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ABSTRACT

We introduce PointConvFormer, a novel building block for point cloud based deep
network architectures. Inspired by generalization theory, PointConvFormer com-
bines ideas from point convolution, where filter weights are only based on rela-
tive position, and Transformers which utilize feature-based attention. In Point-
ConvFormer, attention computed from feature difference between points in the
neighborhood is used to modify the convolutional weights at each point. Hence,
we preserved the invariances from point convolution, whereas attention helps to
select relevant points in the neighborhood for convolution. We experiment on
both semantic segmentation and scene flow estimation tasks on point clouds with
multiple datasets including ScanNet, SemanticKitti, FlyingThings3D and KITTI.
Our results show that PointConvFormer substantially outperforms classic convo-
lutions, regular transformers, and voxelized sparse convolution approaches with
much smaller and faster networks. Visualizations show that PointConvFormer
performs similarly to convolution on flat areas, whereas the neighborhood selec-
tion effect is stronger on object boundaries, showing that it has got the best of both
worlds. The code will be available with the final version.

1 INTRODUCTION

Input Grid Size Method Runtime 
(ms)

# Params 
(M)

mIoU (%)

10cm

MinkowskiNet 52.9 37.9 60.7
PointConv 23.4 5.4 62.6

FastPointTransformer 140.0 37.9 66.5
PointConvFormer 41.9 5.5 71.4

5cm

MinkowskiNet 73.5 37.9 67.0
PointConv 36.7 5.4 68.5

FastPointTransformer 147.7 37.9 70.0
PointConvFormer 59.6 5.5 73.7

2cm

MinkowskiNet 115.6 37.9 72.2
FastPointTransformer 312.0 37.9 72.5
Stratified Transformer 1689.3 18.8 74.3

PointConvFormer 145.5 9.4 74.5

Figure 1: Performance vs. running time on ScanNet. PointConvFormer
achieves a state-of-the-art 74.5% mIoU while being efficient with faster speed
and way less learnable parameters. Larger dot indicates more learnable pa-
rameters. All results are reported on a single TITAN RTX GPU

Depth sensors for indoor
and outdoor 3D scan-
ning have significantly
improved in terms of
both performance and
affordability. Hence, their
common data format, 3D
point cloud, has drawn
significant attention from
academia and industry.
Understanding the 3D real
world from point clouds
can be applied to many
application domains, e.g.
robotics, autonomous
driving, CAD, and AR/VR.
However, unlike image
pixels arranged in regular grids, 3D points are unstructured, which makes applying grid based
Convolutional Neural Networks (CNNs) difficult.

Various approaches have been proposed in response to this challenge. (Su et al., 2015; Li et al.,
2016; Chen et al., 2017; Kanezaki et al., 2018; Lang et al., 2019) introduced interesting ways to
project 3D point clouds back to 2D image space and apply 2D convolution. Another line of research
directly voxelizes 3D space and apply 3D discrete convolution, but it induces massive computation
and memory overhead (Maturana & Scherer, 2015; Song et al., 2017). Sparse convolution opera-
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Figure 2: (a) PointConvFormer can be seen as a point convolution, but modulated by a scalar attention weight
for each point in the neighborhood, so that the neighborhood is selectively chosen to perform convolution; (b)
Visualization of the reweighting effect in PointConvFormer. The colors are computed by the difference of
the maximal attention and the minimal attention in each neighborhood. Red areas have stronger reweighting
and blue areas behave similar to convolution. It can be seen that the reweighting effect is stronger at object
boundaries where the neighborhoods are more likely to be problematic, whereas on smoother surfaces Point-
ConvFormer behaves more similarly to convolution (more details in Sec. 4.4)

tions (Graham et al., 2018; Choy et al., 2019) save a significant amount of computation by computing
convolution only on occupied voxels.

Some approaches directly operate on point clouds (Qi et al., 2017a;b; Su et al., 2018; Thomas et al.,
2019; Wu et al., 2019b; Li et al., 2021b). Qi et al. (2017a;b) are pioneers which aggregate in-
formation on point clouds using max-pooling layers. Others proposed to reorder the input points
with a learned transformation (Li et al., 2018), a flexible point kernel (Thomas et al., 2019), and a
convolutional operation that directly work on point clouds (Wang et al., 2018b; Wu et al., 2019b)
which utilizes a multi-layer perceptron (MLP) to learn convolution weights implicitly as a nonlinear
transformation from the relative positions of the local neighbourhood.

The approach to directly work on points is appealing to us because it allows direct manipulation of
the point coordinates, therefore being able to encode rotation/scale invariance/equivariance directly
into the convolution weights (Zhang et al., 2019; Li et al., 2021b). These invariances can serve
as priors to make the models more generalizable. Besides, point-based approaches require less
parameters than voxel-based ones, which need to keep e.g. 3 × 3 × 3 convolution kernels on all
input and output channels. Finally, point-based approaches often utilize k-nearest neighbors (kNN)
to find the local neighborhood, thus can use less layers to obtain a larger receptive field than sparse
convolution, where the fixed neighborhoods are often quite empty.

However, so far the methods with the best efficiency-accuracy tradeoff have still been the sparse
voxel-based approaches or a fusion between sparse voxel and point-based models. We do not be-
lieve such a fusion would be necessary, since no matter the voxel-based or point-based represen-
tation, the information from the input is exactly the same. Besides, similar convolution operations
can be performed in both the voxel and point-based representations. This leads us to question the
component that is indeed different between these representations: the generalization w.r.t. to the ir-
regular local neighbourhood. The shape of the kNN neighbourhood commonly used in point-based
methods varies in different parts of the point cloud. Irrelevant points from other objects, noise and
the background might be included in the neighborhood, especially around object boundaries, which
can be detrimental to the performance and the robustness of point-based models.

To improve the robustness of models with kNN neighborhoods, we refer back to the generalization
theory of CNNs, which indicates that points with significant feature correlation should be included
in the same neighborhood (Li et al., 2017). A key idea in this paper is that feature correlation
can be a way to filter out irrelevant neighbors in a kNN neighborhood, which makes the subsequent
convolution more generalizable. We introduce PointConvFormer, which computes attention weights
based on feature differences and use that to reweight the points in the neighborhood in a point-
based convolutional model. PointConvFormer addresses the puzzle of how to define a “good” (yet
irregular) neighbourhood in point cloud processing for better representation and generalization.

The idea of using feature-based attention is not new, but there are important differences between
PointConvFormer and the recently popular vision transformers (Dosovitskiy et al., 2020; Zhao et al.,
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2021; Park et al., 2021). PointConvFormer combines features in the neighborhood with point-wise
convolution, whereas Transformer attention models usually adopt softmax attention in this step.
Softmax outputs a small amount of positive weights and a large amount of weights very close to
zero, and is not able to generate negative coefficients in the aggregation step. In our formulation,
because convolution is used for aggregation, both positive and negative weights are allowed. This is
shown to be better than PointTransformer in experiments.

We evaluate PointConvFormer on two point cloud tasks, semantic segmentation and scene flow
estimation. For semantic segmentation, experiment results on the indoor ScanNet (Dai et al., 2017)
and the outdoor SemanticKitti (Behley et al., 2019b) demonstrate superior performances over classic
convolution and transformers with a much more compact network. The performance gap is the
most significant at low resolutions, e.g. on ScanNet with a 10cm resolution we achieved more than
10% improvement over MinkowskiNet with only 15% of its parameters (Fig. 1). We also apply
PointConvFormer as the backbone of PointPWC-Net (Wu et al., 2020) for scene flow estimation,
and observe significant improvements on FlyingThings3D (Mayer et al., 2016a) and KITTI scene
flow 2015 (Menze et al., 2018) datasets as well. These results show that PointConvFormer could
potentially replace sparse convolution as the backbone of choice for 3D point cloud tasks.

2 RELATED WORK

Voxel-based networks. Different from 2D images, 3D point clouds are unordered and scattered in
3D space. One of the trending approaches to process 3D point clouds is to voxelize the point clouds
into regular 3D voxels. However, directly applying 3D convolution (Maturana & Scherer, 2015;
Song et al., 2017) onto the 3D voxels can incur massive computation and memory overhead, which
limits its applications to large-scale real world scenarios. The sparse convolution (Graham et al.,
2018; Choy et al., 2019) reduces the convolutional overhead by only working on the non-empty
voxels. However, this kind of approaches may suffer if the quantization of the voxel grid is too
coarse. The best performances are achieved with high quantization resolutions (e.g. 2cm per voxel),
which still have high memory consumption and lead to large models.

Point-based networks. There are plenty of works (Qi et al., 2017a;b; Wu et al., 2019b; Li et al.,
2021b; Su et al., 2018; Wang et al., 2018c) focusing on directly processing point clouds without
re-projection or voxelization. Qi et al. (2017a;b) propose to use MLPs followed by max-pooling
layers to encode and aggregate point cloud features. However, max-pooling could lead to the loss
of critical geometric information in the point cloud. A number of works (Melekhov et al., 2019; Jia
et al., 2016; Mayer et al., 2016b; Li et al., 2019; Goyal et al., 2021; Wang et al., 2018a) build a kNN
graph from the point cloud and conduct message passing using graph convolution. Later on, (Wang
et al., 2018b; Xu et al., 2018; Thomas et al., 2019; Wu et al., 2019b; Mao et al., 2019; Li et al.,
2018; Esteves et al., 2018; Li et al., 2021b) conduct continuous convolution on point clouds. Wang
et al. (2018b) represents the convolutional weights with MLPs. SpiderCNN Xu et al. (2018) uses
a family of polynomial functions to approximate the convolution kernels. Su et al. (2018) projects
the whole point cloud into a high-dimensional grid for rasterized convolution. Wu et al. (2019b);
Thomas et al. (2019) formulate the convolutional weights to be a function of relative position in
a local neighbourhood, where the weights can be constructed according to input point clouds. Li
et al. (2021b) improves over (Wu et al., 2019b) by introducing hand-crafted viewpoint-invariant
coordinate transforms on the relative position to increase the robustness of the network.

Dynamic filters and Transformers. Recently, the design of dynamic convolutional filters (Yang
et al., 2019a; Zhang et al., 2020b; Chen et al., 2020; Jia et al., 2016; Wang et al., 2019; Su et al., 2019;
Zamora Esquivel et al., 2019; Wang et al., 2020; Tian et al., 2020; Ma et al., 2020; Jampani et al.,
2016; Zhou et al., 2021) has drawn more attentions. This line of work (Ma et al., 2020; Zhang et al.,
2020b; Chen et al., 2020; Yang et al., 2019a) introduces different methods to predict convolutional
filters, which are shared across the whole input. (Jia et al., 2016; Zamora Esquivel et al., 2019; Wang
et al., 2020; Tian et al., 2020) propose to predict the complete convolutional filters for each pixel.
However, their applications are constrained by their computational inefficiency and high memory
usage. (Zhou et al., 2021) introduces decoupled dynamic filters with respect to the input features
on 2D classification and upsampling tasks. (Su et al., 2019; Tabernik et al., 2020) propose to re-
weight 2D convolutional kernels with a fixed Gaussian or Gaussian mixture model for pixel-adaptive
convolution. Dynamic filtering share some similarities with the popular transformers, whose weights
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are functions of feature correlations. However, the dynamic filters are mainly designed for images
instead of point clouds and focus on regular grid-based convolutions.

With recent success in natural language processing (Devlin et al., 2018; Dai et al., 2019; Vaswani
et al., 2017; Wu et al., 2019a; Yang et al., 2019c) and 2D images analysis (Hu et al., 2019; Doso-
vitskiy et al., 2020; Zhao et al., 2020; Ramachandran et al., 2019), transformers have drawn more
attention in the field of 3D scene understanding. Some work (Lee et al., 2019; Liu et al., 2019b;
Yang et al., 2019b; Xie et al., 2018) utilize global attention on the whole point cloud. However,
these approaches introduce heavy computation overhead and are unable to extend to large scale
real world scenes, which usually contain over 100k points per point cloud scan. Recently, the
work (Zhao et al., 2021; Park et al., 2021) introduce point transformer with local attention to reduce
the computation overhead, which could be applied to large scenes. Compared to previous convolu-
tional approaches, our PointConvFormer computes the weights with both the relative position and
the feature difference. Compared to transformers, the attention of the PointConvFormer modulates
convolution kernels and use the sigmoid activation instead of softmax. Experiments showed that our
design significantly improves the performance of the networks.

3 POINTCONVFORMER

3.1 POINT CONVOLUTIONS AND TRANSFORMERS

Given a continuous input signal x(p) ∈ Rcin where p ∈ Rs with s being a small number (2 for
2D images or 3 for 3D point clouds, but could be any arbitrary low-dimensional Euclidean space),
x(·) can be sampled as a point cloud P = {p1, . . . , pn} with the corresponding values xP =
{x(p1), . . . , x(pn)}, where each pi ∈ Rs. The continuous convolution at point p is formulated as:

Conv(w, x)p =

∫
∆p∈Rs

⟨w(∆p), x(p+∆p)⟩d∆p (1)

where w(∆p) ∈ Rcin is the continuous convolution weight function. Inspired by the continuous
formulation of convolution, (Simonovsky & Komodakis, 2017; Wu et al., 2019b; Wang et al., 2018c)
discretize the continuous convolution on a neighbourhood of point p. Let Xpi

∈ Rcin be the input
feature of pi the discretized convolution on point clouds is written as:

X ′
p =

∑
pi∈N (p)

w(pi − p)⊤Xpi
(2)

where N (p) is a neighborhood that is normally chosen as the k-nearest neighbor or ϵ-ball neighbor-
hood of the center point p. The functionw(pi−p) : Rs 7→ Rcin can be approximated as an MLP and
learned from data.Moreover, because now pi − p can be explicitly controlled, one can concatenate
invariant coordinate transforms on pi − p as input to w(·), e.g. ∥pi − p∥ would be rotation invariant.
Li et al. (2021b) has found that concatenating a set of invariant coordinate transforms with pi − p
significantly improves the performance of point convolutions.

In PointConv (Wu et al., 2019b), an efficient formulation was derived when w(pi − p) has a linear
final layer w(pi−p) =Wlh(pi−p), where h(pi−p) : R3 7→ Rcmid is the output of the penultimate
layer of the MLP and Wl ∈ Rcin×cmid is the learnable parameters in the final linear layer. We can
equivalently change Eq. (2) on the neighbourhood N (p) into,

X ′
p =

〈
vec(Wl), vec

 ∑
pi∈N (p)

h(pi − p)X⊤
pi


〉
. (3)

where vec(·) turns the matrix into a vector. Note that Wl represents parameters of a linear layer and
hence independent of pi. Thus, when there are cout convolution kernels, n training examples with
a neighborhood size of k each, there is no longer a need to store the original convolution weights
w(pi− p) for each point in each neighborhood with a dimensionality of cout× cin×k×n. Instead,
the dimension of all the h(pi−p) vectors in this case is only cmid×k×n, where cmid is significantly
smaller(usually 8 or 16) than cout × cin (could go higher than 102 × 102). This efficient PointConv
enables applications to large-scale networks on 3D point cloud processing.
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Recently, transformer architectures are popular with 2D images. 3D point cloud-based transformers
have also been proposed (e.g. (Zhao et al., 2021; Park et al., 2021)). Transformers compute an
attention model between points (or pixels) based on the features of both points and the positional
encodings of them. Relative positional encoding was the most popular which encodes w(pi − p),
similar to Eq.( 2). It has been shown to outperform absolute positional encodings in many pa-
pers (Shaw et al., 2018; Chu et al., 2021; Zhao et al., 2021). Adopting similar notations to eq. 2, we
can express the softmax attention model used in transformers as:

Attention(p) =
∑

pi∈N (p)

softmax(q(Xpi
)k(Xp) + w(pi − p)) · v(Xpi

) (4)

where q(·),k(·),v(·) are transformation to the features to form the query, key and value matrices
respectively, usually implemented with MLPs. One can see that there are similarities and differences
between PointConv (Wu et al., 2019b) and the attention model (Vaswani et al., 2017). First, both
employ w(pi − p), but in PointConv that is the sole source of the convolutional kernel which is
translation-invariant. In attention models, the matching between the query transform q(Xpi

) and the
key transform k(Xp) of the features are also considered, which is no longer translation-invariant.

Another important difference to note is that in attention models the final attention value is an output
from the softmax function. Note that softmax output has a range of [0, 1] which is limited to non-
negative weights at each point, which means the output of eq. 4 is a non-negative weighted average
of the features of the input. To us, it is a bit curious why this is the right idea, as we tend to believe
each neighborhood point could have positive and negative impacts to the features of the center point,
and limiting it only to non-negative might be a dubious design choice.

Note that the v(·) transform in eq.(4) can be seen as a 1× 1 convolution on the input. It is common
to insert 1 × 1 convolution layers between regular convolution layers in deep architectures (e.g.
ResNet(He et al., 2016)), hence we can view it as an additional 1 × 1 convolution layer before the
attention layer. Thus, we can compare the attention layer and PointConv without considering v(·).

3.2 CNN GENERALIZATION THEORY AND THE POINTCONVFORMER LAYER

We are interested in adopting the strengths of attention-based models, while still preserve some of
the benefits of convolution and explore the possibility of having negative weights. To this end, we
first look at theoretical insights in terms of which architecture would generalize well. We note the
following bound proved in (Li et al., 2017):

ĜN (F ) ≤ C max
p′∈N (p)

√
EX,p[(Xp −Xp′)2] (5)

where ĜN (F ) is the empirical Gaussian complexity on the function class F : a one-layer CNN
followed by a fully-connected layer, and C is a constant. A smaller Gaussian complexity leads to
better generalization (Bartlett & Mendelson, 2002). To minimize the Gaussian complexity bound
in eq. (5), it can be seen that one should select points that has high feature correlation to belong
to the same neighborhood. In images, nearby pixels usually have the highest color correlation (Li
et al., 2017), hence conventional CNNs achieve better generalization by choosing a small local
neighborhood (e.g. 3× 3). In 3D point clouds, as mentioned in the introduction, noisy points can be
included in the kNN neighborhood, which reduces feature correlation and henceforth worsens the
generalization. This motivates us to attempt to filter out those noisy points by explicitly checking
their Xp −Xp′ , hence keeping only the relevant points in the CNN neighborhood.

Inspired by the discussion above, we define a novel convolution operation, PointConvFormer, which
takes into account both the relative position pi − p and the feature difference Xpi

− Xp. The
PointConvFormer layer of a point p with its neighbourhood N (p) can be written as:

X ′
p =

∑
pi∈N (p)

w(pi − p)⊤ψ([Xpi
−Xp, pi − p])Xpi

(6)

where the function w(pi−p) is the same as defined in Eq.( 2), the scalar function ψ([Xpi −Xp, pi−
p]) : Rcin 7→ R is the function of both feature differences Xpi −Xp and position differences.

If we fix the function ψ(·) = 1, the PointConvFormer layer is equivalent to Eq.( 3), which reduces
to traditional convolution. In eq.(6), ψ(·) is approximated with another MLP followed by a activa-
tion layer. As a result, the function w(pi − p) learns the weights respect to the relative positions,
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and the function ψ(·) learns to select useful points in the neighborhood, which works similarly to
the attention in transformer. However, different from the transformer whose non-negative weights
are directly used as a weighted average on the input, the output of ψ(·) only modifies the convo-
lutional filter w(pi − p), which allows each neighborhood point to have both positive and negative
contributions.

Since ψ(·) does not modify the convolution, we adopt the same approach in PointConv (Wu et al.,
2019b) to create an efficient version of the PointConvFormer layer. Following Eq.(3), we have:

X ′
p =Wl

∑
pi∈N (p)

h(pi − p)ψ(Xpi
, Xp)X

⊤
pi

(7)

where Wl and h(·) are the same as in Eq.( 3).

Multi-Head Mechanism As in Eq.(7), the weight function ψ(·) : Rcin 7→ R learns the relation-
ship between the center point feature Xp ∈ Rcin and its neighbourhood features Xpi ∈ Rcin ,
where cin is the number of the input feature dimension. To increase the representation power of the
PointConvFormer, we use the multi-head mechanism to learn different types of neighborhood filter
mechanisms. As a result, the function ψ : Rcin 7→ R becomes a set of functions ψi : Rcin 7→ R
with i ∈ {1, ..., h}, h being the number of heads.

3.3 POINTCONVFORMER BLOCK

To build deep neural network for various computer vision tasks, we construct bottleneck residual
blocks with PointConvFormer layer as its main components. The detailed structures of the residual
blocks are illustrated in Fig. 3. The input of the residual block is the input point features X ∈ Rcin

along with its coordinates p ∈ R3. The residual block uses a bottleneck structure, which consists of
two branches. The residual branch is a linear layer, followed by PointConvFormer layer, followed
by another linear layer. Following ResNet and KPConv (He et al., 2016; Thomas et al., 2019), we
use one-fourth of the input channels in the first linear layer, conduct PointConvFormer with the
smaller number of channels, and finally upsample to the amount of output channels. We have found
this strategy to significantly reduce the model size and computational cost while maintaining high
accuracy for both PointConv and PointConvFormer. The shortcut branch can be formulated in three
different ways depending on the output feature size. If the output feature has the same cardinality
and dimensionality, the shortcut branch is just a identity mapping. If the output feature has the same
cardinality but with different dimensionality, the shortcut branch is a linear mapping. If the output
feature has different cardinality, e.g. when the point cloud is downsampled, the shortcut branch uses
a max-pooling layer to aggregate features.

Linear

PointConvFormer

Linear

Input(𝑋, 𝑝)

output (𝑋௨௧, 𝑝)

Linear

PointConvFormer

Linear

Linear

output (𝑋௨௧, 𝑝)

Input(𝑋, 𝑝)

Linear

PointConvFormer

Linear

Pool

output (𝑋௨௧, 𝑝)

Input(𝑋, 𝑝)

(a) (b) (c)

Figure 3: The residual blocks of PointConvFormer. We use Linear layers and pooling layers to change the
dimensionality and cardinality of the shortcut to match the output of the residual branch.

Downsampling and Deconvolution We use the grid-subsampling method (Thomas et al., 2019) to
downsample the point clouds in the same way as the 2x2 downsampling in 3D convolutions, which
had been shown to outperform random and furthest point downsampling (Thomas et al., 2019). This
subsampling choice makes PointConvFormer directly comparable with 3D convolution backbones
at the same voxelization levels (e.g. 2cm, 5cm) as the voxelization and downsampling become both
the same. For upsampling layers, we cannot apply PointConvFormer because for points that do not
exist in the downsampled cloud, their features are not available. Instead, we note that in eq. 3 of
PointConv, p itself does not have to belong to N (p), thus we can just apply PointConv layers for
deconvolution without features Xp as long as coordinates p are known. This helps us to keep the
consistency of the network and avoid arbitrary interpolation layers that are not learnable.
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4 EXPERIMENTS

In this section, we conduct experiments in a number of domains and tasks to demonstrate the effec-
tiveness of the proposed PointConvFormer. For 3D semantic segmentation, we use the challenging
ScanNet (Dai et al., 2017), a large-scale indoor scene dataset, and the SemanticKitti dataset (Behley
et al., 2019b), a large-scale outdoor scene dataset. Besides, we conduct experiments on the scene
flow estimation from 3D point clouds with the synthetic FlyingThings3D dataset (Mayer et al.,
2016a) for training and the KITTI scene flow 2015 dataset (Menze et al., 2018). We also conduct
ablation studies to explore the properties of the PointConvFormer which are shown in the appendix.

Implementation Details. We implement PointConvFormer in PyTorch (Paszke et al., 2019). The
viewpoint-invariant coordinate transform in (Li et al., 2021b) is concatenated with the relative co-
ordinates as the input to the w(·) function. We use the Adam optimizer with (0.9, 0.999) betas and
0.0001 weight decay. For the ScanNet dataset, we train the model with an initial learning rate 0.001
and dropped to 0.5x for every 60 epochs for 300 epochs. For the SemanticKitti dataset, the model
is trained with an initial learning rate 0.001 and dropped to 0.5x for every 8 epochs for 40 epochs.
Both semantic segmentation tasks are trained with weighted cross entropy loss. To ensure fair com-
parison with published approaches, we did not employ the recent Mix3D augmentations (Nekrasov
et al., 2021) which would improve performance for all methods. For the scene flow estimation, we
follow the exact same training pipeline as in (Wu et al., 2020) for fair comparison.

4.1 INDOOR SCENE SEMANTIC SEGMENTATION

We conduct indoor 3D semantic scene segmentation on the ScanNet (Dai et al., 2017) dataset. We
use the official split with 1, 201 scenes for training and 312 for validation. We compare against both
voxel-based methods such as MinkowskiNet42 (Choy et al., 2019) and SparseConvNet (Graham
et al., 2018), as well as point-based approaches (Qi et al., 2017a; Wu et al., 2019b; Li et al., 2021b;
Yan et al., 2020; Thomas et al., 2019). Recently, there are work adopting transformer to point clouds.
We chose the Point Transformer (Zhao et al., 2021) and the fast point transformer (Park et al., 2021)
as representative transformer based methods. Since the Point Transformer does not report their re-
sults on the ScanNet dataset, we adopt their point transformer layer (a standard multi-head attention
layer) with the same network structure as ours. Hence, it serves as a direct comparison between
PointConvFormer and multi-head attention. There exists some other approaches (Chiang et al.,
2019; Hu et al., 2021a;b; Kundu et al., 2020) which use additional inputs, such as 2D images, which
benefit from ImageNet (Deng et al., 2009) pre-training that we do not use. Hence, we excluded these
methods from comparison, accordingly but we are comparable to the best of them.

We adopt a general U-Net structure with residual blocks in the encoding layers as our backbone
model, where the point clouds are gradually downsampled to coarse resolution, then gradually up-
sampled to its original resolution with highway connections. Through experiments we found out
that the decoder can be very lightweight without sacrificing performance (Table 8). Hence, we set
cmid to be 1 in the decoder throughout the experiments, and just have consecutive PointConv upsam-
pling layers without any residual blocks. Please refer to the appendix for detailed network structure.
Following (Park et al., 2021), we conduct experiments on different input voxel sizes, reported in
Fig. 1 and Table 4 in the Appendix. Note that we still utilize kNN neighborhoods which always
have k neighbors whereas sparse convolution could have far fewer points in their neighborhood,
hence needing more parameters to cover all neighborhood locations, and more layers than us to
obtain the same receptive field. According to Fig. 1, Table. 4 and Table. 1, our PointConvFormer
achieves best results regardless of the input grid size. Especially, our PointConvFormer outperforms
MinkowskiNet42 (Choy et al., 2019) by a very significant 10.0% with 10cm input grid, 7.0% with
5cm input grid, and 2.3% with 2cm input grid, while being faster than it in the first two cases.
It is also significantly (at least 3 times) faster than all the transformer approaches while achiev-
ing similar or better results. The detailed result table (Table 4) with all the grid sizes and several
ablations using the same network architecture but different layer types is shown in the appendix.

4.2 OUTDOOR SCENE SEMANTIC SEGMENTATION

The SemanticKitti (Behley et al., 2019b; Geiger et al., 2012) dataset is a large-scale street view point
cloud dataset built upon the KITTI Vision Odometry Benchmark (Geiger et al., 2012). The dataset
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Table 1: Semantic segmentation results on ScanNet dataset. We compare both the ScanNet (Dai et al.,
2017) validation set and test set. Numbers for baselines are taken from the literature. The numbers for test set
are from the official ScanNet benchmark.

Methods # Params(M) Input Runtime(ms) Val mIoU(%) Test mIoU(%)

PointNet++ (Qi et al., 2017b) - Point - 53.5 55.7
PointCNN (Li et al., 2018) - point - - 45.8
PointConv (Wu et al., 2019b) - Point 83.1 65.1 66.6
KPConv deform (Thomas et al., 2019) 14.9 Point - 69.2 68.4
PointASNL (Yan et al., 2020) - Point - 63.5 66.6
RandLA-Net (Hu et al., 2020a) - point - - 64.5
VI-PointConv (Li et al., 2021b) 15.5 Point 88.9 70.1 67.6
SparseConvNet (Graham et al., 2018) - Voxel - 69.3 72.5
MinkowskiNet42 (Choy et al., 2019) 37.9 Voxel 115.6 72.2 73.6
PointTransformer (Zhao et al., 2021) - Point - 70.6 -
Fast Point Transformer (Park et al., 2021) 37.9 Voxel 312.0 72.0 -
Stratified Transformer (Lai et al., 2022) 18.8 point 1689.3 74.3 74.7

PointConvFormer(ours) 9.4 Point 145.5 74.5 74.9

Table 2: Semantic segmentation results on SemanticKitti validation set.

Method #MACs(G) # Param.(M) Input mIoU(%)

RandLA-Net (Hu et al., 2020b) 66.5 1.2 Point 57.1
FusionNet (Zhang et al., 2020a) - - Point+Voxel 63.7
KPRNet (Kochanov et al., 2020) - - Point+Range 64.1
MinkowskiNet (Choy et al., 2019) 113.9 21.7 Voxel 61.1
SPVCNN (Tang et al., 2020) 118.6 21.8 Point+Voxel 63.8
SPVNAS (Tang et al., 2020) 64.5 10.8/12.5 Point+Voxel 64.7

PointConvFormer(ours) 91.1 8.1 Point 67.1

consists of 43, 552 point cloud scans sampled from 22 sequences in driving scenes. Each point cloud
scan contains 10 − 13k points. We follow the training and validation split in (Behley et al., 2019b)
and 19 classes are used for training and evaluation. For each 3D point, only the (x, y, z) coordinates
are given without any color information. It is a challenging dataset because the scanning density is
uneven as faraway points are more sparse in LIDAR scans.

Table 2 reports the results on the semanticKitti dataset. Because this work mainly focus on the
basic building block, PointConvFormer, which is applicable to any kind of 3D point cloud data, of
deep neural network, we did not compare with work (Zhu et al., 2021; Cheng et al., 2021) whose
main novelties work mostly on LiDAR datasets due to the additional assumption that there are no
occlusions from the bird-eye view. From the table, one can see that our PointConvFormer outper-
forms both point-based methods and point+voxel fusion methods. Especially, our method obtains
better results comparing with SPVNAS (Tang et al., 2020), which utilizes the network architecture
search (NAS) techniques and fuses both point and voxel branches. We did not utilize any NAS in
our system which would only further improve our performance.

4.3 SCENE FLOW ESTIMATION FROM POINT CLOUDS

Scene flow is the 3D displacement vector between each surface in two consecutive frames. As a fun-
damental tool for low-level understanding of the world, scene flow can be used in many 3D applica-
tions.Traditionally, scene flow was estimated directly from RGB/RGBD data (Huguet & Devernay,
2007; Menze & Geiger, 2015; Vogel et al., 2015). However, with the recent development of 3D
sensors such as LiDAR and 3D deep learning techniques, there is increasing interest on directly esti-
mating scene flow from 3D point clouds (Liu et al., 2019a; Gu et al., 2019; Wu et al., 2020; Puy et al.,
2020; Wei et al., 2021). In this work, we adopt PointConvFormer into the PointPWC-Net (Wu et al.,
2020), which utilizes a coarse-to-fine framework for scene flow estimation. PointPWC-Net (Wu
et al., 2020) is a coarse-to-fine network design, which aims to iteratively refine the scene flow es-
timation. To adopt our PointConvFormer to the PointPWC-Net, we replace the PointConv in the
feature pyramid layers with the PointConvFormer and keep the rest of the structure the same as the
original version of PointPWC-Net.

8



Under review as a conference paper at ICLR 2023

We name the new network ‘PCFPWC-Net’ where PCF stands for PointConvFormer. To train the
PCFPWC-Net we follow the training pipeline in (Wu et al., 2020). For a fair comparison, we use
the same dataset configurations as in (Wu et al., 2020). The model is first trained on FlyingTh-
ings3D (Mayer et al., 2016b), which is a large synthetic image dataset for scene flow estimation.
The 3D point clouds are reconstructed from image pairs with the depth map provided in the dataset
following (Gu et al., 2019). We adopt the same hyper-parameters used in (Wu et al., 2020). There
are 4 pyramid levels in PCFPWC-Net. The model is trained with a starting learning rate of 0.001
and dropped by half every 80 epochs. After training on FlyingThings3D, we directly evaluate the
trained model on the real world KITTI Scene Flow dataset (Menze et al., 2015; 2018) to test the
generalization capabilities of our model. We follow the same preprocessing step in (Gu et al., 2019)
and obtain 142 valid scenes for evaluation. For comparison, we use the same metrics as (Wu et al.,
2020). Definitions of the metrics can be found in the appendix.

Table 3: Evaluation results on Scene Flow Datasets. All approaches are trained on FlyingThings3D with
the supervised loss. On KITTI, the models are directly evaluated on KITTI without any fine-tuning.

Dataset Method EPE3D(m)↓ Acc3DS↑ Acc3DR↑ Outliers3D↓ EPE2D(px)↓ Acc2D↑

Flyingthings3D

FlowNet3D (Liu et al., 2019a) 0.1136 0.4125 0.7706 0.6016 5.9740 0.5692
SPLATFlowNet (Su et al., 2018) 0.1205 0.4197 0.7180 0.6187 6.9759 0.5512
HPLFlowNet (Gu et al., 2019) 0.0804 0.6144 0.8555 0.4287 4.6723 0.6764
HCRF-Flow (Li et al., 2021a) 0.0488 0.8337 0.9507 0.2614 2.5652 0.8704
FLOT (Puy et al., 2020) 0.052 0.732 0.927 0.357 - -
PV-RAFT (Wei et al., 2021) 0.0461 0.8169 0.9574 0.2924 - -
PointPWC-Net (Wu et al., 2020) 0.0588 0.7379 0.9276 0.3424 3.2390 0.7994
PCFPWC-Net(ours) 0.0416 0.8645 0.9658 0.2263 2.2967 0.8871

KITTI

FlowNet3D (Liu et al., 2019a) 0.1767 0.3738 0.6677 0.5271 7.2141 0.5093
SPLATFlowNet (Su et al., 2018) 0.1988 0.2174 0.5391 0.6575 8.2306 0.4189
HPLFlowNet (Gu et al., 2019) 0.1169 0.4783 0.7776 0.4103 4.8055 0.5938
HCRF-Flow (Li et al., 2021a) 0.0531 0.8631 0.9444 0.1797 2.0700 0.8656
FLOT (Puy et al., 2020) 0.056 0.755 0.908 0.242 - -
PV-RAFT (Wei et al., 2021) 0.0560 0.8226 0.9372 0.2163 - -
PointPWC-Net (Wu et al., 2020) 0.0694 0.7281 0.8884 0.2648 3.0062 0.7673
PCFPWC-Net(ours) 0.0479 0.8659 0.9332 0.1731 1.7943 0.8924

From Table 3, we can see that PCFPWC-Net outperforms previous methods in almost all the evalua-
tion metrics. Comparing with PointPWC-Net (Wu et al., 2020), our PCFPWC-Net achieves around
10% improvement in all metrics. On the KITTI dataset, our PCFPWC-Net also shows strong re-
sult for scene flow estimation by improving the EPE3D by more than 30%(0.0694 7→ 0.0479) over
PointPWC-Net (Wu et al., 2020)).

4.4 VISUALIZATION OF REWEIGHTED SCORES

In order to actually see what the reweighted score learnt from the dataset, we visualize the differ-
ence of the learned attention for a few example scenes in the ScanNet (Dai et al., 2017) dataset. The
difference is computed by maxxi∈N (x0) ψ(xi)−minxi∈N ψ(x0), where ψ is the attention score. A
larger difference indicates that some points are discarded from the neighborhood. A smaller differ-
ence indicates a nearly constant ψ in the neighbourhood, where PointConvFormer would reduce to
regular point convolution. We visualize the difference in Fig. 2(b). where it can be seen that larger
differences happen mostly in object boundaries. For smooth surfaces and points from the same class,
the difference of reweighted scores is low. This visualization further confirms that PointConvFormer
is able to utilize feature differences to conduct neighborhood filtering.

5 CONCLUSION

In this work, we propose a novel point cloud layer, PointConvFormer, which can be widely used
in various computer vision tasks. Unlike traditional convolution of which convolutional kernels are
functions of the relative position, the convolutional weights of the PointConvFormer are modified by
an attention score computed from feature differences and relative position. By taking the feature dif-
ferences into account, PointConvFormer incorporates benefits of attention models, which could help
the network to focus on points with high feature correlation during feature encoding. Experiments
on a number of point cloud tasks showed that PointConvFormer significantly outperforms traditional
point-based operations and outperforms other voxel-based or point-voxel fusion approaches, with a
significantly faster and smaller model than those.
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Figure 4: The network structure of semantic segmentation. We use a U-Net structure for semantic
segmentation tasks. The U-Net contains 5 resolution levels. For each resolution level, we use
grid subsampling to downsample the input point clouds, then followed by several pointconvformer
residual blocks. For deconvolution, we just use PointConv as described in the main paper. We set
N = 64 for ScanNet (Dai et al., 2017) Dataset and N = 48 for SemanticKitti (Behley et al., 2019a)
Dataset. (Best viewed in color.)

A NETWORK STRUCTURE

A.1 NETWORK STRUCTURE FOR SEMANTIC SEGMENTATION

As in Fig. 4, we use a U-Net structure for semantic segmentation tasks. The U-Net contains 5
resolution levels. For each resolution level, we use grid subsampling to downsample the input
point clouds, then followed by several pointconvformer residual blocks. The number of layers in
the blocks at each level is [3, 2, 4, 6, 6] respectively. Latter blocks have more layers since they
are cheaper to compute, similar to image convolutional models. For deconvolution, we just use
PointConv as described in the main paper. And each block has a single PointConvTranspose layer,
which is a PointConv layer that upsamples to locations without any features. For the 2cm grid
resolution, because it is too fine to be captured by 5 downsampling levels, we utilize a sixth block
which contains 2 layers.

A.2 NETWORK STRUCTURE FOR SCENE FLOW ESTIMATION

Fig. 5 illustrates the network structure we used for scene flow estimation. Following the net-
work structure of PointPWC-Net (Wu et al., 2020), which is a coarse-to-fine network design, the
PCFPWC-Net also contains 5 modules, including the feature pyramid network, cost volume layers,
upsampling layers, warping layers, and the scene flow predictors. We replace the PointConv in the
Feature pyramid layers with the PointConvFormer and keep the rest of the structure the same as the
original version of PointPWC-Net for fair comparison.

B EVALUATION METRICS FOR SCENE FLOW ESTIMATION

Evaluation Metrics. For comparison, we use the same metrics as (Wu et al., 2020). Let SFΘ

denote the predicted scene flow, and SFGT be the ground truth scene flow. The evaluate metrics are
computed as follows:

• EPE3D(m): ∥SFΘ − SFGT ∥2 averaged over each point in meters.

• Acc3DS: the percentage of points with EPE3D < 0.05m or relative error < 5%.

• Acc3DR: the percentage of points with EPE3D < 0.1m or relative error < 10%.

• Outliers3D: the percentage of points with EPE3D> 0.3m or relative error > 10%.

• EPE2D(px): 2D end point error obtained by projecting point clouds back to the image plane.

• Acc2D: the percentage of points whose EPE2D < 3px or relative error < 5%.
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Figure 5: The network structure of PointPWC-Net with PointConvFormer. The feature pyramid
is built with blocks of PointConvFormers. As a result, there are 4 resolution levels in the PointPWC-
Net. At each level, the features of the source point cloud are warped according to the upsampled
coarse flow. Then, the cost volume are computed using the warped source features and target fea-
tures. Finally, the scene flow predictor predicts finer flow at the current level using a PointConv with
features from the first point cloud, the cost volume, and the upsampled flow. (Best viewed in color.)

C DETAILED RESULTS

Here we show the detailed result table corresponding to Figure 1. Our implementations of PointConv
is better than the original implementation in (Wu et al., 2019b) in that we utilized the AdamW
optimizer, and has more layers and channels than the original model. Overall we still achieved
significant parameter savings over the original paper because of the ResNet-style architecture and
the lightweight decoder we adopted.

Table 4: Comparison with different input voxel size. We compare the results on the ScanNet (Dai et al.,
2017) validation set with different input voxel size. † means the results are reported in (Park et al., 2021).
We use grid subsampling (Thomas et al., 2019) to downsample the input point clouds, which is similar to
voxelization. However, we still use kNN neighborhood after downsampling which is different from the voxel
neighborhood used in other approaches. * means we implemented it on the same network structure as Point-
ConvFormer, hence it also serves as an ablation comparing regular self-attention layers and convolutional layers
with PointConvFormer layers

Methods Voxel/grid size # Params(M) Input mIoU(%)

MinkowskiNet42† (Choy et al., 2019) 10cm 37.9 Voxel 60.4
PointConv* 10cm 5.4 Point 62.6
Fast Point Transformer (Park et al., 2021) 10cm 37.9 Voxel 65.3
PointConvFormer(ours) 10cm 5.5 Point 71.4

MinkowskiNet42† (Choy et al., 2019) 5cm 37.9 Voxel 66.6
Fast Point Transformer (Park et al., 2021) 5cm 37.9 Voxel 70.1
PointConv* 5cm 5.4 Point 68.5
PointConvFormer(ours) 5cm 5.5 Point 73.7

MinkowskiNet42† (Choy et al., 2019) 2cm 37.9 Voxel 72.2
Fast Point Transformer (Park et al., 2021) 2cm 37.9 Voxel 72.0
PointConvFormer(ours) 2cm 9.4 Point 74.5

Different Attention Types We compare the PointConvFormer with a Point Transformer and no
attention using the same architecture – same ResNet structure and same number of layers, just
different base layer. The results in Table 5 show that the PointConvFormer attention is significantly
better than Point Transformer attention as well as convolution without attention.
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Table 5: Different Attention Types With the same model architecture and training parameters we
change the attention layer of the model. The experiment is performed at the 5cm voxel grid level

Attention Type # Params (M) mIoU(%)
PointTransformer Attention 5.5 70.0

No Attention (VI-PointConv only) 5.4 72.8
PointConvFormer 5.5 73.7

D ABLATION STUDIES

In this section, we perform thorough ablation experiments to investigate our proposed PointCon-
vFormer. The ablation studies are conducted on the ScanNet (Dai et al., 2017) dataset. For ef-
ficiency, we downsample the input point clouds with a grid-subsampling method (Thomas et al.,
2019) with a grid size of 10cm as in (Park et al., 2021).

Number of neighbours. We first conduct experiments on the neighbourhood size k in the Point-
ConvFormer for feature aggregation. The results are reported in Table. 6. The best result is achieved
with a neighbourhood size of 16. Larger neighbourhood sizes of 32, 48 do not introduce significant
gains on the result, and 48 actually decreased the performance a bit, which may be caused by in-
troducing excessive less relevant features in the neighbourhood (Zhao et al., 2021). We choose 16
based on similar performance to 32 and significantly smaller memory footprint and faster speed.
Table 6: Ablation Study. Number of neighbours in
each local neighbourhood.

Nieghbourhood Size 4 8 16 32 48
mIoU(%) 64.61 69.54 71.40 71.19 69.84

Table 7: Ablation Study. Number of heads.

Number of Head 2 4 8 16
mIoU(%) 70.71 70.58 71.40 70.97

Number of heads in ψ. As described in Sec. 3.2, our PointConvFormer could employ the multi-
head mechanism to further improve the representation capabilities of the model. We conduct abla-
tion experiments on the number of heads in the PointConvFormer. The results are shown in Table. 7.
From Table. 7, we find that PointConvFormer achieves the best result with 8 heads.

Decoder cmid PointConv and PointConvFormer implementations lead to a dimensionality expansion
of the network that is cmid times the size of the input dimensionality, hence significantly increase
the number of parameters in the subsequent linear layer Wl (eqs. (3,7)). One empirical contribu-
tion in semantic segmentation we made is that we found that the decoder does not really need this
dimensionality expansion, which leads to significant savings in the number of parameters. In Table
8, it is shown that adding 3 million parameters by using a cmid of 16 in the decoder only leads to a
small improvement of 0.4%, hence in our model we choose to set cmid = 1 in the decoder of seg-
mentation models, since those parameters could be used better elsewhere. Parameter savings here
and the ResNet-style blocks allow us to use more layers yet still have a smaller model than (Li et al.,
2021b).

cmid in decoder 1 3 4 8 16
mIoU (%) 71.4 71.5 70.8 71.5 71.8

# Params (M) 5.48 5.90 6.11 6.96 8.64

Table 8: Different cmid in the decoder. cmid of 1 in the decoder did not significantly lower the
performance, yet saves a significant amount of parameters, hence we choose it in the final model

Different attention method. As described in Sec. 3.2, our PointConvFormer is a combination of
convolution and transformer. However, we adopted the subtractive attention ψ(Xi − Xj) rather
than the regular dot-product attention based on Q and K with regular transformers. Here we show
the results comparing these formulations. The dot product version of the attention is shown in this
equation:

X ′
p =

∑
pi∈N (p)

w(pi − p)⊤ψ(
1√
d
q(Xpi

)k(Xp))Xpi
(8)

. where d is the dimension of the q and k transforms of the input feature. Hence, the computational
cost and memory usage of eq. (8) are slightly smaller. We show the results comparing these formu-
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lations in Table. 9. The experiment results show that the feature difference achieves better results,
which are also confirmed in (Zhao et al., 2021). Note that we were not able to make the version
using softmax attention to work better than 60% despite multiple trials. But the one with sigmoid
as ψ(·) after the dot product easily eclipsed 70%, hence we utilize that. The QKV version has a bit
more parameters due to the two MLPs forQ andK instead of a single one as in eq.(6). It in principle
uses a bit less memory and computation during inference, but the savings is not very significant due
to the small neighborhood size of K = 16.

Table 9: Ablation Study. Dot-product attention vs. additive attention.

Method (same backbone) #Params(M) mIoU(%)
PointConvFormer(dot product attention) 5.6 70.10
PointConvFormer(subtractive attention) 5.5 71.40

E RESULT VISUALIZATIONS

Fig. 6 and Fig. 7 are visualizations of the comparison among PointConv (Wu et al., 2019b), Point
Transformer (Zhao et al., 2021) and PointConvFormer on the ScanNet dataset (Dai et al., 2017). We
observe that PointConvFormer is able to achieve better predictions with fine details comparing with
PointConv (Wu et al., 2019b) and Point Transformer (Zhao et al., 2021). Interestingly, it seems that
PointConvFormer is usually able to find the better prediction out of PointConv (Wu et al., 2019b)
and Point Transformer (Zhao et al., 2021), showing that its novel design brings the best out of both
operations.

𝑎  𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝑏  𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣 𝑐  𝑃𝑜𝑖𝑛𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑑  𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣𝐹𝑜𝑟𝑚𝑒𝑟

Figure 6: ScanNet result visualization. We visualize the ScanNet prediction results from our PointCon-
vFormer, PointConv (Wu et al., 2019b) and Point Transformer (Zhao et al., 2021). The red ellipses indicates
the improvements of our PointConvFormer over other approaches. Points with ignore labels are filtered for a
better visualization. (Best viewed in color)

Fig. 8 illustrates the prediction of PointConvFormer on the SemanticKitti dataset (Behley et al.,
2019a). Fig. 9, Fig. 11 and Fig.10 are the comparison between the prediction of PointPWC (Wu
et al., 2020) and PCFPWC-Net on the FlyingThings3D (Mayer et al., 2016a) and the KITTI Scene
Flow 2015 dataset (Menze et al., 2015). Please also refer to the video for better visualization.

Fig. illustrates the qualitative results of PCFPWC-Net for both FlyingThings3D and KITTI dataset.
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𝑎  𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝑏  𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣 𝑐  𝑃𝑜𝑖𝑛𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑑  𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣𝐹𝑜𝑟𝑚𝑒𝑟

Figure 7: ScanNet result visualization. We visualize the ScanNet prediction results from our
PointConvFormer, PointConv (Wu et al., 2019b) and Point Transformer (Zhao et al., 2021). The red
ellipses indicates the improvements of our PointConvFormer over other approaches. Points with
ignore labels are filtered for a better visualization. (Best viewed in color)
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GT GT

Ours Ours

Figure 8: SemanticKitti result visualization. We visualize the SemanticKitti prediction results from our
PointConvFormer. Each column is a scan from SemanticKitti validation set. The first row is the input, the
second row is the ground truth, the third row is our prediction. (Best viewed in color.)
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FlyingThings3D

Figure 9: Qualitative comparison between PointPWC-Net and PCFPWC-Net (FlyingThings3D (Mayer
et al., 2016b)). (a) is the visualization of the FlyingThings3D dataset. (b) is the visualization of the KITTI
dataset. Green points are the source point cloud. Blue points are the points warped by the correctly predicted
scene flow. The predicted scene flow belonging to Acc3DR is regarded as a correct prediction. For the points
with incorrect predictions, we use the ground truth scene flow to warp them and the warped results are shown
as red points. (Best viewed in color.)

(𝑑) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)

(𝑏) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)(𝑎) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)

(𝑐) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)

KITTI

Figure 10: Qualitative comparison between PointPWC-Net and PCFPWC-Net (KITTI (Menze et al.,
2015)). Green points are the source point cloud. Blue points are the points warped by the correctly predicted
scene flow. The predicted scene flow belonging to Acc3DR is regarded as a correct prediction. For the points
with incorrect predictions, we use the ground truth scene flow to warp them and the warped results are shown
as red points. (d) is a failure case, where the points on the wall or ground/road are hard to find accurate
correspondences for both PointPWC and PCFPWC. (Best viewed in color.)
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Figure 11: Qualitative comparison between PointPWC-Net and PCFPWC-Net. (a) is the visualization of
the FlyingThings3D dataset. (b) is the visualization of the KITTI dataset. Green points are the source point
cloud. Blue points are the points warped by the correctly predicted scene flow. The predicted scene flow
belonging to Acc3DR is regarded as a correct prediction. For the points with incorrect predictions, we use the
ground truth scene flow to warp them and the warped results are shown as red points. (Best viewed in color.)
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