Xiong
et al., 2021)2 to implement FNet and our PoNet and evaluate on LRA after first replicating the
results from Nyströmformer in (Xiong et al., 2021). We keep the same hyperparameter setting
as used by (Xiong et al., 2021) for all of our LRA evaluations and report results on five tasks in
Table 13. All the baseline models are summarized in Section 2 and the Linear variant (Lee-Thorp
et al., 2021) denotes replacing the self-attention sublayer with two linear projections, one applied to
the hidden dimension and one applied to the sequence dimension. Note that due to different code
implementations, results for same models could differ across groups in Table 1 (see Appendix A.1
for details). It is important to point out that all models in the third group are implemented with the
same codebase from (Xiong et al., 2021) and the same experimental configurations to ensure a fair
comparison within this group. As shown in Table 1, compared to the first and second groups and
the cited results in the third group marked with (3), PoNet achieves competitive performance on
LRA. PoNet outperforms the vanilla Transformer by +2.28 (61.05 over 58.77) and Nyströmformer
by +2.10 on the average accuracy and consistently accomplishes better performance on all tasks

2https://github.com/mlpen/Nystromformer
3We exclude the Path-X task since all the evaluated models failed in the Path-X task, probably due to its

very long 16K sequence length (Tay et al., 2021)

6

Published as a conference paper at ICLR 2022

Seq. length 512 1024 2048 4096 8192 16384

Training Speed (steps/s)↑
Transformer 45.1 19.4 6.3 1.8 OOM OOM
Performer 39.4(0.9x) 25.0(1.3x) 14.3(2.3x) 7.8(4.3x) 4.0 2.0
Nyströmformer 39.1(0.9x) 30.3(1.6x) 20.0(3.2x) 11.5(6.4x) 6.1 3.1
FNet 83.4(1.8x) 61.3(3.1x) 38.1(6.0x) 21.4(11.9x) 11.0 5.4
PoNet (Ours) 50.4(1.1x) 40.1(2.1x) 27.8(4.4x) 16.2(9.0x) 8.7 4.5

Peak Memory Usage (GB)↓
Transformer 1.4 2.5 6.7 23.8 OOM OOM
Performer 1.5(1.1x) 2.1(0.8x) 3.1(0.5x) 5.4(0.2x) 9.8 18.7
Nyströmformer 1.2(0.8x) 1.5(0.6x) 1.9(0.3x) 2.8(0.1x) 4.5 8.2
FNet 1.1(0.8x) 1.2(0.5x) 1.4(0.2x) 1.7(0.1x) 2.3 3.8
PoNet (Ours) 1.1(0.8x) 1.3(0.5x) 1.7(0.2x) 2.4(0.1x) 3.6 6.5

Table 2: Comparison of GPU training speed (in steps/s, the higher the better) and peak memory
consumption (in GB, the lower the better) on various input sequence lengths on the LRA text
classification task (using the same hyper-parameter setting for this task as in (Xiong et al., 2021),
with speed-up and memory-saving multipliers relative to Transformer shown in parentheses. The
best results are bold-faced with the second-best results underlined.

compared to Transformer, Performer, Reformer, Linformer, FNet, and Nyströmformer, except
slightly weaker than Transformer on the Pathfinder task. It is reasonable to conclude that PoNet
outperforms BigBird on LRA since the margin +2.28 from PoNet over Transformer in the third group
is significantly larger than the margin +0.62 from BigBird over Transformer in the first group. To the
best of our knowledge, PoNet achieves very competitive accuracy on LRA against Transformer and
recent efficient transformers, only lower than 63.09 from AdaMRA (Zhang et al., 2021b)4, 61.95
from Luna-256 (Ma et al., 2021)5, and 61.41 from H-Transformer-1D (Zhu & Soricut, 2021).

Comparison on Speed and Memory Consumption Table 2 compares the GPU training speed
and peak memory consumption of PoNet to Transformer, Performer, Nyströmformer, and FNet on
a single NVIDIA V100 chip, on input sequence lengths from 512 up to 16384. We observe that
PoNet is the second fastest model and consumes the second smallest memory footprint in the group,
consistently on all sequence lengths, much faster than Transformer, Performer, and Nyströmformer
and lighter than them, and only slightly slower and heavier than FNet. Also, the speedup from PoNet
over Transformer escalates on longer input sequence lengths.

4.2 TRANSFER LEARNING

The paradigm of pre-training followed by fine-tuning has been extensively applied and accomplished
SOTA results in a wide variety of NLP tasks. Therefore, it is critical to evaluate the transferability of
PoNet. We perform pre-training on PoNet and evaluate the fine-tuning performance on the GLUE
benchmark and a set of long-text classification benchmarks.

To facilitate a fair comparison on the transfer learning ability, we pre-train BERT, FNet, and
PoNet with the same MLM (Devlin et al., 2019) and sentence structural objective (SSO) as in
StructBERT (Wang et al., 2020b) on the English Wikitext-103 (100M words) and BooksCorpus
(800M words) datasets6 (in total 5GB data). The total pre-training loss is L = LMLM + LSSO.
All three models are base-uncased and pre-trained using the same configuration (Appendix A.2).
Figure 2 illustrates validation accuracy of the same MLM and SSO tasks from BERT, FNet, and
PoNet pre-training. MLM accuracy from PoNet is only slightly worse than that from BERT while
the gap on SSO accuracy between them is a bit larger. PoNet achieves significantly better MLM and
SSO accuracy than FNet, consistent with its better sequence modeling capability shown on LRA.

4AdaMRA (Zhang et al., 2021b) also re-implemented BigBird with the same codebase from Xiong et al.
(2021) and reported AVG 59.43 from BigBird, which is worse than PoNet.

5Luna-256 (Ma et al., 2021) outperforms their reimplemented Transfomer by +2.71, while PoNet achieves
+2.28 gain over Transformer implemented based on the same codebase and using the same configurations.

6https://huggingface.co/datasets

7

Published as a conference paper at ICLR 2022

5k 55k 105k 155k 205k 255k 305k 355k
Steps

0.2

0.3

0.4

0.5

0.6
M

LM
 A

cc
ur

ac
y

FNet
PoNet
BERT

(a) MLM Accuracy

5k 55k 105k 155k 205k 255k 305k 355k
Steps

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

SS
O

Ac
cu

ra
cy

FNet
PoNet
BERT

(b) SSO Accuracy

Figure 2: MLM and SSO validation accuracy against the numbers of training steps from BERT-
Base, FNet-Base, and PoNet-Base. All models are uncased.

Model MNLI(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE AVG.

BERT-Base 81.35/80.98 88.89 88.01 91.17 47.66 87.83 86.66 69.31 80.21
FNet-Base 73.13/73.66 85.75 80.50 88.65 40.61 80.62 80.84 57.40 73.46
PoNet-Base (Ours) 76.99/77.21 87.55 84.33 89.22 45.36 84.57 81.76 64.26 76.80

Table 3: GLUE Validation results from PoNet, BERT, and FNet. All models are uncased and pre-
trained with the same configurations (Appendix A.2) with 340K steps. We report the best GLUE
results for each model from multiple hyper-parameter configurations (Appendix A.3). We report
the mean of accuracy and F1 for QQP and MRPC, matthews correlations for CoLA, spearman
correlations for STS-B, and accuracy for other tasks. MNLI(m/mm) means match/mismatch splits.

Results on GLUE The GLUE benchmark covers a diverse range of challenging natural language
understanding tasks and is widely adopted for evaluating transfer learning models. The tasks can
be split into two groups, single-sentence tasks including CoLA and SST-2, and sentence-pair tasks
including MRPC, QQP, STS-B, MNLI, QNLI, and RTE7. The special token “[SEP]” is used as
the segment separator. For fine-tuning PoNet on GLUE, inputs to single-sentence tasks include
three segments as “[CLS]” Sentence-1 “[SEP]”; whereas inputs to sentence-pair tasks include five
segments “[CLS]” Sentence-1 “[SEP]” Sentence-2 “[SEP]”. These segments are used for computing
SMP (Section 3). Table 3 shows the results for the best base learning rate (no early stopping) on the
GLUE Validation split (see Appendix A.3 for more details), providing a fair comparison since all
three models are pre-trained and fine-tuned with the same pre-training data (5GB data)/tasks/hyper-
parameters with 340K steps. Table 3 shows that PoNet achieves 76.80 AVG score, reaching 95.7%
of the accuracy of BERT on GLUE (80.21) and outperforming FNet by 4.5% relatively. These
performance comparisons are consistent with the pre-training accuracies shown in Figure 2. The
results also prove that PoNet is equally competitive in both single-sentence and sentence-pair tasks.
When pre-trained on the same 16GB data used for the official BERT pre-training with MLM+SSO
tasks up to 1M steps, PoNet also achieves 95.9% of BERT’s accuracy on GLUE (see Appendix B.2).

Results on Long-text Classification We also evaluate the fine-tuning performance of the pre-
trained PoNet on four long-text classification datasets, including Hyperpartisan news detec-
tion (HND) (Kiesel et al., 2019)8, IMDb (Maas et al., 2011), Yelp-5 (Zhang et al., 2015), and
Arxiv-11 (He et al., 2019). As can be seen from Table 4, PoNet-Base outperforms BERT-Base
on HND (+8.2 F1) and Arxiv (+0.75 F1) and reaches 99% of BERT-Base’s F1 on IMDb and Yelp-5.

5 ABLATION ANALYSIS

We conduct ablation analysis on contributions from multi-granularity pooling and pre-training tasks.
By applying leave-one-out on PoNet components, we create variants as PoNet w/o Second Stage

7Following (Devlin et al., 2019; Lee-Thorp et al., 2021), we exclude WNLI.
8We use the train/validation/test division provided by Beltagy et al. (2020).

8

Published as a conference paper at ICLR 2022

Model HND(F1) IMDb(F1/Acc) Yelp-5(F1) Arxiv(F1)

#Example (#Classes) 500 (2) 25000 (2) 650000 (5) 30043 (11)
#Wordpieces avg. (95thpctl.) 734 (1,974) 312 (805) 179 (498) 16,210 (32,247)

RoBERTa-Base (Zaheer et al., 2020) 87.8 95.3/95.0 71.75 87.42
Longformer (Beltagy et al., 2020) 94.8 95.7/−− −− −−
BigBird (Zaheer et al., 2020) 92.2 −−/95.2 72.16 92.31
BERT-Base 88.0 94.1/94.1 69.59 85.36
FNet-Base 86.3 90.4/90.5 65.49 79.90
PoNet-Base (Ours) 96.2 93.0/93.0 69.13 86.11

Table 4: Fine-tuning results (in F1 and Acc) on long-text classification datasets. For the third group
of results, we use the official checkpoints of BERT-Base and FNet-Base (see Appendix A.4).

Model Pre-trained tasks Downstream tasks
MLM SST CoLA STS-B

PoNet(340K steps) 59.44 80.75 45.36 84.57

PoNet w/o SS-GA 59.33 76.92 46.18 78.38
PoNet w/o GA 56.64 74.36 49.51 64.61
PoNet w/o SMP 56.96 78.41 44.21 84.89
PoNet w/o LMP 56.53 80.27 41.44 85.55
PoNet w/o (SMP&LMP) 43.61 76.72 11.36 84.93

PoNet using LMN 62.53 79.28 50.91 75.32
PoNet using LOM 63.11 −− 51.26 69.83

Table 5: Results of ablation study as accuracy for pre-training MLM and SST (Sentence Structure
Task) tasks, matthews correlations for CoLA, and spearman correlations for STS-B. SST denotes
NSP when using LMN and the SSO task otherwise. All pre-training experiments run 340K steps.

GA (SS-GA), w/o GA, w/o SMP, w/o LMP, and w/o (SMP&LMP). We also pre-train PoNet with
two weaker losses, as LMN = LMLM + LNSP and LsOM = LMLM, where LNSP is the NSP loss in
BERT. We report pre-training task validation accuracy and GLUE validation scores on the single-
sentence CoLA and sentence-pair STS-B tasks in Table 5. Since [CLS] from PoNet w/o GA cannot
capture information of the whole sequence, as using [CLS] for classification fails on SST (Sentence
Structure Task), CoLA, and STS-B, we use max-pooling of sequence for classification.

Removing GA (PoNet w/o SS-GA, PoNet w/o GA) significantly degrades accuracy on SST and
STS-B, showing that sentence-pair tasks heavily rely on the global information. MLM accuracy
degrades only slightly from PoNet w/o SS-GA but more significantly from PoNet w/o GA, indicating
that MLM also depends on the global information, but when the rough global information is
available (PoNet w/o SS-GA), SMP can compensate sufficiently and PoNet w/o SS-GA improves
CoLA. Removing GA enhances SMP and LMP learning thus improves CoLA since CoLA relies on
SMP and LMP much more than GA. Different from the conclusions on BERT (Devlin et al., 2019;
Liu et al., 2019), we find fine-tuning performance of PoNet on sentence-pair tasks highly relies
on SST pre-training tasks. Weakening SST loss (LMN, LOM) weakens GA representation learning
while enhancing SMP and LMP learning, causing a significant degradation in STS-B accuracy but
a significant gain in CoLA. Similarly, removing SMP or LMP enhances GA representation learning
and hence improves STS-B accuracy while degrading CoLA accuracy. PoNet w/o SMP&LMP (i.e.
GA only) shows a drastic degradation on MLM and CoLA accuracy (45.36 to 11.36). These results
confirm that all three poolings are important for the modeling capabilities of PoNet.

6 CONCLUSION

We propose a novel Pooling Network (PoNet) to replace self-attention with a multi-granularity
pooling block, which captures different levels of contextual information and combines them for
a comprehensive modeling of token interactions. Extensive evaluations demonstrate that PoNet
achieves both competitive long-range dependency modeling capacity and strong transfer learning
capabilities, with linear time and memory complexity. Future work includes further optimization of
model structure as well as applying PoNet to a broader range of tasks including generation tasks.

9

Published as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

All data used in the experiments in this paper are open source. Readers can refer to the original
papers for details of the datasets, which are cited in our paper. Information on data access can be
found in Appendix A. Experimental details are also described in Appendix A. Our implementation
is available at https://github.com/lxchtan/PoNet.

ACKNOWLEDGEMENTS

This work was supported by Alibaba Group through Alibaba Research Intern Program.

REFERENCES

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
CoRR, abs/2004.05150, 2020. URL https://arxiv.org/abs/2004.05150.

Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python.
O’Reilly, 2009. ISBN 978-0-596-51649-9. URL http://www.oreilly.de/catalog/
9780596516499/index.html.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. CoRR, abs/1904.10509, 2019. URL http://arxiv.org/abs/1904.10509.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Jared Davis, Tamás
Sarlós, David Belanger, Lucy J. Colwell, and Adrian Weller. Masked language modeling for
proteins via linearly scalable long-context transformers. CoRR, abs/2006.03555, 2020. URL
https://arxiv.org/abs/2006.03555.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with
performers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=Ua6zuk0WRH.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, and Guoping Hu.
Pre-training with whole word masking for chinese BERT. CoRR, abs/1906.08101, 2019. URL
http://arxiv.org/abs/1906.08101.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Siyu Ding, Junyuan Shang, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. Ernie-
doc: A retrospective long-document modeling transformer. In Chengqing Zong, Fei Xia, Wenjie
Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pp.
2914–2927. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.acl-long.
227. URL https://doi.org/10.18653/v1/2021.acl-long.227.

Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim
Rahaman, Jonathan Binas, Charles Blundell, Michael Mozer, and Yoshua Bengio. Coordination
among neural modules through a shared global workspace. CoRR, abs/2103.01197, 2021. URL
https://arxiv.org/abs/2103.01197.

10

https://github.com/lxchtan/PoNet
https://arxiv.org/abs/2004.05150
http://www.oreilly.de/catalog/9780596516499/index.html
http://www.oreilly.de/catalog/9780596516499/index.html
http://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2006.03555
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
http://arxiv.org/abs/1906.08101
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2021.acl-long.227
https://arxiv.org/abs/2103.01197

Published as a conference paper at ICLR 2022

Meng-Hao Guo, Zheng-Ning Liu, Tai-Jiang Mu, and Shi-Min Hu. Beyond self-attention: External
attention using two linear layers for visual tasks. CoRR, abs/2105.02358, 2021. URL https:
//arxiv.org/abs/2105.02358.

Jun He, Liqun Wang, Liu Liu, Jiao Feng, and Hao Wu. Long document classification from local
word glimpses via recurrent attention learning. IEEE Access, 7:40707–40718, 2019. doi: 10.1109/
ACCESS.2019.2907992. URL https://doi.org/10.1109/ACCESS.2019.2907992.

Dan Iter, Kelvin Guu, Larry Lansing, and Dan Jurafsky. Pretraining with contrastive sentence
objectives improves discourse performance of language models. In Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel R. Tetreault (eds.), ACL, pp. 4859–4870, 2020. doi: 10.18653/v1/2020.
acl-main.439. URL https://doi.org/10.18653/v1/2020.acl-main.439.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy.
Spanbert: Improving pre-training by representing and predicting spans. Trans. Assoc. Comput.
Linguistics, 8:64–77, 2020. URL https://transacl.org/ojs/index.php/tacl/
article/view/1853.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pp. 5156–5165. PMLR, 2020. URL
http://proceedings.mlr.press/v119/katharopoulos20a.html.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David P. A.
Corney, Benno Stein, and Martin Potthast. Semeval-2019 task 4: Hyperpartisan news detection.
In Jonathan May, Ekaterina Shutova, Aurélie Herbelot, Xiaodan Zhu, Marianna Apidianaki,
and Saif M. Mohammad (eds.), Proceedings of the 13th International Workshop on Semantic
Evaluation, SemEval@NAACL-HLT 2019, Minneapolis, MN, USA, June 6-7, 2019, pp. 829–
839. Association for Computational Linguistics, 2019. doi: 10.18653/v1/s19-2145. URL
https://doi.org/10.18653/v1/s19-2145.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
rkgNKkHtvB.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. ALBERT: A lite BERT for self-supervised learning of language representations. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
H1eA7AEtvS.

Haejun Lee, Drew A. Hudson, Kangwook Lee, and Christopher D. Manning. SLM: learning a
discourse language representation with sentence unshuffling. In Bonnie Webber, Trevor Cohn,
Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pp. 1551–1562.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.120. URL
https://doi.org/10.18653/v1/2020.emnlp-main.120.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontañón. FNet: mixing tokens with
fourier transforms. CoRR, abs/2105.03824, 2021. URL https://arxiv.org/abs/2105.
03824.

Quentin Lhoest, Albert Villanova del Moral, Patrick von Platen, Thomas Wolf, Yacine Jernite,
Abhishek Thakur, Lewis Tunstall, Suraj Patil, Mariama Drame, Julien Chaumond, Julien
Plu, Joe Davison, Simon Brandeis, Teven Le Scao, Victor Sanh, Kevin Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Steven Liu, Nathan Raw,
Sylvain Lesage, Théo Matussière, Lysandre Debut, Stas Bekman, and Clément Delangue.
huggingface/datasets: 1.12.1, September 2021. URL https://doi.org/10.5281/
zenodo.5510481.

11

https://arxiv.org/abs/2105.02358
https://arxiv.org/abs/2105.02358
https://doi.org/10.1109/ACCESS.2019.2907992
https://doi.org/10.18653/v1/2020.acl-main.439
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://transacl.org/ojs/index.php/tacl/article/view/1853
http://proceedings.mlr.press/v119/katharopoulos20a.html
https://doi.org/10.18653/v1/s19-2145
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2020.emnlp-main.120
https://arxiv.org/abs/2105.03824
https://arxiv.org/abs/2105.03824
https://doi.org/10.5281/zenodo.5510481
https://doi.org/10.5281/zenodo.5510481

Published as a conference paper at ICLR 2022

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.
11692.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke
Zettlemoyer. Luna: Linear unified nested attention. In Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2021.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng
Kong. Random feature attention. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=QtTKTdVrFBB.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient Transformers: A survey.
CoRR, abs/2009.06732, 2020. URL https://arxiv.org/abs/2009.06732.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. Long Range Arena : A benchmark for efficient
transformers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=qVyeW-grC2k.

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. MLP-Mixer: an all-mlp architecture for vision. CoRR, abs/2105.01601,
2021. URL https://arxiv.org/abs/2105.01601.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
rJ4km2R5t7.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. CoRR, abs/2006.04768, 2020a. URL https://arxiv.org/abs/
2006.04768.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia, Zuyi Bao, Liwei Peng, and Luo Si.
StructBERT: incorporating language structures into pre-training for deep language understanding.
In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020b. URL https://openreview.net/forum?
id=BJgQ4lSFPH.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural

12

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://openreview.net/forum?id=QtTKTdVrFBB
https://openreview.net/forum?id=QtTKTdVrFBB
https://arxiv.org/abs/2009.06732
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://arxiv.org/abs/2105.01601
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://openreview.net/forum?id=BJgQ4lSFPH
https://openreview.net/forum?id=BJgQ4lSFPH

Published as a conference paper at ICLR 2022

language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association
for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.
emnlp-demos.6.

Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. Fastformer: Additive attention
can be all you need. CoRR, abs/2108.09084, 2021. URL https://arxiv.org/abs/2108.
09084.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,
2021, pp. 14138–14148. AAAI Press, 2021. URL https://ojs.aaai.org/index.php/
AAAI/article/view/17664.

Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng Gao.
Focal self-attention for local-global interactions in vision transformers. CoRR, abs/2107.00641,
2021. URL https://arxiv.org/abs/2107.00641.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big Bird:
transformers for longer sequences. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html.

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and
Josh M. Susskind. An attention free transformer. CoRR, abs/2105.14103, 2021. URL https:
//arxiv.org/abs/2105.14103.

Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan, and Weizhu
Chen. Poolingformer: Long document modeling with pooling attention. In Marina Meila and
Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pp. 12437–12446. PMLR, 2021a. URL http://proceedings.mlr.press/
v139/zhang21h.html.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for
text classification. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pp. 649–657, 2015. URL https://proceedings.neurips.cc/
paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html.

Yao Zhang, Yunpu Ma, Thomas Seidl, and Volker Tresp. Adaptive multi-resolution attention with
linear complexity. CoRR, abs/2108.04962, 2021b. URL https://arxiv.org/abs/2108.
04962.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
Advances in Neural Information Processing Systems, 34, 2021.

Zhenhai Zhu and Radu Soricut. H-Transformer-1D: fast one-dimensional hierarchical attention for
sequences. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021, pp. 3801–3815. Association for Computational Linguistics,
2021. doi: 10.18653/v1/2021.acl-long.294. URL https://doi.org/10.18653/v1/
2021.acl-long.294.

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2108.09084
https://arxiv.org/abs/2108.09084
https://ojs.aaai.org/index.php/AAAI/article/view/17664
https://ojs.aaai.org/index.php/AAAI/article/view/17664
https://arxiv.org/abs/2107.00641
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://arxiv.org/abs/2105.14103
https://arxiv.org/abs/2105.14103
http://proceedings.mlr.press/v139/zhang21h.html
http://proceedings.mlr.press/v139/zhang21h.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://arxiv.org/abs/2108.04962
https://arxiv.org/abs/2108.04962
https://doi.org/10.18653/v1/2021.acl-long.294
https://doi.org/10.18653/v1/2021.acl-long.294

Published as a conference paper at ICLR 2022

Appendices
A EXPERIMENT DETAILS

Model Size For all experiments for PoNet in this paper, parameters WKg
, bKg

and WVg
, bVg

in
Equation 1 are shared to reduce the calculations and we observe no performance degradation. After
this sharing of WKg

, bKg
and WVg

, bVg
in Equation 1, PoNet-Base has 124M parameters. This is

comparable to the 110M parameters for BERT-Base but still a bit larger in the number of parameters.
Our ideas for further reducing the number of parameters are summarized in Appendix F.1.

A.1 LONG-RANGE ARENA BENCHMARK EXPERIMENTAL DETAILS

Implementations and Hyperparameters We use the Pytorch codebase from Xiong et al. (2021)9

to implement our PoNet and re-implement FNet and conduct all LRA evaluations to facilitate a
fair comparison. We use exactly the same experimental configurations provided by Xiong et al.
(2021)9. Note that due to different code implementations, as shown in Table 1, the results from our
re-implemented FNet achieve 53.10 average score, lower than 55.30 reported in the original FNet
paper (Lee-Thorp et al., 2021) where the original FNet is implemented in JAX/Flax. The Pytorch
implementation also causes some difference in results for other models compared to their LRA
results reported in the original LRA paper (Tay et al., 2021), which are implemented in JAX/Flax.

For each task, the input sequence is truncated evenly into K segments (as the K in Equation 4).
We find that 32 segments for the Image task, 64 segments for the ListOps and Retrieval tasks, 2048
segments for the Text task produce the best results. However, PoNet fails on the Pathfinder task
under all three segment configurations. Hence we remain computing SMP on the whole sequence
(i.e., only 1 segment) for the Pathfinder task.

Additional LRA Results The standard deviations from three runs of our PoNet model on LRA
for each task are: ListOps (3.98e-3), Text (4.09e-3), Retrieval (5.89e-3), Image (2.50e-3), and
PathFinder (3.2e-3). The standard deviations from three runs of our FNet implementation on LRA
for each task are: ListOps (4.66e-3), Text (3.25e-3), Retrieval (2.99e-3), Image (1.57e-2), and all
the three runs on the Pathfinder task are failed.

Note that we use the PyTorch codebase from Xiong et al. (2021) to implement FNet and our
reported FNet results on LRA in Table 1 and Table 2 are based on our FNet implementation.
This implementation adds a Linear layer after the attention, as done for the BERT series but not
in the original FNet paper Lee-Thorp et al. (2021) nor in its official Google research code and the
HuggingFace implementation. We experiment with removing this Linear layer in FNet and notice a
significant performance degradation on LRA from FNet, with the AVG score dropping from 53.10
in Table 1 to 50.65.

Speed and Memory Comparison The training speed and peak memory consumption compar-
isons are conducted on the LRA text classification task on a single NVIDIA Tesla V100 GPU. The
input sequence lengths are set from 512 to 16384. Note that since the original LRA github10 also
provides the full length datasets, hence we could truncate the sequences in the LRA text classification
task into 8K and 16K lengths. The hyper-parameters are the same as in (Xiong et al., 2021), that is,
the hidden size is set to 64, the intermediate size is set to 128, the number of attention heads is set
to 2, the number of layers is set to 2, and the batch size is set to 32.

A.2 PRE-TRAINING DETAILS

For feasible experiment turn-around with our computation resources, we first use the English
Wikitext-103 (100M words) 11 and the BooksCorpus (800M words)12 datasets for pre-training,

9https://github.com/mlpen/Nystromformer
10https://github.com/google-research/long-range-arena
11https://huggingface.co/datasets/wikitext
12https://huggingface.co/datasets/bookcorpus

14

Published as a conference paper at ICLR 2022

in total 5GB data size. For PoNet, natural paragraph segmentations in the datasets, which are
marked by “\n”, are treated as segments for the SMP computation. For the MLM task, the masking
probability is set to 15%. 80% of the masked positions are replaced by “[MASK]”, 10% are replaced
by randomly sampled words, and the remaining 10% are unchanged. For the SSO task, a long
sequence containing several paragraphs is truncated into two subsequences at random positions, with
1/3 probability of replacing one of the subsequences with another randomly selected subsequence,
1/3 probability of swapping the two subsequences, and 1/3 probability unchanged. These three cases
are assigned three different labels for the ternary classification. All input sequences are truncated
to a maximum sequence length of 512, and to accommodate sentences of different lengths, some
input sequences are truncated shorter with a probability of 0.1. The datasets were duped 5 times
to alleviate overfitting of SSO tasks, which were also applied by Devlin et al. (2019)13. Since the
selection of masked positions and sentence pairs are done according to probabilities, we obtain 5
times more training sample pairs. The pre-training implementation is based on the Pytorch codebase
from Wolf et al. (2020), with the hyper-parameters shown in Table 6. Each pre-training experiment
is run on 4 NVIDIA Tesla V100 GPUs and takes about 9 days.

Pre-training GLUE Long-text Tasks

Max Steps 750K – –
Max Epochs – 4 10 or 2I

Learning Rate 1e-4 {3e-5, 5e-5, 1e-4, 3e-4} {3e-5, 5e-5}
Batch Size 192 {128, 64, 32, 16, 8} 32
Warm-up Steps 5K 0 0
Sequence Length 512 128 4096
Learning Rate Decay Linear
Adam ϵ 1e-8
Adam (β1, β2) (0.9, 0.999)
Clip Norm 1.0
Dropout 0.1
I The value 2 is used for the high-resource task Yelp-5, and 10 for the other tasks.

Table 6: Detailed hyperparameter settings for the pre-training and fine-tuning experiments. For
rows with a single hyperparameter value, the value is used across pre-training and fine-tuning on
GLUE and long-text classification tasks.

A.3 FINE-TUNING ON THE GLUE BENCHMARK

The GLUE datasets14 can be accessed from Lhoest et al. (2021). The special token “[SEP]” is
used as the segment separator. Inputs to single-sentence tasks are processed as “[CLS] S [SEP]”;
whereas inputs to sentence-pair tasks as “[CLS] S1 [SEP] S2 [SEP]”. We implement all fine-
tuning code based on the Pytorch codebase from Wolf et al. (2020). We run 20 sets of hyper-
parameter configurations based on Table 6 for fine-tuning BERT, FNet, and our PoNet and report
the best GLUE results in Table 3. Note that Table 3 provides a fair comparison between BERT,
FNet, and PoNet as all three models are pre-trained with the same pre-training data of English
Wikitext-103 (100M words) and BooksCorpus (800M words) datasets15, the same pre-training tasks
of MLM+SSO, the same pre-training configurations (Appendix A.2) (all trained with 340K steps),
and fine-tuned on GLUE with the same configurations.

13https://github.com/google-research/bert
14https://huggingface.co/datasets/glue
15https://huggingface.co/datasets

15

Published as a conference paper at ICLR 2022

Model MNLI(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE AVG.

BERT-Base(1) 84/81 87 91 93 73 89 83 83 83.3
Linear-Base(1) 74/75 84 80 94 67 67 83 69 77.0
FNet-Base(1) 72/73 83 80 95 69 79 76 63 76.7

BERT-Base(2) 85/85 89.77 91.78 92.66 58.88 89.28 89.31 70.76 83.52
FNet-Base(2) 75/76 86.72 83.23 90.13 35.37 81.43 80.34 59.92 74.23
PoNet-Base(Ours)(2) 78/78 87.76 85.17 89.00 47.24 85.86 83.39 63.53 77.54

BERT-Base(3) 83/83 89.48 90.65 91.74 51.19 89.28 88.73 67.51 81.63
FNet-Base(3) 75/76 86.17 82.52 88.42 40.57 83.64 80.90 61.73 74.99
PoNet-Base(Ours)(3) 79/78 87.92 86.31 89.79 45.18 87.17 84.27 66.43 78.29

Table 7: Extra GLUE Validation results. BERT-Base and PoNet-Base are uncased whereas FNet-
Base is cased (since the official FNet checkpoint is cased). We report the mean of accuracy and F1
scores for QQP and MRPC, matthews correlations for CoLA, spearman correlations for STS-B, and
accuracy scores for other tasks. The MNLI(m/mm) means the match/mismatch splits. Results with
(1) are from (Lee-Thorp et al., 2021). Results with (2) and (3) are the best results from searching
20 sets of hyper-parameter configurations based on Table 6 for fine-tuning the pre-trained models.
For BERT-Base(2) and FNet-Base(2), we use the official checkpoints provided by authors while for
PoNet-Base(2), we pre-train the PoNet model on 5GB data (Wikitext-103 and BooksCorpus). For
a fair comparison on model capacity by pre-training with more data, BERT-Base(3), FNet-Base(3),
and PoNet-Base(3) are all pre-trained on the same 16GB Wikipedia and BooksCorpus data used for
pre-training official BERT checkpoints, trained with MLM+SSO tasks for 1M steps.

A.4 FINE-TUNING ON THE LONG-TEXT CLASSIFICATION TASKS

The HND dataset can be acquired followed the guide in (Beltagy et al., 2020)16. The IMDb dataset17

and Yelp-5 dataset18 are from Lhoest et al. (2021). The Arxiv-11 dataset is from He et al. (2019)19.

The max sequence length for all long-text classification experiments is 4096. Since there is no
natural paragraph segmentation for these data, we use the NLTK toolkit (Bird et al., 2009) to segment
the input into sentences for SMP computation. Note that our PoNet model was pre-trained with max
sequence length 512, to be able to fine-tune on 4096 input lengths, following Beltagy et al. (2020),
we add extra position embeddings initialized by copying the pre-trained 512 position embeddings
recurrently. We implement all the fine-tuning code based on the Pytorch codebase from Wolf et al.
(2020) with the hyper-parameters shown in Table 6.

For BERT-Base, we fine-tune using the HuggingFace BERT-Base-uncased checkpoints20 (pre-
trained on Wikipedia and BooksCorpus, in total 16GB data size). We fine-tune FNet-Base (Lee-
Thorp et al., 2021) (pre-trained on 700GB C4 data) by converting the official FNet checkpoints
using the tool from https://github.com/erksch/fnet-pytorch to be loadable by the Pytorch codebase
for fine-tuning. For PoNet-Base, we fine-tune our pre-trained PoNet-Base-uncased with pre-training
hyper-parameters shown in Table 6, that is, PoNet-Base pre-trained with 750K steps.

B ADDITIONAL GLUE RESULTS

B.1 COMPARE TO OFFICIAL BERT AND FNET CHECKPOINTS

Earlier studies show that due to its model capacity, Transformer-based PLMs benefit from larger
pre-training data Liu et al. (2019). Hence, we also show additional GLUE validation results. First,
we compare the performance between PoNet pre-trained on 5GB data and the official checkpoints
of BERT pre-trained on 16GB Wikipedia and BooksCorpus data and FNet pre-trained on 700GB
C4 data, as shown in Table 7. The results with (1) in Table 7 are from (Lee-Thorp et al., 2021). The
results with (2) in Table 7 show the best GLUE results from searching 20 sets of hyper-parameter

16https://github.com/allenai/longformer/blob/classification/scripts/hp preprocess.py
17https://huggingface.co/datasets/imdb
18https://huggingface.co/datasets/yelp review full
19https://github.com/LiqunW/Long-document-dataset
20https://huggingface.co/bert-base-uncased

16

Published as a conference paper at ICLR 2022

5k 130k 255k 380k 505k 630k 755k 880k 1005k
Steps

0.2

0.3

0.4

0.5

0.6
M

LM
 A

cc
ur

ac
y

FNet
PoNet
BERT

(a) MLM Accuracy on 16GB Datasets

5k 130k 255k 380k 505k 630k 755k 880k 1005k
Steps

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

SS
O

Ac
cu

ra
cy

FNet
PoNet
BERT

(b) SSO Accuracy on 16GB Datasets

Figure 3: MLM and SSO validation accuracy on 16GB datasets (Wikipedia and BooksCorpus)
against the numbers of training steps from BERT-Base, FNet-Base, and PoNet-Base. All models are
uncased.

configurations based on Table 6 for fine-tuning the pre-trained models. For BERT-Base(2) and FNet-
Base(2), we use their respective pre-trained checkpoints provided by authors. For BERT-Base(2), we
fine-tune on GLUE using the Huggingface BERT-Base-uncased checkpoints20. For FNet-Base(2),
we re-evaluate FNet-Base-cased (Lee-Thorp et al., 2021) on GLUE by converting the official FNet-
Base-cased checkpoints21 using the tool from https://github.com/erksch/fnet-pytorch to be loadable
by the PyTorch codebase for fine-tuning. For PoNet-Base(2), we fine-tune our pre-trained PoNet-
Base-uncased with pre-training hyper-parameters shown in Table 6 and pre-trained with 750K steps.

It is important to point out that the GLUE results from official checkpoints of BERT-Base and FNet-
Base and our pre-trained PoNet-Base are not comparable since the pre-training data and pre-training
tasks are different. BERT-Base was pre-trained on English Wikipedia (2.5B words) +BooksCorpus
(800M words) with MLM+NSP, in total 20GB data size. FNet-Base was pre-trained on C4 (700GB
data size) with MLM+NSP. In contrast, our PoNet-Base was pre-trained on Wikitext-103 (100M
words)+BooksCorpus (800M words) with MLM+SSO, in total only 5GB data size. Nevertheless,
with the much smaller pre-training data, PoNet-Base still achieves GLUE AVG 77.54, reaching
92.84% of the accuracy of BERT on GLUE (83.52) and outperforms FNet (74.23) by 4.5% relatively,
and also better than 76.7 reported in the original FNet paper (they used different code implemented
with JAX/Flax).

We also compare other reported results to verify the correctness of our fine-tuning implementations.
Note that as reported in Table 7, fine-tuning the FNet-Base-cased official checkpoints in our
PyTorch-implemented fine-tuning code achieved 74.23 AVG score on the GLUE Validation set.
HuggingFace reproduced FNet-Base-cased with PyTorch and after pre-training FNet-base using the
same pre-training data C4 and MLM and NSP tasks as the original FNet paper (Lee-Thorp et al.,
2021) and conducting GLUE fine-tuning, their FNet-Base-cased achieved 74.89 AVG score on the
GLUE validation set22, which is comparable to 74.23 from our FNet-Base-cased fine-tuning results.
These results verified the correctness of our FNet fine-tuning implementation. HuggingFace also
compares the GLUE validation results between their FNet-Base re-implemented in PyTorch and
the original FNet implemented in JAX/Flax, and also shows a significant gap from the PyTorch
implementations23. Hence, we think the difference between our FNet-Base GLUE score and the
score reported in the original FNet paper (our 74.23 versus their 76.7) is also due to different code
implementation (PyTorch versus JAX/Flax) and different hyper-parameter settings. For the official
BERT-Base-uncased checkpoints, we obtain the best GLUE validation results as AVG 83.52, which

21https://github.com/google-research/google-research/tree/master/f net
22https://huggingface.co/google/fnet-base. Note that we exclude their WNLI accuracy from computing the

AVG score for GLUE, following the common practice from (Devlin et al., 2019).
23https://huggingface.co/google/fnet-base. HuggingFace shows that the average score on 9 tasks (including

WNLI) from FNet-base(PyTorch) is 72.7 while it is 76.7 from FNet-base(Flax official).

17

Published as a conference paper at ICLR 2022

is better than the 82.62 AVG score HuggingFace reported from BERT-Base-cased24. These results
verified the correctness of our BERT fine-tuning implementations.

B.2 RESULTS FROM USING MORE PRE-TRAINING DATA

In order to investigate the model capacity of PoNet, we also pre-train PoNet on the sufficiently large
Wikipedia and BookCorpus dataset used for pre-training the official BERT model, in total 16GB data
size. For a fair comparison, we pre-train BERT-Base, FNet-Base, and PoNet-Base with the same
16GB data, the same joint MLM+SSO tasks, up to 1M steps considering the larger data amount.
The hyper-parameters for pre-training on 16GB data are the same as shown in Table 6 except for
training 1M steps.

The MLM and SSO validation accuracies against the numbers of training steps are shown in
Figure 3. Compared to the observations when pre-training BERT-Base, FNet-Base, and PoNet-
Base on the 5GB data set, the SSO accuracy from PoNet is only slightly worse than BERT whereas
the gap on the MLM accuracy is a bit larger. PoNet achieves significantly better MLM and SSO
accuracy than FNet, consistent with its better sequence modeling capability shown on LRA.

GLUE validation results from BERT-Base, FNet-Base, and our PoNet-Base models pre-trained on
the same 16GB data with MLM+SSO tasks up to 1M steps are shown as the group (3) in Table 7.
Compared with PoNet-Base(2) (pre-trained on 5GB data), PoNet-Base(3) improves the average
score of GLUE by a margin of 0.75 (77.54 to 78.29), which proves the potential of our model
to capture more knowledge with a larger amount of pre-training data. Note that table 3 shows the
GLUE fine-tune results when BERT-Base, FNet-Base, and PoNet-Base are all pre-trained on 5GB
data with MLM+SSO tasks, where PoNet-Base reaches 95.7% of the accuracy of BERT (76.80
against 80.21). It is encouraging to observe here that in this fair comparison with all three models
pre-trained on the much larger 16GB data, PoNet-Base(3) also reaches 95.9% of the accuracy of
BERT-Base(3) on GLUE (78.29 against 81.63), demonstrating the competitive transfer learning
capabilities of PoNet. Note that BERT-Base(3) has a lower performance than the official BERT-
Base(2), which is mainly due to the difference in batch size constrained by machine resource
limitations. Although we conduct 1M training steps, the batch size is still smaller than that of
the official BERT (98,304 versus 128,000 words/batch). This degradation is also caused by the data
pre-processing scripts we use as well as slightly by the FP16 training strategy we adopt. Note that
BERT, FNet, and our PoNet all suffer some performance degradation from these factors, and the
performance comparison in the group (3) in Table 7 is a fair comparison.

C VISUALIZATION

C.1 STATISTICAL ANALYSIS

To study the importance of the three granularities of pooling, i.e., GA, LMP, and SMP, at different
layers of PoNet, we take 4000 examples, calculate the mean of the L2-Norm of each type of pooling
for the 4000 examples at each layer, as well as the average of the means for the three types of
pooling. The resulting curves are shown in figure 4. Specifically, the norm is calculated as follows,

L2-Norm =
∑
h,l,i

LNh,l,i

H ∗ L ∗ I
, (10)

LNh,l,i =

√√√√∑
d

h2
i,h,l,d

D
, (11)

where i, h, l, d denote the dim of example, attention head, text length, and hidden unit, respectively.
We observe that

(1) All three curves corresponding to the three types of pooling are close to the average curve
in the graph, indicating that all three types of pooling play a significant role in PoNet.

24https://huggingface.co/google/fnet-base

18

Published as a conference paper at ICLR 2022

1 2 3 4 5 6 7 8 9 10 11 12
Layer

0.10

0.15

0.20

0.25

0.30

0.35

No
rm

LMP
SMP
GA
Average

Figure 4: The L2-Norm of the three pooing GA, SMP, and LMP and their average at different layers
of PoNet.

1 2 3 4 5 6 7 8 9 10 11 12
layers

[CLS]
the

word
had

filled
his

head
as

though
the
girl
had

whispered
directly

into
both
ears

.
[SEP]

wo
rd

s

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(a) GA Attention

1 2 3 4 5 6 7 8 9 10 11 12
layers

[CLS]
the

word
had

filled
his

head
as

though
the
girl
had

whispered
directly

into
both
ears

.
[SEP]

wo
rd

s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) SMP Argmax Positions

Figure 5: The GA attention map and SMP argmax positions for the example “The word had filled
his head as though the girl had whispered directly into both ears.”

This observation is consistent with the ablation results shown in Table 5, which shows that
removing GA, removing SMP, or removing LMP in PoNet all significantly degrade the
performance on downstream single-sentence and sentence-pair tasks.

(2) All three curves corresponding to GA, SMP, and LMP share a similar trend of going down,
up, down, slowly rising and going down. From Layer 1 to 8, the norm values of SMP are
greater than those of LMP and GA. Higher than Layer 9, the norm values of LMP turn
out to be greater than those of SMP. These observations indicate that the significance of
different granularities of pooling changes across layers.

(3) The norm value of GA is relatively low compared to that of SMP and LMP. On the other
hand, as shown in the ablation results in Table 5, removing GA from PoNet (PoNet w/o GA)
degrades performance on SST and STS-B significantly, demonstrating that the sentence-
pair tasks heavily rely on the global information.

C.2 CASE STUDY

To analyze how PoNet works, we loaded a pre-trained PoNet and selected an example, “The word
had filled his head as though the girl had whispered directly into both ears.”, for visualization. For

19

Published as a conference paper at ICLR 2022

GA, we average the attention weights of all heads as the attention weights of each layer. For SMP, we
count the number of times all hidden layer dimensions were taken as the segment maximum value.
The resulting GA attention map and SMP argmax positions across layers are shown in Figure 5. The
tokens “[CLS]” and “[SEP]” are excluded in the SMP visual map since they belong to a single word
segment. To sharpen the display, the maxima in the figure are truncated to 0.2 or 0.3 accordingly.
On the bottom layer, we observe that GA first focuses on some of the more important words, such
as “whispered” at Layer 1 and then attends to the rest words at Layer 2. This complementary
attention allows the model to capture more comprehensive information about the sequences after
multiple layers. We observe that SMP is more inclined to capture information about punctuation
and pronouns at the bottom level and then some keywords, e.g., “whispered”, also begin to receive
attention at the higher level, especially at Layer 9-11 based on the SMP argmax positions.

D COMPARISON BETWEEN PONET AND OTHER MODELS

D.1 DIFFERENCE BETWEEN PONET AND FASTFORMER

First, our PoNet consists of three components, i.e., global aggregation(GA), segment max-
pooling(SMP), and local max-pooling(LMP). The importance of SMP and LMP is demonstrated
in Section 5. Second, the GA component in PoNet is different from Fastformer (Wu et al., 2021)
due to different motivations and implementations, as follows.

In the motivation aspect, our GA is inspired by the global attention in Longformer and BigBird, but
is also different from them (see Appendix D.2). In contrast, Fastformer uses the additive attention
mechanism to model global contexts.

In the aspect of implementation, firstly, comparing GA in PoNet with Fastformer, the global query is
computed differently. In Fastformer, the global query vector is a weighted sum of all query vectors;
whereas, in PoNet, it is an average pooling of all query vectors.

Secondly, the global query is mixed with key and value in different ways. In Fastformer, element-
wise product is performed between the global query vector q and each key vector ki to obtain a set of
vectors pi. A set of learnable vectors are introduced for additive attention to compute weights for pi.
After softmax normalization of the weights, the sum of weighted pi is the global key (GK). Then,
element-wise product is performed between GK and each value vector vi to obtain a set of vectors
U . After that, U passes through a linear transformation layer to obtain its hidden representations
R. And the hidden representations R are element-wise summed with Q to obtain the final output of
Fastformer.

In our GA, as described in Section 3.1.1, the first stage value for GA, denoted by g in the paper,
serves as a query token to interact with the input sequence through cross-attention. There are
several differences from Fastformer. First, standard scaled dot-production is performed on Q and K
matrices, and the weight of the scalar is obtained directly. Then, softmax is applied on the scaled dot-
product results as weights for V . The weighted sum of V is computed as the global representation,
denoted by g′ in the paper, and there is no process of global key (GK). Finally, as described in
Section 3.1.4, we perform element-wise product between g′ and Hon to compute the final global
representation for pooling fusion, where Hon is from projecting input embedding of each token
through another linear transformation specific for pooling fusion. Different from Fastformer, there
is no linear transformation layer nor summation with Q.

The above comparisons show that the GA in our PoNet is quite different from Fastformer. In addition
to algorithm comparisons, we also experimented with replacing the GA module in our PoNet with
Fastformer, and observed that after the same pre-training and fine-tuning configurations, replacing
GA with Fastformer has lower performance compared to our PoNet: On CoLA the performance
dropped from 45.36 to 43.28; on STS-B, the performance dropped from 84.57 to 84.46.

D.2 DIFFERENCE BETWEEN PONET AND LONGFORMER/BIGBIRD

Our design of the multi-granularity pooling and pooling fusion is inspired by previous works such
as Longformer and BigBird. Our design considers the importance of capturing context information

20

Published as a conference paper at ICLR 2022

from different granularities and combining the captured information. However, our design is
different from previous works.

Longformer uses a window-based self-attention to capture local context and a task-specific global
attention to encode inductive bias about the task. For example, for classification tasks the global
attention attends to the [CLS] token and for question-answering tasks, the global attention attends
to all question tokens. In contrast, GA in PoNet is task-agnostic.

BigBird combines global, windowed local, and random attentions. BigBird chooses a subset from
existing tokens as global tokens or adds additional global tokens such as [CLS]. These global
tokens attend to all existing tokens. The GA in PoNet is computed differently from BigBird (see
Section 3.1.1 and Section 3.1.4 for details). Also, PoNet uses GA, segment max-pooling and local
max-pooling. We experimented with replacing our windowed local max-pooling with random
pooling in an early PoNet structure with a small number of pre-training steps, and observed that
this change weakened PoNet’s capability of capturing local context and significantly degraded the
accuracy of downstream single-sentence CoLA task (from 42.57 to 31.44) while causing a slight gain
on the sentence-pair STS-B task (from 80.29 to 80.48). Hence, we did not use random attention in
the final structure of PoNet.

D.3 DIFFERENCE BETWEEN PONET AND LUNA

The mechanism in Luna (Ma et al., 2021) is also somewhat similar to our GA module. Luna
introduces an additional “global” sequence of fixed length L, which is used as a query to cross-
attend with the original input to obtain a global representation of length L. Then, it is served as key
and value to perform the second cross-attention with the original input to obtain the final output. In
fact, Luna changes the parallel structure of the global attention in Longformer/BigBird to a serial
structure. Also, Luna does not pass the updated global tokens (P ′) through the FF layer as in
BigBird; instead, P ′ is output directly.

For PoNet, instead of introducing additional tokens to preform cross-attention, we use the results of
average pooling as the global representation of the first stage of GA. Also, in the second stage of
GA, the global representation is served as query in GA rather than key and value in Luna to calculate
cross-attention. While Luna is able to directly obtain an output of the same length as the sequence,
our GA obtains an output consistent with the length of the first stage global representation (i.e., 1),
so we further integrate this output into the original input by element-wise multiplication.

D.4 DIFFERENCE BETWEEN PONET AND FNET

To the best of our knowledge, our work is the first to comprehensively explore the full potential of
the simple pooling mechanism for token mixing and verify that built upon multi-granularity pooling
and pooling fusion, our PoNet is competitive in modeling long-range dependency with a linear
complexity. The token mixing mechanism in PoNet, built upon pooling mechanisms, is completely
different from Fourier transforms used by FNet.

As shown in Table 1, on the LRA benchmark, PoNet achieves an accuracy of 61.05, which is
significantly better than the accuracy from FNet (55.30 reported in the original paper with JAX/Flax
implementation, 53.10 in our PyTorch implementation). PoNet achieves significantly better pre-
training accuracy (with the same MLM+SSO tasks) than FNet, as shown in Figure 2. PoNet achieves
significantly better transfer learning performance on GLUE than FNet, as shown in the updated
Table 3, and significantly better transfer learning performance on long-text classification tasks than
FNet, as shown in Table 4.

E ADDITIONAL MODEL CONFIGURATIONS FOR PONET

We explore several additional ideas to improve PoNet.

E.1 TREE MAX-POOLING (TMP)

For different layers in PoNet, we apply different dilation sliding window max-pooling as another
way to exchange the information between two different tokens. We compute the TMP value T ∈

21

Published as a conference paper at ICLR 2022

RN×d. The size (length) of the dilation windows is based on 2, that is, on the l-th layer, lendilation =
2l−1. The lowest level, i.e. Level 1, uses a length of 1 for dilation, which is a normal sliding window
max-pooling. Since each length of the dilation sliding windows can be represented by binary and the
connection state of tokens can be represented as {0, 1} (not link or link), the distance between any
two tokens can be reached by this structure. We can easily calculate that the longest distance that the
structure could reach was 2l+1 − 2. After adding TMP into pooling fusion for PoNet, we observed
that the MLM validation accuracy improves in pre-training, but we did not observe performance
improvements on the downstream GLUE tasks.

E.2 CONTEXTUAL DECISION MECHANISM

Since different tokens may need different levels of information, strictly adding the three pooling
features together for all tokens, as in Equation 9, cannot meet this requirement. We consider another
aggregation method, denoted Contextual Decision Mechanism, to replace the Pooling Fusion in
Section 3. Following the idea of attention, each token conducts a cross-attention with the 3 pooling
features for contextual interactions, as follows:

M ′
n = Attention{QHn,KMn,VMn} ∈ Rd, (12)

where

QH = HWKH + bKH , (13)

KMn = [g′;Sn;Ln]WKM + bKM , (14)

VMn = [g′;Sn;Ln]WVM + bVM , (15)

and W∗ ∈ Rd×d, b∗ ∈ Rd are parameters to be learned. Note that KMn,VMn ∈ R3×d.
M ′ is then the final output of the multi-granularity pooling block. Similar to the TMP idea,
when switching from the pooling fusion in Section 3 to this contextual decision mechanism for
PoNet, we observed that the MLM validation accuracy improves in pre-training, but did not observe
performance improvements on the downstream GLUE tasks.

F FUTURE UPDATES FOR PONET

F.1 REDUCING THE NUMBER OF PARAMETERS

Note that after sharing WKg
, bKg

and WVg
, bVg

in Equation 1, our current PoNet model has
a total of 5 linear transformations from Equation 1 in the token mixing layer. Note that other
transformations, such as WKg

and Ws, are difficult for sharing, because the corresponding
projection outputs from WKg

and Ws are used for different procedures of global cross-attention
and segment max-pooling, respectively. Sharing them will cause difficulty in parameter updating.
For other parameters, since WQg will only be applied on a single token (global token) instead of
on the whole input sequence, its computational cost can be ignored. The main computational cost
comes from the remaining 4 transformations. To further reduce the number of parameters of PoNet,
we plan to also remove Wo. This is based on the consideration that the original input sequence is
not involved in the computations of GA, SMP, and LMP, hence it can be mixed directly with GA and
SMP without transformations. This leaves us with only 3 sets of linear transformation parameters
that require the computations of the whole sequence, namely, shared WKg

and WVg
, Ws, and

Wl. Then PoNet will have the same number of linear transformations as BERT, which has a total
of 3 linear transformations in the self-attention layer. We will also investigate sharing these linear
transformations across different PoNet layers, which will further reduce the number of parameters.
We plan to run more experiments to evaluate the effect on the performance of PoNet from these
methods on reducing the number of parameters.

F.2 SUPPORT CAUSAL ATTENTION

The key issue for supporting causal attention is to prevent information leakage from the moment
t > T to the sequence t <= T . If the computational complexity of the complete sequence is O(N),
to ensure that the newly added t > T moments still maintain the O(N) complexity, the computation

22

Published as a conference paper at ICLR 2022

cost must be guaranteed to be O(1) at the introduction of the T + 1 moments, i.e., it needs to be
possible to recursively push out the results from t <= T to the T + 1 moments.

Considering the three different pooling types in PoNet, firstly, since LMP and SMP do not actually
introduce multiplication, the computational complexity is negligible. In order to guarantee that
the complexity of the Max-pooling operation is O(N), we can make the following improvements.
For LMP, it is sufficient to change the pooling window to a causal window without adding extra
computation. For SMP, since max(St<=T+1) = max(ST ,max(St<=T)), the additional token
computation can be bounded to O(1) by accumulating max, and the overall computation O(N)
will not change. However, for GA, it’s not feasible since there are two variables involved in the
calculation of attention in cross-attention, one of which is a sequence of length T . The T+1 moment
inevitably introduces O(T) computation, which makes the overall computational complexity rise
to O(N2). We consider a weaker model scheme by removing SS-GA (PoNet w/o SS-GA) (also
mentioned in section 5). As shown in Table 5, PoNet w/o SS-GA has no performance degradation
over the original model on MLM and single-sentence classification tasks, i.e. CoLA. These two tasks
reflect the ability of sentence encoding, which is important for auto-regressive decoding task. PoNet
w/o SS-GA will only have additive calculation in the GA stage, and the computational complexity
is negligible. Similar to SMP, we can also simplify the computation by using the recursive property
of mean, as mean(St<=T+1) =

T∗mean(St<=T)+ST+1

T+1 . Overall, this causal attention in PoNet has
O(N) computational complexity.

23

	Introduction
	Related Work
	Model
	Multi-granularity Pooling
	Global Aggregation
	Segment Max-pooling
	Local Max-pooling
	Pooling Fusion

	Complexity Analysis

	Experiments
	Long-Range Arena Benchmark
	Transfer Learning

	Ablation Analysis
	Conclusion
	Experiment details
	Long-Range Arena Benchmark Experimental Details
	Pre-training Details
	Fine-tuning on the GLUE Benchmark
	Fine-tuning on the Long-text Classification Tasks

	Additional GLUE Results
	Compare to Official BERT and FNet Checkpoints
	Results from Using More Pre-training Data

	Visualization
	Statistical Analysis
	Case Study

	Comparison between PoNet and Other Models
	Difference between PoNet and Fastformer
	Difference between PoNet and Longformer/BigBird
	Difference between PoNet and Luna
	Difference between PoNet and FNet

	Additional Model Configurations for PoNet
	Tree Max-pooling (TMP)
	Contextual Decision Mechanism

	Future Updates For PoNet
	Reducing the Number of Parameters
	Support Causal Attention

