
How Can Metaphor not Handle Anomaly? Metaphor Detection with
Anomalous Text

Anonymous ACL submission

Abstract

Metaphor is essentially literal shifts in mean-001
ing, which is manifested as a mismatch be-002
tween the literal meaning of the target word and003
its contextual context. In metaphor research,004
the theory of selection preference violation005
(SPV) is commonly used to identify metaphor006
in which the target word occurs less frequently007
in the surrounding words in its context, yield-008
ing a mismatch. Researchers are mainly con-009
cerned with considering such collocational mis-010
match as a metaphorical expression, yet they011
tend to overlook that collocational mismatch012
may also be a syntactic anomaly. Syntactic013
anomaly are mainly found in grammatical struc-014
tures or grammatical rules, which are mani-015
fested as irregularities in sentence structure,016
non-compliance with grammatical rules, or de-017
viations from usual linguistic expressions. In018
this paper, we integrate syntactic anomaly into019
the study of metaphor detection. Specifically,020
we craft a prompt. Based on this prompt, we021
use GPT-3 to generate a dataset containing lit-022
eral, metaphor, and syntactic anomaly, called023
the LMA. We test our dataset in a series of024
related experiments. We explore the relation-025
ship between literal, metaphor and syntactic026
anomal, as well as the role of introducing SPV.027
We provide experimental analysis.028

1 Introduction029

Metaphor is a rhetorical expression that, from a030

linguistic point of view, is a universal linguistic ex-031

pression that represents other concepts (Lagerwerf032

and Meijers, 2008). In a given context, metaphor033

utilizes one or more words to represent another con-034

cept rather than adopting the literal meaning of the035

expression (Fass, 1991). For example, in the "This036

program is a headache!", the contextual meaning037

of headache is "something or someone that causes038

worry or trouble", which is different from its lit-039

eral meaning of "constant pain in the head". This040

suggests that metaphor detection requires an under-041

standing of the metaphorical expression and its re-042

Figure 1: Task description. Pre-trained language model
(PLM) is required to recognize and classify literal,
metaphor, and syntactic anomaly. Selection preference
violation theory (SPV) is used to detect whether there is
a relationship violation between the target word and the
context word of a sentence.

lationship to the contextual word. Since metaphor 043

play a key role in cognitive and communicative 044

functions, this is likely to benefit many NLP tasks 045

such as sentiment analysis (Cambria et al., 2017; 046

Li et al., 2023a), communication platform (Dy- 047

bala and Sayama, 2012), and psychological secu- 048

rity (Riloff et al., 2018). Metaphor detection is 049

challenging because it requires the model to have 050

a deep understanding of the non-literal meanings 051

in the text and to detect them accurately across a 052

wide range of text types to better capture the intent 053

of the text . 054

In metaphor detection tasks, previous studies 055

generally choose to use selection preference vio- 056

lation (SPV) recognition methods. Wilks (1975, 057

1978) recognizes metaphors by identifying the re- 058
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lationship between the target word and the context059

word. If the target word is not common in the060

context of its surrounding words, there is a relation-061

ship violation between the target word and the con-062

text word, i.e., there is a metaphorical expression.063

Mao et al. (2019) construct an end-to-end metaphor064

recognition model, introducing the language the-065

ory SPV to directly guide deep neural network066

(DNN) design for end-to-end sequential metaphor067

recognition. Unlike (Mao et al., 2019), Choi et al.068

(2021) combines SPV with the metaphor recogni-069

tion process MIP to achieve automatic metaphor070

recognition. The SPV is a essentially mismatch071

phenomenon. Let us consider an example: in the072

sentence "My computer chews on wires", the word073

"chews" is considered metaphorical. Because in074

the context of "computer" and "wires", the act of075

"chews" is unusual. The "computer" is not capable076

of chewing, and "wires" are not capable of chewing.077

Consider another example "The girl comforts the078

clock.". The "girl" is alive, the "clock" is inani-079

mate, and the inanimate "clock" is not the one that080

needs life. The inanimate "clock" is not a proper081

argument for the "comfort" of the needy, and this082

example is a mismatch of verb and object and is083

non-metaphorical. While previous researchs fo-084

cus mainly on considering collocational mismatch085

as a metaphorical expression, they often overlook086

the fact that collocational mismatch can also be a087

manifestation of syntactic anomaly.088

Chandola et al. (2009) define anomaly as pat-089

terns in data that do not conform to a well-defined090

notion of normal behavior. For anomaly detection,091

which involves the discovery of patterns in data092

that do not conform to the expected behavior, is an093

important problem that needs to be dealt with in var-094

ious domains. In natural language processing, syn-095

tactic collocation anomaly are among the common096

types of anomaly (Lunsford and Lunsford, 2008).097

Syntactic interpretation elucidates that the syntactic098

representations of anomalous sentences are simi-099

lar to well-constructed sentences; whereas, in se-100

mantic description, the syntactic representations101

of anomalous sentences are presented as missing102

or violate between words, which are ultimately re-103

placed by semantic representations (Ivanova et al.,104

2012). Metaphors are essentially literal deviations105

with collocational anomaly, i.e., unusual combina-106

tions between literal meanings and meanings of107

other words. Metaphor detection systems often in-108

correctly recognize syntactic collocation anomaly109

as metaphors. However, no one has yet specifically 110

linked metaphors to syntactic collocation anomaly. 111

Since metaphors and syntactic collocation anomaly 112

are commonplace in life, it becomes crucial to au- 113

tomatically investigate how to deal with them. 114

In this paper, syntactic anomaly detection is in- 115

troduced into the metaphor detection task from the 116

perspective of dealing with syntactic anomaly and 117

metaphors(see figure 1 for description of tasks). 118

To meet the needs of this task, we employ GPT- 119

3 to generate some syntactic anomaly data and 120

construct a dataset called LMA. Specifically, we 121

designe a specific prompt and use this prompt to 122

customize each syntactic anomaly type. Guided 123

by this prompt, GPT-3 generates sentences con- 124

taining our specified syntactic anomaly types. Our 125

syntactic anomaly types are categorized into differ- 126

ent fine-grained levels: 1) verb-noun anomaly, 2) 127

adjective-noun anomaly, 3) adverb-verb anomaly, 128

and 4) noun-verb anomaly. In our work, we mainly 129

emphasize the effectiveness of sentence-level clas- 130

sification of metaphors and syntactic anomaly in a 131

multi-task setting. This research aims to advance 132

a deeper understanding of the correlation between 133

syntactic anomaly and metaphors by introducing 134

the syntactic anomaly dataset LMA, which pro- 135

vides a practical resource for multitask learning. 136

In summary, our contributions are as follows: 137

1. Firstly, we focus on the relationship between 138

metaphor and syntactic anomaly, introducing 139

syntactic anomaly detection as part of the 140

metaphor detection task. 141

2. We successfully construct a dataset (LMA) 142

that comprehensively contains literal, 143

metaphor and syntactic anomaly. In this 144

dataset, both metaphorical sentences as well 145

as syntactically anomalous sentences account 146

for 15%, while the rest are literal sentences. 147

3. We provide the first insight into the role of 148

SPV for metaphor detection and syntactic 149

anomaly detection. Our ablation experiments 150

show that the performance of the model de- 151

grades when using SPV for the detection of 152

metaphorical and syntactic anomaly. 153

2 Related Work 154

2.1 Metaphor Detection 155

Metaphor detection is a sequence annotation task 156

that aims to determine whether a target word is a 157
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Figure 2: Flowchart of data generation. We take the example of generating verb-noun syntactic anomaly. Given a
normal literal sentence S, and the target word of the sentence Wc. GPT-3 performs the same lexical modification of
the target word of the input sentence under prompt.

metaphorical expression in context, with 1 being158

metaphorical and 0 being non-metaphorical. Cur-159

rent metaphor detection tasks focus on supervised160

methods. For example, Mao et al. (2019) directs the161

model to compare the underlying and contextual162

meanings of target words to determine metaphors,163

and Le et al. (2020) uses a textual dependency164

tree structure to construct metaphors. Li et al.165

(2023b) uses two encoders, one of which is fine-166

tuned by FrameNet (Fillmore et al., 2002). Choi167

et al. (2021) is similar to (Mao et al., 2019) but re-168

places the LSTM model with RoBERTa.Badathala169

et al. (2023) introduces exaggerated corpus knowl-170

edge into metaphor detection, while Zhang and Liu171

(2023) uses adversarial learning to guide the model172

in learning data distributions across multiple tasks.173

2.2 Anomaly Detection174

Anomaly detection is an important aspect of text175

processing. In the field of NLP, syntactic anomaly176

account for a relatively large number of anomaly177

problems, including lexical mismatch (Lunsford178

and Lunsford, 2008). Lunsford and Lunsford179

(2008) continues to study text anomaly types based180

on the previous work and summarizes a list of181

anomaly. Common types of textual anomaly are182

wrong sentence structure, such as lack of subject183

and verb agreement. Søby et al. (2023) focuses on184

the types of syntactic anomaly as well as the fre-185

quency of anomaly in Danish written expressions,186

etc., involving various subtypes (word order errors,187

verb consistency errors). Mancini et al. (2014),188

on the other hand, analyze syntactic anomaly of189

subject-verb inconsistency for person and number190

in Italian. Jia et al. (2018) attempts to construct191

a knowledge graph using subject-predicate-object192

ternary consistency relations, which in turn leads to193

the development of an anomaly detection system.194

Bock and Miller (1991) point out that speakers may195

commit subject-predicate agreement errors when196

Below are some reference examples about
anomalous type of Adjective-noun. Rewrite
the sentence according examples about
anomalous Adjective-noun of target. The
"index" represents the index position of tar-
get.

Example 1: It was very difficult for my friends
to call me with the small phone.
Target: small (index: 12)
Output: It was very difficult for my friends to
call me with the delicious phone...

Example 2: You never want to make a man the
centre of your existence.
Target: your (index: 10)
Output: You never want to make a man the
centre of their existence.

Example 3: Manuals which may contain maps,
schematic diagrams, and other materials war-
rant separate consideration.
Target: schematic (index: 5)
Output: Manuals which may contain maps,
humble diagrams, and other materials warrant
separate consideration.

Example 4: Early in the morning, the sunlight
pours in the quiet garden.
Target: quiet (index: 9)
Output: Early in the morning, the sunlight
pours in the delicate garden.

Sentence: Oh dear, Miss Williams said on an
indrawn breath.
Target: indrawn (index: 7)
Output: [generated sentences]

Table 1: Hints for generating syntactic anomaly. We
demonstrate this with adjective-noun anomaly, setting
up four sets of examples to guide the model to generate
syntactically anomalous sentences step by step.
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singular nouns are followed by plurals. Nicol et al.197

(1997) further investigate this anomaly in (Bock198

and Miller, 1991). Barton and Sanford (1993);199

Nieuwland and Van Berkum (2006), study the prob-200

lem of local incoherence (verb-object violation)201

in texts such as "Tom drinks the sunshine every202

morning". Nieuwland and Van Berkum (2006) fa-203

vors the study of syntactic anomaly with and with-204

out vital violations. Ni et al. (1998) explore how205

the parser responds to explicit sentences contain-206

ing both syntactic and pragmatic anomaly. Other207

work has studied adverb-verb morphological mis-208

matches (Dickey et al., 2008; Nanousi et al., 2006;209

Stavrakaki and Kouvava, 2003; Tyler et al., 1990;210

Wenzlaff and Clahsen, 2004) (e.g. Tomorrow he211

walked). Dragoy et al. (2012) report a mismatch212

anomaly between the verb form and the time range213

in which the adverb was previously set (present214

adverb - past tense verb; past adverb - present tense215

verb). de Vega et al. (2010) explore the Spanish216

verb-adverb anomaly, where they propose that only217

verbs have temporal inflection suffixes, while ad-218

verbs convey temporal information through lexis219

rather than morphology. In addition, Herbelot and220

Kochmar (2016) focus on the adjective-noun com-221

bination anomaly (... My friends have a hard time222

calling me on a classical phone ...). Similarly, Vec-223

chi et al. (2011) applied some combinatorial mod-224

els to detect adjective-noun combinations with se-225

mantic syntactic anomaly.226

2.3 Large Language Model227

Large Language Models (LLMs) are deep learning228

models that employ a huge number of parameters,229

typically ranging in size from billions to hundreds230

of billions of parameters. As a basis for the design231

of multiple LLMs, Transformer (Vaswani et al.,232

2017) introduces a self-attention mechanism to bet-233

ter capture the relationships between different loca-234

tions in the input sequence . Based on Transformer,235

researchers carry out a study of the model BERT236

(Devlin et al., 2018), which represents a bidirec-237

tional encoder representation of Transformer . Liu238

et al. (2019) optimized the BERT especially. The239

final proposed RoBERTa is able to match or ex-240

ceed all BERT methods in terms of performance241

(Liu et al., 2019). Recently, researchers (Lewis242

et al., 2019; Yoo et al., 2021) have attempted to243

explore new paradigms in the field of Natural Lan-244

guage Processing (NLP) using pre-trained models.245

GPT-3 is one of the largest language models to246

date, also using the Transformer architecture. No- 247

tably, LLMs are capable of learning with fewer 248

sample prompts, and more and more research is 249

beginning to focus on prompting mechanism-based 250

approaches (Reynolds and McDonell, 2021; Schick 251

and Schütze, 2020; Shin et al., 2020; Jiang et al., 252

2020; Zhao et al., 2021). We are witnessing an- 253

other important shift in the NLP paradigm. To the 254

best of our knowledge, this is the first task that 255

proposes the use of a prompt-based approach to 256

generate a specific syntactic anomaly dataset from 257

a large language model, combined with metaphor 258

recognition. 259

3 Method 260

3.1 Mission Description 261

In this paper, syntactic anomaly detection is in- 262

troduced on top of the metaphor detection task. 263

Metaphor is defined as a conceptual mapping be- 264

tween the source and target domains, where the 265

target domain is interpreted through the source do- 266

main concepts (Lakoff and Johnson, 1980). Syn- 267

tactic anomaly, on the other hand, refer to the phe- 268

nomenon that the grammatical structures in a sen- 269

tence do not conform to canonical linguistic rules, 270

such as subject-predicate inconsistency (Ivanova 271

et al., 2012). In the empirical study, we first design 272

a prompt that guide GPT-3 to generate syntactically 273

anomalous sentences through step-by-step prompts. 274

The types of syntactic anomaly include adverb- 275

verb anomaly, adjective-noun anomaly, verb-noun 276

anomaly, and noun-verb anomaly, which are char- 277

acterized by inconsistencies between words. For 278

example, consider an original sentence, "Let’s go to 279

the flicks.". The syntactically anomalous sentences 280

generated by GPT-3 may be shown below: 281

Example: The girl comforted the boy. 282

Target: boy(indxe:4) 283

Output: The girl comforted the clock. 284

Sentence: Let’s go to the flicks. 285

Target: flicks(index:4) 286

Output: Let’s go to the shoes. 287

Here we provide GPT-3 with an example of a 288

syntactic anomaly modification, i.e., "This girl is 289

comforting this boy.". Then, we provide the model 290

with the target word and its index to generate rel- 291

evant collocation exceptions. For example, if the 292

target word is a noun, the possible exception type is 293

a verb-noun exception. In this case, the generated 294

sentence might be, "Let’s go to the shoes". Through 295

this process, we construct a dataset containing lit- 296
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eral meaning, different types of syntactic anomaly297

and metaphor, which provides strong support for298

further research on syntactic anomaly detection.299

Regarding metaphor detection, most of the pre-300

vious studies use sentence-level labeling methods301

(Mao et al., 2019; Le et al., 2020; Su et al., 2020;302

Choi et al., 2021). And syntactic anomaly (Ivanova303

et al., 2012, 2017) are generally studied at the sen-304

tence level as well. Sentence-level annotation meth-305

ods usually involve categorizing entire sentences or306

text passages. The method first takes the entire text307

passage as input, marks the position of the words308

to be detected in the sentence, and then assigns a309

label or classification to the entire sentence. Our310

classification system consists of three classifica-311

tions and nine classifications. Among them, the312

three classifications include metaphor, syntactic313

anomaly and literal meaning. The nine classifi-314

cations, on the other hand, subdivide metaphors315

and syntactic anomaly according to lexical prop-316

erties (adjective, noun, verb, and adverb) while317

considering literal meanings. We emphasize the318

classification of metaphor detection and syntactic319

anomaly detection at the sentence level.320

3.2 Prompt Construction321

In the tasks of this paper, prompt play a crucial322

role, especially in generating syntactic anomaly323

data. We design a prompt whose process consists324

of being given a set of prompt examples and then325

sampling from these examples using GPT-3. Each326

example contains the original sentence, the tar-327

get word, and the generated output sentence. The328

prompt consist of a task description title and an329

example composition. We reference current liter-330

ature based on GPT-3 prompts (Yoo et al., 2021;331

Reynolds and McDonell, 2021) in developing the332

prompt. Further, we adapt these generic templates333

to more closely match the tasks in this paper. For334

each syntactic anomaly type, we customize differ-335

ent task descriptions and examples to make them336

more relevant. Table 1 shows our specific prompts337

(in the case of Adjective-noun). Other types of338

anomalous sentences are generated in a similar339

way.340

4 Dataset341

This section delves into the construction of the342

syntactic anomaly dataset (LMA) that we construct.343

We are modifying and innovating on the basis of344

the VUA dataset variant.345

4.1 Traditional Datasets 346

4.1.1 VUAMC 347

The VUAmsterdam Metaphor Corpus 1(Steen et al., 348

2010) metaphorically annotates each lexical unit 349

(187,570 in total) in a subset of the British Na- 350

tional Corpus (BNC Consortium, 2007) (Edition 351

et al.). The corpus tags sentences using the MIPVU 352

metaphor recognition program, which is guided by 353

the principle of treating the literal meaning as the 354

more basic or concrete meaning of a word.VUAMC 355

is the largest publicly available annotated corpus 356

of token-level metaphor detection, and the only 357

one that studies the metaphorical nature of dummy 358

words. The corpus contains 115 texts of four dif- 359

ferent types, covering academic, conversational, 360

fictional, and journalistic texts. Based on VUAMC, 361

VUA also derives a number of related variants. 362

4.1.2 VUA ALL POS 363

The VUA ALL POS dataset is a key component of 364

the metaphor detection shared task (Leong et al., 365

2018, 2020). In VUA ALL POS, all real words 366

(including adjectives, verbs without have, do, be, 367

nouns and adjectives) in a sentence are labeled, 368

while VUA Verb contains only verbs. However, in 369

previous studies (Song et al., 2021; Feng and Ma, 370

2022; Wan et al., 2021; Su et al., 2020), VUA ALL 371

POS was extended to include not only real-sense 372

words but also dummy words, and contain a total 373

of 205,425 samples, of which 116,622 were used 374

for training, 38,628 for validation, and 50,175 for 375

testing. In order to distinguish it from the VUA 376

ALL POS defined in (Leong et al., 2018, 2020), 377

we name the VUA ALL POS dataset that contains 378

both real-sense words and dummy words as VUA 379

ALL. 380

4.2 Dataset Construction 381

4.2.1 Data Collection and Screening 382

We fully consider the key issues of quantity and 383

distribution. First, we carefully screen a total of 384

25,760 sentences for initial screening by analyz- 385

ing lexical labels (e.g., adverbs, verbs, adjectives, 386

nouns). Among these sentences, the proportion of 387

metaphorical samples is about 14.5%; the rest are 388

categorized as non-metaphorical sentences. In or- 389

der to better construct the dataset, we use some tar- 390

geted strategies. Specifically, we extract sentences 391

from the non-metaphorical samples according to 392

a randomized step size that is comparable to the 393

1http://www.vismet.org/metcor/documentation/home.html
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Model metaphor-literal syntactic anomaly-literal three-classification nine-classification

P R F1 P R F1 P R F1 P R F1

BERT-bs 0.838 0.842 0.841 0.838 0.842 0.841 0.754 0.759 0.756 0.736 0.758 0.740
BERT-lg 0.845 0.849 0.847 0.843 0.849 0.846 0.757 0.765 0.759 0.736 0.762 0.742
RoBERTa-bs 0.860 0.853 0.856 0.863 0.854 0.857 0.761 0.764 0.761 0.745 0.759 0.750
RoBERTa-lg 0.876 0.873 0.874 0.862 0.872 0.859 0.771 0.779 0.772 0.773 0.757 0.761

Table 2: Experiment 1 Results presentation. We conduct the evaluation on four baselines. The "bs" stands for the
"base" version of the baseline model. The "lg" denotes the "large" version of the baseline model. Our experiments
include metaphor-literal detection, syntactic anomaly detection, and three-classification and nine-classification
detection. The evaluation metrics include precision (P), recall (R) and composite metric (F1), where F1 is the core
metric.

proportion of metaphorical samples. This portion394

of data will be used to construct syntactic anomaly395

samples to improve the richness of the dataset.396

4.2.2 GPT-3 Generation397

We use as input to GPT-3 the literal sentences398

previously extract via randomized step size. Sub-399

sequently, following the prompt presented in the400

methodology of Section 3.2, we perform the modi-401

fication and generation of syntactically anomalous402

sentences (see Figure 2).403

4.2.3 Data Segmentation404

Data segmentation consists of two steps: merging405

the data and dividing the dataset. We replace the406

syntactic anomaly samples generated by GPT-3407

with the original samples to form the merged syn-408

tactic anomaly dataset (LMA). Subsequently, we409

divide the merged dataset into training, validation,410

and test sets, with division ratios of 0.7, 0.15, and411

0.15, respectively. In the three-classification ex-412

periment, the training set contains 17,234 samples,413

the validation set contains 4,234 samples, and the414

test set contains 4,292 samples. While in the nine-415

classification experiment, the training set contains416

17279 samples, the validation set contains 4206417

samples and the test set contains 4275 samples.418

5 Experiments419

In this chapter, we describe our experimental de-420

sign in detail. In Section 5.1, we review the tra-421

ditional baseline approach. Then, in Section 5.2,422

we will provide relevant details of the experiment.423

Finally, we will discuss the hyperparameter tuning424

in the experiment as well as an in-depth analysis of425

the results.426

5.1 Baseline 427

We conduct experiments on the following baseline 428

model: 429

BERT:BERT (Devlin et al., 2018) employs a bi- 430

directional Transformer encoder, available in both 431

base and large versions. The model is able to con- 432

sider all the words in the context at the same time, 433

capturing the contextual information more compre- 434

hensively. In the pre-training phase, BERT per- 435

forms two tasks: firstly, Masked Language Model 436

(MLM), which randomly masks some words in the 437

input text, and the model needs to predict these 438

masked words; and secondly, Next Sentence Pre- 439

diction (NSP), which the model needs to judge 440

whether two sentences are adjacent in the text. 441

Through fine-tuning, BERT can be adapted to dif- 442

ferent tasks and achieve excellent performance in 443

natural language processing (NLP) 444

RoBERTa: (Liu et al., 2019) proposed an im- 445

proved training scheme for the BERT model. Un- 446

like BERT, RoBERTa removes the NSP task in 447

pre-training, i.e., it no longer determines whether 448

two sentences are adjacent. Meanwhile, RoBERTa 449

uses larger scale training data and performs longer 450

training steps to further improve the model perfor- 451

mance. 452

5.2 Experimental Design 453

We conduct two sets of experiments in sentence- 454

level annotation, each covering different fine- 455

grained sub-experiments. 456

Experiment 1:The first set of experiments in- 457

troduce BERT-base, BERT-large, RoBERTa-base 458

and RoBERTa-large as baseline models. We fo- 459

cus on the classification performance of these 460

models for anaphora and syntactic anomaly. The 461

sub-experiments of Experiment 1 include two- 462
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Model metaphor-literal syntactic anomaly-literal three-classification

P R F1 P R F1 P R F1

BERT-bs* 0.848 0.839 0.843 0.827 0.844 0.843 0.677 0.684 0.678
BERT-lg* 0.855 0.864 0.857 0.844 0.850 0.847 0.685 0.702 0.689
RoBERTa-bs* 0.856 0.859 0.857 0.853 0.861 0.856 0.726 0.704 0.711
RoBERTa-lg* 0.876 0.880 0.878 0.866 0.856 0.861 0.721 0.740 0.729

Table 3: Experiment 2 results are presented. We introduce SPV and measure it on four baselines. The experiments
include metaphor-literal detection, syntactic anomaly-literal detection, and three-classification detection. The
metrics are the same as in Experiment 1. “*” stands for "SPV". bs stands for the base version of the baseline model.
lg stands for the large version of the baseline model.

classification detection, three-classification detec-463

tion and nine-classification detection. Among them,464

the two-classification detection includes metaphor-465

literal detection, syntactic anomaly-literal de-466

tection, and metaphor-syntactic anomaly detec-467

tion. Three-classification detection includes literal-468

metaphor-syntactic anomaly detection. Nine-469

classification detection is a further subdivision470

of metaphorical and syntactic anomaly accord-471

ing to lexical labels (adjective, noun, verb, ad-472

verb) based on three-classification detection. Two-473

classification detection is designed as a controlled474

experiment. The dataset is divided according to the475

rules in Section 4.2.3.476

Experiment 2:In the second set of experiments,477

we introduce SPV, i.e., combining SPV with BERT-478

base, BERT-large, RoBERTa-base, and RoBERTa-479

large to form a new baseline model. The purpose480

of Experiment 2 is to investigate whether SPV has481

an impact on the model’s performance in syntactic482

anomaly and metaphor classification tasks. The483

sub-experiments of Experiment 2 mainly consist of484

dichotomous and trichotomous detection. Among485

them, the categories of dichotomous and tricoto-486

mous are the same as in Experiment 1.487

6 Implementation488

In both sets of experiments, our experimental setup489

is similar to (Choi et al., 2021). The learning490

rate is initialized to 3e-5,warmupepoch is set to 3.491

The learning rate is controlled by a linear warmup492

scheduler, and the learning rate is gradually in-493

creased during the warmup period. In addition, we494

set the dropout rate to 0.2. The hidden layer of the495

classifier is set according to the size of the model,496

which is set to 768 for the base model and 1024 for497

the large model. The maximum number of training498

rounds is set to 20. The K-fold cross-validation499

is set to 10. The maximum length of the sentence 500

is limited to 150 Both experiments were run on 501

a cloud server equipped with a single A100 80G 502

GPU. 503

7 Experimental Results 504

7.1 Evaluation Metric 505

In our sentence-level task, we consider three widely 506

used evaluation metrics, namely precision, recall, 507

and F1 score. These metrics provide a compre- 508

hensive assessment of the model’s performance. 509

Precision measures the extent to which the model 510

correctly predicts, focusing on the proportion of 511

samples that the model determines to be in the pos- 512

itive classification that are actually in the positive 513

classification. Recall measures the ability of the 514

model to correctly identify samples in the positive 515

classification (true instances). The F1 score is a 516

combination of precision and recall metrics is used 517

to balance the accuracy and recall of the model. By 518

using these three metrics, we are able to compre- 519

hensively evaluate the performance of the model 520

in sentence-level tasks, providing an assessment 521

of the model in different aspects of the task and 522

enabling a more complete understanding of the 523

model’s effectiveness in the task. 524

7.2 Results and Analysis 525

Here we will compare and analyze the results of 526

Experiments 1 and 2 both horizontally and verti- 527

cally. 528

In Experiment 1, we evaluate the performance 529

of BERT-base, BERT-large, RoBERTa-base and 530

RoBERTa-large on literal, metaphor and syntac- 531

tic anomaly classification tasks, and the results 532

are shown in Table 2. Observing the two sub- 533

experiment index scores of metaphor-literal de- 534

tection and anomaly-literal detection, we can find 535
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Model metaphor-syntactic anomaly

P R F1

BERT-bs 0.803 0.802 0.802
BERT-lg 0.817 0.814 0.813
RoBERTa-bs 0.845 0.844 0.844
RoBERTa-lg 0.844 0.846 0.846

BERT-bs* 0.719 0.717 0.717
BERT-lg* 0.736 0.735 0.735
RoBERTa-bs* 0.738 0.735 0.736
RoBERTa-lg* 0.778 0.775 0.777

Table 4: Experiment 2 results are presented. The assess-
ment tasks includ metaphor-syntactic anomaly detection.
The metrics are the same as in Experiment 1. “*” stands
for "SPV". The "bs" stands for the "base" version of the
baseline model. The "lg" denotes the "large" version of
the baseline model.

that the models not only perform well in metaphor536

recognition, but also achieve better performance537

in syntactic anomaly recognition. RoBERTa-large538

achieves F1 scores of 0.874 and 0.859 on these two539

tasks respectively. In the three-classification sub-540

experiment, the performance of all four baseline541

models decreased, with RoBERTa-large achieving542

the highest F1 score of 0.772 (decreasing by 0.102543

and 0.087, respectively). Looking further at the re-544

sults of the nine-classification experiments, we can545

see that the performance of the baseline model fur-546

ther decreases compared to the three-classification547

experiments. This may be due to the fact that the548

model has to further differentiate lexical label types549

for metaphors and syntactic anomaly in the nine-550

classification sub-experiment, which leads to an551

increase in the difficulty of classification.552

In Experiment 2, we explore the effect of SPV553

on metaphor and syntactic anomaly recognition,554

the results of which are shown in Table 3 and 4.555

Comparing the F1 scores for metaphor-literal de-556

tection as well as syntactic anomaly literal detec-557

tion in Table 2 and table 3, we can see that the558

performance of all four baseline models has in-559

creased, with RoBERTa-large achieving F1 scores560

of 0.878 (an improvement of 0.004) and 0.861 (an561

improvement of 0.002), respectively, as compared562

to Experiment 1. In the triple classification sub-563

experiment, we note that instead of an increase in564

the model’s performance, there is a decrease, with565

RoBERTa-large’s F1 score dropping to 0.729 (a566

decrease of 0.044). Further we observe in Table 4567

that for metaphor-syntactic anomaly detection, the568

four baseline models have reduced scores after the569

introduction of SPV. The results of Experiment 2 570

suggest that the introduction of SPV in multitask- 571

ing scenarios may lead to complex cross-influences 572

that exacerbate the confusion of the models for 573

metaphorical and syntactic anomaly. 574

8 Conclusion 575

In metaphor detection tasks, collocations are not 576

only metaphors, but may also be syntactic colloca- 577

tion anomaly. This study focuses on the analysis of 578

metaphor and syntactic anomaly at different levels 579

of granularity. We design a specialized prompt for 580

this task, based on which we call GPT-3 to gen- 581

erate data for four syntactic collocation anomaly. 582

Using the syntactic anomaly data, we further con- 583

struct a dataset LMA containing literals, metaphors, 584

and syntactic anomaly. In metaphor detection, the 585

theory of selection preference violation (SPV) is 586

commonly used. We also explore the role of SPV 587

for metaphor and syntactic anomaly detection. To 588

the best of our knowledge, this paper is the first 589

one devoted to syntactic anomaly and metaphor 590

tasks. The experimental results show that there is 591

a large confusion between metaphor and syntac- 592

tic anomaly in the model, which is exacerbated by 593

the introduction of SPV. Accurate identification of 594

metaphorical and syntactic anomaly is crucial. We 595

hope that this study will help related researchers to 596

better distinguish syntactic anomaly. 597

9 Limitations 598

In this study, we propose a task that specializes in 599

anaphora and syntactic anomaly. We use GPT-3 in 600

constructing the anomaly data. Despite the high 601

performance of GPT-3, there are some discrepan- 602

cies. It is possible that every piece of data generated 603

GPT-3 has some differences for our prompt, which 604

can lead to some mislabeling of the data. And our 605

range of anomaly data types is limited to only four 606

types. In addition to that, we did not investigate at a 607

finer granularity level, such as token level. In future 608

work, we will further explore more types of syn- 609

tactic anomaly and how to efficiently differentiate 610

between metaphors and syntactic anomaly. 611
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