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Abstract

Existing Multi-fidelity Bayesian Optimization (MFBO) methods ignore the con-
vergence behavior of the multi-fidelity surrogate as the fidelity increases, leading
to inefficient exploration and suboptimal performance. We introduce CAMO
(Convergence-Aware Multi-fidelity Optimization), a principled framework based
on Linear Fidelity Differential Equations (LFiDEs) that explicitly encodes conver-
gence of fidelity-indexed outputs and employs a closed-form nonstationary kernel.
We rigorously prove the existence and pointwise/uniform convergence to the high
fidelity surrogate under mild restrictions and provide new convergence results for
general FiDEs using smooth, non-smooth and even non-convex Lyapunov func-
tions, establishing a bridge between MFBO and the theory of subgradient flows
in non-smooth optimization theory. Combined with a fidelity-aware acquisition
function, CAMO outperforms state-of-the-art MFBO methods on a majority of
synthetic and real-world benchmarks, with up to a four-fold improvement in opti-
mization performance and a dramatic speed-up in convergence. CAMO offers a
tractable and theoretically grounded approach to convergence-aware MFBO.

1 Introduction
Bayesian optimization (BO) is an efficient method for optimising costly black-box functions, finding
applications in various domains of engineering and science [1]. BO leverages a surrogate model,
typically a Gaussian Process (GP), to approximate the objective function and guide the search
towards promising regions of parameter space using an acquisition function. This approach is
particularly effective when the black-box function evaluations are costly or time-consuming. In many
applications, black-box solutions can be obtained at varying levels of fidelity. Lower-fidelity solutions
are associated with lower accuracy and lower computational costs, the latter of which typically
increase dramatically as fidelity increases. The fidelity can be controlled in a number of ways, by
varying the modelling choices or the solver settings. For example, electronic-structure methods
involve increasing levels of theory, with exponentially increasing costs [2]. Different fidelities can
also be defined via the numerical formulation, e.g., use different mesh sizes, time steps or convergence
thresholds. For the purposes of prediction, and especially for optimization, it is of course desirable and
sometimes essential to predict at the highest fidelity. In practice, however, the number of high-fidelity
results obtainable within a typical computational budget or time frame is often constrained.

Multi-Fidelity Bayesian optimization (MFBO) methods aim to reduce the cost of optimising high-
fidelity black-box functions by leveraging lower-fidelity approximations [3, 4]. In typical scenarios,
the multi-fidelity objective evolves towards to the highest fidelity function as the fidelity parameter
increases. Existing MFBO approaches ignore this evolution and treat the fidelity as an unstructured
input, which can lead to inefficient exploration in high-cost regions and, ultimately, suboptimal
performance. In this paper we propose CAMO, a principled framework for MFBO that uses a
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convergence-aware surrogate model derived from linear fidelity differential equations (LiFiDEs). The
“convergence” here refers to a systematic progression towards a high-fidelity function. In contrast
to conventional methods, CAMO structurally enforces convergence as fidelity increases, ensuring
that predictions at lower fidelities provably approach the high-fidelity objective under mild regularity
assumptions. Our key contributions are: (1) a convergence-aware surrogate that encodes the structural
tendency of simulations to converge as fidelity increases; (2) a closed form non-stationary LiFiDE
kernel that captures fidelity-wise correlations, eliminating the need to a-priori specify a relationship
between fidelities (CAMO adaptively learns convergence behaviour from the data); (3) a general
theory for fidelity-indexed systems using Lyapunov functions, establishing uniform and pointwise
convergence under smooth, non-smooth and even non-convex scenarios, and revealing a formal link
to subgradient-based dynamics in modern non-smooth optimization theory; (4) when combined with
BOCA (Bayesian optimization with Continuous Approximations) [3] to leverage both fidelity-aware
exploration and convergence-aware modelling we show that CAMO consistently outperforms MFBO
baselines on synthetic and real-world benchmarks.

2 Related Work
Bayesian optimization (BO) [5] uses a surrogate model, typically a Gaussian Process (GP) [6] (see
Appendix A), to approximate the objective function, together with an acquisition function to guide
the search towards promising regions. Acquisition functions balance exploration and exploitation to
efficiently search for a global optimum. Popular choices include the Expected Improvement (EI) [7],
the Upper Confidence Bound (UCB) [8], and the Probability of Improvement (PI) [9]. MFBO extends
standard BO by utilising solutions at different fidelity levels, aiming to reduce the overall optimization
cost and improve convergence speed. Most of the work in MFBO has focused on discrete fidelity sets.
Huang et al. [10] proposed Sequential Kriging optimization (SKO), which employs a hierarchical GP
approach to capture the correlations between different fidelity levels. Kandasamy et al. [11] developed
the Multi-Fidelity (MF) Gaussian Process Upper Confidence Bound (MF-GP-UCB) method based on
a generic GP formulation. Le Gratiet and Garnier [12] proposed Recursive Co-Kriging, which builds
a hierarchy of GP models of the residual between successive fidelity levels. Perdikaris et al. [13]
used low-fidelity information as an input to a high-fidelity GP, leading to a deep GP structure, while
Cutajar et al. [14] directly employed a deep GP to learn nonlinear mappings between fidelities.

In many real-world applications, the fidelity level can be treated as a continuous variable (e.g., a
mesh size or time step). This has led to the development of continuous-fidelity MFBO methods
such as BOCA [3], which extends MF-GP-UCB by using a two-step procedure to select the next
query point. Poloczek et al. [15] introduced the Multi-Information Source optimization (MISO)
framework, which treats the objective function as a linear combination of GPs, each corresponding to
a different fidelity level. Klein et al. [16] proposed FABOLAS, combining a GP with a linear fidelity
kernel and an Entropy Search acquisition function. Wu and Frazier [17] developed the continuous
fidelity knowledge gradient (cfKG) method based on a GP with a knowledge gradient acquisition
function. In contrast, Li et al. [18] took a deep learning approach with Deep Neural Network MF
Bayesian optimization (DNN-MFBO), which uses a fidelity-wise Gauss-Hermite quadrature and a
moment-matching mutual information acquisition function. These studies illustrated the benefits of
continuous-fidelity MFBO over discrete formulations. Most practical GP-based methods, however,
lack insights into the convergence behaviour of the objective function across fidelity levels, leading to
the over-exploration of costly regions and, therefore, suboptimal performance. Although DNNs can
in theory capture the complex relationships between fidelity levels, observations at high fidelity are
typically sparse, leading to overfitting and high model variance. Recent advances in MF modelling
include fidelity differential equations (FiDE) [19], modelled by NeuralODE [20] or continuous
autoregression (CAR) [19] to capture the convergence behaviour of the objective function. The
training times for NeuralODE are up to 104-fold higher than those for CAR. In this work we therefore
build upon the FiDE concept to propose a tractable and scalable MFBO method.

Hyperparameter optimization (HPO) and neural architecture search (NAS) are not considered core
applications of CAMO, which is focused on expensive blackbox solvers in science and engineering.
In such applications, continuous fidelity indices are unambiguously defined. They arise naturally
as controllable, continuous parameters intrinsic to the physical model or numerical approximation.
Their effect on the objective function is deterministic, with typically a monotonic convergence toward
the highest fidelity. In contrast, HPO/NAS operate in a setting in which fidelity is stochastic and
algorithm-dependent, e.g., epoch number and budget are algorithmic artefacts with no deterministic
convergence law or trajectory. The cross-fidelity structure is non-smooth and data-dependent, which
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requires empirical (ideally discrete-fidelity) MFBO methods such as BOHB [21], DyHPO [22] and
FastBO [23]. Adapting CAMO to HPO/NAS would potentially require reformulating the underlying
convergence model as a stochastic process, which is orthogonal to the contributions of this paper.

3 Background
3.1 Problem Formulation
We consider the problem of optimising a function y : X × [0, T )→ R, (x, t) 7→ y(x, t), in which
X ⊆ Rd is a design variable space, and [0, T ) ⊂ R is a range of fidelity levels. T =∞ is allowed
and is of particular interest. We assume that both the accuracy and computational costs of evaluating
y(x, t) increases with t. The goal is to find the design variable x∗ = arg maxx∈X y(x, T ) that
maximises the high-fidelity objective while minimising the total cost of evaluations. The observations
yi at different x and t incorporate additive Gaussian noise (see Appendix A). Lp(X ) (1 ≤ p <∞)
denotes the space of functions f : X → R such that ‖f‖pLp(X ) =

∫
X |f(x)|p dx < ∞, where

dx denotes integration w.r.t. Lebesgue measure. C(X ) denotes the space of continuous functions
f : X → R. Ca,b(X × [0,∞)) denotes the space of functions f : X × [0,∞)→ R with continuous
derivatives up or orders a and b in x and t, with similar notation for functions of more than two
variables (the superscript is omitted if a = b = 0). ‖f‖L∞(A) = ess supx∈X f(x) denotes the L∞

norm. AC([0,∞)) denotes the space of absolutely continuous functions and L1
loc([0,∞)) is the

space of locally integrable functions on [0,∞).

4 CAMO and Theoretical Results
4.1 Multi-Fidelity via FiDE: Well-Posedness and Link to Subgradient Flows
MFBO requires a surrogate to model y(x, t), often in the form of a GP: y(x, t) ∼
GP (0, k(x, t,x′, t′)) with some kernel k. Li et al. [20] and Xing et al. [19] proposed that y(x, t) can
be modelled as the solution to a Fidelity Differential Equation (FiDE), namely

∂ty(x, t) = φ(x, t, y(x, t)), (x, t) ∈ X × [0, T ), (1)

subject to some initial condition y(x, 0) = y0(x). Here, φ(x, t, y) describes the system ‘dynamics’,
with the fidelity parameter t playing the role of physical time. Without loss of generality, we set
T =∞ for the theoretical results. Treating the MF system as a dynamical system is entirely natural
since the index t is strictly ordered. To conduct MFBO with such a model we need guarantees on the
well-posedness of the FiDE problem (1), i.e, that unique solutions exist and that y(x, t) converges to
a unique equilibrium solution y∞(x) = limt→∞ y(x, t). The convergence can be interpreted in a
pathwise sense, e.g., for each fixed input x, the solution trajectory converges deterministically to the
high-fidelity target. In this work we do not consider stochastic FiDEs, i.e., convergence in stochastic
process topologies. The dynamics are entirely deterministic once the training data are fixed.

Convergence can be studied using a Lyapunov analysis. A Lyapunov function V : (x, t, y) 7→
V (x, t, y) (dependent on φ) serves as a energy-like functional that measures the deviation of y(x, t)
from an equilibrium. Our first result establishes minimal conditions for the existence and uniqueness
of classical solutions pointwise in x (see Appendix B.1 for the proof)

Lemma 1. [Existence and Regularity for General FiDEs] Let X ⊆ Rd be a non-empty set. Consider
the system (1) and assume that: (1) for each fixed x ∈ X , the function (t, y) 7→ φ(x, t, y) is
continuous on [0,∞)× R; (2) for each fixed x ∈ X , φ(x, t, y) is locally Lipschitz in y, uniformly
for t in compact subsets of [0,∞); (3) the initial condition y0(x) ∈ R is finite for each x. Then for
each fixed x ∈ X , there exists a unique maximal solution y(x, t) ∈ C1([0, t∗(x))) defined on some
maximal interval [0, t∗(x)), with 0 < t∗(x) ≤ ∞. Moreover: (a) if y(x, t) remains bounded for all
t ∈ [0,∞), then t∗(x) =∞ and the solution exists globally on [0,∞); (b) if φ is globally Lipschitz
in y, uniformly in t, then the solution exists globally on [0,∞).

The following Lemmas (see Appendix B.2 for the proofs) establish minimal regularity requirements
on V , y0 and X for pointwise and uniform (in x) convergence to hold, respectively.

Lemma 2 (Pointwise Convergence for FiDE). Let y(x, ·) ∈ C1([0,∞)), x ∈ X be a solution to (1)
with y0(x) <∞ for each x ∈ X . Suppose there exists a Lyapunov function V : X × [0,∞)×R→ R,
(x, t, y) 7→ V (x, t, y), and that the following conditions are satisfied: (1) V ∈ C0,1,1(X × [0,∞)×
R); (2) V (x, t, y) ≥ 0, ∀ (x, t, y) ∈ X × [0,∞)× R and V (x, t, y) = 0 iff y = y∞(x); (3) for all
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(x, t) ∈ X × [0,∞)

V̇ (x, t, y) = ∂yV (x, t, y)φ(x, t, y) + ∂tV (x, t, y) < 0 (2)

Then y(x, t)→ y∞(x) pointwise on X , i.e., limt→∞ y(x, t) = y∞(x) for each x ∈ X .
Lemma 3 (Uniform Convergence for FiDE). Let y(x, ·) ∈ C1([0,∞)), x ∈ X is a solution to (1).
Suppose there exists a Lyapunov function V : X × [0,∞) × R → R, (x, t, y) 7→ V (x, t, y) and
the following conditions are satisfied: (1) y0(x) ∈ C(X ); (2) V ∈ C0,1,2(X × [0,∞) × R); (3)
V (x, t, y) ≥ 0, ∀ (x, t, y) ∈ X × [0,∞)×R and V (x, t, y) = 0 iff y = y∞(x); (4) ∃ cmin > 0 such
that c(x, t) ≥ cmin > 0, ∀(x, t) ∈ X × [0,∞), in which c(x, t) = 1

2∂
2
yyV (x, t, y∞(x)); (5) for all

x, t ∈ X × [0,∞), ∃α > 0 such that

V̇ (x, t, y) = ∂yV (x, t, y)φ(x, t, y) + ∂tV (x, t, y) ≤ −αV (x, t, y); (3)

(6) ∃Vmax such that ‖V (x, 0, y(x, 0))‖L∞(X ) ≤ Vmax. Then limt→∞ y(x, t) = y∞(x) uniformly
on X , with

‖y(x, t)− y∞(x)‖L∞(X ) ≤ ce−αt, c =
√
Vmax/cmin. (4)

If y(x, t) ∈ C(X × [0,∞)) then y∞ ∈ C(X ) since the uniform limit of continuous functions is
continuous. The uniform-convergence conditions are readily satisfied for functions V that have at
most a mild dependence on t, such as exponential decay or bounded variations, notably quadratic
functions V (x, t, y) = a(x, t)(y − y∞(x))2, a(x, t) ≥ a0 > 0 uniformly. Non-smooth Lyapunov
functions such as V|·| = |y(x, t) − y∞(x)| permit a convergence analysis even if y(x, t) exhibits
non-smooth behaviour due to noise or sparse evaluations at low fidelities (in which case ∂ty has
to be interpreted in a distributional sense). Non-smooth V allow for the certification of asymptotic
behaviour and exponential convergence in such non-smooth settings. Lemma B1 in Appendix B.3
establishes uniform convergence for V|·|(x, t, y), which is readily extended to Elastic-Net-type and
Group-Sparsity-type V . In fact, the result extends to non-convex Lyapunov functions via the Clarke
subdifferential [24] (see Appendix B.3 for a proof)
Lemma 4. Let X be a nonempty set, and let y : X × [0,∞) → R be such that for each x ∈
X , y(x, ·) ∈ C1[0,∞). Let V : X × R → R, (x, y) → V (x, y(x, t)) satisfy the following
conditions. (1) For every fixed (x, t), the map y 7→ V (x, y, t) is locally Lipschitz. (2) For each
fixed (x, t) ∈ X × [0,∞), define u[x](·) : R → R, y 7→ V (x, y), and for a fixed x ∈ X ,
define v[x](·) : [0,∞) → R, t 7→ V (x, y(x, t)); assume that for all (x, t) ∈ X × [0,∞) and
all ξ(x, t) ∈ ∂Cu[x](y) the inequality ξ(x, t)φ(x, t, y(x, t)) ≤ −αv[x](t) holds for some constant
α > 0, independent of x and t. (3) The initial deviation is bounded, i.e., ‖y(·, 0)−y∞(·)‖L∞(X ) <∞.
Then, for all t ∈ [0,∞), we have

‖y(·, t)− y∞(·)‖L∞(X ) ≤ ‖y(·, 0)− y∞(·)‖L∞(X )e
−αt. (5)

These lemmas reveal a close analogy between the convergence of FiDEs and subgradient-based
dynamics in non-smooth convex optimization. For a non-smooth Lyapunov function V , the evolution
of y(x, t) can be analysed using differential inclusions involving the subdifferential ∂yV . This
structure mirrors subgradient flows and proximal-map methods commonly encountered in sparse
learning and variational optimization. Under mild conditions, such dynamics guarantee exponential
convergence toward the high-fidelity target y∞(x), with y(x, t) following a descent trajectory that
reduces the fidelity error encoded by V . Quantitatively, subgradient dynamics induced by non-smooth
V can be interpreted as the limit of smooth gradient flows applied to a Moreau-Yosida regularisation
[25]. For instance, define the smoothed functional

Vλ(x, y) = inf
z∈R

{
|z − y∞(x)|+ 1

2λ
(y − z)2

}
(6)

as a regularized approximation of V (x, y) = |y−y∞(x)|. The associated gradient flow ∂tyλ(x, t) =
−∇yVλ(x, yλ(x, t) converges (in the sense of graphical or Mosco convergence) to the subgradient
inclusion ∂ty(x, t) ∈ −∂|y(x, t)− y∞(x)| as λ→ 0. Although FiDEs do not explicitly follow this
gradient flow, the analogy provides a useful interpretation: the FiDE-induced surrogate evolution
resembles a continuous-t analogue of proximal or subgradient descent, where Moreau smoothing
offers stability while preserving convergence guarantees. We refer to Appendix B.4 for further
discussion.
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4.2 Linear FiDEs and Convergence Guarantees
While Lemmas 2–4 provide a robust and general framework for ensuring convergence, finding a
suitable Lyapunov function for a specific φ is complicated by the fact that the latter is generally
unknown and at the very least is difficult to model. Li et al. [20] resort to learning φ and y0(x) using
neural networks. In contrast, Xing et al. [19] considered a more tractable case in which φ admits a
linear form in y. In this paper we adopt the same approach, first establishing the existence of a unique
equilibrium and the validity of a constructive variation-of-constants approach. If φ admits a linear
form in y, we obtain the following linear FiDE for each fixed x ∈ X

∂ty(x, t) = β(x, t) y(x, t) + u(x, t), t ∈ [0,∞), (7)

subject to some y0(x) = y(x, 0) ∈ R (i.e., finite for each x). This is a first-order linear, non-
autonomous ODE in t. We first establish the global existence of unique solutions and validity of the
variation-of-constants formula pointwise in x ∈ X (see Appendix C.1 for a proof).
Lemma 5. (Existence and Uniqueness for Linear FiDE) Let X ⊂ Rd be given and suppose that:
(A1) β(x, ·), u(x, ·) ∈ C([0,∞)); and (A2) y0(x) ∈ R. Then there exists a maximal time t∗(x) such
that a unique local solution y(x, ·) ∈ C1([0, t∗(x))) satisfying (7) exists and is given by

y(x, t) = e
∫ t
0
β(x,s)dsy0(x) +

∫ t

0

e
∫ t
s
β(x,z)dzu(x, s)ds, t ∈ [0, t∗(x)). (8)

Moreover, either t∗(x) =∞ or lim supt→t∗(x)− |y(x, t)| =∞ (finite-time blowup). If in addition:
(A3) ‖β(x, t)‖L∞(X×[0,∞)) < ∞ and ‖u(x, t)‖L∞(X×[0,∞)) < ∞, then t∗(x) = ∞. Now let
X ⊂ Rd be compact and suppose instead that: (B1) β(x, t), u(x, t) ∈ C(X × [0,∞)); (B2)
y0(x) ∈ C(X ); and (A3) above. Then there exists a unique solution y(x, t) ∈ C(X × [0,∞)),
y(x, ·) ∈ C1([0,∞)) of (7) given by (8).

Having established the conditions for existence, the following two lemmas guarantee pointwise or
uniform convergence of y(x, t) on X towards an equilibrium under some general conditions on X ,
y0(x), β(x, t) and u(x, t) (see Appendices C.2 and C.3 for proofs).
Theorem 1 (Linear FiDE Pointwise convergence). Let y(x, t) satisfy the LiFiDE (7) for each
fixed x ∈ X and assume: (1) for each x ∈ X , β(x, ·) ∈ C([0,∞)) ∩ L1

loc[0,∞), β(x, t) < 0,
∀ (x, t) ∈ X × [0,∞) and ∃β∗(x) ∈ R such that limt→∞ β(x, t) = β∗(x) < 0; (2) for each x ∈ X ,
u(x, ·) ∈ C([0,∞)) and limt→∞ u(x, t) = u∗(x) ∈ R; (3) ‖u(x, t)‖L∞(X×[0,∞)) = M <∞ and
‖β(x, t)‖L∞(X×[0,∞)) = λ <∞. Then

lim
t→∞

y(x, t) = −u∗(x)/β∗(x), ∀x ∈ X . (9)

The ‘long-time’ behavior of the solution y(x, t) is governed by the limiting values of the coefficients
β(x, t) and u(x, t). As t→∞, the original non-autonomous equation (7) effectively behaves like
the constant-coefficient equation

ẏ = β∗(x) y + u∗(x), (10)
which has the unique equilibrium point y∞(x) = −u∗(x)/β∗(x). Theorem 1 shows that the solution
y(x, t) does indeed tend to this equilibrium as t→∞ for each fixed x ∈ X .
Theorem 2 (Linear FiDE Uniform Convergence). Let y(x, t) satisfy (7). Assume: (1) y0(x) ∈ C(X );
(2) β(x, t) ∈ C(X×[0,∞)), β(x, t) < 0, ∀ (x, t) ∈ X×[0,∞), limt→∞ ‖β(x, t)−β∗(x)‖L∞(X ) =
0, β∗(x) ∈ C(X ); (3) u(x, t) ∈ C(X × [0,∞)), limt→∞ ‖u(x, t) − u∗(x)‖L∞(X ) = 0, u∗(x) ∈
C(X ); (4) ∃λ′ > 0 such that β∗(x) ≤ −λ′, ∀x ∈ X . Then

lim
t→∞

‖y(x, t) + u∗(x)/β∗(x)‖L∞(X ) = 0. (11)

Remark 1 (Consistency of assumptions). The conditions for convergence in Theorems 1 and 2 build
naturally upon the conditions established in Lemma 5. In particular, the continuity assumptions
β(x, ·), u(x, ·) ∈ C([0,∞)) ensure the existence of a unique classical solution y(x, t) ∈ C1. The
additional assumptions required for convergence (pointwise or uniform convergence of β(x, t)→
β∗(x) and u(x, t)→ u∗(x)) serve to control the long-time asymptotics of the system. That is, while
continuity ensures a solution exists, convergence of the coefficients guarantees that the solution
stabilises to an equilibrium. Moreover, the boundedness conditions in Theorem 1 and uniformity in
Theorem 2 (along with compactness of X ) allow us to lift the pointwise result to uniform convergence.
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Examples of coefficients that satisfy the assumptions in Theorems 1 and 2 are as follows.

1. Exponential decay: if β(x, t) = β∗(x) + δβ(x)e−µt, u(x, t) = u∗(x) + δu(x)e−µt with µ > 0
and δβ , δu ∈ C(X ), then uniform convergence holds.

2. Polynomial decay: slower convergence rates, e.g., with β(x, t) = β∗(x) + δβ(x)t−γ , γ > 1, will
suffice for pointwise convergence, since integrability over [0,∞) is preserved.

3. Time-invariant case: when β(x, t) ≡ β∗(x) < 0, u(x, t) ≡ u∗(x), the solution converges
exponentially to the equilibrium y∞(x) = −u∗(x)/β∗(x).

4. Bounded perturbations: β(x, t) = β∗(x) + ε(x, t) with bounded ε(x, t), oscillatory or decaying.
If ε(x, t)→ 0, the function converges to β∗(x). If it does so uniformly, then Theorem 2 applies. If
only pointwise convergence holds and ε(x, ·) ∈ L1([0,∞)), then Theorem 1 applies.

4.3 Tractable Autoregressive Gaussian Process Multi-Fidelity Surrogate
Based on the linear FiDE surrogate, we now introduce a tractable MF model that guarantees con-
vergence at least pointwise while maintaining the probabilistic framework of GPs. Let (Ω,F ,P)
be a probability space supporting two independent stochastic processes y0 : X × Ω → R and
u : X × [0,∞)× Ω→ R. We place Gaussian process priors over both

y0(x) ∼ GP(0, k0(x,x′)), u(x, t) ∼ GP(0, ku(x, t,x′, t′)). (12)

The joint law of (y0, u) is the product measure induced by P on Y0×U , reflecting their independence.
Under these assumptions we have the following result (see Appendix D).
Proposition 1. The linear model solution via the variation-of-constants formula

y(x, t) = e
∫ t
0
β(x,ξ) dξy0(x) +

∫ t

0

e
∫ t
s
β(x,ξ) dξu(x, s) ds (13)

is a zero-mean Gaussian process with covariance function k(x, t,x′, t′) =
Eω∼P[y(x, t;ω) y(x′, t′;ω)], given explicitly by

e
∫ t
0
β(x,ξ) dξe

∫ t′
0
β(x′,ξ) dξk0(x,x′) +

∫ t

0

∫ t′

0

e
∫ t
s
β(x,ξ) dξe

∫ t′
s′ β(x′,ξ) dξku(x, s,x′, s′) ds ds′. (14)

The integrals in the second term in Eq. (14) would in general require numerical quadrature. However,
they can be evaluated analytically for various forms of β(x, t), e.g., a constant β(x, t) = −β with
stationary kernels such as Matérn and periodic for ku(x, t,x, t′) (see Appendix E). We also assume
that ku(x, t,x, t′) = kx(x,x′) kt(t, t

′), in which kt(t, t′) = exp
(
−(t− t′)2/2`2

)
, while kx and

k0(x,x′) are kept arbitrary. This leads to the ‘LiFiDE kernel’

k(x, t,x, t′) = e−βte−βt
′
k0(x,x′) + kx(x,x′)I(t, t′), (15)

in which I(t, t′) = (
√
π`/2)(h(t′, t) + h(t, t′)), where h(t′, t) is given by [26]

eα
2 {
e−β`τ (erf (τ − α) + erf (t/`+ α))− e−β`τ̂ (erf (t′/`− α) + erf (α))

}
/(2β), (16)

with erf(·) denoting the error function, α = β`/
√

2, τ = (t− t′)/`, and τ̂ = (t+ t′)/`. The kernel
(15) is non-stationary. Its structure allows us to reduce the training time complexity of the MF
surrogate from O((

∑
f Nf )3) to O(

∑
f N

3
f ), where Nf is the number of fidelity f data points [19].

4.4 optimization Strategies Using Continuous Fidelity Acquisition Functions
There are several strategies for guiding the selection of the input x and fidelity t at each iteration. MF-
GP-UCB [11] uses fidelity-specific upper confidence bounds and selects query inputs by maximising
the minimum of a UCB acquisition across discrete fidelities. BOCA [3] extends this method to
continuous t, with the fidelity selected from a filtered set. cfKG [4] extends the KG acquisition
function to continuous fidelities by selecting the point (x, t) that maximises the expected reduction
in the high-fidelity posterior minimum. FABOLAS [16] is based on a cost-aware EI acquisition
function, in which the fidelity is typically a proxy. It models the validation loss and cost jointly as GPs
and selects (x, t) values that maximise improvement per cost. MF-DNN [18] approximates mutual
information between the function optimum and observations using a variational approximation,
enabling efficient acquisition in large neural network tuning problems.
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While some acquisition functions can be re-used across MF models, many (e.g., BOCA and cfKG) are
tightly coupled to specific fidelity models. In our experiments, BOCA consistently delivered the best
empirical performance among the methods above. It also provides theoretical guarantees alongside
practical performance, and an improved rate of convergence to the optimum compared to UCB. The
original formulation considers the fidelity set T = [0, 1] and input space X = [0, 1]d, with y(x, t) ∼
GP(0, κ), κ = κt(t, t

′)κx(x,x′). The key idea in BOCA is to exploit cheaper, approximate fidelities
t < 1 when they are sufficiently informative about the target function f(x) = y(x, 1). BOCA
filters the fidelity set using a cost constraint and a minimum uncertainty condition. By concentrating
expensive evaluations in a small, polynomially-dilated variant Xρ,n of a ‘high-information’ region
Xρ, BOCA achieves tighter regret bounds than GP-UCB and faster convergence. Additionally, BOCA
spends the majority of its evaluations on low-cost but informative fidelities, leading to improved
capital (Λ) efficiency. The region Xρ depends on a ‘fidelity gap’ ξ(t) =

√
1− κt(t, 1)2, which

controls the tightness of the bound. The following is an informal version of the simple regret r result
in terms of the mutual information γn (see Appendix F for full details).

Theorem 3 (Kandasamy et al. [3]). Let X = [0, 1]d, T = [0, 1] and y(x, t) ∼ GP(0, κ), κ =
κt(t, t

′)κx(x,x′). Choose δ ∈ (0, 1) and execute BOCA with βn = O(d log(n/δ)). Then, for any
α ∈ (0, 1), there exist ρ(α) > 0 such that for Λ large enough, with probability at least 1− δ

r(Λ) .
√
γnΛ(Xρ)n−1

Λ +
√
γnαΛ(X )nα−2

Λ , nΛ = bΛ/λ(1)c . (17)

For a fixed x,x′, the standard SE kernel, kSE enforces high correlation near the diagonal t ≈ t′,
with O(|t− t′|2) decay that is independent of t. This implies all fidelities are equally smooth and
informative. In practical scenarios, however, low-fidelity evaluations are often noisy or unstable.
In contrast, the LiFiDE kernel variance k(t, t) increases with t, and k(t, t′) has O(|t − t′|) decay
along the diagonal t ≈ t′, decreasing with t (see Appendix G). This models a convergent fidelity
process: evaluations become more stable and informative as fidelity increases, reflecting a more
realistic structure. For the SE kernel, ξ(t) = O(|t − T |) for |t − T | � 1 for a maximum fidelity
T . In contrast, for the LiFiDE kernel ξ(t) = O(

√
|t− T |) (see Remark G1). Although this leads

to looser regret guarantees via Xρ, the LiFiDE kernel offers stronger empirical performance due to
its convergence-aware structure and because it does not concentrate as sharply at t→ T , discarding
potentially useful results at low fidelity. Indeed, the experimental results will show that CAMO
conducts most of its exploration in low-fidelity regions, which reduces the query cost and leads to a
fast convergence rate in the early stages of the optimization process, without sacrificing accuracy.

5 Experimental Results
We assess CAMO on synthetic benchmarks, including continuous and discrete MFBO tasks, as well
as real-world engineering design tasks. We compare the results to those of: (1) BOCA with a standard
GP [3], (2) Fabolas [16], and (3) SMAC3 [27]. On discrete fidelity tasks, we compare the results to:
(1) AR [28], (2) ResGP [29], and (3) a GP [6], and discrete MFBO baselines (1) MF-UCB [30], (2)
MF-EI [10], and (3) cfKG [17].

Settings. We assess CAMO with the LiFiDE kernel Eq. (15). Except for DNN-MFBO, Fabolas, and
SMAC3 (original implementations and default settings), all methods were implemented in Pytorch.
All GP models used the SE Kernel for a fair comparison. Each model is updated for 200 steps using
an Adam optimizer with a learning rate of 0.01 to ensure model convergence. In each case, 10
low-fidelity and 4 high-fidelity designs were randomly selected to form the initial training set. We
repeated the experiments 20 times with random seeds and report the mean values. Figures showing
the actual optimization progress are provided in Appendix H. The optimization performance was
measured by the simple regret (γ), defined as the difference between the global optimum and the
best-queried design so far: γi = max f(x, T )−maxj<i f(xj , T ). All experiments were performed
on a workstation with an AMD 7800x CPU, Nvidia RTX4080 GPU, and 32GB RAM.

5.1 Synthetic Benchmark Evaluation
We consider: (1) three canonical continuous-fidelity tasks [31], the Park, Currin and Branin func-
tions; and (2) three further synthetic continuous-fidelity tasks [32], the nonlinear sin, Forrester, and
Bohachevsky functions. In the latter 3 we set f(x, t) = (1 − w(t))flow(x) + w(t)fhigh(x) with
w(t) = ln(9t+ 1). All functions are defined in Appendix I. The query costs were set to c(t) = 10t.
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Figure 1: Simple regret vs cost for all continuous fidelity functions functions.

Figure 2: Simple regret for the Borehole, Colville and Himmelblau functions.

We show γ on the six tasks under increasing query cost in Fig. 1, which clearly demonstrates the
superiority of CAMO across all tasks, with the exception of the non-linear sin at low cost. BOCA
also performs well on the Branin and Park functions. The results for different random seeds are
shown in Fig. H1–Fig. H9 in Appendix H to demonstrate the consistency of CAMO. These figures
also show that methods equipped with cfKG (including CAMO) are generally less competitive in
terms of γ and convergence speed compared to those with BOCA. To investigate the scalability of the
results in terms of d, we further evaluated CAMO on the Borehole, Colville [33], and Himmelblau
[34] functions (6, 4, and 2 design variables, respectively). The results are shown in Fig. 2. In these
cases the superiority of CAMO is just as pronounced, suggesting robustness as d increases.

One of the key factors in MFBO is the cost c(t) of querying the high-fidelity function. We conducted
experiments with different costs: c(t) = 10t, c(t) = 5t, and c(t) = log2(2 + t) for the Currin and
Bohachevsky functions. The results are shown in Fig. 3, and for the Forrester function in Fig. H10.
Clearly, CAMO outperforms all other methods under all cost settings. An exponential cost setting
is more challenging for all methods. The advantage of CAMO is increasingly significant from
c(t) = log2(2 + t) → 5t → 10t, which highlights the advantage of being convergence-aware in
MFBO by maximising the benefit/cost ratio. For a logarithmic cost setting, CAMO performs similarly
to BOCA because being “convergence-aware” is less “rewarded” when the cost also increases
logarithmically. In contrast, if the cost increases beyond linear, the advantage of CAMO becomes
significant. Such a setting is common in real-world applications, e.g., FEM (cubic complexity with
mesh resolution [35]) and Monte Carlo estimation (quadratic sample requirements [36]). Importantly,
CAMO always exhibits a fast convergence rate in the early stages of the optimization since it does
not discard useful low-fidelity information. This is consistent with the theoretical analysis.
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Figure 3: Continuous MFBO for the Currin (top row) and Bohachevsky (bottom row) functions using
logarithmic (log2(2 + t)), linear (5t), and exponential (10t) cost c(t).

Figure 4: Discrete MFBO on the Branin (left) and Currin functions (right).

Discrete MFBO Assessment. To examine performance on discrete MFBO tasks, we discretise
the Branin and Currin into ten discrete fidelities. We also compare with the DNN-MFBO method
[18]. The results under increasing query costs are shown in Fig. 4. We can see that CAMO again
outperforms all other methods by a wide margin on the Branin function, while the advantages are
clear but less dramatic on the Currin function. DNN-MFBO essentially failed.

For MFBO, the time for model update and acquisition-function based optimization is also crucial.
The average times (over all the benchmarks, iterations, and seeds) of the optimization queries and
model training are shown in Fig. 5 for different query and MF approaches, respectively. Despite the
favourable performance reported in Li et al. [18], MutualInfo and FABOLAS are impractically slow
in terms of query time. SMAC3 has the shortest simulation time, but it is not competitive in terms of
accuracy and convergence rate. CAMO is intermediate between these methods for both query time
using BOCA and training, achieving a good trade-off between performance and computational cost.

5.2 Real-World Applications in Engineering Design
We now consider real-world continuous tasks (see Appendix J). (1) Mechanical Plate Vibration.
We optimize the natural vibration frequency of a 3-D, supported, square elastic plate (10× 10× 1
in m) over the Young’s modulus (∈ [100, 500][GPa]), Poisson ratio (∈ [0.2, 0.6]) and mass density
(∈ [6× 103, 9× 103][kgm−3]). This is a parametric FE modal analysis. The maximum element size
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Figure 5: From left to right: average query time on discretised tasks, average query time on continuous
tasks, average training on discretised tasks, and average training time on continuous tasks.

Figure 6: MFBO on the Mechanical Plate Vibration (left) and Thermal Conductor Design (right)
problems with different query cost.

hmax ∈ [0.2, 1.2][m] is the fidelity. (2) Thermal Conductor. We optimize the shape of an elliptical
central hole in which a conductor is placed in order to maximise a heat conduction rate. The hole
shape is parameterised by the semi-major and semi-minor axes and orientation angle. We used the
time to reach 70 degrees as the objective function value. hmax ∈ [0.1, 2][m] is the fidelity.

The γ versus simulation cost is shown in Fig. 6. The cost scales according to the inverse cubic
of the maximal element size, which is the standard computational complexity for FEM problems.
CAMO and BOCA outperform the other methods in both tasks by a significant margin. In particular,
the fast convergence of CAMO carries over to these real-world problems, with BOCA yielding
comparable performance on the Thermal Conductor and a slightly worse performance than CAMO
on the Mechanical Plate Vibration. In terms of wall clock time to a given γ, CAMO and BOCA are
very similar, with FABOLAS again impractically slow.

6 Conclusions
We propose CAMO, a convergence-aware MFBO framework based on LiFiDEs for continuous
fidelity problems. CAMO captures the fidelity-wise evolution of the objective function and provides
a theoretically-grounded surrogate model. For general FiDE we used a Lyapunov-based analysis to
establish convergence guarantees even for non-smooth objectives. Combined with BOCA, CAMO
delivers strong empirical performance, consistently outperforming state-of-the-art MFBO methods
on synthetic and real-world tasks. Crucially, CAMO adapts to and exploits informative low-fidelity
queries rather than discarding them, enabling more efficient use of the evaluation budget and fast
convergence.

CAMO has several limitations that are worth noting. Computationally, the kernel optimization adds
roughly 20% overhead compared to standard GP methods, and the approach requires sufficient
low-fidelity data to properly model convergence behaviour. Methodologically, the LiFDE assumption
may not capture all (especially non-monotonic) convergence patterns, and performance depends
on the existence of a good cost model. CAMO is suited to scenarios in which the computational
budget is the primary constraint and early progress is valuable. For unlimited budget scenarios, more
aggressive high-fidelity exploration might be preferable.
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Appendices
A Gaussian process

Consider observations yi = f(xi) + ε, i = 1, . . . , N , in which ε ∼ N (0, σ2) is additive noise. In a GP model,
a prior distribution is placed over f(x)

f(x)|θ ∼ GP
(
m0(x), k(x,x′|θ)

)
, (A1)

in which m0(x) = E[f(x)] is the mean function and k(x,x′|θθθ) = E[(f(x) −m0(x))(f(x′) −m0(x′))] is
the covariance function. A set of hyperparameters θθθ fully characterises the kernel function and in most cases the
data is centred (the empirical mean is subtracted) to justify setting m0(x) ≡ 0 as a simplification. Various forms
can be adopted for the covariance function, with the following exponential ARD kernel being the most widely
favoured

k(x,x′|θθθ) = θ0 exp
(
−(x− x′)>diag(θ−2

1 , . . . , θ−2
l )(x− x′)

)
. (A2)

By the key property of GPs, the joint distribution of f(xi), i = 1, . . . , N , is a multivariate Gaussian. This leads
to the following conditional predictive posterior conditioned on y = (y1, . . . , yN )> and x

f̂(x)|y ∼ N (µ(x), v(x,x′)) ,

µ(x) = k(x)>
(
K + σ2I

)−1
y,

v(x) = σ2 + k(x,x)− k>(x)
(
K + σ2I

)−1
k(x).

(A3)

in which K = [Kij ], Kij = k(xi,xj), i, j = 1, . . . , N , is the covariance matrix, and k =
(k(xi,x, . . . , k(xN ,x)). The hyperparameters are typically inferred from the likelihood, given by

L = −1

2
y>(K + σ2I)−1y − 1

2
ln |K + σ2I| − N

2
log(2π). (A4)

B Well-posedness of general FiDEs

B.1 Existence and uniqueness

Here we consider the well-posedness of solutions to the general Fidelity Differential Equation (FiDE)

∂ty(x, t) = φ(x, t, y(x, t)), (x, t) ∈ X × [0,∞), (B1)

in which X is any nonempty set, subject to some initial condition y(x, 0) = y0(x).

Lemma 1. [Existence and Regularity for General FiDEs] Let X ⊆ Rd be a non-empty set. Consider the system
(B1) and assume that:

1. for each fixed x ∈ X , the function (t, y) 7→ φ(x, t, y) is continuous on [0,∞)× R

2. for each fixed x ∈ X , φ(x, t, y) is locally Lipschitz continuous in y, uniformly for t in compact subsets
of [0,∞)

3. the initial condition y0(x) ∈ R is finite for each x.

Then for each fixed x ∈ X , there exists a unique maximal solution y(x, t) ∈ C1([0, t∗(x))) defined on some
maximal interval [0, t∗(x)), with 0 < t∗(x) ≤ ∞. Moreover:

1. if y(x, t) remains bounded for all t ∈ [0,∞), then t∗(x) = ∞ and the solution exists globally on
[0,∞)

2. if φ is globally Lipschitz in y, uniformly in t, then the solution exists globally on [0,∞).

Proof. Fix x ∈ X , then the equation becomes an ordinary differential equation (ODE) in the variable t

ẏ = φ(x, t, y), y(0) = y0(x). (B2)
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Since by assumption (1), the function (t, y) 7→ φ(x, t, y) is continuous, and by assumption (2), φ(x, t, y) is
locally Lipschitz in y, it follows from the Picard–Lindelöf Theorem that there exists a local time t∗(x) > 0
and a unique solution t 7→ y(x, t) ∈ C1([0, t∗(x))) that solves the ODE for t ∈ [0, t∗(x)). Uniqueness of
the solution y(x, t) follows directly from the local Lipschitz property of φ in y, which prevents branching of
solutions and ensures that the solution is unique once y0(x) is fixed.

By the general theory of ODEs (continuation theorems) [37], the maximal existence time t∗(x) satisfies

t∗(x) =∞ or lim sup
t→t∗(x)−

|y(x, t)| =∞, (B3)

the latter representing blow-up of the solution in a finite time t∗. Thus, if we can guarantee that y(x, t) remains
bounded for all t ∈ [0,∞), then it follows that t∗(x) =∞, and the solution extends globally. If φ is globally
Lipschitz in y uniformly in t, then no blow-up can occur, and the solution is guaranteed to exist globally. Since
φ is continuous in (t, y) by assumption (1), and y(x, t) solves the ODE, standard regularity theory tells us
that y(x, ·) ∈ C1([0, t∗(x))). Specifically, ∂ty(x, t) = φ(x, t, y(x, t)) is continuous, as the composition of
continuous functions.

B.2 Pointwise and Uniform Convergence for FiDE

We now consider the convergence of solutions to (B1). The following results provide a practical set of conditions
under which y(x, t)→ y∞(x) pointwise or uniform in x.

Lemma 2 (Pointwise Convergence for FiDE). Let y(x, ·) ∈ C1([0,∞)), x ∈ X be a solution to (1) with
y0(x) < ∞ for each x ∈ X . Suppose there exists a Lyapunov function V : X × [0,∞) × R → R,
(x, t, y) 7→ V (x, t, y), and that the following conditions are satisfied:

1. V ∈ C0,1,1(X × [0,∞)× R)

2. V (x, t, y) ≥ 0, ∀ (x, t, y) ∈ X × [0,∞)× R and V (x, t, y) = 0 iff y = y∞(x)

3. for all (x, t) ∈ X × [0,∞)

V̇ (x, t, y) = ∂yV (x, t, y)φ(x, t, y) + ∂tV (x, t, y) < 0 (B4)

Then y(x, t)→ y∞(x) pointwise on X , i.e., limt→∞ y(x, t) = y∞(x) for each x ∈ X .

Proof. For each t, define the function yt : X → R, x 7→ y(x, t). Under the assumptions, we will show that the
family of functions (yt)t≥0 converges pointwise to y∞ on X , that is

lim
t→∞

y(x, t) = y∞(x), ∀x ∈ X . (B5)

Fix x ∈ X and consider the function t 7→ V (x, t, y(x, t)). By the chain rule, and using the assumptions, we
have

V̇ (x, t, y) = ∂yV (x, t, y) ∂ty(x, t) + ∂tV (x, t, y)

= ∂yV (x, t, y)φ(x, t, y) + ∂tV (x, t, y),
(B6)

using ∂ty(x, t) = φ(x, t, y). By assumption, d
dt
V (x, t, y) is strictly negative, so that V (x, t, y) is strictly

decreasing along the trajectory for each fixed x. Furthermore, V (x, t, y) > 0 for all t ≥ 0 by assumption, and
V (x, t, y) is bounded below by 0. Now t 7→ V (x, y(x, t), t) is a continuous-time function and so for a fixed x,
(V (x, y(x, t), t))t∈[0,∞) ⊂ R defines a bounded, monotone net on the directed set ([0,∞),≤), where ≤ is the
usual order relation. Therefore, this net converges to its infimum

∃ lim
t→∞

V ((x, t, y(x, t))) = inf
t∈[0,∞)

V ((x, t, y(x, t))) = L(x) ≥ 0. (B7)

Since V is strictly decreasing in t and positive, its limit must be 0 (otherwise it would eventually fall below
L(x), a contradiction) and thus L(x) = 0, i.e.

lim
t→∞

V (x, t, y) = 0. (B8)

Finally, V (x, t, y) = 0 if and only if y = y∞(x), and thus

lim
t→∞

y(x, t) = y∞(x). (B9)

Since x ∈ X was arbitrary, we obtain pointwise convergence on X .

Lemma 3 (Uniform Convergence for FiDE). Let y(x, ·) ∈ C1([0,∞)), x ∈ X is a solution to (1). Suppose
there exists a Lyapunov function V : X × [0,∞)×R→ R, (x, t, y) 7→ V (x, t, y) and the following conditions
are satisfied:
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1. y0(x) ∈ C(X )

2. V ∈ C0,1,2(X × [0,∞)× R)

3. V (x, t, y) ≥ 0, ∀ (x, t, y) ∈ X × [0,∞)× R and V (x, t, y) = 0 iff y = y∞(x)

4. ∃ cmin > 0 such that c(x, t) ≥ cmin > 0, ∀(x, t) ∈ X × [0,∞), in which c(x, t) =
1
2
∂2
yyV (x, t, y∞(x))

5. for all x, t ∈ X × [0,∞), ∃α > 0 such that

V̇ (x, t, y) = ∂yV (x, t, y)φ(x, t, y) + ∂tV (x, t, y) ≤ −αV (x, t, y) (B10)

6. ∃Vmax such that ‖V (x, 0, y(x, 0))‖L∞(X ) ≤ Vmax

Then limt→∞ y(x, t) = y∞(x) uniformly on X , with

‖y(x, t)− y∞(x)‖L∞(X ) ≤ ce−αt, c =

√
Vmax

cmin
. (B11)

Proof. From assumption 5 and Grönwall’s inequality [37], we have for all (x, t) ∈ X × [0,∞)

V (x, y(x, t), t) ≤ V (x, y0(x), 0)e−αt. (B12)

By the smoothness assumption V ∈ C0,1,2(X × [0,∞)× R), a Taylor expansion around y = y∞(x) yields,
for each (x, t)

V (x, y(x, t), t) ≥ c(x, t)|y(x, t)− y∞(x)|2, (B13)
in which c(x, t) = 1

2
∂2
yyV (x, y∞(x), t), and by assumption 4, c(x, t) ≥ cmin > 0 uniformly.

Thus
|y(x, t)− y∞(x)| ≤ 1

c(x, t)

√
V (x, y(x, t), t) ≤ 1

cmin

√
V (x, y0(x), 0)e−αt/2. (B14)

Taking the supremum over X yields

‖y(x, t)− y∞(x)‖L∞(X ) ≤
√
Vmax

cmin
e−αt/2, (B15)

which proves uniform convergence.

B.3 Non-smooth Lyapunov functions

Lemma B1. [Convergence for non-smooth convex Lyapunov function] Let X be a nonempty set and let (x, t)
satisfy (B1). Define V (x, y, t) = |y − y∞(x)| for (x, y, t) ∈ X × R× [0,∞). Suppose that for each x ∈ X :

1. The map t 7→ y(x, t) is C1([0,∞))

2. Let ∂yV (x, y, t) be the subdifferential mapping of y 7→ V (x, y, t). For every (x, t) ∈ X × [0,∞)
and every ξ(x, t) ∈ ∂yV (x, y(x, t), t), we have

ξ(x, t)φ(x, t, y(x, t)) ≤ −αV (x, y(x, t), t) (B16)

for some constant α > 0 independent of x and t.

Then for each x ∈ X and every t ∈ [0,∞),

|y(x, t)− y∞(x)| ≤ |y(x, 0)− y∞(x)|e−αt. (B17)

If, moreover

3 ‖y(x, 0)− y∞(x)‖L∞(X ) = ` <∞

the convergence is uniform in x ∈ X

‖y(·, t)− y∞(·)‖L∞(X ) ≤ `e−αt, ∀t ∈ [0,∞). (B18)

Proof. For each fixed (x, t) ∈ X × [0,∞), the map

u[x, t](·) : R→ R, y 7→ V (x, y, t) (B19)
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is convex and 1-Lipschitz continuous in y. For a fixed x ∈ X , we also define the function

v[x](·) : [0,∞)→ R, t 7→ V (x, y(x, t), t) (B20)

y(x, ·) ∈ AC([0,∞)) (absolutely continuous) since it is in C1([0,∞)), and thus the composite map v[x](·) is
absolutely continuous on [0,∞). By the properties of absolutely continuous functions, v[x](·) is differentiable
almost everywhere, and its upper right Dini derivative

D+v[x](t) = lim sup
h→0+

v[x](t+ h)− v[x](t)

h
(B21)

exists for every t ∈ [0,∞).

The subdifferential at a point y∗ of the convex function u[x, t](·) is defined as the set of subgradients
∂u[x, t](y∗) = {g ∈ R : u[x, t](y) ≥ u[x, t](y∗) + g(y − y∗), ∀y ∈ R} [24, 38]. In the present case,
the set-valued subdifferential mapping y 7→ ∂u[x, t](y), R→ 2R is given by

∂u[x, t](y) = ∂|y(x, t)− y∞(x)| =


{+1}, y(x, t) > y∞(x),

{−1}, y(x, t) < y∞(x),

[−1, 1], y(x, t) = y∞(x).

(B22)

Applying the chain rule to u[x, t](·) and using the definition of the subdifferential mapping of a convex function
we obtain

v̇[x](t) ∈ ∂yu[x, t](y)∂ty(x, t) = ∂yu[x, t](y)φ(x, t, y(x, t)), a.e. t ∈ [0,∞) (B23)

by using the definition of y. Given assumption (2), for any subgradient ξ(x, t) ∈ ∂u[x, t](y) ∈ R, we have

ξ(x, t)φ(x, t, y(x, t)) ≤ −αv[x](t), (B24)

which holds for t ∈ [0,∞) a.e and pointwise in x ∈ X , with y = y(x, t) fixed. Thus, for t ∈ [0,∞) a.e.

v̇[x](t) ≤ −αv[x](t). (B25)

Since v[x](t) ∈ AC([0,∞)), by the standard properties of Dini derivatives, this inequality extends to the upper
Dini derivative, yielding

D+v[x](t) ≤ −αv[x](t), ∀ t ∈ [0,∞). (B26)

Applying the generalised Grönwall inequality for upper Dini derivatives (which states that ifD+u(t) ≤ −αu(t),
then u(t) ≤ u(0)e−αt), we obtain

V (x, y(x, t), t) ≤ V (x, y(x, 0), 0)e−αt. (B27)

Recalling that V (x, y, t) = |y − y∞(x)|, this yields

|y(x, t)− y∞(x)| ≤ |y(x, 0)− y∞(x)|e−αt, ∀ t ∈ [0,∞), (B28)

pointwise x ∈ X . By assumption (3) this holds in the L∞(X ) norm by taking the sup on both sides, i.e.

‖y(·, t)− y∞(·)‖L∞(X ) ≤ `e−αt, ∀t ∈ [0,∞). (B29)

This result can be extended to non-convex Lyapunov functions by using the Clarke subdifferential [24]. We first
introduce some definitions. Let X be a Banach space with dual X∗. The weak ∗ topology on X∗ is the coarsest
topology such that all evaluation maps f 7→ f(x) for x ∈ X are continuous. That is, fα → f in the weak∗

topology iff fα(x)→ f(x) for all x ∈ X . Now let f : Rn → R be locally Lipschitz. The Clarke subdifferential
of f at x is defined as

∂Cf(x) = co
{

lim
k→∞

∇f(xk) : xk → x, f differentiable at xk
}
, (B30)

in which co denotes the convex hull of a set. This set is always nonempty, convex, and closed. If f = g ◦ h,
where g : R→ R and h : R→ Rn are locally Lipschitz, then for any t ∈ R ([24], Chain Rule Theorem 2.3.9)

∂Cf(t) ⊂ cow
∗
{αζ : α ∈ ∂Cg(h(t)), ζ ∈ ∂Ch(t)} , (B31)

in which cow
∗
{·} denotes the closure of the convex hull in the weak∗ topology on R∗ ∼= R. In finite dimensions,

notably in our case R, this is simply the norm-closed convex hull and the standard-norm, weak, and weak∗

topologies are equivalent.
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If we set h(t) = y(x, t) and g(y) = u[x](y) (we assume V has no explicit dependence on t), then f(t) =
v[x](t) as previously defined. Since y(x, ·) ∈ C1([0,∞)), ∂Cy(t) = {∂ty(x, t)}, so that

∂Cv[x](t) ⊂ co {α∂ty(x, t) : α ∈ ∂Cu[x](y)} . (B32)

Now, the image of a convex set under a linear map is convex, and therefore (B32) reduces to

∂Cv[x](t) ⊂ ∂ty(x, t)∂Cu[x](y), (B33)

since cow
∗
≡ co and furthermore the Clarke subdifferential is already closed and convex.

We know that the composition v[x](t) = V (x, y(x, t), t) ∈ AC([0,∞)) because V is locally Lipschitz in y
and v is differentiable. Then by Clarke’s Chain Rule Theorem above

v̇[x](t) ∈ ∂ty(x, t)∂Cu[x](y) a.e. t ∈ [0,∞). (B34)

If we assume that
ξ(x, t)φ(x, t, y(x, t)) ≤ −αv[x](t), ∀ξ(x, t) ∈ ∂Cu[x](y), (B35)

then
D+v[x](t) ≤ −αv[x](t) ∀t ∈ [0,∞). (B36)

We can then use Grönwall’s inequality and take the supremum over x ∈ X to obtain a uniform bound. This
proves the following lemma.

Lemma 4. Let X be a nonempty set, and let y : X × [0,∞) → R be such that for each x ∈ X , y(x, ·) ∈
C1[0,∞). Let V : X × R→ R, (x, y)→ V (x, y(x, t)) satisfy the following conditions

1. For every fixed (x, t), the map y 7→ V (x, y, t) is locally Lipschitz.

2. For each fixed (x, t) ∈ X × [0,∞), define u[x](·) : R → R, y 7→ V (x, y), and for a fixed x ∈ X ,
define v[x](·) : [0,∞) → R, t 7→ V (x, y(x, t)). Assume that for all (x, t) ∈ X × [0,∞) and all
ξ(x, t) ∈ ∂Cu[x](y) the inequality

ξ(x, t)φ(x, t, y(x, t)) ≤ −αv[x](t) (B37)

holds for some constant α > 0, independent of x and t.

3. The initial deviation is bounded: ‖y(·, 0)− y∞(·)‖L∞(X ) <∞.

Then, for all t ∈ [0,∞), we have

‖y(·, t)− y∞(·)‖L∞(X ) ≤ ‖y(·, 0)− y∞(·)‖L∞(X )e
−αt. (B38)

B.4 Connection to Subgradient Flows and Proximal Methods

We have analysed the convergence of fidelity-indexed systems y : X × [0,∞)→ R, which serve as multi-fidelity
surrogate models for a high-fidelity target function y∞ : X → R. These surrogates evolve over fidelity index t
according to the FiDE dynamics (1). When a non-smooth Lyapunov function such as V (x, y, t) = |y − y∞(x)|
is used to study convergence, the time evolution must be interpreted using subdifferential calculus. In particular,
the upper Dini derivative satisfies the inclusion

D+V (x, y(x, t), t) ∈ ξ(x, t)φ(x, t, y(x, t)) +
∂V

∂t
(x, y(x, t), t), (B39)

in which ξ(x, t) ∈ ∂yV (x, y(x, t), t) is a subgradient. For example, when V (x, y, t) = |y − y∞(x)|,
∂yV (x, y, t) is given by (B22). This structure defines a differential inclusion, and is directly analogous to
subgradient flows commonly used in convex optimization, particularly for non-smooth regularisation problems
such as LASSO. In these cases, the evolution of a state x(t) under a non-smooth objective g is given by

ẋ(t) ∈ −∂g(x(t)). (B40)

For the case in Lemma B1, the surrogate y(x, t) evolves by descent on the ‘fidelity error’ g(y) = |y − y∞(x)|,
driving it asymptotically towards the equilibrium y∞(x). Under mild monotonicity assumptions on φ, this
descent yields exponential convergence, analogous to the behavior of proximal-point iterations in optimization.

This framework extends naturally to more general non-smooth Lyapunov functions, such as the elastic-net form

V (x, y, t) = λ1|y − y∞(x)|+ λ2(y − y∞(x))2, (B41)

or group sparsity objectives for vector-valued surrogates y : X → Rd

V (x, y, t) =
∑
g∈G

λg‖yg(x, t)− y∞,g(x)‖2, (B42)
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in which G is a partitioning of the coordinates. In all such cases, the surrogate y(x, t) evolves via a subdifferential
inclusion that mirrors proximal-map dynamics in optimization, linking multi-fidelity modelling with tools from
modern sparse learning and non-smooth convex analysis.

The subgradient dynamics discussed above can also be viewed as a limiting case of smooth gradient flows applied
to a smoothed surrogate objective. In convex analysis, the Moreau envelope provides a classical smoothing of a
non-smooth function. For a convex, lower semi-continuous function f : R→ R, the envelope is defined as [25]

fλ(x) = inf
z∈R

{
f(z) +

1

2λ
|x− z|2

}
, (B43)

with∇fλ(x) = 1
λ

(x− proxλf (x)). This provides a differentiable approximation of f , and as λ→ 0, we have
fλ(y)→ f(y) pointwise, and∇fλ(y)→ ∂f(y) in the sense of graphical (or Mosco) convergence.

While the actual FiDE dynamics are not given by a gradient flow, the Lyapunov convergence analysis admits
a natural interpretation via these smoothed flows. For instance, using the fidelity error function f(y) =
|y − y∞(x)|, we define the Moreau envelope

Vλ(x, y) = inf
z∈R

{
|z − y∞(x)|+ 1

2λ
(y − z)2

}
. (B44)

This yields the auxiliary gradient flow

∂tyλ(x, t) = −∇yVλ(x, yλ(x, t)), (B45)

which approximates the subgradient dynamics

∂ty(x, t) ∈ −∂|y(x, t)− y∞(x)| (B46)

as λ→ 0. While this flow is not the governing equation for y(x, t) in the FiDE, it serves as a useful analytical
proxy, capturing the key descent structure and convergence behaviour of the surrogate. From this point of view,
the Lyapunov function represents a fidelity error whose decay over t encodes asymptotic convergence to the
high-fidelity limit.

C Well-Posedness and Convergence of Linear FiDE: Proofs

We consider the linear FiDE

∂ty(x, t) = β(x, t)y(x, t) + u(x, t), (x, t) ∈ X × [0,∞), (C1)

subject to an initial condition y0(x) = y(x, 0).

C.1 Proof of Lemma 5

Proof. Let X ⊂ Rd be non-empty and fix x ∈ X . Suppose that:

(A1) β(x, ·), u(x, ·) ∈ C([0,∞))

(A2) y0(x) ∈ R

Define φ(x, t, y) = β(x, t) y+ u(x, t). For fixed x, the map φ(x, ·, ·) is continuous in (t, y) since both β(x, t)
and u(x, t) are continuous in t. Moreover, φ is globally Lipschitz in y since

|φ(x, t, y1)− φ(x, t, y2)| = |β(x, t)| |y1 − y2|. (C2)

Thus, |β(x, t)| acts as a Lipschitz constant (depending only on t). By the Picard–Lindelöf Theorem, there exists
a unique local solution y(x, t) ∈ C1 defined on some interval [0, t∗(x)).

Now suppose additionally that: (A3) ‖β(x, t)‖L∞([0,∞)) < ∞ and ‖u(x, t)‖L∞([0,∞)) < ∞. Then the
right-hand side of the ODE

φ(x, t, y(x, t)) = β(x, t)y(x, t) + u(x, t) (C3)
remains bounded on compact intervals of [0,∞). Therefore, the solution y(x, t) cannot blow up in finite time,
and the local solution can be extended globally to [0,∞), i.e., t∗(x) =∞, and y(x, t) ∈ C1([0,∞)).

Define the integrating factor µ(x, t) = e
∫ t
0 β(x,s) ds. Then

d

dt
(µ(x, t)y(x, t)) = u(x, t)µ(x, t), (C4)
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and integrating both sides yields the variation of constants formula

y(x, t) = e
∫ t
0 β(x,s) dsy0(x) +

∫ t

0

e
∫ t
s β(x,z) dzu(x, s) ds. (C5)

Now Let X ⊂ Rd be compact, and suppose that:

(B1) β(x, t), u(x, t) ∈ C(X × [0,∞))

(B2) y0(x) ∈ C(X )

in addition to (A3). Then for each (x, t) ∈ X × [0,∞), the solution is given by the variation-of-constants
formula

y(x, t) = e
∫ t
0 β(x,s) dsy0(x) +

∫ t

0

e
∫ t
s β(x,z) dzu(x, s) ds. (C6)

We now show that y(x, t) ∈ C(X × [0,∞)). Define

F1(x, t) = e
∫ t
0 β(x,s) dsy0(x). (C7)

Since β(x, s) ∈ C(X × [0,∞)), the map

(x, t) 7→
∫ t

0

β(x, s) ds (C8)

is continuous. The exponential function is continuous, and y0(x) ∈ C(X ), so the product

(x, t) 7→ e
∫ t
0 β(x,s) dsy0(x) (C9)

is continuous on X × [0,∞).

Now define

F2(x, t) =

∫ t

0

e
∫ t
s β(x,z) dzu(x, s) ds. (C10)

and denote the integrand by
f(x, t, s) = e

∫ t
s β(x,z) dzu(x, s). (C11)

Since β(x, z) ∈ C(X × [0,∞)), the map (x, t, s) 7→
∫ t
s
β(x, z) dz is continuous. Since u(x, s) ∈ C(X ×

[0,∞)), it follows that f(x, t, s) ∈ C(X × [0,∞)2). Due to the compactness of X and β, u ∈ L∞, the
integrand is uniformly bounded. Therefore, the parameter-dependent integral

F2(x, t) =

∫ t

0

f(x, t, s) ds (C12)

is continuous in (x, t). Since both terms F1(x, t) and F2(x, t) are continuous, it follows that

y(x, t) = F1(x, t) + F2(x, t) ∈ C(X × [0,∞)). (C13)

C.2 Proof of Theorem 1

Assume the following:

1. For each x ∈ X , we have β(x, ·) ∈ C([0,∞)) ∩ L1
loc([0,∞)), β(x, t) < 0, ∀(x, t) ∈ X × [0,∞)

and limt→∞ β(x, t) = β∗(x) < 0

2. For each x ∈ X , u(x, ·) ∈ C([0,∞)), and limt→∞ u(x, t) = u∗(x) ∈ R
3. ‖u(x, t)‖L∞(X×[0,∞)) = M <∞ and ‖β(x, t)‖L∞(X×[0,∞)) = λ <∞

To prove Theorem 1 we will require the following Proposition.
Proposition C1. For each fixed x ∈ X and each r ≥ 0, the following holds∫ t

t−r
β(x, u) du→ rβ∗(x), t→∞. (C14)

Proof. Since β(x, t)→ β∗(x) pointwise in x ∈ X , for any δ > 0, ∃ t0 > 0 such that

|β(x, t)− β∗(x)| < δ, ∀ t ≥ t0. (C15)
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For a fixed r > 0, let δ = ε/r and define t∗ = t0 + r. Then for all t ≥ t∗, we have t− r ≥ t0, and so for all
u ∈ [t− r, t], with t ≥ t∗

|β(x, u)− β∗(x)| < ε

r
. (C16)

Therefore, for all t ≥ t∗∣∣∣∣∫ t

t−r
β(x, u) du− rβ∗(x)

∣∣∣∣ =

∣∣∣∣∫ t

t−r
(β(x, u)− β∗(x)) du

∣∣∣∣
≤
∫ t

t−r
|β(x, u)− β∗(x)| du

< ε

(C17)

From this we conclude that for each x ∈ X and each r ≥ 0∫ t

t−r
β(x, u) du→ rβ∗(x). (C18)

Proof of Theorem 1. Since we are concerned with pointwise convergence we need only employ the standard
topology on R. Under the assumptions above, the variation-of-constants formula for a fixed x ∈ X yields the
solution

y(x, t) = e
∫ t
0 β(x,s) dsy0(x) +

∫ t

0

e
∫ t
s β(x,u) duu(x, s) ds. (C19)

Since β(x, ·) ∈ C([0,∞)) ⊂ L1
loc([0,∞)), the integrals are well-defined. Moreover, since β(x, t) < 0 and

β(x, t)→ β∗(x) < 0, we have ∫ t

0

β(x, s) ds→ −∞, (C20)

so that
lim
t→∞

e
∫ t
0 β(x,s) dsy0(x) = 0. (C21)

Let us now define the inhomogeneous integral

I(x, t) =

∫ t

0

e
∫ t
s β(x,u) duu(x, s) ds. (C22)

Using the change of variable r = t− s, we obtain

I(x, t) =

∫ t

0

e
∫ t
t−r β(x,u) duu(x, t− r) dr. (C23)

If we set

ft(r) =

{
e
∫ t
t−r β(x,u) duu(x, t− r) 0 ≤ r ≤ t

0 r > t
, (C24)

then (ft(r))t∈[0,T ) defines a net and

I(x, t) =

∫ ∞
0

ft(r) dr. (C25)

Now define the following limiting function

f(r) = erβ
∗(x)u∗(x). (C26)

For each fixed r ≥ 0, u(x, t− r)→ u∗(x). Moreover, from Proposition C1, for each x ∈ X and each r ≥ 0∫ t

t−r
β(x, u) du→ rβ∗(x), (C27)

and therefore ft(r)→ f(r) pointwise in r.

Since the Dominated Convergence Theorem applies only to sequences, we now extract a sequence (ftn)n∈N
such that tn →∞ and consider the corresponding sequence of functions (ftn). This sequence satisfies

1. ftn(r)→ f(r) for each r ≥ 0 by the assumption on u and Proposition C1

2. |ftn(r)| ≤Merλ = g(r), in which g ∈ L1([0,∞)) (since λ < 0) is a dominating function
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Therefore, by the Dominated Convergence Theorem, we have

lim
n→∞

∫ ∞
0

ftn(r) dr =

∫ ∞
0

f(r) dr = u∗(x)

∫ ∞
0

erβ
∗(x)dr = −u

∗(x)

β∗(x)
. (C28)

Since the limit of the integral is independent of the particular sequence (tn), and because R is first-countable
(i.e., sequential), it follows that the net

(∫∞
0
ft(r) dr

)
t∈[0,∞)

converges to the same value

lim
t→∞

I(x, t) = −u
∗(x)

β∗(x)
. (C29)

This yields the final result

lim
t→∞

y(x, t) = −u
∗(x)

β∗(x)
. (C30)

C.3 Proof of Theorem 2

We again consider the linear FiDE problem (C1), now with X ⊂ Rd a compact set (closed and bounded). We
make the following assumptions:

1. y0(x) ∈ C(X );

2. β(x, t) ∈ C(X × [0,∞)), with

lim
t→∞

‖β(·, t)− β∗(·)‖L∞(X ) = 0, β∗(x) ∈ C(X ) (C31)

3. u(x, t) ∈ C(X × [0,∞)), with

lim
t→∞

‖u(·, t)− u∗(·)‖L∞(X ) = 0, u∗(x) ∈ C(X ) (C32)

4. There exists λ′ > 0 such that β∗(x) ≤ −λ′ for all x ∈ X .

We will require the following two Propositions in order to prove Theorem 2.
Proposition C2. There exist finite λ > 0 and M > 0 such that

β(x, t) ≤ −λ, ∀ (x, t) ∈ X × [0,∞) and ‖u(x, t)‖L∞(X×[0,∞)]) ≤M. (C33)

Proof. By compactness of X , β∗ ∈ C(X ), and by assumption (4), we have

β∗(x) ≤ −λ′ < 0 ∀x ∈ X . (C34)

Furthermore, since β(·, t)→ β∗(·) uniformly in L∞(X ), there exists T > 0 such that for all t ≥ T

‖β(·, t)− β∗(·)‖L∞(X ) < λ′/2. (C35)

Hence, for all x ∈ X , t ≥ T

β(x, t) ≤ β∗(x) + λ′/2 ≤ −λ′ + λ′/2 = −λ/2. (C36)

On the compact set X × [0, T ], β is continuous, hence bounded above. Let

λ = min

{
λ′/2, − sup

X×[0,T ]

β(x, t)

}
> 0. (C37)

noting that β(x, t) < 0, ∀(x, t) ∈ X × [0,∞), otherwise we can use λ = min
{
λ′/2, infX×[0,T ](−β(x, t))

}
.

Then for all x, t, β(x, t) ≤ −λ.

Similarly, uniform convergence of u(·, t)→ u∗(·) ∈ C(X ) implies there exists M > 0 such that

|u(x, t)| ≤M ∀ (x, t) ∈ X × [0,∞). (C38)

Proposition C3. For each fixed s ≥ 0, the following∫ t

s

β(x, u) du = β∗(x)(t− s) + o(t) (C39)

holds uniformly for x ∈ X as t→∞.
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Proof. By the uniform convergence of β, for every ε > 0, there exists U∗(ε) > 0 such that for all u ≥ U∗
‖β(x, u)− β∗(x)‖L∞(X ) < ε. (C40)

Let t ≥ U∗, then for any fixed s ≥ 0∫ t

s

β(x, u) du =

∫ U∗

s

β(x, u) du+

∫ t

U∗

β(x, u) du. (C41)

The first integral is over a finite interval, and is thus uniformly bounded in x. For the second term, observe that
β(x, u) = β∗(x) + δ(x, u), where |δ(x, u)| < ε for all u ≥ U∗. Thus∫ t

U∗

β(x, u) du = β∗(x)(t− U∗) +

∫ t

U∗

δ(x, u) du, (C42)

with ∣∣∣∣∫ t

U∗

δ(x, u) du

∣∣∣∣ ≤ ε(t− U∗). (C43)

Therefore, since s and U∗ are fixed∫ t

s

β(x, u) du = β∗(x)(t− s) + β∗(x)(s− U∗) +

∫ U∗

s

β(x, u) du+O(εt). (C44)

Thus
1

t

∣∣∣∣∫ t

s

β(x, u) du− β∗(x)(t− s)
∣∣∣∣ ≤ c

t
+ ε+ ε

U∗
t
, (C45)

in which c > 0 is a constant independent of t and x. As t→∞, the right-hand side tends to ε, and since ε > 0
was arbitrary, (C39) follows, uniformly in x for each fixed s ≥ 0.

Proof of Theorem 2. By the variation of constants formula, the solution is given by

y(x, t) = e
∫ t
0 β(x,s) dsy(x, 0) +

∫ t

0

e
∫ t
s β(x,u) duu(x, s) ds. (C46)

By assumption (4), and Proposition C2, we have β(x, t) ≤ −λ < 0 for all x, t, and so∫ t

0

β(x, s) ds ≤ −λt ⇒ e
∫ t
0 β(x,s) ds ≤ e−λt. (C47)

Furthermore, y0(x) ∈ C(X ) with compact X , so that ‖y0(x)‖L∞(X ) = K <∞. Thus,

lim
t→∞

sup
x∈X

∣∣∣e∫ t0 β(x,s) dsy0(x)
∣∣∣ ≤ lim

t→∞
Ke−λt = 0, (C48)

and therefore the first term in (C46) vanishes uniformly in x.

Now let

I(x, t) =

∫ t

0

ft(x, s) ds, ft(x, s) = e
∫ t
s β(x,u) duu(x, s). (C49)

From Proposition C3 ∫ t

s

β(x, u) du = β∗(x)(t− s) + o(t), (C50)

uniformly in x for each fixed s ≥ 0, and since β∗(x) < 0 we obtain

e
∫ t
s β(x,u) du ∼ eβ

∗(x)(t−s) → 0, (C51)

also uniformly in x for each fixed s ≥ 0. When analysing the behavior of ft(x, s) for all s ∈ [0, t], s and t may
diverge as t→∞. In order to handle the behavior across the entire range s ∈ [0, t], we use change of variable
r = t− s, so that

I(x, t) =

∫ t

0

e
∫ t
s β(x,u) duu(x, s) ds =

∫ t

0

e
∫ t
t−r β(x,u) duu(x, t− r) dr. (C52)

Now, for each fixed r ≥ 0, as t→∞, s = t− r →∞. Thus, both∫ t

t−r
β(x, u) du→ β∗(x)r and u(x, t− r)→ u∗(x) (C53)
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hold uniformly in x. Therefore

e
∫ t
t−r β(x,u) duu(x, t− r)→ u∗(x)eβ

∗(x)r (C54)

uniformly in x, for each fixed r ≥ 0. Moreover, since β(x, t) ≤ −λ < 0

e
∫ t
t−r β(x,u) du ≤ e−λr, (C55)

and therefore
|e
∫ t
t−r β(x,u) duu(x, t− r)| ≤Me−λr. (C56)

(ft(x, r))t≥0 forms a net rather than a sequence, so we pick any sequence (tn)n≥1 ⊂ [0,∞) such that
tn → ∞. For each fixed r ≥ 0, ftn(x, r) → u∗(x)eβ

∗(x)r uniformly in x, and |ftn(x, r)| ≤ Me−λr with
Me−λr ∈ L1([0,∞)). Thus, by the Dominated Convergence Theorem, we have

lim
n→∞

∫ ∞
0

ftn(x, r) dr =

∫ ∞
0

u∗(x)eβ
∗(x)r dr, uniformly in x. (C57)

Since the limit is independent of the chosen sequence, it follows that

lim
t→∞

I(x, t) = −u
∗(x)

β∗(x)
, uniformly in x. (C58)

We finally conclude that

lim
t→∞

∥∥∥∥y(x, t) +
u∗(x)

β∗(x)

∥∥∥∥
L∞(X )

= 0. (C59)

D Joint Covariance Function For Linear FiDE

Let (Ω,F ,P) be a probability space supporting two independent stochastic processes y0 : X × Ω → R and
u : X × [0,∞)× Ω→ R. We place Gaussian process priors over both

y0(x) ∼ GP(0, k0(x,x′)), u(x, t) ∼ GP(0, ku(x, t,x′, t′)). (D1)

The solution to the linear fidelity-indexed dynamical system is given by

y(x, t) = e
∫ t
0 β(x,z) dzy(x, 0) +

∫ t

0

e
∫ t
s β(x,z) dzu(x, s) ds, (D2)

in which β(x, t) is a deterministic function satisfying β(x, t) < 0 and regular enough to ensure well-defined
integrals. Thus, y(x, t) is a zero-mean GP (as an affine transformations of GPs), and its expectation is taken
over the joint measure induced by both GP priors. The covariance function of y(x, t) is therefore given by
k(x, t,x′, t′) = Eω∼P[y(x, t;ω)y(x′, t′;ω)] and expanding the product in the argument yields

y(x, t)y(x′, t′) = e
∫ t
0 β(x,z) dze

∫ t′
0 β(x′,z) dzy0(x)y0(x′)

+

∫ t

0

∫ t′

0

e
∫ t
s β(x,z) dze

∫ t′
s′ β(x′,z) dzu(x, s)u(x′, s′) ds ds′,

(D3)

noting that the cross terms disappear due to independence. Taking expectations and using linearity, the zero-mean
assumptions and Fubini’s Theorem (which holds for GPs under mild assumptions), we obtain

k(x, t,x′, t′) = E[y(x, t)y(x′, t′)]

= e
∫ t
0 β(x,z) dze

∫ t′
0 β(x′,z) dzk0(x,x′) +

∫ t

0

∫ t′

0

e
∫ t
s β(x,z) dze

∫ t′
s′ β(x′,z) dzku(x, s,x′, s′) ds ds′,

(D4)
using E[y0(x)y0(x′)] = k0(x,x′) and E[u(x, s)u(x′, s′)] = ku(x, s,x′, s′).

E Closed-from Kernels

Constant β(x, t) = β and Periodic Kernel.
Consider the periodic exponential sine squared (ESS) kernel, defined as

kut (t, t′) = σ2e
− 2 sin2(π|t−t′|/p)

`2 (E1)
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in which σ2 is the signal variance, ` is the length scale, and p is the period. Assuming a constant β(x, t) = β
we obtain

k(x, t,x′, t′) = eβ(t−t0)eβ(t′−t0)k0(x,x′) + σ2kux(x,x′)

∫ t

t0

∫ t′

t0

eβ(t−s)eβ(t′−s′)e
− 2 sin2(π|s−s′|/p)

`2 dsds′

= eβ(t−t0)eβ(t′−t0)k0(x,x′)

+ σ2kux(x,x′)

(
p

2π

∞∑
n=−∞

1

β − 2πin
p

[
e
β(t−t0)− 2πin

p
(t−t0) − eβ(t′−t0)− 2πin

p
(t′−t0)

]
× exp

(
− 2

`2

)
Bn

(
2

`2

))
,

(E2)
in which Bn(·) is the modified Bessel function of the first kind of order n.

Constant β(x, t) = β and Matérn Kernel.
The Matérn kernel with parameter ν is defined as

kut (t, t′) = σ2 21−ν

Γ(ν)

(√
2ν
|t− t′|
`

)ν
Kν

(√
2ν
|t− t′|
`

)
, (E3)

in which σ2 is the signal variance, ` is the characteristic length scale, Γ(·) is the gamma function, and Kν(·) is
the modified Bessel function of the second kind of order ν. For ν = 3

2
, the covariance function is

k(x, t,x′, t′) =eβ(t−t0)eβ(t′−t0)k0(x,x′)

+ σ2kux(x,x′)

∫ t

t0

∫ t′

t0

eβ(t−s)eβ(t′−s′)
(

1 +

√
3|s− s′|
`

)
exp

(
−
√

3|s− s′|
`

)
dsds′.

(E4)

The double integral in the second term can be evaluated analytically, yielding

k(x, t,x′, t′) = eβ(t−t0)eβ(t′−t0)k0(x,x′)

+ σ2kux(x,x′)

∫ t

t0

∫ t′

t0

eβ(t−s)eβ(t′−s′)
(

1 +

√
3|s− s′|
`

)
e−
√

3|s−s′|
` dsds′

= eβ(t−t0)eβ(t′−t0)k0(x,x′)

+ σ2kux(x,x′)

(
1

β2 − 3
`2

[
eβ(t−t0) + eβ(t′−t0) − e−

√
3
`
|t−t′|

(
eβ(t−t0)−

√
3
`

(t′−t0) + eβ(t′−t0)−
√

3
`

(t−t0)

)]

+

√
3

`

[
1

β2 − 3
`2

(
eβ(t−t0) + eβ(t′−t0)

)
− 1

β +
√

3
`

(
eβ(t−t0)−

√
3
`

(t−t0) + eβ(t′−t0)−
√

3
`

(t′−t0)

)]

− 1

β +
√

3
`

[
eβ(t−t0)−

√
3
`

(t−t0) + eβ(t′−t0)−
√

3
`

(t′−t0)

]

+
1

β −
√

3
`

[
eβ(t−t0)+

√
3
`

(t−t0) + eβ(t′−t0)+
√

3
`

(t′−t0)

])
.

(E5)
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For ν = 5
2

, we obtain

k(x, t,x′, t′) = eβ(t−t0)eβ(t′−t0)k0(x,x′)

+ σ2kux(x,x′)

∫ t

t0

∫ t′

t0

eβ(t−s)eβ(t′−s′)
(

1 +

√
5|s− s′|
`

+
5(s− s′)2

3`2

)
e−
√

5|s−s′|
` dsds′

= eβ(t−t0)eβ(t′−t0)k0(x,x′)

+ σ2kux(x,x′)

(
1

β2 − 5
`2

[
eβ(t−t0) + eβ(t′−t0) − e−

√
5
`
|t−t′|

(
eβ(t−t0)−

√
5
`

(t′−t0) + eβ(t′−t0)−
√

5
`

(t−t0)

)]

+

√
5

`

[
1

β2 − 5
`2

(
eβ(t−t0) + eβ(t′−t0)

)
− 1

β +
√

5
`

(
eβ(t−t0)−

√
5
`

(t−t0) + eβ(t′−t0)−
√

5
`

(t′−t0)

)]

+
5

3`2

[
1

β2 − 5
`2

(
eβ(t−t0) + eβ(t′−t0)

)
− 1

β +
√

5
`

(
eβ(t−t0)−

√
5
`

(t−t0) + eβ(t′−t0)−
√

5
`

(t′−t0)

)]

− 1

β +
√

5
`

[
eβ(t−t0)−

√
5
`

(t−t0) + eβ(t′−t0)−
√

5
`

(t′−t0)

]
+

1

β −
√

5
`

[
eβ(t−t0)+

√
5
`

(t−t0) + eβ(t′−t0)+
√

5
`

(t′−t0)

]

− 5

3`2

[
1

β2 − 5
`2

(
eβ(t−t0) + eβ(t′−t0)

)
− 1

(β +
√

5
`

)2

(
eβ(t−t0)−

√
5
`

(t−t0) + eβ(t′−t0)−
√

5
`

(t′−t0)

)]

+
5

3`2

[
1

(β −
√

5
`

)2

(
eβ(t−t0)+

√
5
`

(t−t0) + eβ(t′−t0)+
√

5
`

(t′−t0)

)])
.

(E6)

Constant β(x, t) = β and Random Fourier Features.
Since SE, periodic, and Matérn kernels are all stationary, we can extend the closed-form solution to any stationary
kernel. Recall that any stationary kernel can be represented as a Fourier series, and the random Fourier features
(RFF) kernel is defined as

kut (t, t′) =
σ2

m

m∑
i=1

cos(ωi(t− t′)), (E7)

in which σ2 is the signal variance,m is the number of random features, and ωi are randomly sampled frequencies
from a distribution p(ω) (typically a Gaussian distribution with zero mean and variance 1/`2, where ` is the
length scale of the squared exponential kernel being approximated). Assuming a constant β(x, t) = β, the
covariance function becomes

k(x, t,x′, t′) = eβ(t−t0)eβ(t′−t0)k0(x,x′)

+
σ2

m
kux(x,x′)

m∑
i=1

∫ t

t0

∫ t′

t0

eβ(t−s)eβ(t′−s′) cos(ωi(s− s′))dsds′

= eβ(t−t0)eβ(t′−t0)k0(x,x′)

+
σ2

m
kux(x,x′)

m∑
i=1

(
1

β2 + ω2
i

[
eβ(t−t0) cos(ωi(t− t0)) + eβ(t′−t0) cos(ωi(t

′ − t0))

− eβ(t+t′−2t0) cos(ωi(t− t′))
]

+
ωi

β2 + ω2
i

[
eβ(t−t0) sin(ωi(t− t0))− eβ(t′−t0) sin(ωi(t

′ − t0))
])
.

(E8)

F Background on BOCA and Theorem 3

Here we describe the BOCA method of Kandasamy et al. Kandasamy et al. [3] (adapted to our problem). We set
X = [0, 1]d and T = [0, 1] and let f(x) = y(x, 1) be the black-box function we aim to optimize, with different
fidelities t given by a function y(x, t) : X × T → R. Assume that
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1. y(x, t) ∼ GP(0, κ) with a product kernel

κ
(
x, t,x′, t′

)
= κ0 kt(|t− t′|)kx(‖x− x′‖), (F1)

in which κ0 > 0 and both kt, kx are valid kernels.

2. λ(t) is the cost function for evaluating y at fidelity t.

Let A ⊂ X , and let An = {x1, . . . ,xn} ⊂ A be a finite-cardinality subset. Define noisy observations
yAn = fAn + εAn with εn ∼ N (0, η2). Here, yAn = (y1, . . . , yn)T , fAn = (f(x1, . . . ,xn)> and
εAn = (ε1, . . . , εn)>. For a continuous random vector X ∼ N (µ,Σ), the differential entropy is defined as

H(X) =
1

2
log [(2πe)n det(Σ)] . (F2)

The mutual information or information gain I(yAn ; fAn) is a measure of the reduction in uncertainty in the
values of fAn after acquiring observations yAn . For Gaussian random vectors, information gain is given by the
difference in differential entropy

I(yAn ; fAn) = H(yAn)−H(yAn | fAn) =
1

2
log det

(
I + η−2KAn

)
, (F3)

in which KAn ∈ Rn×n is the kernel matrix with entries (KAn)ij = κ(xi,xj). The maximal information gain
after n evaluations on a subset A ⊂ X is then defined as

γn(A) = max
An⊂A, |An|=n

I(yAn ; fAn). (F4)

Let x∗ = arg maxx∈X f(x) and f∗ = f(x∗). The simple regret after capital Λ is defined as

r(Λ) =

{
mini∈{1,...,N}: ti=1 f

∗ − y(xi, t), if any query was made at t = 1,

+∞, otherwise.
(F5)

Λ refers to the total budget or cumulative cost allowed for querying the objective function, and therefore bounds
the cumulative cost of all function evaluations.

A measure of how informative fidelity t is with regards to the maximum fidelity t = 1 is given by the following
information-gap function

ξ(t) =
√

1− kt(|t− 1|)2. (F6)
A smaller ξ(t) implies greater informativeness. If ξ(t) is smooth, the gap decreases as t→ 1. Now define

Xρ = {x ∈ X : f∗ − f(x) ≤ 2ρ
√
κ0ξ(0)} (F7)

noting that ξ(0) is the maximal fidelity gap. We note here that this expression appears to be different from
that in Kandasamy et al. [3], in which the authors use ξ(

√
p) for T = [0, 1]p throughout their paper. Clearly√

p /∈ [0, 1]p and this is a typing error (the correct expression is ξ(0)). Most queries at the highest fidelity t = 1
are made from the set Xρ. In relation to Xρ, let

Xρ,n =

{
x ∈ X : B2

(
x,

√
d

nα/2d

)
∩ Xρ 6= ∅

}
, (F8)

in whichB2(x, ε) denotes the Euclidean (`2) ball of radius ε centred at x, n is the number of queries at any fidelity
and α ∈ (0, 1). The setXρ,n includes all points inX that lie within a Euclidean distance

√
d

nα/2d ofXρ, and can be
interpreted as a polynomial-rate dilation of the latter. As n→∞, we have Xρ,n → Xρ at a rate of n−α/2d.

At iteration n, the BOCA algorithm selects a query point (xn, tn) ∈ X × [0, T ) in two stages. First, it constructs
an upper confidence bound (UCB) acquisition function ϕn(x) over the domain X , conditioned on the fidelity t

ϕn(x) = µn−1(x, 1) +
√
βn σn−1(x, 1), (F9)

in which µn−1(x, 1) and σn−1(x, 1) are the mean and standard deviation of the posterior GP slice at t = 1
over y(x, t) (i.e., over f(x) = y(x, 1)) given all previous observations {y(xi, ti)}n−1

i=1 , and βn is a t-varying
confidence parameter. The latter is given by

βn = 2 log

(
π2n2

2δ

)
+ 4d log(n) + max

{
0, 2d log

(
bd log

(
6ad

δ

))}
, (F10)
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in which δ ∈ (0, 1) and a, b > 0 are constants depending on the kernel kx. Specifically, noting that f(x) ∼
GP(0, kx(x,x′) since kt(1, 1) = 1, it is assumed that there exist constants a, b > 0 such that

P
(

sup
x∈X

∣∣∣∣ ∂∂xi f(x)

∣∣∣∣ > J

)
≤ ae−(J/b)2 for all J > 0, and i = 1, . . . , d. (F11)

Having chosen the next input xn ∈ arg maxx∈X ϕn(x), the fidelity level tn ∈ [0, 1) is chosen from the filtered
set

Tn(xn) =
{
t ∈ [0, 1] : λ(t) < λ(1), σn−1(xn, t) > γ(t), ξ(t) > β−1/2

n ξ(0)
}
, (F12)

where γ(t) =
√
κ0 ξ(t)

(
λ(t)
λ(1)

)q
. q depends on the kernel and for a SE kernel q = (1 + d + 2)−1. If

Tn(xn) 6= ∅, the algorithm chooses the cheapest fidelity from this set, i.e.,

tn = arg min
t∈Tn(xn)

λ(t), (F13)

otherwise it sets tn = 1. With the definitions above we can state the main result.

Theorem F1 (Kandasamy et al. [3], Theorem 8). Let X = [0, 1]d, T = [0, 1] and y(x, t) ∼ GP(0, κ) with
κ (x, t,x′, t′) = κ0 kt(|t− t′|)kx(‖x− x′‖), in which kx satisfies Assumption (F11). Choose δ ∈ (0, 1) and
execute BOCA with βn chosen as in F10). Then, for any α ∈ (0, 1), there exist ρ > 0 and Λ0 such that with
probability at least 1− δ

r(Λ) ≤
√
C1β2nΛγ2nΛ(Xρ,n)

nΛ
+

√
C1β2nΛγ2nαΛ

(X )

n2−α
Λ

+
π2

6nΛ
, ∀Λ ≥ Λ0, (F14)

in which C1 is a universal constant and nΛ =
⌊

Λ
λ(1)

⌋
, while ρ > max{2, 1 +

√
(1 + 2/α)/(1 + d).

G Asymptotic behaviour of the LiFiDE kernel

We expand I(t, t′) around t′ = t+ δ for small δ as

I(t, t+ δ) = I0(t) + I1(t)δ +O(δ2), (G1)

in which I0(t) and I1(t) are given by

I0(t) =
eβ

2`2/2√π`
β

[
erf

(
t

`
+
β`√

2

)
− e−2βt

(
erf

(
t

`
− β`√

2

)
+ erf

(
β`√

2

))]
, (G2)

I1(t) =
eβ

2`2/2√π`
2β

[
β erf

(
β`√

2

)
− 2√

π`
e
−
(
β`√

2

)2

+
e
−
(
t
`
+ β`√

2

)2

√
π`

− e−2βte
−
(
t
`
− β`√

2

)2

√
π`

]
. (G3)

I0(t) increases monotonically as t→∞. The crucial term in I1(t) is

e
−
(
t
`
+ β`√

2

)2

√
π`

− e−2βte
−
(
t
`
− β`√

2

)2

√
π`

=
e
− t

2

`2
− β

2`2

2

√
π`

(
e−
√

2βt − e−βt(2−
√

2)
)
, (G4)

which is strictly negative. For the squared exponential kSE, due to symmetry and stationarity

kSE(t, t+ δ) = I0 + I2δ
2 +O(δ4), (G5)

in which I0 and I2 are independent of t. Thus, the decay is O(δ2) compared to O(δ) for the LiFiDE kernel.
Therefore, correlations between values of y(x, t) and y(x, t′) around t′ = t+ δ are more concentrated, and do
not depend on t.

Remark G1 (On Regret Bounds and Kernel Choice). BOCA’s theoretical regret bound depends on the fidelity-
gap function ξ(t), which in turn is determined by the fidelity kernel through

ξ(t) =
√

1− kt(|t− T |)2, (G6)

for a maximum fidelity T . For the SE kernel kt(|t− T |) = exp
(
− (t−T )2

2`2

)
we have the approximation

ξ(t) ≈ |t− T |
`

+O(|t− T |3), (G7)
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around t = T , which decays linearly in the distance to the highest fidelity T . Thus, Xρ is sharply localised and
regret is relatively easy to control.

We can simplify the expression for the LiFiDE kernel as follows

k(t, t′) = c1e
−βte−βt

′
+ c2I(t, t′), (G8)

in which c1 and c2 are the values of k0 and kx at a fixed (x,x′) ∈ X 2. Consider t = T − δ in the limit δ → 0+.
Expanding the kernel around t′ = t+ δ we obtain

k(t, t+ δ) = k(t, t) + I1(t)δ +O(δ2), (G9)

in which I1(t) is defined in (G3). We now normalise the kernel so that it takes values in [0, 1] by defining

k̃(t, t+ δ) =
k(t, t+ δ)√

k(t, t)k(t+ δ, t+ δ)
(G10)

Since k(t, t+ δ) = k(t, t) +O(δ) and k(t+ δ, t+ δ) = k(t, t) +O(δ), we have

k̃(t, t+ δ)2 = 1 + 2
I1(t)

k(t, t)
δ +O(δ2). (G11)

The square fidelity gap becomes

ξ(t)2 = 1− k̃(t, t+ δ)2 = −2
I1(t)

k(t, t)
δ +O(δ2). (G12)

Since I1(t) < 0, ∀t, we finally obtain

ξ(t) ∼

√
−2
I1(t)

k(t, t)

√
δ =

√
−2
I1(t)

k(t, t)

√
|T − t| as |T − t| → 0, (G13)

which shows that near the highest fidelity level, the fidelity gap decays as
√
|T − t|, i.e., at a much slower rate

than that for the SE kernel.

H Additional Experimental Results

Below we provide more detailed information on the sampling functions for all continuous MFBO experiments
conducted in Section 5. Each marker represents a sampling point. Among the numerous seeds, we selected the
first four for display. The results for the Branin, Currin, Park, nonlinear sin, Forrester, Bohachevsky, Borehole,
Colville, and Himmelblau functions are shown in Fig. H1–Fig. H9, respectively.

We can see the advantage of CAMO in almost all cases in terms of the query cost and simple regret. The
query cost is significantly reduced compared to the other methods, and the simple regret is also competitive. In
particular, CAMO always exhibits a fast convergence rate in the early stage of the optimization process. Upon
closer inspection, CAMO conducts most of its exploration in the low-fidelity region, reducing the query cost,
which is consistent with the theoretical analysis. To explore the performance of different models combined with
different acquisition functions, we provide additional results with different costs for the Forrester function in
Fig. H10. The results are consistent with those in the main text. CAMO is the optimal choice, particularly when
the cost function is exponential-like, which is more realistic in real-world applications such as finite element
analysis and neural network architecture search (NAS).
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Figure H1: Branin function MFBO results from four random seeds.
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Figure H2: Currin function MFBO results from four random seeds.
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Figure H3: Park function MFBO results from four random seeds.
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Figure H4: Nonlinear sin function MFBO results from four random seeds.
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Figure H5: Forrester function MFBO results from four random seeds.
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Figure H6: Bohachevsky function MFBO results from four random seeds.
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Figure H7: Borehole function MFBO results from four random seeds.
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Figure H8: Colvile function MFBO results from four random seeds.
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Figure H9: Himmelblau function MFBO results from four random seeds.
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I Synthetic Benchmarks

The definitions of the objective functions in the synthetic benchmark experiments are given below.

Park Function

The input is two dimensional, x ∈ [0, 1]2 and there is one fidelity index t ∈ [0, 1]

f(x, t) =
(x1 + 0.5t)2 + (x2 + 0.5t)2

2
. (G14)

Currin Function

The input is two dimensional, x ∈ [0, 1]2 and there is one fidelity index t ∈ [0, 1]

f(x, t) =

[
1− exp

(
− 1

2x2t

)]
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
. (G15)

Branin Function

The input is two dimensional, x ∈ [0, 1.5]2 and there is one fidelity index t ∈ [0, 1]

f(x, t) =[x2 − [b− 0.1× (1− t)]x2
1 + cx1 − r]2 + 10(1− s) cos(x1) + 10, (G16)

in which b = 5.1
4π2 , c = 5

π
, r = 6 and s = 1

8π
.

Nonlinear Sin Function

This is a two-level multi-fidelity function where input is one dimensional x ∈ [0, 1.5]. Low and high fidelity are
given by

flow(x) = sin(8πx),

fhigh(x) = (x−
√

2)flow(x)2.
(G17)

The low and high fidelity functions are shown in Figure I1.

Forrester Function

Two-level multi-fidelity function with input x ∈ [0, 1.5]

flow(x) = 0.5fhigh(x) + 10(x− 0.5) + 5,

fhigh(x) = (6x− 2)2 sin(12x− 4).
(G18)

The low and high fidelity functions are shown in Figure I1.

Bohachevsky Function

Two-level multi-fidelity function with input x ∈ [−5, 5]2

fhigh(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7,

flow(x) = fhigh(0.7x1, x2) + x1x2 − 12.
(G19)

Borehole Function

Two-level multi-fidelity function with input variables rw ∈ [0.05, 0.15], r ∈ [100, 50000], Tu ∈
[63070, 115600], Hu ∈ [990, 1110], Tl ∈ [63.1, 116], Hl ∈ [700, 820], L ∈ [1120, 1680], Kw ∈
[9855, 12045]

fhigh(x) = fb(x, 2π, 1), flow(x) = fb(x, 5, 1.5)

fb(x, A,B) =
ATu(Hu −Hl)

log

(
r

rw

)B +
2LTu

log

(
r

rw

)
· r2
wKw

+
Tu
Tl


.

(G20)
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Figure I1: Low and high fidelity nonlinear sin function (left) and Forrester function (right).

Colville Function

Two-level multi-fidelity function where input is four dimensional, x ∈ [−1, 1]4 and coefficient A <= 0.68,
where low and high fidelity is given by:

fhigh(x) = 100(x2
1 − x2)2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2

3 − x4)

+ 10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1),

flow(x) = fhigh(A
2(x1, x2, x3, x4))− (A+ 0.5)(5x2

1 + 4x2
2 + 3x2

3 + x2
4).

(G21)

Himmelblau Function

Two-level multi-fidelity function with input x ∈ [−1, 1]2 and coefficient A ≤ 0.68

fhigh(x) = (x2
1 + x2 − 11)2 + (x2

2 + x1 − 7)2,

flow(x) = fhigh(0.5x1, 0.8x2) + x3
2 − (x1 + 1)2.

(G22)

J Details of Real-World Applications

J.1 Mechanical Plate Vibration Design

The objective is to optimize the design of a 3-D simply supported, square, elastic plate with dimensions
10 × 10 × 1[m], as illustrated in Fig. J1. The primary goal is to identify materials that maximise the fourth
vibration mode frequency, thereby minimising the risk of resonance-induced damage caused by interactions
with other components. The material properties under consideration include the Young’s modulus (ranging from
1× 1011 to 5× 1011[Pa]), the Poisson ratio (between 0.2 and 0.6), and mass density (varying from 6× 103 to
9× 103[kgm−3]). The plate is discretised using quadratic tetrahedral elements, as depicted in Fig. J1.

Figure J1: Quadratic tetrahedral element discretisation of the plate (hmax = 1.2).

J.2 Thermal Conductor Design

The second application focuses on optimising the design of a thermal conductor, as shown in Fig. J2(a). The
heat source is located on the left side of the conductor, with the temperature initially at 0 and increasing to
100 degrees within 0.5 seconds. The heat transfer occurs through the conductor towards the right end. The
conductor dimensions and material properties, including thermal conductivity and mass density (both equal to
1), are fixed. To facilitate installation, a hole must be bored into the center of the conductor. The top, bottom,
and inner surfaces of the hole are thermally insulated, preventing heat transfer across these boundaries. The
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Figure J2: (a) Snapshot of the thermal conductor temperature solution; (b) the heat response curve on
the right edge.

size and angle of the hole play a crucial role in determining the rate of heat transfer. In general, the hole is
an ellipse, characterised by three parameters: the semi-minor and semi-major axes, and the orientation angle.
The objective is to minimise the time required for the temperature at the right end to reach 70 degrees, thus
maximising the heat conduction rate from left to right. To evaluate the time taken to reach the target temperature,
the conductor is discretised using quadratic tetrahedral elements. The finite element method is then applied to
solve the problem, yielding a response heat curve at the right edge, as illustrated in Fig. J2(b). By analysing this
response curve, the time at which the temperature reaches 70 degrees can be determined.
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Justification: We have carefully ensured that the main ideas and finding are accurately reflected in
both the abstract and introduction. The introduction provides a detailed description of the proposed
method and the results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We provide a detailed list of the limitations in the conclusions section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: Each result lists and numbers the detailed assumptions in the statement. These assump-
tions are further discussed in the text and in remarks.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

37



• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full descriptions of the examples and of settings used in the method and
competing methods (hyperparameter choices, kernels used for each method, statement of original
formulations used if that is the case, details of the software implementation and hardware used, etc).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: The code will be uploaded to Github for the reviewers to access with detailed instructions
on how to run it for the examples included.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The settings are listed in the experimental section in detail, including training/test split,
number of random seeds, the optimizer used, and so on.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We discuss the results from different random seeds and in the Appendix provide
additional results from individual seeds in all cases to demonstrate consistency.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)
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• It should be clear whether the error bar is the standard deviation or the standard error of the
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not verified.
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• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We list the computer harware used, the software employed and provides details on the
simulation costs.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
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9. Code of ethics
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Answer: [Yes]
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are violated.
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11. Safeguards
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scraped datasets)?

Answer: [NA]

Justification:
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• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: When comparing to existing methods we use the orignal codes if available and have
cited the relevant papers (with discussions).

Guidelines:

• The answer NA means that the paper does not use existing assets.
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asset (if it has changed) should be provided.
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-
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etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification:
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification:
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
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16. Declaration of LLM usage
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editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification:
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