
Under review as a conference paper at ICLR 2024

LEARNING TO REACH GOALS VIA DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models are a powerful class of generative models capable of mapping
random noise in high-dimensional spaces to a target manifold through iterative
denoising. In this work, we present a novel perspective on goal-conditioned rein-
forcement learning by framing it within the context of diffusion modeling. Anal-
ogous to the diffusion process, where Gaussian noise is used to create random
trajectories that walk away from the data manifold, we construct trajectories that
move away from potential goal states. We then learn a goal-conditioned policy
analogous to the score function. This approach, which we call Merlin1, can reach
predefined or novel goals from an arbitrary initial state without learning a separate
value function. We consider three choices for the noise model to replace Gaus-
sian noise in diffusion - reverse play from the buffer, reverse dynamics model,
and a novel non-parametric approach. We theoretically justify our approach and
validate it on offline goal-reaching tasks. Empirical results are competitive with
state-of-the-art methods, which suggests this perspective on diffusion for RL is a
simple, scalable, and effective direction for sequential decision-making.

1 INTRODUCTION

Reinforcement learning (RL) has established itself as a powerful paradigm for agents to learn be-
haviors supervised by only a reward signal, demonstrating remarkable success across diverse appli-
cations ranging from robotics (Nguyen & La, 2019; Brunke et al., 2022) and game playing (Mnih
et al., 2013; Silver et al., 2018) to recommendation systems (Zheng et al., 2018; Afsar et al., 2022)
and autonomous driving (Liang et al., 2018; Kiran et al., 2021). Goal-conditioned RL (GCRL) aims
to learn general policies that can reach arbitrary target states or goals within an environment without
requiring extensive retraining (Kaelbling, 1993; Schaul et al., 2015; Chane-Sane et al., 2021). In
GCRL, the task is defined in terms of a desired goal state, and the policy produces behavior that
would ideally lead the agent to the specified goal. Despite its allure, training goal-conditioned RL
agents presents inherent difficulties. Many GCRL tasks offer sparse rewards, necessitating intensive
exploration, which can be infeasible and often unsafe in real-world scenarios. Concurrently, offline
RL has gained attention in recent years for learning policies from fixed datasets, ensuring safety
for real-world applications (Levine et al., 2020; Prudencio et al., 2023). Combining offline and
goal-conditioned RL can potentially benefit from both generalization and data efficiency in practical
scenarios.

However, offline goal-conditioned RL introduces new challenges. Many existing methods rely on
learning a value function (Yang et al., 2021; Ma et al., 2022), which estimates the expected dis-
counted return associated with a given state-action pair. During training, policies often generate
actions not present in the offline dataset, leading to inaccuracies in value function estimation for
out-of-distribution actions. These inaccuracies, compounded over time, can cause policies to diverge
(Levine et al., 2020). The value estimation problem is further exacerbated by a sparse binary reward
signal common in goal-conditioned settings. Prior attempts to tackle this issue involve constraints
on policies or conservative value function updates (Kumar et al., 2019; 2020), which compromise
policy performance (Levine et al., 2020) and make generalization challenging.

Another issue is that the dataset may only cover limited state-goal pairs out of the many possi-
ble combinations. Hindsight relabeling has been employed to generate positive goal-conditioned

1In Arthurian legends, Merlin the Wizard is said to have lived backward in time, perceiving events in reverse
order, which gave him the ability to predict future events.

1

Under review as a conference paper at ICLR 2024

observations by replacing the desired goals with achieved goals appearing further along the same
trajectory (Andrychowicz et al., 2017; Ghosh et al., 2020). However, hindsight relabeling can only
generate state-goal pairs within the same trajectory, resulting in over-fitted goal-conditioned poli-
cies. Chebotar et al. (2021) proposed a goal-chaining technique that can generate state-goal pairs
across the entire dataset, but this technique relies on a learned value function.

Figure 1: Reverse diffusion policy.

In light of these challenges, this paper draws inspiration from
diffusion models — a powerful class of generative models that
can map random noise in high-dimensional spaces to target
manifolds through iterative denoising (Sohl-Dickstein et al.,
2015; Ho et al., 2020). Building upon the idea of introduc-
ing controlled noise to destroy the structure of the target data
distribution, we employ a similar strategy for goal-conditioned
RL by constructing trajectories that move away from desired
goals during the learning process. A goal-conditioned policy
is then trained to reverse (or effectively “denoise”) these tra-
jectories. By navigating away from desired goals and subse-
quently correcting these deviations, the policy learns to reach
any predefined goal state from arbitrary initial states. Notably,
our approach, which we call Merlin, does not learn a value
function. The resulting simple learning dynamics suggest the
feasibility of stable and scalable training in the offline setting.

In terms of empirical evaluation, first, we substantiate Merlin in a simple yet illustrative point mass
navigation environment, highlighting the parallels between score functions and the learned policy.
We then discuss Merlin’s applicability to offline datasets and provide theoretical justification for our
approach. To this end, we discuss and empirically evaluate three possible choices for the forward
diffusion noise model - reverse play using only the offline data, learning a reverse dynamics model,
and a novel trajectory stitching technique grounded in nearest-neighbor search, which enables the
generation of state-goal pairs across trajectories. The absence of a value function and the use of the
trajectory stitching technique address two significant challenges encountered in offline GCRL.

Our contributions can be summarized as follows:
• Development of a novel goal-conditioned reinforcement learning approach inspired by diffu-

sion models without learning a value function.
• Development of a novel trajectory stitching technique based on nearest-neighbor search that

can generate state-goal pairs across trajectories.
• Demonstration of the effectiveness of our approach in various offline goal-reaching control

tasks with significant performance enhancements compared to state-of-the-art methods.

2 RELATED WORK

Offline Goal-Conditioned Reinforcement Learning. The core challenges faced by offline GCRL
are the sparse binary nature of the rewards and limited coverage of the possible state-goal pairs
within the offline dataset. Hindsight relabeling (HER) (Andrychowicz et al., 2017), a technique
originally proposed for settings with online interactions, has been adapted by prior work to the offline
setting. Ghosh et al. (2020) proposes a simple yet effective method that combines goal-conditioned
behavior cloning with HER. Several other methods incorporate value learning methods and adapt
them to the offline goal-conditioned setting. Yang et al. (2021) improves upon Ghosh et al. (2020) by
incorporating discount-factor and advantage function weighting (Peng et al., 2019). Chebotar et al.
(2021) generates state-goal pairs across trajectories using a goal-chaining technique that assigns
conservative Q-values to out-of-distribution data. Ma et al. (2022) proposes an advantage-weighted
regression approach with f -divergence regularization, which is based on state-occupancy matching.
Notably, this approach does not use HER.

Diffusion-based Reinforcement Learning. Recent works have leveraged diffusion models for
offline RL by generating trajectory segments from random Gaussian noise. Janner et al. (2022)
employs classifier-based guidance using a learned value function to guide the diffusion process to
generate high-return trajectories. In contrast, Ajay et al. (2022) uses classifier-free guidance by

2

Under review as a conference paper at ICLR 2024

learning a denoising function conditioned on returns, goals, or constraints. These methods operate
similarly to model predictive control (Garcia et al., 1989), where only the first action of the generated
trajectory is performed. A distinct line of work represents the policy as a diffusion model where
actions are sampled by denoising random Gaussian noise (Wang et al., 2022), conditioned on the
states and guided by a learned value function. Both the trajectory and action sampling approaches
can learn expressive policies but are computationally expensive due to the iterative denoising process
required at each environment step. To our knowledge, Merlin is the first method that performs
diffusion in the state space. States are diffused starting from potential goal states, and the policy
is trained to reverse this diffusion, requiring only one iteration of “denoising” at each environment
step. This distinction makes Merlin conceptually simpler and significantly more efficient than prior
diffusion-based methods. As shown in our experiments, it also outperforms these methods in GCRL.

3 PRELIMINARIES

3.1 DIFFUSION PROBABILISTIC MODELS

Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are generative models
that can be used to model a data distribution. These latent variable models are characterized by a
probability distribution that evolves over time, following a forward diffusion process. The forward
diffusion process is generally fixed to add Gaussian noise at each timestep according to a variance
schedule β1, . . . , βT . Let x0 ∼ q(x0) denote the data and x1, . . . ,xT denote the corresponding
latent variables. The approximate posterior q(x1:T | x0) is given by,

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) (1)

Diffusion probabilistic models then learn a denoising function that reverses the forward diffusion
process. Starting at p(xT) = N (xT ; 0, I), the joint distribution of the reverse process is given by,

pθ(x0:T) := p(xT)

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

where µθ and Σθ can be neural networks. The reverse process can produce samples matching the
data distribution after a finite number of transition steps. Note that traditionally, t = 0 corresponds
to the data and higher timesteps correspond to noisy latent variables. In our discussion, we set the
goal at the maximum timestep T , and decrease the timestep during forward diffusion to keep the
timestep consistent with standard RL notation.

3.2 GOAL-CONDITIONED REINFORCEMENT LEARNING

The RL problem can be described using a Markov Decision Process (MDP), denoted by a tuple
(S,A,P, r, µ, γ), where S and A are the state and action spaces; P describes the transition prob-
ability as S × A × S → [0, 1], r : S × A → R is the reward function, µ(s) is the initial state
distribution, and γ ∈ (0, 1] is the discount factor.

Goal-conditioned RL additionally considers a goal space G := {ϕ(s) | s ∈ S}, where ϕ : S → G is
a known state-to-goal mapping (Andrychowicz et al., 2017). For example, in the FetchPush task, a
robotic arm is tasked with pushing a block to a goal position specified as (x, y, z) coordinates of the
block, but the state represents the positions and velocities of the various effectors and components of
the robotic arm as well as the block. The reward function now depends on the goal, r : S×A×G →
R. Generally, the reward function is sparse and binary defined as r(s, a, g) = 1[∥ϕ(s) − g∥22 ≤ δ],
where δ is some threshold distance.

A goal-conditioned policy is denoted by π : S ×G → A, and given a distribution over desired goals
p(g), an optimal policy π∗ aims to maximize the expected return,

J(π) = Eg∼p(g),s0∼µ(s0),at∼π(·|st,g),st+1∼P(·|st,at)

[∞∑
t=0

γtr(st, at, g)

]
,

For offline RL problems, the agent cannot interact with the environment during training and only
has access to a static dataset D = {(st, at, g, rt)}, which can be collected by some unknown policy.

3

Under review as a conference paper at ICLR 2024

4 REACHING GOALS VIA DIFFUSION

Consider the generative modeling problem of generating samples from some distribution pdata(x)
given a set of samples {xi}Ni=1,xi ∈ Rd. Diffusion modeling entails constructing a Markov chain
which iteratively adds Gaussian noise to these samples. The perturbed data effectively covers the
space surrounding the data manifold. The learned reverse diffusion process can then map any point
drawn from a Gaussian distribution in Rd to a point on the data manifold.

Now consider a goal-augmented MDP (S,A,G,P, r, µ, γ) with goals g ∈ G sampled from some
unknown goal distribution g ∼ p(g). Goal-conditioned RL aims to learn a policy that can learn an
optimal path from any state s ∈ S to the desired goal g. This can be viewed as similar to learning
to map random noise in Rd to some target data manifold, except that the underlying space is now
restricted to the state space of the MDP.

Learning to reach goals using diffusion requires constructing a forward diffusion process and a
corresponding reverse process. In the context of RL, the forward process comprises taking actions
starting from the goal, which can be seen as equivalent to adding Gaussian noise in diffusion models,
which leads to new states different from the goal. We apply this process iteratively for T steps, where
T denotes the maximum length of the diffusion chain. We then train a policy conditioned on the
original goal state to reverse this trajectory.

4.1 AN ILLUSTRATIVE EXAMPLE

We illustrate this concept using a simple 2D navigation environment consisting of an agent tasked
with reaching a target goal state. The states are the (x, y) coordinates of the agent and actions repre-
sent the displacement in the x and y directions, normalized to be unit length. For these experiments,
the goal state during training is fixed to g = (0, 0), and the initial agent state is sampled uniformly
at random. For this simple environment, given a state st and an action at−1, it is straightforward to
compute the previous state st−1 such that taking action at−1 at st−1 would lead to st.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Forward Diffusion Trajectories

0

10

20

30

40

50

Ti
m

es
te

p

(a)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

(b)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

(c)

Figure 2: (a) Visualization of trajectories starting from the goal X generated during the forward process, (b)
Predicted actions from policy trained via diffusion, (c) Predicted actions from policy trained using GCSL.

Figure 2a visualizes the trajectories representing the forward diffusion process, obtained by taking
random actions starting from the goal for T = 50 steps. We set sT = g and the random state reached
at the end of the diffusion is s1. The policy is parameterized as a diagonal Gaussian distribution
and is trained to reverse these trajectories by conditioning on the final goal or some future state in
the trajectory. More formally, for a trajectory τ = {s1, a1, . . . , sT−1, aT−1, sT = g}, the policy
parameters are trained by optimizing θ∗ = argmaxθ E(st,at,g′)∼τ log πθ(at|st, g′, h) where g′ =
ϕ(si) and h = i − t for t < i ≤ T . In words, for any state st in the trajectory, we maximize the
likelihood of the observed action at, conditioned on any future (goal) state g′, given the time horizon
h separating the two states in the observed trajectory.

Figure 2b visualizes the actions sampled from the trained policy for different states when conditioned
on the goal g = (0, 0) using an input time horizon of one. For comparison, Figure 2c visualizes the
trained policy using GCSL (Ghosh et al., 2020). Both methods were trained for 100k policy updates.
The policy learned via diffusion learns the optimal path, which takes the shortest time to reach the
goal. We extend this example to more complex settings in Appendix B. It is interesting to note that

4

Under review as a conference paper at ICLR 2024

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

(a) h=1

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

(b) h=5

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

(c) h=10

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

(d) h=20

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

(e) h=50

Figure 3: Actions sampled from the trained policy, showcasing the effect of time horizon during evaluation.

the trained policy is analogous to the score function for diffusion models, and the action is analogous
to the predicted noise, which serves to “denoise” the states towards the goal. We elaborate on this
relation to diffusion probabilistic models in Appendix C.

For policy evaluation, the choice of time horizon to be used is not immediately obvious. We investi-
gate the effect of changing the time horizon which is shown in Figure 3. For h = 1, the policy always
takes the most direct path to the goal regardless of the input state. For larger values of the time hori-
zon, the policy has a high variance close to the goal and a low variance for the optimal action further
away. In Section 6.1, we perform ablations to further investigate its effect on performance.

We then test the generalization capabilities of our approach by evaluating the policy on out-of-
distribution goals. During training, the goal is fixed to be at the center but during evaluation, we
condition the policy on random goals. Figure 4 shows that the policy can effectively generalize to
different goals due to hindsight relabeling. Note that GCSL also uses hindsight relabeling, but unlike
Merlin, it often takes sub-optimal paths to reach the goal.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

Figure 4: Evaluating the trained policy on out-of-distribution goals. Red X denotes the goal used during
training, and green X denotes the goal used for evaluation. Top: Diffusion; Bottom: GCSL.

5 GOAL-CONDITIONED DIFFUSION POLICY

Section 4 suggests learning policies by constructing diffusion chains and reversing them can be quite
effective. In this section, we discuss the application of Merlin to offline datasets.

A straightforward application of Merlin to offline data involves loading the dataset to a replay buffer
and sampling trajectories for reverse play. To create more varied diffusion trajectories beyond the
dataset, we can learn a reverse dynamics model and optionally even a separate reverse policy (Wang
et al., 2021). Like most model-based methods, we found this method suffers from compounding
errors over multiple time steps, resulting in poor quality data and unstable policy training. We,
therefore, introduce a novel non-parametric method that stitches trajectories to create diverse diffu-
sion paths. Once we have specified the procedure for producing reverse trajectories, we discuss the
procedure for training a goal-conditioned policy and provide theoretical guarantees.

5

Under review as a conference paper at ICLR 2024

Algorithm 1 Nearest-neighbor Trajectory Stitching

Input: Dataset D, distance threshold δ, number of new tra-
jectories to collect M
Output: Augmented dataset Dnew
Dnew ← D
Construct ball tree T for all states
for m← 1, . . . ,M do

Sample random final state sT from D
τnew ← {sT }
scurrent ← sT
for t← T, . . . , 1 do

sneighbor, d← T.query(scurrent, k = 1)
if d ≤ δ then

Add preceding (sprev, aprev) from sneighbor to τnew
else

Add preceding (sprev, aprev) from scurrent to τnew
end if
scurrent ← sprev

end for
Dnew ← Dnew ∪ τnew

end for
Return: Dnew

Figure 5: Trajectory stitching.

5.1 NEAREST-NEIGHBOR TRAJECTORY STITCHING

The forward diffusion constructs trajectories walking away from the goal to provide training data
for the policy. In order for this strategy to be effective, we want to generate as many state-goal
pairs as possible to help the policy generalize well. Hindsight relabeling can generate positive goal-
conditioned observations by replacing the desired goals with achieved goals appearing further along
the same trajectory.

We introduce a novel trajectory stitching operation to generate state-goal pairs across trajectories.
The basic idea behind this operation is that if two states from different trajectories are very close to
each other, then the sub-trajectory leading up to one of these states is also a reasonably good path to
reach the other state.

The formalize this notion, we have to choose a metric and corresponding threshold. We choose the
Euclidean distance, although other valid metrics may also be used. The distance threshold varies for
different tasks, as it depends on the state dimension and the properties of the underlying state space.
We construct a ball tree for all the states in the dataset to allow quick nearest-neighbor search. Note
that for a d-dimensional dataset withN samples, the query time for the ball tree has time complexity
O(d logN). We sample random goal states from the dataset and iteratively add the previous state-
action to the new trajectories. At each step, we query the ball tree for the nearest neighbor and if the
nearest distance is less than the threshold, we switch to the trajectory corresponding to the neighbor
state, otherwise, we stick to the same trajectory. Algorithm 1 presents this procedure. The choice of
the metric and the value of δ is discussed in Appendix D.4.

5.2 OFFLINE POLICY TRAINING

Consider a fixed dataset of trajectories D generated by some unknown behavior policy πβ , and a
trajectory τ ∼ D, where τ = {s1, a1, . . . , sT }. We can view this trajectory in reverse – start-
ing from the final state sT , we apply an unknown transformation to each state st+1 to obtain state
st. The corresponding forward diffusion process is denoted by q(st|st+1). We train a policy de-
noted by πθ to reverse this diffusion. The corresponding reverse diffusion process is given by
pθ(st+1|st) = P(st+1|st, πθ(·|st, g)), where g = ϕ(sT) is the goal. Our objective is to maximize
the log-likelihood of the goal states under the reverse diffusion process.

6

Under review as a conference paper at ICLR 2024

Theorem 5.1. Consider a dataset D(g) collected by an unknown behavior policy πβ , consisting of
trajectories ending in states ST := {sT | g = ϕ(sT)} with q(sT |g) denoting the distribution of final
states corresponding to g. Then, behavior cloning given by θ∗ = argmaxθ E(s,a)∼D(g) [log πθ(a|s)]
is equivalent to maximizing a lower bound on the log-likelihood of the final states under the reverse
diffusion process L = EsT∼q(sT |g) [log pθ(sT)].

The proof is provided in Appendix A. Suppose we sample different datasetsD(g) for different goals
g ∼ p(g), where D(g) is produced from dataset D using hindsight relabeling. Additionally, we
condition the policy on the goal g. Repeated application of the theorem above for g ∼ p(g) results
in the following corollary.
Corollary 5.1. Given a dataset of trajectoriesD and target goal distribution p(g), behavior cloning
using a goal-conditioned policy θ∗ = argmaxθ Eg∼p(g),(s,a)∼D(g) [log πθ(a|s, g)] maximizes a
lower bound on the log-likelihood of the goal states L = Eg∼p(g),sT∼q(sT |g) [log pθ(sT)].

Similar to denoising diffusion models, we additionally condition the policy on the time horizon h
separating the current state and the goal state. In our experiments, the policy is parameterized as a
diagonal Gaussian distribution,

πθ(·|st, g, h) = N (·|µθ(st, g, h), σ2
θ(st, g, h)I)

Note that most prior works that employ behavior cloning do not learn the variance term and minimize
the mean squared error between observed and predicted actions. As seen in Section 4, incorporating
a learned variance allows the policy to incorporate uncertainty in their action predictions. This is
important in learning from a trajectory far from the goal state.

In practice, we apply the trajectory stitching operation described in Section 5.1 along with hindsight
relabeling to generate an augmented dataset Dnew consisting of transitions {st, at, g = ϕ(st+h), h},
where h > 0 is the horizon such that t + h ≤ T , and st+h is the hindsight labeled future state,
possibly from a stitched trajectory. Following Theorem 5.1, the policy is trained using behavior
cloning to maximize the log probability of actions given by these transitions,

θ∗ = argmax
θ

E(st,at,g,h)∼Dnew [log πθ(at|st, g, h)] (3)

6 EXPERIMENTS

Tasks. We evaluate Merlin on several goal-conditioned control tasks using the benchmark intro-
duced in Yang et al. (2021). The benchmark consists of 10 different tasks of varying difficulty, with
the maximum trajectory length fixed to be T = 50 for all tasks. The tasks include the relatively
easier PointReach, PointRooms, Reacher, SawyerReach, SawyerDoor, and FetchReach tasks with
2000 trajectories each (1 × 105 transitions); and the harder tasks include FetchPush, FetchPick,
FetchSlide, and HandReach with 40000 trajectories (2 × 106 transitions). The benchmark consists
of two settings ‘expert’ and ‘random’. The ‘expert’ dataset consists of trajectories collected by a
policy trained using online DDQPG+HER with added Gaussian noise (σ = 0.2) to increase diver-
sity, while the ‘random’ dataset consists of trajectories collected by sampling random actions. The
dataset includes the desired goal for each trajectory in addition to the state-action pairs. The reward
for each task is sparse and binary, +1 for reaching the goal, and 0 everywhere else. Further details
on these tasks are provided in Appendix F.

Algorithms. We compare with state-of-the-art offline GCRL methods, as well as recently pro-
posed diffusion-based RL methods. The GCRL methods are: (1) GCSL (Ghosh et al., 2020) which
uses behavior cloning with hindsight relabeling, (2) WGCSL (Yang et al., 2021) that improves upon
GCSL by incorporating discount factor and advantage function weighting, (3) ActionableModel
(AM) (Chebotar et al., 2021) which uses an actor-critic method with conservative Q-learning and
goal chaining, and (4) GoFAR (Ma et al., 2022) which uses advantage-weighted regression with f -
divergence regularization based on state-occupancy matching. The diffusion-based methods are: (1)
Decision Diffuser (DD) (Ajay et al., 2022) which generates full trajectories from random Gaussian
noise using (in our case, goal) conditional diffusion for classifier-free guidance, and (2) Diffusion-
QL (DQL) (Wang et al., 2022) that represents the policy as a diffusion model to sample actions,
guided by a learned value function. We implement a goal-conditioned version (g-DQL) by addition-
ally conditioning the policy on goals. Appendix E provides implementation details of the baselines.

7

Under review as a conference paper at ICLR 2024

We implement three variations of Merlin, all of which use behavior cloning and hindsight relabeling,

• Merlin uses the offline data loaded to a replay buffer, and samples trajectories for reverse play.
• Merlin-P uses a learned parametric reverse dynamics model and reverse policy as proposed

in Wang et al. (2021) to generate additional diffusion trajectories starting from goal states, in
addition to the original offline data.

• Merlin-NP uses the non-parametric trajectory stitching method introduced in Section 5.1 to
generate diverse diffusion trajectories, in addition to the original offline data.

We train each method for 500k policy updates using a batch size of 512, and the results are averaged
over 10 seeds. Complete architecture and hyperparameter values as well as additional implementa-
tion details for the three variants of Merlin are provided in Appendix D. We tune two hyperparame-
ters - the hindsight relabeling ratio and the time horizon on each individual task. For the baselines,
we use the best reported hyperparameter values.

Experimental Results. Table 1 presents the discounted returns using the sparse binary task re-
ward. This metric takes into account how fast the agent reaches the goal and whether it stays in the
goal region thereafter. We also report the final success rate in Appendix H. The results show that
the basic implementation of Merlin performs better than the baselines on most tasks. Merlin-NP
improves the performance further achieving the highest discounted returns on most tasks, and is
overall the best-performing method. Merlin-P performs well on the easier tasks, however, on tasks
with relatively high state dimensions, the compounding model error leads to a substantial drop in
performance. Since Merlin does not perform multiple denoising steps for each environment step,
training and inference are roughly an order of magnitude faster than the other diffusion-based meth-
ods (DD and g-DQL). We compare training and inference times for all methods in Appendix D.4.

Both Merlin and GCSL employ behavior cloning with hindsight relabeling, with two key differ-
ences: (1) Merlin learns the variance of the policy in addition to the mean, which provides additional
flexibility during optimization, and (2) Merlin conditions the policy on the time horizon similar to
the denoising function in diffusion models. GCSL also allows for this conditioning, however, it does
not learn the variance and reports similar performance with and without conditioning on the time
horizon. Figure 3 illustrates the effect of time horizon on the learned variance, and the section below
further demonstrates its effect on the performance of Merlin. Beyond the vanilla setting of reverse
play from the buffer, the forward view of GCSL and the backward view of Merlin, which is inspired
by diffusion, can result in very different outcomes. Consider the model-based approach: a forward
dynamics model generates trajectories without guarantees on the distribution over the goal state. In
contrast, in a reverse dynamics model, one has control over this distribution.

Table 1: Discounted returns, averaged over 10 seeds.

Task Name Ours Offline GCRL Diffusion-based

Merlin Merlin-P Merlin-NP GoFAR WGCSL GCSL AM DD g-DQL

E
xp

er
t

PointReach 29.26±0.04 29.17±0.15 29.30±0.05 27.18±0.65 25.91±0.87 22.85±1.26 26.14±1.11 10.03±0.88 28.65±0.44

PointRooms 25.38±0.37 25.25±0.07 25.42±0.32 20.40±1.00 19.90±0.99 18.28±2.29 23.24±1.58 5.84±2.67 27.53±0.57

Reacher 22.75±0.59 23.25±0.17 24.97±0.54 22.51±0.82 23.35±0.64 20.05±1.37 22.36±1.03 4.39±1.08 22.54±1.42

SawyerReach 26.89±0.07 25.05±0.60 27.35±0.06 22.82±1.15 22.07±1.46 19.20±1.79 23.56±0.33 3.39±0.75 24.17±0.01

SawyerDoor 26.18±2.19 25.75±0.97 26.15±2.08 23.62±0.35 23.92±1.10 20.12±1.33 26.39±0.42 7.85±0.77 24.81±0.38

FetchReach 30.29±0.03 30.26±0.02 30.42±0.04 29.21±0.26 28.17±0.38 23.68±1.07 29.08±0.12 1.55±0.68 28.71±0.15

FetchPush 19.91±1.20 2.23±2.20 21.58±1.63 22.41±1.69 22.22±1.51 17.58±1.47 19.86±3.16 5.49±2.85 17.82±0.55

FetchPick 19.66±0.78 1.43±1.01 20.41±0.92 19.79±1.12 18.32±1.56 12.95±1.90 17.04±3.81 2.76±0.64 14.45±0.61

FetchSlide 4.19±1.89 0.00±0.00 4.95±2.02 3.34±1.01 5.17±3.17 1.67±1.41 3.31±1.46 1.21±0.59 0.98±0.59

HandReach 22.11±0.55 0.00±0.00 24.93±0.49 15.39±6.37 18.05±5.12 0.15±0.11 0.00±0.00 0.00±0.00 0.00±0.00

Average Rank 2.7 5.3 1.6 4.5 4.6 7.3 5.0 8.3 5.1

R
an

do
m

PointReach 29.26±0.04 29.21±0.08 29.31±0.04 23.96±0.93 25.76±0.96 17.74±1.84 25.55±0.57 10.12±0.72 22.65±1.57

PointRooms 24.80±0.36 24.07±0.19 25.16±0.59 18.09±4.13 19.41±1.01 14.69±2.51 19.10±1.39 5.76±2.99 20.88±0.96

Reacher 21.09±0.65 16.65±0.48 22.24±0.54 25.10±0.68 22.98±0.91 10.62±2.30 23.70±0.62 4.74±0.36 6.06±0.84

SawyerReach 26.70±0.14 25.46±0.12 26.86±0.07 19.48±1.39 21.32±1.40 8.78±2.59 25.29±0.35 3.46±0.86 2.84±0.05

SawyerDoor 19.05±0.66 18.26±1.18 21.69±2.36 20.69±2.14 19.58±3.55 12.47±3.08 10.82±1.67 7.92±0.86 14.77±0.51

FetchReach 30.42±0.04 30.38±0.02 30.42±0.04 28.34±0.98 27.94±0.30 18.96±1.77 27.11±0.22 1.71±0.77 1.21±0.46

FetchPush 5.21±0.43 5.08±0.32 7.22±0.35 6.99±1.27 5.35±3.36 4.22±2.19 4.53±1.94 4.49±1.34 5.35±0.23

FetchPick 3.75±0.18 3.02±0.16 4.36±0.19 3.81±3.71 1.87±1.59 0.81±0.82 3.08±1.35 2.16±0.75 2.17±0.18

FetchSlide 2.67±0.35 0.00±0.00 3.15±0.14 1.32±1.22 1.04±0.98 0.24±0.27 1.12±0.39 1.31±0.52 0.00±0.00

HandReach 14.89±2.54 0.00±0.00 17.61±3.06 0.08±0.07 2.54±1.42 1.41±0.51 0.00±0.00 0.00±0.00 0.00±0.00

Average Rank 2.8 4.8 1.3 3.8 4.5 7.3 5.3 7.7 6.7

8

Under review as a conference paper at ICLR 2024

0.0 0.2 0.5 0.8 1.0
Hindsight Ratio

PointReach

PointRooms

Reacher

SawyerReach

SawyerDoor

FetchReach

FetchPush

FetchSlide

FetchPick

HandReach

Expert Dataset

0.0 0.2 0.5 0.8 1.0
Hindsight Ratio

Random Dataset

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Di
sc

ou
nt

ed
 R

et
ur

ns

(a)

1 5 10 20 50 None
Test Horizon

PointReach

PointRooms

Reacher

SawyerReach

SawyerDoor

FetchReach

FetchPush

FetchPick

FetchSlide

HandReach

Expert Dataset

1 5 10 20 50 None
Test Horizon

Random Dataset

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Di
sc

ou
nt

ed
 R

et
ur

ns

(b)

Figure 6: Discounted returns for each dataset with different values of (a) hindsight ratio and (b) time horizon
during evaluation. Values are normalized with respect to the maximum value in each row.

6.1 ABLATION STUDIES

Hindsight Relabeling. During training, we employ hindsight relabeling to replace the desired
goals with a future state further along the trajectory. A hyperparameter, which we call the hindsight
ratio, specifies the fraction of each sampled batch of transitions that are subjected to this relabeling
operation. As shown in Figure 6a, this ratio can significantly affect performance depending on
the dataset. In general, a low-to-moderate value for the expert datasets and a high value for the
random datasets seem to result in good performance. This observation can be explained by the fact
that a large number of the expert trajectories reach the desired goals hence the original state-goal
pairs provide good quality data for training the policy. On the other hand, the random trajectories
benefit more from hindsight relabeling since state-goal pairs in the original dataset are sub-optimal,
and relabeling provides realistic state-goal pairs to the policy. For the baselines that use hindsight
relabeling, we use the optimal hindsight ratio as reported in their works.

Time Horizon. During training, the time horizon indicates the time difference between the cur-
rent and desired goal states. During evaluation, the optimal value of the time horizon depends on
the environment, as shown in Figure 6b. The last column, labeled ‘None’ shows the performance
without conditioning on the time horizon, and for all tasks conditioning on the time horizon per-
forms much better than without. For the easier tasks, a time horizon of h = 1 or h = 5 seems
to work best, whereas for the more complex tasks, a higher value seems optimal. This can be at-
tributed to the fact that for the more difficult tasks, the policy is expected to require more time steps
to successfully reach the goal. In particular, the HandReach task seems especially sensitive to the
time horizon, as using h = 1 performs significantly better than other values or without using time
horizon conditioning. The optimal values for the hindsight ratio and the time horizon are provided
in Appendix D.2.

7 CONCLUSION

We introduce Merlin, a goal-conditioned reinforcement learning method that draws inspiration from
generative diffusion models. Distinct from other works that use diffusion for RL, we construct tra-
jectories that “diffuse away” from potential goals and train a policy to reverse them, analogous to the
score function. We discuss several choices to construct the forward diffusion process and introduce
a novel trajectory stitching method that can be applied to most offline RL algorithms. We evalu-
ate Merlin on various offline goal-conditioned control tasks and demonstrate superior performance
compared to prior works. While Merlin is simple and performant, it is not without limitations. The
trajectory stitching operation requires an explicit metric that may not be obvious in complex state
spaces (such as images), which can be addressed by performing this operation in a learned latent
space. Moreover, the interesting setting, which uses a reverse dynamics model for diffusion, suffers
from a problem common to model-based techniques. We plan to further investigate the model-based
approach in future work. While our work focused on the offline setting, extending Merlin to the
online setting presents another interesting avenue for future work.

9

Under review as a conference paper at ICLR 2024

8 REPRODUCIBILITY STATEMENT

We have made efforts to ensure that our work is reproducible. Algorithm 1 provides a formal pro-
cedure for the nearest-neighbor trajectory stitching technique. Section 6 provides relevant experi-
mental details including ablation studies on the two hyperparameters - the hindsight ratio and the
time horizon. Appendix D provides implementation details for all three variations of Merlin, includ-
ing network architectures, hyperparameters, and additional discussion on the trajectory stitching
method. Appendix E provides a detailed description of all baselines considered in our experiments,
along with links to their publicly available implementations that were used to produce the results.
Appendix F describes the tasks that were used to evaluate Merlin. We plan to make the code publicly
available after the reviewing process.

REFERENCES

M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based recommender
systems: A survey. ACM Computing Surveys, 55(7):1–38, 2022.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411–444, 2022.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International Conference on Machine Learning, pp. 1430–1440.
PMLR, 2021.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jacob Varley, Alex
Irpan, Benjamin Eysenbach, Ryan C Julian, Chelsea Finn, et al. Actionable models: Unsupervised
offline reinforcement learning of robotic skills. In International Conference on Machine Learning,
pp. 1518–1528. PMLR, 2021.

Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and prac-
tice—a survey. Automatica, 25(3):335–348, 1989.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Manon Devin, Benjamin Eysen-
bach, and Sergey Levine. Learning to reach goals via iterated supervised learning. In International
Conference on Learning Representations, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pp. 1094–8. Citeseer, 1993.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

10

Under review as a conference paper at ICLR 2024

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. Cirl: Controllable imitative reinforcement
learning for vision-based self-driving. In Proceedings of the European conference on computer
vision (ECCV), pp. 584–599, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Jason Yecheng Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned
reinforcement learning via f -advantage regression. Advances in Neural Information Processing
Systems, 35:310–323, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Hai Nguyen and Hung La. Review of deep reinforcement learning for robot manipulation. In 2019
Third IEEE International Conference on Robotic Computing (IRC), pp. 590–595. IEEE, 2019.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang. Offline
reinforcement learning with reverse model-based imagination. Advances in Neural Information
Processing Systems, 34:29420–29432, 2021.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2022.

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline rl. In Inter-
national Conference on Learning Representations, 2021.

Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing Xie, and
Zhenhui Li. Drn: A deep reinforcement learning framework for news recommendation. In Pro-
ceedings of the 2018 world wide web conference, pp. 167–176, 2018.

11

Under review as a conference paper at ICLR 2024

A PROOF OF THEOREM 5.1

Setting. Consider a datasetD(g) where each trajectory is of the form τ = {s1, a1, . . . , sT } gener-
ated by some unknown behavior policy πβ . The final states are such that g = ϕ(sT). We view these
trajectories in reverse - starting from the final state sT , we apply some unknown transformation to
state st+1 to obtain state st. The corresponding forward diffusion process is denoted by q(st|st+1).

Outline. The basic steps involved in the proof are:

1. Define the forward and reverse diffusion processes.
2. Obtain the distribution of final states achieved by the reverse diffusion process.
3. Define the log-likelihood of final states under the reverse diffusion process. Lower bound the

log-likelihood using Jensen’s inequality and simplify the resulting expression.
4. Obtain the optimal policy parameters by maximizing the lower bound for (a) deterministic and

(b) stochastic MDPs.

Proof.

1. Let q(sT |g) denote the target distribution of final states corresponding to the goal g. For brevity,
we denote it simply as q(sT), since in this setting the goal g is fixed. The forward diffusion
trajectory, starting at sT and performing T steps of diffusion is thus,

q(s1, . . . , sT) = q(sT)

T−1∏
t=1

q(st|st+1),

We train a policy denoted by πθ(·|st) to reverse this diffusion. The corresponding reverse
diffusion process is given by,

pθ(st+1|st) = P(st+1|st, πθ(·|st)),
The generative process corresponding to this reverse diffusion is,

pθ(s1, . . . , sT) = p(s1)

T−1∏
t=1

pθ(st+1|st),

where p(s1) is the distribution of initial states.

2. The distribution of final states achieved by the reverse diffusion process,

pθ(sT) =

∫
ds1 . . . dsT−1 pθ(s1, . . . , sT)

=

∫
ds1 . . . dsT−1 q(s1, . . . , sT−1|sT)

pθ(s1, . . . , sT)

q(s1, . . . , sT−1|sT)

=

∫
ds1 . . . dsT−1 q(s1, . . . , sT−1|sT)p(s1)

T−1∏
t=1

pθ(st+1|st)
q(st|st+1)

3. During training, the objective is to maximize the log-likelihood of final states given by the
reverse diffusion process, with final states sampled from the target state distribution q(sT |g),

L(θ) = EsT∼q(sT) [log pθ(sT)] =

∫
dsT q(sT) log pθ(sT)

=

∫
dsT q(sT) log

[∫
ds1 . . . dsT−1 q(s1, . . . , sT−1|sT)p(s1)

T−1∏
t=1

pθ(st+1|st)
q(st|st+1)

]

≥
∫
ds1 . . . dsT q(s1, . . . , sT) log

[
p(s1)

T−1∏
t=1

pθ(st+1|st)
q(st|st+1)

]
where the lower bound is provided by Jensen’s inequality.

12

Under review as a conference paper at ICLR 2024

We separate the term corresponding the initial state s1,

L(θ) ≥
∫
ds1 . . . dsT q(s1, . . . , sT)

T−1∑
t=1

log

[
pθ(st+1|st)
q(st|st+1)

]
+

∫
ds1 q(s1) log p(s1)

=

T−1∑
t=1

∫
dstdst+1 q(st, st+1) log

[
pθ(st+1|st)
q(st|st+1)

]
+

∫
ds1 q(s1) log p(s1)

We apply Bayes’ rule to rewrite in terms of posterior of the forward diffusion,

L(θ) ≥
T−1∑
t=1

∫
dstdst+1 q(st, st+1) log

[
pθ(st+1|st)
q(st+1|st)

q(st+1)

q(st)

]
+

∫
ds1 q(s1) log p(s1)

=

T−1∑
t=1

∫
dstdst+1 q(st, st+1) log

[
pθ(st+1|st)
q(st+1|st)

]

+

T−1∑
t=1

[Hq(St)−Hq(St+1)] +

∫
ds1 q(s1) log p(s1)

+Hq(S1)−Hq(ST) +

∫
ds1 q(s1) log p(s1)

= −
T−1∑
t=1

∫
dstdst+1 q(st)q(st+1|st) log

[
q(st+1|st)
pθ(st+1|st)

]
+Hq(S1)−Hq(ST) +

∫
ds1 q(s1) log p(s1)

= −
T−1∑
t=1

∫
dst q(st)DKL

(
q(st+1|st)∥pθ(st+1|st)

)
+Hq(S1)−Hq(ST) +

∫
ds1 q(s1) log p(s1)

4. We maximize the log-likelihood with respect to the policy parameters θ, which is equivalent to
minimizing the first term,

θ∗ = argmax
θ

L(θ) ≡ argmin
θ

T−1∑
t=1

∫
dst q(st)DKL

(
q(st+1|st)∥pθ(st+1|st)

)
The posterior of the forward diffusion is simply the state transition using the behavior policy
πβ ,

θ∗ = argmin
θ

T−1∑
t=1

∫
dst q(st)DKL

(
P(st+1|st, πβ(·))∥P(st+1|st, πθ(·|st))

)
(a) For deterministic state transitions, the next state st+1 is given by the dynamics function

f of the MDP, st+1 = f(st, at). For a given state st, this dynamics function represents
a fixed parameter transformation of the policy function. We exploit the property that KL
divergence is invariant under parameter transformations. Thus for a deterministic MDP,

θ∗ = argmin
θ

T−1∑
t=1

∫
dst q(st)DKL

(
f(st, πβ(·))∥f(st, πθ(·|st))

)
= argmin

θ

T−1∑
t=1

∫
dst q(st)DKL

(
πβ(·)∥πθ(·|st)

)
(b) For stochastic state transitions, the next state st+1 is given by a noisy dynamics function

st+1 = f(st, at, ϵ), where ϵ ∼ ξ(ϵ) denotes random noise to account for the stochasticity.

13

Under review as a conference paper at ICLR 2024

For a given state st, this dynamics function represents a fixed parameter transformation
of the joint distribution of the policy and the noise distribution. Abusing notation, we
denote this joint distribution as p(π, ξ). Since KL divergence is invariant under parameter
transformations, for a stochastic MDP,

θ∗ = argmin
θ

T−1∑
t=1

∫
dst q(st)DKL

(
f(st, πβ(·), ξ)∥f(st, πθ(·|st), ξ)

)
= argmin

θ

T−1∑
t=1

∫
dst q(st)DKL

(
p(πβ(·), ξ)∥p(πθ(·|st), ξ)

)
Since the policy and the noise distribution ξ are independent, the KL divergence decom-
poses,

θ∗ = argmin
θ

T−1∑
t=1

∫
dst q(st)DKL

(
πβ(·)∥πθ(·|st)

)
+

T−1∑
t=1

DKL

(
ξ∥ξ

)
= argmin

θ

T−1∑
t=1

∫
dst q(st)DKL

(
πβ(·)∥πθ(·|st)

)
Minimizing the KL divergence between the policies is equivalent to maximizing the log-
likelihood of the behavior policy action under the parameterized policy. Therefore, given state-
action-goal tuples (s, a) ∼ D(g),

θ∗ = argmax
θ

E(s,a)∼D(g) [log πθ(a|s)]

Therefore, behavior cloning is equivalent to maximizing a lower bound on the log-likelihood
of the target final states achieved by the reverse diffusion process.

B ADDITIONAL ILLUSTRATIVE EXPERIMENTS

B.1 MULTIPLE GOAL SETTING

The illustrative example presented in Section 4 considered a single goal setting. In this section, we
verify that Merlin works as expected in the multiple goal setting. In these experiments, the forward
diffusion process comprises taking random actions starting from one of the goals, which is picked
randomly. A trained agent should be able to effectively navigate towards any one of these goals.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Sampled actions from Diffusion policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

Figure 7: The policy is conditioned on the bottom leftmost goal in all cases. Top: Diffusion; Bottom: GCSL.

14

Under review as a conference paper at ICLR 2024

Figure 7 shows the predicted actions from Merlin and GCSL for navigating towards one particular
goal (fixed to be the bottom leftmost goal) among two, three, and four possible goals. Merlin
successfully navigates to the specified goal taking the most optimal path in all cases, whereas GCSL
struggles to reach the specified goal.

B.2 FOUR ROOMS NAVIGATION

The illustrative example presented in Section 4 considered a simple navigation problem. In this
section, we extend the analysis to the four rooms variant, which adds walls that the agent must
navigate around in order to reach the goal. We seek to understand whether Merlin can learn policies
that produce more complex behavior compared to simply heading straight toward the goal.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Forward Diffusion Trajectories

0

10

20

30

40

50

Ti
m

es
te

p

(a)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from Diffusion policy

(b)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

(c)

Figure 8: (a) Visualization of trajectories starting from the goal X generated during the forward process, (b)
Predicted actions from policy trained via diffusion, (c) Predicted actions from policy trained using GCSL.

The goal state during training is fixed to g = (5,−5) in one of the quadrants. Figure 8a visualizes
the trajectories during forward diffusion by taking random actions starting from the goal. Figure 8b
and Figure 8c visualize the policy learned by Merlin and GCSL, respectively. Both methods were
trained for 100k policy updates. Merlin effectively learns to navigate around the walls, while still
managing to reach the goal. In contrast, GCSL often navigates directly into the walls and in some
areas wanders away from the goal.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from Diffusion policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from Diffusion policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from Diffusion policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from Diffusion policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Y

Mean actions from GCSL policy

Figure 9: Evaluating the trained policy on out-of-distribution goals. Red X denotes the goal used during
training, and green X denotes the goal used for evaluation. Top: Diffusion; Bottom: GCSL.

We then evaluate the trained policy on out-of-distribution goals. During training, the goal is fixed to
g = (5,−5) but during evaluation, we condition the policy on random goals. As shown in Figure 9,
Merlin effectively generalizes this complex navigation behavior to new goals, learning to avoid the
walls in most cases. One interesting case is when the goal is in the quadrant furthest away from the

15

Under review as a conference paper at ICLR 2024

training goal. Here, Merlin has some difficulty navigating around the walls, particularly the walls in
the center. This is likely due to insufficient data generated by the forward diffusion process in this
quadrant (see Figure 8a).

C RELATION TO DIFFUSION PROBABILISTIC MODELS

Merlin takes inspiration from generative diffusion models, resulting in several parallels as high-
lighted earlier. Notably, Figure 2 visualizes the noisy trajectories generated via the forward diffusion
process and conveys the similarity of the learned policy to the score function in generative diffusion
models. However, there are several key differences:

• The noise in diffusion probabilistic models is fixed to be Gaussian, whereas in application to
RL, the noise corresponds to taking actions and reversing the dynamics, which is dependent on
the properties of the MDP.

• The noisy samples for diffusion models lie outside the data manifold and hold no significance,
while in this case, the noisy samples are valid states of the MDP.

• Lastly, conditioning the policy on goals is different from class conditioning in diffusion - here,
any state in the diffusion path is a potential goal.

D IMPLEMENTATION DETAILS

D.1 MERLIN ALGORITHM

Algorithm 2 Reverse Model-based Rollout

Input: Dataset D, number of new trajectories
to collect M , number of training steps N
Output: Augmented dataset Dnew
Dnew ← D
for n← 1, . . . , N do

Update fψ by minimizing Equation (4)
Update D̂ξ by minimizing Equation (5)

end for
for m← 1, . . . ,M do

Sample random final state sT from D
τnew ← {sT }
scurrent ← sT
for t← T, . . . , 1 do

Sample z ∼ N (0, I)

aprev ← D̂ξ(scurrent, z)
sprev ← fψ(scurrent, aprev)
τnew ← {sprev, aprev} ∪ τnew
scurrent ← sprev

end for
Dnew ← Dnew ∪ τnew

end for
Return: Dnew

Algorithm 3 Merlin

Input: Dataset D, hindsight ratio p, number
of training steps N
Output: Policy πθ
Initialize policy πθ
Dnew ← ReverseModel(D) ▷ For Merlin-P
Dnew ← TrajectoryStitch(D) ▷ For Merlin-NP
for n← 1, . . . , N do

Sample batch (s, a, g) from Dnew
Relabel fraction p of batch
Update policy πθ as per Equation (3)
τnew ← {sT }

end for
Return: πθ

D.2 MERLIN: DETAILS OF POLICY NETWORK AND HYPERPARAMETERS

The policy is parameterized as a diagonal Gaussian distribution using an MLP with three hidden
layers of 256 units each with the ReLU activation function, except for the final layer. The input to
the policy comprises the state, the desired goal, and the time horizon. The time horizon is encoded
using sinusoidal positional embeddings of 32 dimensions with the maximum period set to T = 50
since that is the maximum length of the trajectory for all our tasks. The output of the policy is the

16

Under review as a conference paper at ICLR 2024

mean and the standard deviation of the action. The tanh(·) function is applied to the mean and it is
multiplied by the maximum value of the action space to ensure the mean is within the correct range.
The softplus function, softplus(x) = log(1 + exp(x)) is applied to the standard deviation to ensure
non-negativity.

The policy was trained for 500k mini-batch updates using Adam optimizer with a learning rate
of 5 × 10−4 and a batch size of 512. The same policy network architecture and corresponding
hyperparameters are used for all variations of Merlin. Merlin involves two main hyperparameters -
the hindsight ratio and the time horizon used during evaluation. We perform ablations in Section 6.1
and report the tuned values for each task below.

Table 2: Optimal values for the hindsight ratio and time horizon for Merlin.

Task Name Hindsight Ratio Time Horizon

Expert Random Expert Random

PointReach 0.2 1.0 1 1
PointRooms 0.2 1.0 1 1
Reacher 0.2 1.0 5 5
SawyerReach 0.2 1.0 1 1
SawyerDoor 0.2 1.0 5 5
FetchReach 0.2 1.0 1 1
FetchPush 0.0 0.2 20 20
FetchPick 0.0 0.5 10 50
FetchSlide 0.2 0.8 10 10
HandReach 1.0 1.0 1 1

D.3 MERLIN-P: DETAILS OF REVERSE DYNAMICS MODEL AND REVERSE POLICY

Merlin-P uses a learned parametric reverse dynamics model and a reverse policy to simulate the
forward diffusion process starting from potential goal states. We follow the procedure described in
Wang et al. (2021), which is summarized here.

The reverse dynamics model P̂ψ(s|s′, a) produces the previous state given the next state and a can-
didate action. Unlike Wang et al. (2021), we do not learn the reward model since Merlin does not
require rewards for the learning process. The model parameters are optimized by minimizing the
negative log-likelihood, which is equivalent to the mean squared error for deterministic environ-
ments,

L1(ψ) = E(s,a,s′)∼D

[
− log P̂ψ(s|s′, a)

]
= E(s,a,s′)∼D∥s− fψ(s′, a)∥22, (4)

where fψ(·, ·) denotes the deterministic reverse dynamics function. The network architecture is an
MLP with three hidden layers of 256 units each with the ReLU activation function. The dynamics
model is trained for 20 epochs using Adam optimizer with a learning rate of 3 × 10−4 and a batch
size of 256.

To generate diverse candidate actions for reverse rollouts, the reverse policy is parameterized as a
conditional variational autoencoder (CVAE), consisting of an action encoder Êω(s′, a) that outputs
a latent vector z, and an action decoder D̂ξ(s

′, z) which reconstructs the action given latent vector
z. The reverse policy is trained by maximizing the variational lower bound,

L2(ω, ξ) = E(s,a,s′)∼D,z∼Êω(s′,a)

[(
a− D̂ξ(s

′, z)
)2

+DKL

(
Êω(s

′, a)||N (0, I)
)]

(5)

The encoder is an MLP with two hidden layers of 256 units each using the ReLU activation function.
The latent space dimension is twice the action space dimension. The encoder outputs the mean and
log standard deviation, the latter is clamped to [−4, 15] for numerical stability. The decoder is also
an MLP with two hidden layers of 256 units each using the ReLU activation function. The tanh(·)
function is applied to the action output of the decoder and it is multiplied by the maximum value of
the action space to ensure it is within the correct range. The CVAE is trained for 20 epochs using
Adam optimizer with a learning rate of 3× 10−4 and a batch size of 256.

17

Under review as a conference paper at ICLR 2024

In order to generate a rollout starting from state s′, a latent vector is drawn from the standard
Gaussian distribution, z̃ ∼ N (0, I). The action decoder is used to obtain a candidate action
ã = D̂ξ(s

′, z̃), and finally the reverse dynamics model produces the previous state s̃ = fψ(s
′, ã). As

shown in Section 6, this method works well for simple environments with relatively low-dimension
state spaces. In higher dimensions, the compounding model error produces unrealistic rollouts,
especially over long horizons.

D.4 MERLIN-NP: DETAILS OF NEAREST-NEIGHBOR TRAJECTORY STITCHING

We propose a novel trajectory stitching method in Section 5.1 which is used for Merlin-NP. The
method is based on finding the nearest neighbor of states along a trajectory, which involves choosing
a metric. We chose the Euclidean (ℓ2) distance due to its wide use in practice, but other choices for
metrics such as the Manhattan distance (ℓ1) would also be suitable. The use of distance metrics in
high dimensions can be unreliable, however, note that all methods implicitly assume a metric. The
policy and the value function assume a metric to determine which states are similar, and therefore,
should yield similar actions or values respectively.

In order to search for nearest neighbors as efficiently as possible, we construct a ball tree from all
the states in the dataset, instead of a KD tree. The ball tree partitions the space using a series of
hyperspheres instead of partitioning along the Cartesian axes, which leads to more efficient queries
in higher dimensions. The query time for the ball tree grows as approximately O(d logN) for N
samples of d-dimensional data. For a KD tree, the query time is the same as a ball tree for lower
dimensions (< 20), however, it quickly becomes comparable to a brute force search for higher
dimensions.

Table 3: Values of distance threshold δ used for Merlin-NP.

Task Name δ

PointReach, PointRooms 1× 10−6

Reacher 1× 10−1

SawyerReach, SawyerDoor 1× 10−5

FetchReach, FetchPush 5× 10−3

FetchPick, FetchSlide 1× 10−2

HandReach 2

For the trajectory stitching method, we also choose a distance threshold δ which determines which
states are considered similar enough to allow stitching. Very large values of δ would result in con-
stant switching between trajectories even when the states are considerably dissimilar, leading to
mismatched state-action pairs at the stitching point. On the other hand, if the value of δ is too small,
then no states would be considered similar enough, leaving us with the original dataset. Since the
properties of the state space are different for different tasks, the threshold value has to be tuned
separately for each scenario. We chose the value such that on average, there would be one or two
stitching operations per trajectory. Table 3 presents the value of distance threshold δ for each task.

We collect 2000 stitched trajectories for the simpler tasks (PointReach, PointRooms, Reacher,
SawyerReach, SawyerDoor and FetchReach), which effectively doubles the amount of offline data.
For the harder tasks (FetchPush, FetchPick, FetchSlide and HandReach), we collect 10000 stitched
trajectories to augment the 40000 trajectories in the original dataset.

D.5 COMPUTE

Figure 10 shows the training and inference times averaged over all tasks for each method in Sec-
tion 6. The diffusion-based baselines (DD and g-DQL) have significantly higher training and in-
ference times since each environment step requires denoising the entire reverse diffusion chain. In
contrast, Merlin has comparable training and inference times to non-diffusion-based offline GCRL
methods, which is roughly an order of magnitude lower. Merlin-P suffers from an overhead com-
pared to Merlin due to training the reverse dynamics model and the reverse policy. The training
time overhead for Merlin-NP is during the trajectory stitching phase for nearest-neighbors search.

18

Under review as a conference paper at ICLR 2024

Merlin

Merlin
-P

Merlin
-NP

GoFAR
WGCSL

GCSL AM DD
g-DQL

103

104

Tr
ai

ni
ng

 ti
m

e
(s

) -
 lo

g
sc

al
e

Merlin

Merlin
-P

Merlin
-NP

GoFAR
WGCSL

GCSL AM DD
g-DQL

10 2

10 1

100

In
fe

re
nc

e
tim

e
(s

) -
 lo

g
sc

al
e

Figure 10: Mean training and inference times over different tasks for each method. Training times are reported
for 500k policy updates and inference times are reported for one episode comprising of 50 time steps.

The large variation in training time for Merlin-NP is because trajectory stitching for the harder tasks
(FetchPush, FetchPick, FetchSlide and HandReach) takes more time owing to the higher state-space
dimension and a larger number of collected trajectories.

E BASELINE IMPLEMENTATION DETAILS

E.1 OFFLINE GCRL METHODS

For all the methods described in this section, the policy architecture is identical to the
one used for Merlin, described in Appendix D. Wherever applicable, the critic architec-
ture is an MLP with three hidden layers of 256 units each with the ReLU activation. All
of these methods were fine-tuned in Ma et al. (2022), and we used their implementation
(https://github.com/JasonMa2016/GoFAR/tree/main) to produce the baseline results in Section 6.

GCSL. GCSL uses hindsight relabeling by setting the goal to be a future state within the same
trajectory, where future states are sampled uniformly from possible choices. The policy is learned
using behavior cloning,

max
π

E(s,a,g)∼Drelabel [log π(a|s, g)]

WGCSL. This method builds upon GCSL and learns a Q-function with standard TD learning,
where the dataset D uses hindsight relabeling and Q̄ denotes the stop-gradient operation,

min
Q

E(st,at,st+1,g)∼D

[(
r(st, g) + γQ̄(st+1, π(st+1, g), g)−Q(st, at, g)

)2]
The advantage function is defined as A(st, at, g) = r(st, g) + γQ(st+1, π(st+1, g), g) −
Q(st, π(st, g), g), and is used to weight the regression loss for policy updates,

maxπE(st,at,ϕ(si))∼D
[
γi−t expclip(A(st, at, ϕ(si))) log π(at|st, ϕ(si))

]
Actionable Model. AM employs an actor-critic framework similar to DDPG (Lillicrap et al.,
2015), but uses conservative critic updates by adding a regularization term to the regular TD up-
dates,

min
Q

E(st,at,st+1,g)∼D

[(
r(st, g) + γQ̄(st+1, π(st+1, g), g)−Q(st, at, g)

)2
+ Ea∼exp(Q̄)[Q(s, a, g)]

]
The policy updates are similar to DDPG, where gradients are backpropagated through the critic,

max
π

E(st,at,st+1,g)∼D [Q(st, π(st, g), g)]

In addition to hindsight relabeling, AM uses a goal-chaining technique where for half of the re-
labeled transitions in each minibatch, the relabelled goals are randomly sampled from the offline
dataset.

19

https://github.com/JasonMa2016/GoFAR/tree/main

Under review as a conference paper at ICLR 2024

GoFAR. GoFAR takes a state-occupancy matching perspective by training a discriminator to de-
fine a reward function that encourages visiting states that occur more often in conjunction with the
desired goal,

min
c

Eg∼p(g)
[
Ep(s,g) [log c(s, g)] + E(s,g)∼D [log(1− c(s, g))]

]
where p(s, g) = exp(r(s, g))/Z and Z =

∫
exp(r(s, g)). The reward function used for learning

the critic is R(s, g) = − log (1/c(s, g)− 1). GoFAR also uses f -divergence regularization to learn
a value function,

min
V (s,g)≥0

(1− γ)Es∼µ(s),g∼p(g)[V (s, g)] + E(s,a,g)∼D[f⋆(R(s, g) + γEs′∼P(·|s,a)[V (s′, g)]− V (s, g))]

where f⋆ denotes the convex conjugate of f . The policy is updated using regression weights that are
first-order derivatives of f⋆ evaluated at the optimal advantage,

max
π

Eg∼p(g)E(s,a)∼D
[
f ′⋆(R(s, g) + γEs′∼P(·|s,a)[V

∗(s′, g)]− V ∗(s, g)) log π(a|s, g)
]

where V ∗ denotes the optimal value function obtained after training. GoFAR does not use hindsight
relabeling.

E.2 DIFFUSION-BASED METHODS

Decision Diffuser. Decision diffuser models sequential decision-making as a conditional genera-
tive modeling problem,

max
θ
Eτ∼D[log pθ(x0(τ)|y(τ))]

where y(τ) denotes the conditioning variable representing returns, goals, or other constraints
that are desirable in the generated trajectory. The forward and reverse diffusion process are
q(xk+1(τ)|xk(τ)) and pθ(xk−1(τ)|xk(τ),y(τ)). The diffusion is performed on state sequences,
and actions are obtained using an inverse dynamics model at = fψ(st, st+1). The reverse diffu-
sion process learns a conditional denoising function by sampling noise ϵ ∼ N (0, I) and a timestep
k ∼ U{1, . . . ,K},

min
θ,ψ

Ek,τ∈D,β∼Bern(p)

[
∥ϵ− ϵθ (xk(τ), (1− β)y(τ) + β∅, k)∥22

]
+ E(s,a,s′)∈D

[
∥a− fψ(s, s′)∥

2

2

]
Classifier-free guidance is employed during planning to generate trajectories respecting the condi-
tioning variable y(τ) by starting with Gaussian noise xK(τ) and refining xk(τ) into xk−1(τ) at
each intermediate timestep with the perturbed noise,

ϵ = ϵθ (xk(τ),∅, k) + ω (ϵθ (xk(τ),y(τ), k)− ϵθ (xk(τ),∅, k))
The denoising function is a temporal U-Net model with residual blocks. We used the official imple-
mentation provided here: https://github.com/anuragajay/decision-diffuser/tree/main.

Diffusion QL. The policy is represented via the reverse process of a conditional diffusion model,
where the end sample of the reverse chain, a0, is the action used for RL evaluation,

πθ(a|s) = pθ(a
0:N |s) = N (aN ;0, I)

N∏
i=1

pθ(a
i−1|ai, s)

The reverse process is modeled as a noise prediction model with fixed variance Σi = βiI. The mean
is reparameterized in terms of a learned denoising function ϵθ, which is trained using the simplified
objective proposed in Ho et al. (2020),

min
θ

Ei∼U{1,...,N},ϵ∼N (0,I),(s,a)∼D

[∥∥ϵ− ϵθ (√ᾱia+√1− ᾱiϵ, s, i)∥∥22]
To sample actions from the policy, first sample aN ∼ N (0, I) and denoise using the denoising
model for N steps,

ai−1 | ai = ai
√
αi
− βi√

αi(1− ᾱi)
ϵθ(a

i, s, i) +
√
βiϵ, ϵ ∼ N (0, I), for i = N, . . . , 1.

20

https://github.com/anuragajay/decision-diffuser/tree/main

Under review as a conference paper at ICLR 2024

Similar to DDPG, Diffusion-QL also uses a learned critic function trained using the standard TD
error and backpropagates through the critic during training to prefer actions with high Q-values. In
order to apply this method to goal-conditioned tasks, we additionally condition the policy on the
goal. The architecture of the policy is a three-layer MLP with 256 hidden units each and the Mish
activation function. The critic similarly has three layers of 256 units each and Mish activations.
We used the official implementation provided here: https://github.com/Zhendong-Wang/Diffusion-
Policies-for-Offline-RL.

F TASK DESCRIPTIONS

We consider 10 different goal-conditioned tasks with sparse and binary rewards. The state, action,
and goal spaces are continuous, and the maximum length of each episode is set as 50. We use
the offline benchmark introduced in Yang et al. (2021). The relatively easier tasks (PointReach,
PointRooms, Reacher, SawyerReach, SawyerDoor, and FetchReach) have 2000 trajectories each
(1× 105 transitions); and the harder tasks (FetchPush, FetchPick, FetchSlide, and HandReach) have
40000 trajectories (2× 106 transitions).

The benchmark consists of two settings ‘expert’ and ‘random’. The ‘expert’ dataset consists of
trajectories collected by a policy trained using online DDQPG+HER with added Gaussian noise
(σ = 0.2) to increase diversity, while the ‘random’ dataset consists of trajectories collected by
sampling random actions.

Figure 11: Goal-conditioned tasks from left to right, top to bottom: PointReach, PointRooms, Reacher,
SawyerReach, SawyerDoor, FetchReach, FetchPush, FetchPick, FetchSlide, and HandReach.

PointReach. The environment is adapted from multiworld2. The blue point represents the agent
which is tasked with reaching the green circle representing the goal. The state space is two di-
mensional representing the (x, y) coordinates of the blue point, where (x, y) ∈ [−5, 5] × [−5, 5].
The actions space is also two dimensional representing the displacement in x and y directions,
a ∈ [−1, 1] × [−1, 1]. The goal space is the same as the state space, ϕ(s) = s. The initial position
of the agent and the goal are randomly initialized. Success is defined if the agent reaches within a
certain radium of the goal. The reward function is defined as,

r(sXY , a, gXY) = 1[∥sXY − gXY ∥22 ≤ ϵ]

where the tolerance is ϵ = 1.

PointRooms. The environment is a variation of PointReach environment. The task is again for the
blue dot representing the agent to reach the green circle, however, there are vertical and horizontal
walls forming four rooms, which make navigation more challenging. The reward function, and the
state, action, and goal spaces are the same as in PointReach.

2https://github.com/vitchyr/multiworld

21

https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL
https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL
https://github.com/vitchyr/multiworld

Under review as a conference paper at ICLR 2024

Reacher. The environment is included in Gymnasium3. Reacher is a two-jointed robot arm tasked
with moving the robot’s end effector close to a target that is spawned at a random position. The state
space is 11-dimensional representing the angles, positions and velocities of the joints. The goals are
(x, y) coordinates of the target, and ϕ(s) = s[4 : 6]. The two-dimensional actions represent the
torque applied at each joint. The reward function is defined as,

r(sXY , a, gXY) = 1[∥sXY − gXY ∥22 ≤ ϵ]

where the tolerance is ϵ = 0.05.

SawyerReach. The environment is adapted from multiworld. The Sawyer robot is tasked with
reaching a target position using its end effector. The state space is 3-dimensional representing the
(x, y, z) coordinates of the end effector, and the goal space is also 3-dimensional representing the
(x, y, z) coordinates of the target position, ϕ(s) = s. The 3-dimensional actions describe the coor-
dinates of the next position of the end effector. The reward function is defined as,

r(sXY Z , a, gXY Z) = 1[∥sXY Z − gXY Z∥22 ≤ ϵ]

where the tolerance is ϵ = 0.06.

SawyerDoor. The environment is adapted from multiworld. The Sawyer robot is tasked with
opening a door to a specified angle. The 4-dimensional state space represents the coordinates of
the end effector of the robot and the angle of the door. The action space is the 3-dimensional next
position of the end effector. The goal is the desired angle of the door, ϕ(s) = s[−1], which is
between [0, 0.83] radians. The reward function is defined as,

r(s, a, g) = 1[|ϕ(s)− g| ≤ ϵ]

where the tolerance is ϵ = 0.06.

FetchReach. The environment is included in Gymnasium-Robotics4. It consists of a 7-DoF
robotic arm, with a two-fingered parallel gripper attached to it. The task is to reach a target loca-
tion which is specified as a 3-dimensional goal representing the (x, y, z) coordinates of the target
location. The states are 10-dimensional represent the kinematic information of the end effector,
including the positions and velocities of the end effector and the gripper joint displacement. The ac-
tions are 4-dimensional which describes the displacement of the end effector, and the last dimension
which represents the gripper opening/closing is not used for this task. The state-to-goal mapping is
ϕ(s) = s[0 : 3]. The reward function is defined as,

r(s, a, gXY Z) = 1[∥ϕ(s)− gXY Z∥22 ≤ ϵ]

where the tolerance is ϵ = 0.05.

FetchPush. The environment is included in Gymnasium-Robotics. The 7-DoF robotic arm from
FetchReach is tasked with pushing a block to a target location. The state space is 25- dimensional,
including the gripper’s position, linear velocities, and the box’s position, rotation, linear and angular
velocities. The 4-dimensional state space describes the displacement of the end effector and the
gripper opening/closing. The goal is defined as the target (x, y, z) position of the block, and the
mapping is ϕ(s) = s[3 : 6]. In this task, the block is always on top of the table, hence the block z
coordinate is always fixed. The reward function is defined as,

r(s, a, gXY Z) = 1[∥ϕ(s)− gXY Z∥22 ≤ ϵ]

where the tolerance is ϵ = 0.05.

FetchPick. The environment is included in Gymnasium-Robotics. The 7-DoF robotic arm from
FetchReach is tasked with picking up a block and taking it to a target location specified as (x, y, z)
coordinates. The target z coordinate of the block is not fixed and may be in the air above the table,
requiring the robotic arm to pick up the block using the gripper. The state space, action space, goal
space, state-to-goal mapping, and reward function are the same as FetchPush.

3https://github.com/Farama-Foundation/Gymnasium
4https://github.com/Farama-Foundation/Gymnasium-Robotics

22

https://github.com/Farama-Foundation/Gymnasium
https://github.com/Farama-Foundation/Gymnasium-Robotics

Under review as a conference paper at ICLR 2024

FetchSlide. The environment is included in Gymnasium-Robotics. The 7-DoF robotic arm from
FetchReach is tasked with moving a block to a target position specified as (x, y, z) coordinates. The
block is always on top of the table, hence the z coordinate of the block is always fixed. However,
the (x, y) coordinates of the target position are out of reach of the robotic arm, hence it must hit the
block with the appropriate amount of force for it to slide and then stop at the goal position. The
state space, action space, goal space, state-to-goal mapping, and reward function are the same as
FetchPush.

HandReach. The environment is included in Gymnasium-Robotics. A 24-DoF anthropomorphic
hand is tasked with manipulating its fingers to reach a target configuration. The state space is
63-dimensional comprising two 24-dimensional vectors describing the positions and velocities of
the joints, and five 3-dimensional vectors describing the (x, y, z) positions of each fingertip. The
20-dimensional actions describe the absolute angular positions of the actuated joints. The goals
are specified as 15-dimensional vectors, describing the (x, y, z) coordinates of the fingertips with
ϕ(s) = s[−15 :]. The reward function is defined as,

r(s, a, g) = 1[∥ϕ(s)− g∥22 ≤ ϵ]

where the tolerance is ϵ = 0.01.

G GCSL WITH TRAJECTORY STITCHING

We apply a modified version of the nearest-neighbor trajectory stitching operation to GCSL and
report the performance in Table 4 and Table 5, averaged over 10 seeds. The technique described in
Section 5.1 applies to reverse trajectories, for GCSL we construct forward trajectories by adding the
state-action pair succeeding the neighbors. We observe that this technique improves performance for
most tasks, demonstrating it as a general-purpose data augmentation technique for offline GCRL.

Table 4: Discounted returns.

Task Name Merlin Merlin-NP GCSL GCSL+TS

E
xp

er
t

PointReach 29.26±0.04 29.30±0.05 22.85±1.26 23.22±1.71

PointRooms 25.38±0.37 25.42±0.32 18.28±2.29 19.87±1.55

Reacher 22.75±0.59 24.97±0.54 20.05±1.37 22.12±1.16

SawyerReach 26.89±0.07 27.35±0.06 19.20±1.79 20.88±1.60

SawyerDoor 26.18±2.19 26.15±2.08 20.12±1.33 20.61±1.26

FetchReach 30.29±0.03 30.42±0.04 23.68±1.07 23.59±1.32

FetchPush 19.91±1.20 21.58±1.63 17.58±1.47 19.15±1.29

FetchPick 19.66±0.78 20.41±0.92 12.95±1.90 13.85±1.66

FetchSlide 4.19±1.89 4.95±2.02 1.67±1.41 2.11±1.46

HandReach 22.11±0.55 24.93±0.49 0.15±0.11 0.16±0.13

R
an

do
m

PointReach 29.26±0.04 29.31±0.04 17.74±1.84 20.01±1.63

PointRooms 24.80±0.36 25.16±0.59 14.69±2.51 16.05±1.97

Reacher 21.09±0.65 22.24±0.54 10.62±2.30 12.89±2.34

SawyerReach 26.70±0.14 26.86±0.07 8.78±2.59 9.12±2.26

SawyerDoor 19.05±0.66 21.69±2.36 12.47±3.08 13.64±2.68

FetchReach 30.42±0.04 30.42±0.04 18.96±1.77 19.58±1.72

FetchPush 5.21±0.43 7.22±0.35 4.22±2.19 5.21±1.98

FetchPick 3.75±0.18 4.36±0.19 0.81±0.82 0.95±0.90

FetchSlide 2.67±0.35 3.15±0.14 0.24±0.27 0.31±0.36

HandReach 14.89±2.54 17.61±3.06 1.41±0.51 2.06±0.76

Table 5: Success rates.

Task Name Merlin Merlin-NP GCSL GCSL+TS

E
xp

er
t

PointReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

PointRooms 0.91±0.16 0.94±0.01 0.79±0.60 0.80±0.62

Reacher 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SawyerReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SawyerDoor 0.95±0.08 0.94±0.11 0.84±0.16 0.85±0.14

FetchReach 1.00±0.00 1.00±0.00 0.98±0.00 1.00±0.00

FetchPush 0.95±0.05 0.96±0.04 0.88±0.09 0.89±0.10

FetchPick 0.92±0.03 0.96±0.06 0.64±0.09 0.67±0.09

FetchSlide 0.20±0.04 0.25±0.07 0.22±0.14 0.24±0.12

HandReach 0.78±0.04 0.85±0.02 0.03±0.05 0.04±0.05

R
an

do
m

PointReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

PointRooms 0.89±0.02 0.92±0.02 0.77±0.11 0.79±0.12

Reacher 0.98±0.02 1.00±0.00 0.80±0.06 0.84±0.07

SawyerReach 1.00±0.00 1.00±0.00 0.91±0.09 0.93±0.11

SawyerDoor 0.57±0.03 0.59±0.05 0.44±0.16 0.45±0.14

FetchReach 1.00±0.00 1.00±0.00 0.96±0.05 0.98±0.03

FetchPush 0.20±0.06 0.24±0.09 0.20±0.11 0.22±0.10

FetchPick 0.12±0.01 0.18±0.01 0.06±0.08 0.07±0.06

FetchSlide 0.11±0.02 0.20±0.04 0.06±0.08 0.06±0.07

HandReach 0.49±0.05 0.62±0.07 0.04±0.04 0.04±0.04

23

Under review as a conference paper at ICLR 2024

H ADDITIONAL EXPERIMENTAL RESULTS

Table 6: Discounted returns, averaged over 10 seeds.

Task Name Ours Offline GCRL Diffusion-based

Merlin Merlin-P Merlin-NP GoFAR WGCSL GCSL AM DD g-DQL

E
xp

er
t

PointReach 29.26±0.04 29.17±0.15 29.30±0.05 27.18±0.65 25.91±0.87 22.85±1.26 26.14±1.11 10.03±0.88 28.65±0.44

PointRooms 25.38±0.37 25.25±0.07 25.42±0.32 20.40±1.00 19.90±0.99 18.28±2.29 23.24±1.58 5.84±2.67 27.53±0.57

Reacher 22.75±0.59 23.25±0.17 24.97±0.54 22.51±0.82 23.35±0.64 20.05±1.37 22.36±1.03 4.39±1.08 22.54±1.42

SawyerReach 26.89±0.07 25.05±0.60 27.35±0.06 22.82±1.15 22.07±1.46 19.20±1.79 23.56±0.33 3.39±0.75 24.17±0.01

SawyerDoor 26.18±2.19 25.75±0.97 26.15±2.08 23.62±0.35 23.92±1.10 20.12±1.33 26.39±0.42 7.85±0.77 24.81±0.38

FetchReach 30.29±0.03 30.26±0.02 30.42±0.04 29.21±0.26 28.17±0.38 23.68±1.07 29.08±0.12 1.55±0.68 28.71±0.15

FetchPush 19.91±1.20 2.23±2.20 21.58±1.63 22.41±1.69 22.22±1.51 17.58±1.47 19.86±3.16 5.49±2.85 17.82±0.55

FetchPick 19.66±0.78 1.43±1.01 20.41±0.92 19.79±1.12 18.32±1.56 12.95±1.90 17.04±3.81 2.76±0.64 14.45±0.61

FetchSlide 4.19±1.89 0.00±0.00 4.95±2.02 3.34±1.01 5.17±3.17 1.67±1.41 3.31±1.46 1.21±0.59 0.98±0.59

HandReach 22.11±0.55 0.00±0.00 24.93±0.49 15.39±6.37 18.05±5.12 0.15±0.11 0.00±0.00 0.00±0.00 0.00±0.00

Average Rank 2.7 5.3 1.6 4.5 4.6 7.3 5.0 8.3 5.1

R
an

do
m

PointReach 29.26±0.04 29.21±0.08 29.31±0.04 23.96±0.93 25.76±0.96 17.74±1.84 25.55±0.57 10.12±0.72 22.65±1.57

PointRooms 24.80±0.36 24.07±0.19 25.16±0.59 18.09±4.13 19.41±1.01 14.69±2.51 19.10±1.39 5.76±2.99 20.88±0.96

Reacher 21.09±0.65 16.65±0.48 22.24±0.54 25.10±0.68 22.98±0.91 10.62±2.30 23.70±0.62 4.74±0.36 6.06±0.84

SawyerReach 26.70±0.14 25.46±0.12 26.86±0.07 19.48±1.39 21.32±1.40 8.78±2.59 25.29±0.35 3.46±0.86 2.84±0.05

SawyerDoor 19.05±0.66 18.26±1.18 21.69±2.36 20.69±2.14 19.58±3.55 12.47±3.08 10.82±1.67 7.92±0.86 14.77±0.51

FetchReach 30.42±0.04 30.38±0.02 30.42±0.04 28.34±0.98 27.94±0.30 18.96±1.77 27.11±0.22 1.71±0.77 1.21±0.46

FetchPush 5.21±0.43 5.08±0.32 7.22±0.35 6.99±1.27 5.35±3.36 4.22±2.19 4.53±1.94 4.49±1.34 5.35±0.23

FetchPick 3.75±0.18 3.02±0.16 4.36±0.19 3.81±3.71 1.87±1.59 0.81±0.82 3.08±1.35 2.16±0.75 2.17±0.18

FetchSlide 2.67±0.35 0.00±0.00 3.15±0.14 1.32±1.22 1.04±0.98 0.24±0.27 1.12±0.39 1.31±0.52 0.00±0.00

HandReach 14.89±2.54 0.00±0.00 17.61±3.06 0.08±0.07 2.54±1.42 1.41±0.51 0.00±0.00 0.00±0.00 0.00±0.00

Average Rank 2.8 4.8 1.3 3.8 4.5 7.3 5.3 7.7 6.7

Table 7: Success rates, averaged over 10 seeds.

Task Name Ours Offline GCRL Diffusion-based

Merlin Merlin-P Merlin-NP GoFAR WGCSL GCSL AM DD g-DQL

E
xp

er
t

PointReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.40±0.00 1.00±0.00

PointRooms 0.91±0.16 0.89±0.04 0.94±0.01 0.82±0.04 0.82±0.04 0.79±0.6 0.87±0.05 0.27±0.17 1.00±0.00

Reacher 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.20±0.00 1.00±0.00

SawyerReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.13±0.05 1.00±0.00

SawyerDoor 0.95±0.08 0.92±0.08 0.94±0.11 0.82±0.12 0.86±0.15 0.84±0.16 0.92±0.12 0.20±0.00 0.94±0.12

FetchReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.98±0.00 1.00±0.00 0.07±0.04 1.00±0.00

FetchPush 0.95±0.05 0.07±0.03 0.96±0.04 0.96±0.04 0.95±0.04 0.88±0.09 0.90±0.08 0.17±0.09 0.89±0.11

FetchPick 0.92±0.03 0.05±0.03 0.96±0.06 0.78±0.04 0.76±0.07 0.64±0.09 0.69±0.16 0.07±0.07 0.91±0.07

FetchSlide 0.20±0.04 0.00±0.00 0.25±0.07 0.28±0.09 0.42±0.14 0.22±0.14 0.32±0.12 0.10±0.08 0.05±0.04

HandReach 0.78±0.04 0.00±0.00 0.85±0.02 0.54±0.23 0.68±0.19 0.03±0.05 0.00±0.00 0.00±0.00 0.00±0.00

Average Rank 2.1 4.5 1.5 3.0 2.8 5.0 3.2 8.3 3.0

R
an

do
m

PointReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.40±0.00 0.95±0.06

PointRooms 0.89±0.02 0.84±0.03 0.92±0.02 0.78±0.11 0.83±0.08 0.77±0.11 0.70±0.16 0.27±0.17 0.82±0.08

Reacher 0.98±0.02 0.89±0.05 1.00±0.00 0.98±0.03 1.00±0.00 0.80±0.06 1.00±0.00 0.23±0.05 0.15±0.05

SawyerReach 1.00±0.00 0.98±0.02 1.00±0.00 0.92±0.07 1.00±0.00 0.91±0.09 1.00±0.00 0.13±0.05 0.10±0.03

SawyerDoor 0.57±0.03 0.49±0.08 0.59±0.05 0.46±0.19 0.48±0.17 0.44±0.16 0.26±0.09 0.20±0.00 0.35±0.09

FetchReach 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.96±0.05 1.00±0.00 0.07±0.04 0.00±0.00

FetchPush 0.20±0.06 0.17±0.01 0.24±0.09 0.22±0.04 0.14±0.10 0.20±0.11 0.13±0.09 0.13±0.05 0.17±0.04

FetchPick 0.12±0.01 0.09±0.01 0.18±0.01 0.12±0.11 0.08±0.07 0.06±0.08 0.10±0.02 0.07±0.05 0.09±0.02

FetchSlide 0.11±0.02 0.00±0.00 0.20±0.04 0.10±0.06 0.04±0.08 0.06±0.08 0.07±0.04 0.07±0.05 0.00±0.00

HandReach 0.49±0.05 0.00±0.00 0.62±0.07 0.00±0.00 0.12±0.07 0.04±0.04 0.00±0.00 0.00±0.00 0.00±0.00

Average Rank 2.0 4.1 1.0 3.5 3.5 5.6 4.1 7.6 6.9

24

	Introduction
	Related Work
	Preliminaries
	Diffusion Probabilistic Models
	Goal-conditioned Reinforcement Learning

	Reaching Goals via Diffusion
	An Illustrative Example

	Goal-conditioned Diffusion Policy
	Nearest-neighbor Trajectory Stitching
	Offline Policy Training

	Experiments
	Ablation Studies

	Conclusion
	Reproducibility Statement
	Proof of Theorem 5.1
	Additional Illustrative Experiments
	Multiple Goal Setting
	Four Rooms Navigation

	Relation to Diffusion Probabilistic Models
	Implementation Details
	Merlin Algorithm
	Merlin: Details of Policy Network and Hyperparameters
	Merlin-P: Details of Reverse Dynamics model and Reverse Policy
	Merlin-NP: Details of nearest-neighbor trajectory stitching
	Compute

	Baseline Implementation Details
	Offline GCRL methods
	Diffusion-based methods

	Task Descriptions
	GCSL with Trajectory Stitching
	Additional Experimental Results

