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Abstract

We introduce a novel Pseudo-Negative Regular-
ization (PNR) framework for effective continual
self-supervised learning (CSSL). Our PNR lever-
ages pseudo-negatives obtained through model-
based augmentation in a way that newly learned
representations may not contradict what has been
learned in the past. Specifically, for the InfoNCE-
based contrastive learning methods, we define
symmetric pseudo-negatives obtained from cur-
rent and previous models and use them in both
main and regularization loss terms. Furthermore,
we extend this idea to non-contrastive learning
methods which do not inherently rely on negatives.
For these methods, a pseudo-negative is defined
as the output from the previous model for a differ-
ently augmented version of the anchor sample and
is asymmetrically applied to the regularization
term. Extensive experimental results demonstrate
that our PNR framework achieves state-of-the-
art performance in representation learning during
CSSL by effectively balancing the trade-off be-
tween plasticity and stability.

1. Introduction
Self-Supervised Learning (SSL) has recently emerged as a
cost-efficient approach for training neural networks, elimi-
nating the need for laborious data labelling (Gui et al., 2023).
Specifically, the representations learned by recent SSL meth-
ods (e.g., MoCo (He et al., 2020), SimCLR (Chen et al.,
2020a), BarlowTwins (Zbontar et al., 2021), BYOL (Grill
et al., 2020), and VICReg (Bardes et al., 2022)) are shown to
have excellent quality, comparable to those learned from su-
pervised learning. Despite such success, huge memory and
computational complexities are the apparent bottlenecks for
easily maintaining and updating the self-supervised learned

1New York University 2Genentech 3ASRI / INMC / IPAI / AIIS,
Seoul National University. Correspondence to: Taesup Moon
<tsmoon@snu.ac.kr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

models, since they typically require large-scale unsuper-
vised data, large mini-batch sizes, and numerous gradient
update steps for training.

To that end, Continual Self-Supervised Learning (CSSL),
in which the aim is to learn progressively improved repre-
sentations from a sequence of unsupervised data, can be
an efficient alternative to the high-cost, jointly trained self-
supervised learning. With such motivation, several recent
studies (Madaan et al., 2022; Hu et al., 2022; Fini et al.,
2022) have considered the CSSL using various SSL methods
and showed their effectiveness in maintaining representation
continuity. Despite the positive results, we note that the core
idea for those methods is mainly borrowed from the large
body of continual learning research for supervised learning
(Parisi et al., 2019; Delange et al., 2021; Wang et al., 2024).
Namely, a typical supervised continual learning method
can be generally described as employing a single-task loss
term for the new task (e.g., cross-entropy or supervised con-
trastive loss (Khosla et al., 2020)) together with a certain
type of regularization (e.g., distillation-based (Li & Hoiem,
2017; Douillard et al., 2020; Kang et al., 2022; Wang et al.,
2022; Cha et al., 2021a) or norm-based (Kirkpatrick et al.,
2017; Aljundi et al., 2018; Jung et al., 2020; Ahn et al.,
2019; Cha et al., 2021b) or replay-sample based terms (Wu
et al., 2019; Rebuffi et al., 2017)) to prevent forgetting; the
recent state-of-the-art CSSL methods simply follow that ap-
proach with self-supervised loss terms (e.g., CaSSLe (Fini
et al., 2022)).

In this regard, we raise an issue on the current CSSL ap-
proach; the efficacy of simply incorporating a regularization
term into the existing self-supervised loss for achieving
successful CSSL remains uncertain. Namely, typical reg-
ularization terms are essentially designed to maintain the
representations of the previous model, but they may hinder
the capability of learning better representations while learn-
ing from the new task (i.e., plasticity) (Cha et al., 2024;
Kim & Han, 2023).

To address these limitations, we propose a novel method
called Pseudo-Negative Regularization (PNR) for CSSL,
which utilizes pseudo-negatives for each anchor of a given
input, obtained by model-based augmentation. In the CSSL
using various SSL methods, PNR defines different pseudo-
negatives tailored for each contrastive and non-contrastive
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learning method, respectively. Firstly, we consider the case
of using InfoNCE-type contrastive loss (Oord et al., 2018),
such as SimCLR and MoCo, which explicitly leverages
negative samples. We propose novel loss functions by mod-
ifying the ordinary InfoNCE loss and contrastive distilla-
tion (Tian et al., 2019), ensuring that the former considers
negatives from the previous model and the latter includes
negatives from the current model as the pseudo-negatives.
As a result, these loss functions ensure that newly acquired
representations do not overlap with previously learned ones,
enhancing plasticity. Moreover, they enable effective dis-
tillation of prior knowledge into the current model without
interfering with the representations already learned by the
current model, thereby improving overall stability. Second,
we extend the idea of using pseudo-negatives to CSSL using
non-contrastive learning methods like BYOL, BarlowTwins,
and VICReg, which do not explicitly employ negative sam-
ples in their original implementations. For this, we reevalu-
ate the relationship between the anchor of the current model
and the negatives from the previous model observed in the
contrastive distillation Building on this relationship, we pro-
pose a novel regularization that defines the pseudo-negative
for the anchor from the current model as the output fea-
ture of the same image with different augmentations from
the previous model. Our final loss function aims to min-
imize their similarity by incorporating this regularization
alongside the existing distillation term for CSSL. Finally,
through extensive experiments, our proposed method not
only achieves state-of-the-art performance in CSSL scenar-
ios and downstream tasks but also shows both better stability
and plasticity.

2. Related Work
Self-supervised representation learning There have
been several recent variations for Self-Supervised Learning
(SSL) (Alexey et al., 2016; Doersch et al., 2015; Vincent
et al., 2010; Zhang et al., 2016; Hadsell et al., 2006; Chen
et al., 2020a; He et al., 2020). Among those, contrastive
loss-based methods have emerged as one of the leading
approaches to learn discriminative representations (Hadsell
et al., 2006; Oord et al., 2018), in which the representa-
tions are learned by pulling the positive pairs together and
pushing the negative samples apart. Several efficient con-
trastive learning methods, like MoCo (He et al., 2020; Chen
et al., 2020b), SimCLR (Chen et al., 2020a), have been
proposed build on the InfoNCE loss (Oord et al., 2018).
Additionally, non-contrastive learning methods, such as
Barlow Twins (Zbontar et al., 2021), BYOL (Grill et al.,
2020) and VICReg (Bardes et al., 2022), have been demon-
strated to yield high-quality learned representations without
using negative samples.

Continual learning Continual learning (CL) is the pro-

cess of acquiring new knowledge while retaining previously
learned knowledge (Parisi et al., 2019; Masana et al., 2022)
from a sequence of tasks. To balance the trade-off between
plasticity, the ability to learn new tasks well, and stability,
the ability to retain knowledge of previous tasks (Mermillod
et al., 2013), the supervised CL research has been proposed
in several categories. For more details, one can refer to
(Wang et al., 2024; Delange et al., 2021).

Continual Self-Supervised Learning Recently, there has
been a growing interest in Continual Self-Supervised Learn-
ing (CSSL), as evidenced by several related researches (Rao
et al., 2019; Madaan et al., 2022; Hu et al., 2022; Fini et al.,
2022). While all of them explore the possibility of using
unsupervised datasets for CL, they differ in their perspec-
tives. (Rao et al., 2019) is the first to introduce the concept
of unsupervised continual learning and proposed a novel
approach to learning class-discriminative representations
without any knowledge of task identity. (Madaan et al.,
2022) proposes a novel data augmentation method for CSSL
and first demonstrates that CSSL can outperform supervised
CL algorithms in the task-incremental learning scenario.
Another study (Hu et al., 2022) focuses on the benefits of
CSSL in large-scale datasets (e.g., ImageNet), demonstrat-
ing that a competitive pre-trained model can be obtained
through CSSL. The first significant regularization for CSSL
was proposed by CaSSLe (Fini et al., 2022). They devised
a novel regularization that helps to overcome catastrophic
forgetting in CSSL, achieving state-of-the-art performance
in various scenarios without using exemplar memory. After
that, several papers have been published but they consider
settings that are different from CaSSLe. C2ASR (Cheng
et al., 2023) considers to use the exemplar memory and in-
troduces both a novel loss function and exemplar sampling
strategy. (Yu et al., 2024; Tang et al., 2024; Gomez-Villa
et al., 2024) are tailored for semi-supervised learning sce-
narios and demonstrate superior performance in such cases.
Additionally, (Yu et al., 2024; Gomez-Villa et al., 2024)
are dynamic architecture-based algorithms where the model
expands as the number of tasks grows.

In this paper, we offer a few distinctive contributions com-
pared to above mentioned related works. First, we identify
shortcomings in the conventional regularization-based loss
formulation for CSSL, such as CaSSLe. Second, we intro-
duce a novel concept of pseudo-negatives and propose a new
loss function that incorporates this concept, applicable to
both contrastive and non-contrastive learning-based CSSL.

3. Problem Setting
Notations and preliminaries. We evaluate the quality
of CSSL methods using the setting and data as in (Fini
et al., 2022). Namely, let t be the task index, where
t ∈ {1, . . . , T}, and T represent the maximum number
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of tasks. The input data and their corresponding true labels
given at the t-th task are denoted by x ∈ Xt and y ∈ Yt,
respectively1. Let D is the entire dataset. We assume each
training dataset for task t comprises M supervised pairs,
denoted as Dt = {(xi, yi)}Mi=1, in which each pair is consid-
ered to be sampled from a joint distribution p(Xt,Yt). Note
in the case of continual supervised learning (CSL) (Delange
et al., 2021; Masana et al., 2022), both inputs and the labels
are used, whereas in CSSL (Fini et al., 2022; Madaan et al.,
2022), only input data are utilized for training, while the true
labels are used only for the evaluation of the learned repre-
sentations, such as linear probing or k-NN evaluation (Fini
et al., 2022; Cha et al., 2024). Let mψt

◦ hθt is the model
consisting of the representation encoder (with parameter θt)
and an MLP layer (with parameter ψt) learned after task t.
To evaluate the quality of hθt via linear probing, we con-
sider a classifier fΘt

= oϕt
◦ hθt , in which Θt = (θt,ϕt)

and oϕt
is the linear output layer (with parameter ϕt) on top

of hθt . Then, only oϕt
is supervised trained (with frozen

hθt ) using all the training dataset D1:t, including the labels,
and the accuracy of resulting fΘt becomes the proxy for the
representation quality.

Class-/Data-/Domain-incremental learning. We con-
sider the three scenarios of continual learning as outlined in
(Van de Ven & Tolias, 2019; Wang et al., 2024; Fini et al.,
2022). We use k and j to denote arbitrary task numbers,
where k, j ∈ {1, . . . , T} and k ̸= j. The first category is
the class-incremental learning (Class-IL), in which the t-th
task’s dataset consists of a unique set of classes for the input
data, namely, p(Xk) ̸= p(Xj) and Yk ∩ Yj = ∅. The sec-
ond category is domain-incremental learning (Domain-IL),
in which each dataset Dt has the same set of true labels but
with different distribution on Xt, denoted as p(Xk) ̸= p(Xj)
but Yk = Yj . In other words, each dataset in Domain-IL
contains input images sampled from a different domain, but
the corresponding set of true labels is the same as for other
tasks. Finally, we consider data-incremental learning (Data-
IL), in which a set of input images Xt is sampled from a
single distribution, p(Xk) = p(Xj), but Yk = Yj . To im-
plement the Data-IL scenario in our experiments, we shuffle
the entire dataset (such as ImageNet-100) and divide it into
T disjoint datasets.

4. Pseudo-Negative Regularization (PNR)
4.1. Motivation

Several studies have been conducted with the aim of pro-
gressively improving the quality of representations learned
by the encoder (hθt ) in CSSL. While it has been noted that

1For concreteness, we explicitly work with image data in this
paper, but we note that our method is general and not confined to
image modality.
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Figure 1. The overview of using pseudo-negatives in CSSL with
contrastive learning. Note that red dashed arrows denote the in-
corporation of the proposed pseudo-negatives, which are output
features from distinct models, in each loss function.

simple fine-tuning using Dt results in less severe forgetting
compared to supervised continual learning (Madaan et al.,
2022; Davari et al., 2022), CaSSLe (Fini et al., 2022) has
achieved even more successful CSSL. It introduces a novel
regularization method based on existing SSL methods, us-
ing the output features of both the encoder at time t and the
encoder at time t−1, to overcome catastrophic forgetting in
learned representations. Despite CaSSLe achieving promis-
ing results in various experiments, our motivation arises
from the belief that incorporating pseudo-negatives can lead
to even more successful results. Consider an augmented
image obtained by applying different augmentations to the
input image x, denoted by xA and xB . The output features
of the mψt ◦ hθt and mψt−1 ◦ hθt−1 for these augmented
images are denoted by zAt , zBt , zAt−1, and zBt−1, respectively.
In contrast to CaSSLe, our approach involves utilizing the
output features of both the models as pseudo-negatives, as
illustrated in Figure 1. For this purpose, we propose a novel
CSSL loss form for task t, defined as follows:

LCSSL
t ({xA,xB};θt,θt−1)

= LSSL∗

1 ({zAt , zBt , zAt−1, z
B
t−1})

+ LSSL∗

2 ({g(zAt ), zAt−1, z
B
t−1, z

A
t , z

B
t }).

(1)

Here, g(·) represents another MLP layer (referred to as the
Predictor in the figure) introduced in (Fini et al., 2022),
which has the same shape as mψt . The SSL loss function
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Figure 2. Graphical representation of learning with our proposed
loss. The blue dashed arrow indicates the direction of the gradient
update during training with the proposed loss. It moves away from
the negative and pseudo-negative embeddings, which correspond
to current and past models, while converging towards the positive
embeddings of the current and past models.

LSSL∗

1/2 are newly designed general loss forms incorporating
all candidate pseudo-negatives: zAt−1, z

B
t−1 for LSSL∗

1 and
zAt , z

B
t for LSSL∗

2 . They resemble the two loss functions
utilized in CaSSLe, and we will highlight the specific differ-
ence later. Furthermore, in order to consider two different
augmentations in a symmetric fashion, we employ the fol-
lowing average as the final loss function for our method
1
2 (L

CSSL
t (xA,xB) + LCSSL

t (xB ,xA)).

As mentioned above, CaSSLe also uses two SSL loss func-
tions, one responsible for plasticity and the other for stability,
but they do not utilize any pseudo-negatives. Namely, the
plasticity loss of CaSSLe (which corresponds to LSSL∗

1 of
ours) is designed to learn new representations from the new
task t and only utilizes the output features from the current
model t. Moreover, the stability loss of CaSSLe (which
corresponds to LSSL∗

2 of ours) aims to maintain the represen-
tations learned from the past task t− 1 and only regularizes
with the output features from the previous model t− 1. We
argue that such a stability loss term, designed to preserve
representations from the previous model, might impede the
plasticity loss, that aims to learn new representations from
the new task but does not consider any representations from
the previous model (Cha et al., 2024; Kim & Han, 2023).
To address these issues, we propose utilizing the output fea-
tures of both the model t− 1 and t as the pseudo-negatives,
that can effectively work as regularizers so that the newly
learned representations may not interfere with previously
learned representations.

In the upcoming section, we will specifically introduce novel
function forms for LSSL∗

1 and LSSL∗

2 tailored to integrate
pseudo-negatives into contrastive learning methods (e.g.,
SimCLR (Chen et al., 2020a), MoCo (He et al., 2020)).

Additionally, we will present how the idea of using pseudo-
negatives can be applied to non-contrastive learning meth-
ods (e.g., BYOL (Grill et al., 2020), VICReg (Bardes et al.,
2022), BarlowTwins (Zbontar et al., 2021)) as well.

4.2. InfoNCE-based Contrastive Learning Case

Here, we propose new loss functions for CSSL using con-
trastive learning-based SSL methods (e.g.. SimCLR and
MoCo). First, LSSL∗

1 in (1) is defined as:

LSSL∗

1 ({zAt , zBt , zAt−1, z
B
t−1})

= −log
exp(zAt,i · zBt,i/τ)∑

zj∈N1(i)∪PN 1(i)
exp(zAt,i · zj/τ)

,
(2)

in which N1(i) = {zAt , zBt }\{zAt,i} is the set of origi-
nal negatives, and PN 1(i) = {zAt−1, z

B
t−1}\{zAt−1,i} are

pseudo-negatives of LSSL∗

1 . Also, LSSL∗

2 is defined as fol-
lows:

LSSL∗

2 ({g(zAt ), zAt−1, z
B
t−1, z

A
t , z

B
t })

= −log
exp(g(zAt,i) · zAt−1,i/τ)∑

zj∈N2(i)∪PN 2(i)
exp(g(zAt,i) · zj/τ)

,
(3)

in which N2(i) = {zAt−1, z
B
t−1}\{zAt−1,i} is the original

negatives for contrastive distillation (Tian et al., 2019; Fini
et al., 2022), and PN 2(i) = {zAt , zBt }\{zAt,i} is the pseudo-
negatives of LSSL∗

2 . Also, τ denotes a temperature parameter.
In the case of SimCLR, N1(i), PN 1(i), N2(i), and PN 2(i)
consist of negatives from the current batch. When using
MoCo, two queues storing positives of each loss function
(LSSL∗

1 and LSSL∗

2 ) from previous iterations are employed
for them.

Note these two losses are quite similar in form to In-
foNCE (Oord et al., 2018), have has a couple of key differ-
ences. First, in LSSL∗

1 , we use pseudo-negatives in PN 1(i)
which are obtained from the previous model hθt−1

. This
addition of negative embeddings in LSSL∗

1 compels the em-
bedding of xi to be repelled not only from the negative
embeddings of the current model but also from those of the
previous model, hence, it fosters the acquisition of more
distinctive representations. Second, in LSSL∗

2 , which has the
similar form of contrastive distillation, we also use pseudo-
negatives in PN 2(i). Such modification has the impact of
placing additional constraints on distillation, ensuring that
the representations from the past model are maintained in
a way that does not contradict the representations of the
current model. Note that the denominators of the two loss
functions are identical except for the g(·) in LSSL∗

2 . There-
fore, with the identical denominators, adding two losses will
result in achieving a natural trade-off between plasticity and
stability for learning the representation.

This intuition is depicted in the left figure of Figure 2.
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Namely, both losses symmetrically consider the embed-
dings from current and previous models, and as shown in
the hypersphere, the representation of zAt,i gets attracted to
zBt,i and zAt−1,i with the constraint that it is far from zBt−1,i.
Thus, the new representation will be distinctive from the pre-
vious model (plasticity) and carry over the old knowledge
(stability) in a way not hurt the current model.

The gradient analysis of the proposed loss function is de-
tailed in Section A.1 of the Appendix.

4.3. Non-Contrastive Learning Case

Non-contrastive learning methods, such as Barlow, BYOL,
and VICReg, do not incorporate negative samples. There-
fore, the direct application of pseudo-negatives used for
contrastive learning methods is not viable for these methods.
However, motivated by the configuration of negatives in
Equation (3), we propose a novel regularization that consid-
ers the pseudo-negatives from a new perspective. To achieve
this, we propose new formulations of LSSL∗

1 and LSSL∗

2 , tai-
lored for non-contrastive learning methods, as follows:

LSSL∗

1 ({zAt , zBt , zAt−1, z
B
t−1}) = LSSL({zAt , zBt }), (4)

where LSSL denotes a non-contrastive SSL loss, and

LSSL∗

2 ({g(zAt ), zAt−1, z
B
t−1, z

A
t , z

B
t })

= LSSL({g(zAt ), zAt−1})− λ ∗
∑
i

∑
zj∈PN 2(i)

∥g(zAt,i)− zj∥22,

(5)
where PN 2(i) = {zBt−1,i} is the pseudo-negative, ∥ · ∥22
represents the squared L2 norm and λ is a hyperparameter.
Additionally, zAt−1 and zBt−1 of Equation (4), as well as
zAt and zBt of Equation (5), are not employed when using
non-contrastive learning.

Note that LSSL of Equation (5) is the CaSSLe’s distilla-
tion for a non-contrstive learning method, and we introduce
a new regularization to incorporate the pseudo-negatives.
Specifically, zBt−1,i is assigned as the pseudo-negative of
zAt,i (the anchor). This assignment stems from the config-
uration of negatives of Equation (3). For example, when
implementing Equation (3) using SimCLR and N is the
mini-batch size, N (i) consists of 2N − 1 negatives exclud-
ing zAt−1,i. Consequently, for a given anchor zAt,i, an output
feature zBt−1,i from the same image xi but subjected to dif-
ferent augmentation is naturally considered as a negative
(this holds true when using MoCo). This leads to minimiz-
ing the similarity between g(zAt,i) and zBt−1,i for the training
task t. To apply this concept of negatives to CSSL using non-
contrastive learning, we propose a novel regularization that
maximizes the squared mean square error between g(zAt,i)

and zBt−1,i, ensuring their dissimilarity.

The right figure in Figure 2 illustrates representation learn-

ing with pseudo-negative in CSSL using BYOL. The
CaSSLe’s representation learning relies on distinct update
directions from each positive (e.g., zAt and zAt−1) to achieve
enhanced plasticity and stability, without taking negatives
into consideration. However, incorporating the pseudo-
negative enables the model to avoid conflicts in learning
representations by considering the pseudo-negative from the
model t− 1—learning representations far from the pseudo-
negative from the model t − 1. Consequently, the model
acquires more distinctive representations from the previous
model (enhancing plasticity) while retaining prior knowl-
edge (ensuring stability). Note that Equation (5) can be
applied in conjunction with various non-contrastive SSL
methods. The implementation details for BYOL and VI-
CReg are provided in Section A.2 of the Appendix.

We will refer to the overall framework of using pseudo-
negatives for regularization in CSSL, applicable to both
contrastive and non-contrastive learning as described above,
as PNR (Pseudo-Negative Regularization).

5. Experiments
5.1. Experimental Details

Baselines To evaluate the proposed PNR, we set
CaSSLe (Fini et al., 2022) as our primary baseline, which
has shown state-of-the-art performance in CSSL. We select
five SSL methods, SimCLR (Chen et al., 2020a), MoCo
v2 Plus (MoCo) (Chen et al., 2020b), BarlowTwins (Bar-
low) (Zbontar et al., 2021), BYOL (Grill et al., 2020), and
VICReg (Bardes et al., 2022), which achieve superior per-
formance with the combination with CaSSLe.

Implementation details We implement our PNR based
on the code provided by CaSSLe. We conduct experi-
ments on four datasets: CIFAR-100 (Krizhevsky et al.,
2009), ImageNet-100 (Deng et al., 2009), DomainNet (Peng
et al., 2019), and ImageNet-1k (Deng et al., 2009) following
the training and evaluation process outlined in (Fini et al.,
2022). For CIFAR-100 and ImageNet-100, we perform
class- and data-incremental learning (Class- and Data-IL)
for 5 and 10 tasks (denoted as 5T and 10T), respectively. For
Domain-incremental learning (Domain-IL), we use Domain-
Net (Peng et al., 2019), consisting of six disjoint datasets
from different six source domains. Following experiments
conducted by CaSSLe, we perform Domain-IL in the task
order of "Real → QuickDraw → Painting → Sketch →
InfoGraph → Clipart". Next, we report the average top-1 ac-
curacy achieved by training a linear classifier separately for
each domain, employing a frozen feature extractor (domain-
aware evaluation). The ResNet-18 (He et al., 2016) model
implemented in PyTorch is used except for ImageNet-1k
where the ResNet-50 is employed. For all experiments
except for ImageNet-1k, we perform each experiment us-
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ing three random seeds and report the average performance
across these trials. Further experimental details are available
in Section C of the Appendix.

Evaluation metrics To gauge the quality of representations
learned in CSSL, we conduct linear evaluation by training
only the output layer on the given dataset while maintaining
the encoder hθt as a fixed component, following (Fini et al.,
2022; Cha et al., 2024). The average accuracy after learning

the task t is denoted as At =
1

t

∑T
i=1 ai,t, where ai,j stands

for the linear evaluation top-1 accuracy of the encoder on the
dataset of task i after the end of learning task j. Furthermore,
we employ measures of stability (S) and plasticity (P ), and
a comprehensive explanation of these terms is provided in
Section B.1 of the Appendix.

Figure 3. Experimental results of applying PNR to SSL methods.
Note that "+CaSSLe" and "+PNR" indicate the results of applying
CaSSLe and PNR to each SSL method, respectively.

5.2. Experiments with SSL Methods

To assess the effectiveness of PNR when applied to various
SSL methods, we conduct experiments by incorporating the
PNR with MoCo, SimCLR, Barlow, BTOL, and VICReg,
in the Class-IL (5T) scenario using CIFAR-100. Figure 3
illustrates that both the proposed PNR and CaSSLe are suc-
cessfully combined with each SSL method, demonstrating
progressively enhanced the quality of representations at each
task. However, PNR demonstrates more effective integra-
tion with MoCo, SimCLR, BYOL, and VICReg, surpassing
the performance of CaSSLe.

Table 1 presents the numerical results for A5 in the same
scenario. In this table, "Joint" corresponds to the experi-
mental results in the Joint SSL scenario (upper bound) and
"FT" represents the results achieved through fine-tuning
with the SSL method alone. The table reveals that PNR
consistently outperforms CaSSLe, showcasing a maximum
improvement of approximately 2-3%. Note that the extra
performance gain achieved by PNR is particularly notewor-

Table 1. Experimental results of applying PNR to SSL methods in
Class-IL (5T) with CIFAR-100. The * symbol indicates results
from the CaSSLe paper, while the others are reproduced perfor-
mance. The values in parentheses indicate the standard deviation
and the bolded result represents the best performance.

A5 MoCo SimCLR Barlow BYOL VICReg

Joint
66.90
(0.11)

63.78
(0.22)

68.99
(0.21)

69.36
(0.28)

68.01
(0.36)

FT
51.95
(0.26)

48.97
(0.74)

55.81
(0.57)

52.43
(0.62)

52.43
(0.62)

EWC* - 53.60 56.70 56.40 -
DER* - 50.70 55.30 54.80 -

LUMP* - 52.30 57.80 56.40 -
Less-Forget* - 52.50 56.40 58.60 -

+CaSSLe
60.11
(0.30)

57.73
(1.07)

60.10
(0.38)

61.36
(1.38)

53.13
(0.64)

+PNR
62.36
(0.29)

58.87
(0.16)

60.28
(0.36)

63.13
(0.42)

56.47
(0.94)

thy, especially considering that CaSSLe’s performance with
MoCo, SimCLR, and BYOL is already close to that of the
Joint.

5.3. Experiments with Diverse CSSL Scenarios

Class-IL Table 2 presents the experimental results of Class-
IL with the CIFAR-100 and ImageNet-100 datasets. The
results for Class-IL with CIFAR-100 (5T) can be found
in Table 1. In comparison to the state-of-the-art method,
CaSSLe, PNR demonstrates superior performance across
all scenarios. Notably, the combination of PNR with MoCo,
BYOL, and VICReg exhibits significantly improved perfor-
mance compared to their combination with CaSSLe. For ex-
ample, in the ImageNet-100 experiments, "MoCo + PNR,"
"BYOL + PNR," and "VICReg + PNR" achieve a substantial
gain of approximately 2-6%, surpassing their combination
with CaSSLe. As a result, we can confirm that the combina-
tion of PNR with each SSL method achieves state-of-the-art
performance in the Class-IL scenarios.

Class-IL with ImageNet-1k Table 3 presents the experi-
mental results for the ImageNet-1k dataset in Class-IL (5T
and 10T). We only conduct experiments for MoCo and
BYOL, both of which have shown superior performance in
previous experiments. We train a model for each method
using the same hyperparameters employed in Class-IL with
the ImageNet-100 dataset. The experimental results in the
table highlight the notable performance improvement of
PNR in CSSL using the large-scale dataset, evident in both
contrastive (MoCo) and non-contrastive (BYOL) learning
methods.

Data-IL and Domain-IL Table 4 presents the experimen-
tal results in Data- and Domain-IL using the ImageNet-100
dataset. In the results of Data-IL, the combination with PNR
consistently achieves state-of-the-art performance in most
cases. It is noteworthy that our PNR successfully integrates
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Table 2. The experimental results of Class-IL. All results are re-
produced performance. The values in parentheses indicate the
standard deviation and the bolded result represents the best perfor-
mance.

Class-IL
CIFAR-100 ImageNet-100AT

10T 5T 10T
Joint 66.90 (0.11) 76.67 (0.56)
FT 34.11 (0.90) 57.87 (0.49) 47.48 (0.42)

+CaSSLe 53.58 (0.41) 63.49 (0.44) 52.71 (0.47)MoCo

+PNR 56.62 (0.31) 67.85 (0.44) 60.75 (0.39)
Joint 63.78 (0.22) 71.91 (0.57)
FT 39.48 (1.00) 56.11 (0.57) 46.66 (0.59)

+CaSSLe 53.02 (0.47) 62.53 (0.11) 54.55 (0.12)SimCLR

+PNR 53.47 (0.33) 62.88 (0.19) 54.79 (0.11)
Joint 69.36 (0.21) 75.89 (0.22)
FT 49.46 (0.67) 60.27 (0.27) 51.83 (0.46)

+CaSSLe 54.46 (0.24) 64.98 (0.79) 56.27 (0.63)Barlow

+PNR 54.69 (0.21) 65.38 (0.81) 56.54 (0.42)
Joint 68.99 (0.28) 75.52 (0.17)
FT 46.13 (0.88) 60.77 (0.62) 51.04 (0.52)

+CaSSLe 57.36 (0.86) 62.31 (0.09) 57.47 (0.75)BYOL

+PNR 58.44 (0.40) 64.23 (0.37) 60.11 (0.91)
Joint 68.01 (0.36) 75.08
FT 46.88 (0.28) 55.58 (0.22) 46.88 (0.34)

+CaSSLe 47.76 (0.46) 59.18 (0.36) 49.98 (0.53)VICReg

+PNR 49.56 (0.56) 62.48 (0.44) 51.82 (0.50)

Table 3. The experimental results of Class-IL with ImageNet-1k.
The bolded result represents the best performance and we report
results for a single seed.

MoCo BYOLAT 5T 10T 5T 10T
Joint 60.62 69.46
FT 48.33 42.55 60.76 57.15

+CaSSLe 50.57 43.38 64.78 61.93
+PNR 56.87 55.88 66.12 62.56

with MoCo once again, showcasing superior or nearly su-
perior performance compared to other SSL methods at 5T
and 10T. For instance, the combination "MoCo + PNR"
demonstrates a 3-8% performance enhancement compared
to its pairing with CaSSLe. A similar trend is observed in
Domain-IL, where the combination of CaSSLe with SSL
methods already demonstrates superior performance close
to their respective Joint’s performance. However, PNR
surpasses this by achieving additional performance improve-
ments, thus setting new standards for state-of-the-art perfor-
mance. In contrast, "BYOL + PNR" performs worse than
"BYOL + CaSSLe" in the Data-IL scenario. This can be
attributed to the unique characteristics of Data-IL, which
include shuffling and evenly distributing the ImageNet-100
dataset among tasks, leading to minimal distribution dispar-
ities between them. Additional discussion on this topic is
available in Section B.2 of the Appendix.

Additionally, we conducted all experiments using CaSSLe’s
code and were able to reproduce the CaSSLe’s reported per-
formance on CIFAR-100. However, despite various efforts,

Table 4. The experimental results of Data and Domain-IL. All
results are reproduced performance. The values in parentheses
indicate the standard deviation and the bolded result represents
the best performance.

Data-IL Domain-IL
ImageNet-100 DomainNetAT

5T 10T 6T
Joint 76.67 (0.56) 48.20 (0.30)
FT 65.51 (0.72) 60.50 (0.92) 36.48 (1.01)

+CaSSLe 66.88 (0.32) 59.72 (0.61) 38.04 (0.24)MoCo

+PNR 69.98 (0.30) 67.83 (0.45) 43.86 (0.17)
Joint 71.91 (0.57) 48.50 (0.21)
FT 62.88 (0.30) 56.47 (0.11) 39.46 (0.20)

+CaSSLe 66.05 (0.95) 61.68 (0.38) 45.96 (0.19)SimCLR

+PNR 66.93 (0.12) 62.04 (0.28) 46.37 (0.13)
Joint 75.89 (0.22) 49.50 (0.32)
FT 66.47 (0.24) 59.48 (1.33) 41.87 (0.17)

+CaSSLe 69.24 (0.36) 63.12 (0.28) 48.49 (0.04)Barlow

+PNR 70.16 (0.40) 64.06 (0.33) 48.90 (0.07)
Joint 75.52 (0.17) 53.80 (0.24)
FT 69.76 (0.45) 61.39 (0.44) 47.29 (0.08)

+CaSSLe 66.22 (0.13) 63.33 (0.19) 51.52 (0.18)BYOL

+PNR 66.08 (0.15) 63.10 (0.28) 51.96 (0.08)
Joint 75.08 (0.14) 52.12 (0.17)
FT 64.02 (0.11) 57.30 (0.09) 46.11 (0.14)

+CaSSLe 67.18 (0.15) 61.50 (0.21) 48.82 (0.12)VICReg

+PNR 67.68 (0.12) 62.08 (0.20) 48.95 (0.15)

we could only achieve performance that was 4-6% lower
than the CaSSLe’s reported performance in experiments
using ImageNet-100 and DomainNet. More discussion re-
garding this matter is provided in Appendix B.3.

5.4. Experimental Analysis

Analysis on plasticity and stability Figure 4 presents the
experimental results for Class-IL (5T) using the ImageNet-
100 dataset, showcasing graphs of ak,t and Avg(a1:5,t).
From Figure 4(a) showing the result of "MoCo + PNR",
we observe a general upward trend in ak,t across all tasks.
Remarkably, the performance for the initial task (ak=1,t) re-
mains relatively stable and even exhibits slight improvement
as subsequent tasks are learned. Conversely, the results de-
picted in Figures 4(b) and 4(c) for "MoCo + CaSSLe" and
"MoCo + FT" indicate that, while their Avg(a1:5,t) gradu-
ally increases, certain task performances experience gradual
declines (e.g., ak=2,t of "MoCo + CaSSLe" and most k of
"MoCo + FT"), showing suffering from catastrophic for-
getting than "MoCo + PNR". Furthermore, the numerical
assessments of plasticity (P ) and stability (S) for each algo-
rithm, as presented in the caption of Figure 4, demonstrate
that "MoCo + PNR" achieves its performance improvement
through superior plasticity and stability compared to other
baselines.

Figures 4(d), 4(e), and 4(f) illustrate the results of our exper-
imental analysis conducted on "PNR + BYOL," "BYOL
+ CaSSLe," and "BYOL + FT" in Class-IL (5T) exper-

7



Regularizing with Pseudo-Negatives for Continual Self-Supervised Learning

(a) MoCo + PNR (b) MoCo + CaSSLe (c) MoCo + FT

(d) BYOL + PNR (e) BYOL + CaSSLe (f) BYOL + FT

Figure 4. The graph illustrates the values of ak,t for each algorithm in the Class-IL (5T) scenario using the ImageNet-100 dataset. The
measured stability (S ↓) and plasticity (P ↑) for each method are as follows: (a) (S, P ) = (1.23, 3.47), (b) (S, P ) = (2.80, 2.52), (c)
(S, P ) = (3.13, 2.38), (d) (S, P ) = (0.4,−0.07), (e) (S, P ) = (1.5,−0.47), (f) (S, P ) = (4.9, 1.6).

iments using the ImageNet-100 dataset. These findings
align with previous results, showing a gradual increase in
Avg(a1:5,t). However, notable decreases are observed in
ak=1,t and ak=3,t for "BYOL + CaSSLe" across tasks, while
"BYOL + FT" exhibits degraded performance in most k. In
contrast, the application of our proposed PNR not only main-
tains ak=1,t effectively but also leads to a gradual increase
in ak=2,t and ak=4,t, indicating that our PNR outperforms
"BYOL + CaSSLe" in terms of plasticity and stability. Ad-
ditionally, the plasticity (P ) and stability (S) measurements
mentioned in the caption of Figure 4 further support these
experimental findings.

In conclusion, these analyses not only highlight the effec-
tiveness of integrating the pseudo-negative but also provide
further evidence of the superior performance of our PNR.
Additional analysis for other baselines can be found in Sec-
tion B.4 of the Appendix.

Analysis on the impact of pseudo-negatives Table 5
presents the experimental results for different queue sizes
(i.e., the size of PN 1(i) and PN 2(i)) in "MoCo + PNR".
Note that the default queue size is 65536 for all previous ex-
periments. We observe that performance remains relatively
consistent when the queue size exceeds 16384. However,
significant performance degradation is evident with reduced
queue sizes (i.e., reduced pseudo-negatives), particularly at

256. Based on this result, we affirm that the superior perfor-
mance of "MoCo + PNR" is attributed to the utilization of a
large number of pseudo-negatives.

Table 5. Experiments with different queue sizes.
Queue size 256 512 2048 16384 65536 131072

A5 61.03 61.68 61.90 62.10 62.36 62.01

Semi-supervised learning and downstream tasks To eval-
uate the quality of learned representations in a more diverse
way, we conduct experiments in a semi-supervised scenario.
Specifically, we consider a scenario where a linear classifier
is only trained using only 1% or 10% of the entire supervised
ImageNet-100 dataset. We evaluate each encoder trained in
the Class-IL (5T) and Data-IL (5T) using the ImageNet-100
dataset. The experimental results are presented in the up-
per rows of Table 6. Notably, when compared to CaSSLe,
applying PNR to both MoCo and BYOL yields approxi-
mately 3-6% performance improvements in both 10% and
1%, showing new state-of-the-art performances. The lower
rows of Table 6 present the results of linear evaluation for
downstream tasks conducted on the same encoders. For the
three datasets, we report the average accuracy of linear eval-
uation results on STL-10 (Coates et al., 2011), CIFAR-10,
and CIFAR-100 (Krizhevsky et al., 2009) datasets. Addi-
tionally, we set Clipart within the DomainNet (Peng et al.,
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Table 6. Experimental results of semi-supervised learning and downstream tasks. "10%" and "1%" denote the percent of used supervised
datasets for semi-supervised learning. Also, "CIL", "DIL", "DTs" and "Cli." means "Class-IL", "Data-IL", "Downstream Tasks" and
"Clipart", respectively. The bolded result represents the best performance

MoCo + CaSSLe SimCLR + CaSSLe Barlow + CaSSLe BYOL + CaSSLe MoCo + PNR BYOL + PNR
CIL 56.48 55.16 55.10 54.22 61.74 57.36

10
%

DIL 62.66 60.14 62.18 59.48 65.28 58.04
CIL 39.14 40.86 41.90 36.86 46.48 40.82

1% DIL 51.04 49.72 54.10 46.06 54.88 44.46
CIL 58.61 56.73 58.13 61.35 62.04 62.53

D
T

s

DIL 59.15 56.97 59.54 61.61 62.35 61.95
CIL 28.32 34.68 37.42 38.98 38.86 41.57

C
li.

DIL 29.74 34.17 36.13 37.04 38.33 40.06

2019) dataset as the downstream task and report the results
of linear evaluation using it. From these experimental re-
sults, we once again demonstrate that both "MoCo + PNR"
and "BYOL + PNR" achieve performance improvements
compared to the CaSSLe’s performance.

More detailed results and additional findings (e.g., experi-
ments using the model trained in Class-IL (10T) and Data-IL
(10T) are provided in Section B.6 of the Appendix.

Computational cost Note both PNR and CaSSLe incur
almost identical computational costs, except for "MoCo +
PNR," which involves an additional queue to store negatives
from the t− 1 model. However, the memory size required
for this additional queue is negligible.

Ablation study Table 7 presents the results of the ablation
study conducted on CIFAR-100 in the Class-IL (5T) sce-
nario. The first row represents the performance of "MoCo +
PNR" when all negatives are used. Cases 1 to 3 illustrate the
results when one of pseudo-negatives, PN 1(i) and PN 2(i)
is excluded or when both are omitted. The experimental
results show that the absence of these negatives leads to a
gradual decrease in performance, indicating that "MoCo +
PNR" acquires superior representations by leveraging both
the pseudo-negatives. Specifically, when PN 2(i) is omitted,
the performance degradation is more significant compared
to when the negative from PN 1(i) is absent. Moreover,
the result of Case 4, where a queue size twice as large is
used for "MoCo + CaSSLe", demonstrates that using the
proposed pseudo-negatives is different from simply increas-
ing the queue size. Note that ablation study for PNR with
non-contrastive learning, such as BYOL and VICReg, can
be confirmed by comparing the results of "+CaSSLe" and
"+PNR" in Table 1, 2, 3, and 4.

Moreover, we present further experimental results of apply-
ing PNR to supervised contrastive learning in Section B.5
of the Appendix.

Table 7. Ablation study of "MoCo + PNR" in Class-IL (5T) using
the ImageNet-100 dataset.

PN 1(i) PN 2(i) + CaSSLe |queue| ×2 A5

PNR ✓ ✓ ✗ ✗ 62.36
Case 1 ✗ ✓ ✗ ✗ 61.26
Case 2 ✓ ✗ ✗ ✗ 60.92
Case 3 ✗ ✗ ✗ ✗ 59.97
Case 4 ✗ ✗ ✓ ✓ 60.09

6. Limitation and Future Work
There are several limitations to our work. First, we fo-
cused on Continual Self-Supervised Learning (CSSL) with
CNN-based architectures (e.g., ResNet). However, we be-
lieve that our proposed idea and loss function could be
applied to CSSL using vision transformer-based models.
Second, we only considered CSSL in the computer vision
domain. Nonetheless, we believe that the concept of pseudo-
negatives could be extended to CSSL in other domains, such
as natural language processing. We defer these explorations
to the future work.

7. Concluding Remarks
We present Pseudo-Negative Regularization (PNR), a simple
yet novel method employing pseudo-negatives in Contin-
ual Self-Supervised Learning (CSSL). First, we highlight
the limitations of the traditional CSSL loss formulation,
which may impede the learning of superior representations
when training a new task. To overcome this challenge, we
propose considering the pseudo-negatives generated from
both previous and current models in CSSL using contrastive
learning methods. Furthermore, we expand the concept of
PNR to non-contrastive learning methods by incorporating
additional regularization. Through extensive experiments,
we confirm that our PNR not only can be applied to self-
supervised learning methods, but also achieves state-of-the-
art performance with superior stability and plasticity.
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Impact Statement
This paper presents a Pseudo-Negative Regularization
(PNR) framework designed to advance Continual Self-
Supervised Learning (CSSL). By balancing the trade-off
between plasticity and stability during CSSL, our work con-
tributes to the development of more energy-efficient AI
systems, supporting both environmental sustainability and
technological progress. Furthermore, our framework paves
the way for more adaptive AI applications across various
sectors.
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A. Supplementary Materials for Section 3
A.1. The Gradient Analysis

Here, we give the gradient analysis of our PNR loss for contrastive learning methods. For simplicity, we assume that g(·) is
an identity map instead of an MLP layer, hence g(zAt,i) = z

A
t,i. Now, we can show the gradient of LCSSL

t with respect to zAt,i
becomes

∂( 12L
CSSL
t )

∂zAt,i
= −

(
zBt,i + z

A
t−1,i

2

)
︸ ︷︷ ︸

(a)

+

{ ∑
zj∈N1(i)∪PN 1(i)

zj · S1
t,i(zj) +

∑
zj∈N2(i)∪PN 2(i)

zj · S2
t,i(zj)

}
︸ ︷︷ ︸

(b)

,

in which S1
t,i(u) = exp(zAt,i · u)/

∑
zj∈N1(i)∪PN 1(i)

exp(zAt,i · zj/τ), S2
t,i(u) = exp(zAt,i ·

u)/
∑
zj∈N2(i)∪PN 2(i)

exp(zAt,i · zj/τ), and
∑
zj∈N1(i)∪PN 1(i)

S1
i,t(zj) +

∑
zj∈N2(i)∪PN 2(i)

S2
i,t(zj) = 1. Simi-

larly as in the Unified Gradient of the InfoNCE loss (Tao et al., 2022), we can make the following interpretations. Namely,
the negative gradient step can be decomposed into two parts, part (a) and the negative of part (b) above.

Part (a) is the average of the embedding of hθt for the positive sample and the embedding of hθt−1
for the input sample (i.e.,

xi). Hence, this direction encourages the model to learn new representations while taking the stability from the previous
model into account. On the other hand, the negative of part (b) is the repelling direction from the center of mass point among
the negative sample embeddings in N1(i) ∪ PN 1(i) and N2(i) ∪ PN 2(i), in which each element u ∈ N1(i) ∪ PN 1(i)
and u ∈ N2(i) ∪ PN 2(i) has the probability mass S1

t,i(u) and S2
t,i(u), respectively. Thus, this direction promotes the new

representations to be more discriminative from the current and previous models’ negative sample embeddings, leading to
improved plasticity. Our gradient analysis allows us to better understand the graphical representation in the left figure of
Figure 2.

A.2. PNR Implementation for Non-Contrastive Learning Methods

A.2.1. BYOL + PNR

The implementation of "BYOL + PNR" following Equation (4) and (5) is as below:

LSSL∗

1 ({zAt , zBt )} = ∥gθt(zAt )− zB
ξ ∥22 (6)

LSSL∗

2 ({g(zAt ), zAt−1, z
B
t−1}) = ∥g(zAt )− zAt−1∥22 (7)

− λPNR∥g(zAt )− zBt−1∥22, (8)

where qθt represents an MLP layer in BYOL, and zB
ξ corresponds to output features of the target network obtained through

momentum updates using hθ. ∥ · ∥22 represents the squared L2 norm and λPNR is a hyperparameter.

A.2.2. VICREG + PNR

The implementation of "VICReg + PNR" following Equation (4) and (5) is as below:

LSSL∗

1 ({zAt , zBt )} = λs(zAt , z
B
t ) + µ[v(zAt ) + v(zBt )] + ν[c(zAt ) + c(zBt )] (9)

(10)

LSSL∗

2 ({g(zAt ), zAt−1, z
B
t−1}) = λCaSSLe[s(g(z

A
t ), z

A
t−1) ∗ 0.5] (11)

−λPNR[s(g(z
A
t ), z

B
t−1) ∗ 0.5], (12)

where Equation (9) is the original VICReg loss function and s(·, ·) denotes the mean-squared euclidean distance between
each pair of vectors. λCaSSLe and λPNR are hyperparameters.
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Table 8. Experimental results of different hyperparameters used for CSSL. Bold denotes the result of using default hyperparameters.
Hyperparameter set

(for CSSL) FT MoCo + CaSSLe MoCo + PNR

LR = 0.2, MBS = 128 57.34 63.56 66.50
LR = 0.4, MBS = 128 57.52 62.96 67.08
LR = 0.8, MBS = 128 56.96 55.84 67.92
LR = 0.4, MBS = 64 58.96 65.34 68.44

LR = 0.4, MBS = 256 54.20 60.50 67.80

B. Supplementary Materials for Section 4
B.1. Measures for Stability and Plasticity

To evaluate each CSSL algorithm in terms of stability and plasticity, we use measures for them, following (Fini et al., 2022;
Cha et al., 2021b), as shown in below:

• Stability: S =
1

T − 1

∑T−1
i=1 maxt∈{1,...,T}(ai,t − ai,T )

• Plasticity: P =
1

T − 1

∑T−1
j=1

1

T − j

∑T
i=j+1(ai,j − FTi)

Here, FTi signifies the linear evaluation accuracy (on the validation dataset of task i) of the model trained with a SSL
algorithm for task i.

B.2. Discussion on Suboptimal Performance of CaSSLe and PNR in Data-IL

As shown in Table 4, combining BYOL with CaSSLe and PNR in Data-IL led to suboptimal performance, particularly
in the 5T scenario. This can be attributed to the unique characteristics of Data-IL, briefly discussed in the CaSSLe paper.
Data-IL involves shuffling and evenly distributing the ImageNet-100 dataset among tasks, resulting in minimal distribution
disparities between them. During BYOL training (using Equation (6)), the target encoder (ξ) retains some information from
the current task which is conceptually similar to the previous task, due to momentum updates from the training encoder
(hθt ). As a result, fine-tuning solely with BYOL can produce a robust Data-IL outcome due to the substantial similarity in
distribution between tasks. However, the incorporation of CaSSLe (Equation (7)) and PNR (Equation (8)) may conflict with
Equation (6) in Data-IL.

On the contrary, when applied to the Domain-IL scenario using the DomainNet dataset where distinct variations in input
distribution are evident for each task, "BYOL + PNR" effectively demonstrates the feasibility of augmenting negative
representations as outlined in Table 4. This reinforces our conviction that the suboptimal results observed in Data-IL are
solely attributable to the unique and artificial circumstances inherent to Data-IL.

B.3. Experiments to Reproduce the CaSSLe’s Reported Performance

We conduct all experiments based on the code provided by CaSSLe. For experiments on CIFAR-100, we are able to achieve
results similar to those reported in the CaSSLe paper. However, despite our efforts to closely replicate the environment,
including utilizing the packages and settings provided by CaSSLe, we consistently obtain results approximately 2-6% lower
in experiments on ImageNet-100 and DomainNet. This issue has been raised and discussed on the issue page of CaSSLe’s
GitHub repository (Link 1, Link 2), where researchers have consistently reported performance discrepancies ranging from
4-6% lower than those stated in the CaSSLe paper, particularly in ImageNet-100 experiments.

Considering this discrepancy, we hypothesized that it might be related to the hyperparameter issue. Therefore, we conduct
experiments by varying key hyperparameters used in linear evaluation and CSSL, such as Learning Rate (LR) and Mini-Batch
Size (MBS), to address this concern. The results of these experiments are presented in Table 8 and Table 9. In Table 8, we
use the CSSL model trained with default hyperparameters for CSSL, while in Table 9, we conduct experiments using the
default hyperparameters for linear evaluation. Despite exploring various hyperparameter settings, we are unable to achieve
the performance reported in the CaSSLe paper. However, across all considered hyperparameter configurations, our proposed
"MoCo + PNR" consistently outperforms "MoCo + CaSSLe," confirming its superior performance.
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Table 9. Experimental results of different hyperparameters used for linear evaluation. Bold denotes the result of using default hyperparam-
eters.

Hyperparameter set
(for linear eval.) FT MoCo + CaSSLe MoCo + PNR

LR = 3.0, MBS = 64 57.34 64.02 68.16
LR = 3.0, MBS = 128 57.72 63.88 68.01
LR = 3.0, MBS = 256 57.52 62.96 67.78
LR = 3.0, MBS = 512 56.92 62.34 63.08
LR = 1.0, MBS = 256 56.42 62.00 66.52
LR = 7.0, MBS = 256 57.02 63.88 67.98

(a) Barlow + CaSSLe (b) SimCLR + CaSSLe

Figure 5. The graph illustrates the values of ak,t for each algorithm in the Class-IL (5T) scenario. The measured stability and plasticity for
each method are as follows: (a) (S, P ) = (2.52, 2.8), (b) (S, P ) = (2.22, 1.95).

B.4. Additional Experimental Analysis for Barlow/SimCLR + CaSSLe

Figure 5 presents an additional experimental analysis focusing on "Barlow + CaSSLe" and "SimCLR + CaSSLe" in Class-IL
(5T) experiments with the ImageNet-100 dataset. Consistent with our previous observations, we once again note an
improvement in their Avg(a1:5,t); however, certain tasks exhibit signs of catastrophic forgetting. Specifically, "Barlow +
CaSSLe" demonstrates a decline in performance for ak=1,t and ak=3,t. Similarly, ak=1,t and ak=4,t of "SimCLR + CaSSLe"
follow a comparable trend.

B.5. Additional Experiments Using Supervised Contrastive Learning

We introduce Supervised Contrastive Learning (SupCon) (Khosla et al., 2020) as an additional method to investigate the
effectiveness of PNR in scenarios where labels are available. To accomplish this, we modify the implementation of "SimCLR
+ PNR" in Equation (2) and (3) adapting it to utilize supervised labels. More specifically, it incorporates additional negatives
in "SupCon + CaSSLe".

We conduct experiments with the CIFAR-100 and ImageNet-100 datasets, employing the Class-IL (5T, 10T) scenario as our
experimental setting, and the results are shown in Table 10.

Table 10. Experimental results with Supervised Contrastive Learning.

AT
CIFAR-100 ImageNet-100

Class-IL 5T Class-IL 10T Class-IL 5T Class-IL 10T

SupCon CaSSLe 60.38 55.38 66.26 60.48
PNR 60.73 56.16 66.96 60.95

Based on the results in the table above, we observe that PNR can be applied to supervised contrastive learning, leading to
consistent performance improvements compared to CaSSLe. We believe these experimental findings suggest the potential for
the proposed PNR concept to be widely applicable across various domains using contrastive learning-based loss functions in
both supervised and self-supervised manners.
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B.6. Detailed Experimental Results of Downstream Tasks

Table 11. Experimental results of three downstream tasks.

Scenario Downstream
MoCo

+ CaSSLe
SimCLR

+ CaSSLe
Barlow

+ CaSSLe
BYOL

+ CaSSLe
MoCo
+ PNR

BYOL
+ PNR

Class-IL

5T

CIFAR-100 44.52 41.99 43.59 46.71 47.8 48.8
CIFAR-10 68.09 64.9 65.43 69.42 71.26 70.21

STL-10 63.23 63.3 65.39 67.93 67.07 68.59
Average 58.61 56.73 58.13 61.35 62.04 62.53

10T

CIFAR-100 40.84 40.34 40.67 45.49 45.86 48.63
CIFAR-10 66.01 64.62 64.42 68.02 68.65 70.34

STL-10 60.16 59.77 62.38 65.55 65.78 67.51
Average 55.67 54.91 55.82 59.69 60.10 62.16

Data-IL

5T

CIFAR-100 44.5 42.33 44.5 47.02 47.07 48.14
CIFAR-10 68.47 65.03 66.92 69.14 70.01 69.03

STL-10 64.49 63.54 67.2 68.66 69.98 68.68
Average 59.15 56.97 59.54 61.61 62.35 61.95

10T

CIFAR-100 42.17 41.3 43.53 45.3 46.88 48.05
CIFAR-10 66.66 65.9 65.38 69.27 69.84 70.80

STL-10 60.35 61.88 64.51 67.35 67.48 67.95
Average 56.39 56.36 57.81 60.64 61.40 62.27

As emphasized in several papers (Cha et al., 2024; Chen et al., 2020a; He et al., 2020), evaluating the generalization of
learned representations across diverse downstream tasks is critical. In line with this, we conduct evaluations on encoders
trained with each CSSL scenario on the ImageNet-100 dataset. Following the methodology outlined in (Cha et al., 2024), we
use the resized CIFAR-10/-100 datasets (resized to 96x96) (Krizhevsky et al., 2009) and the STL-10 dataset (Coates et al.,
2011) as downstream tasks and performed linear evaluations on them. Table 11 showcases the exceptional performance of
PNR across various downstream task datasets, consistently achieving the best overall results. Furthermore, the proposed
PNR exhibits superior CSSL compared to other CaSSLe variations, particularly evident in the Data-IL scenario.

Table 12. Experimental results of Clipart in DomainNet.

Scenario
MoCo

+ CaSSLe
SimCLR

+ CaSSLe
Barlow

+ CaSSLe
BYOL

+ CaSSLe
MoCo
+ PNR

BYOL
+ PNR

5T 28.32 34.68 37.42 38.98 38.86 41.57Class-IL 10T 28.57 33.33 38.30 38.05 38.19 38.05
5T 29.74 34.17 36.13 37.04 38.33 40.06Data-IL 10T 32.81 35.53 38.45 35.91 40.45 35.91

Following the CaSSLe paper (Fini et al., 2022), we conduct additional experiments for downstream tasks. We train a
model with each CSSL scenario on the ImageNet-100 dataset and conduct linear evaluation using the Clipart dataset from
DomainNet as the downstream task. Table 12 presents experimental results. In the scenario of Class-IL, we observe that the
models trained with "Barlow + CaSSLe" or "BYOL + CaSSLe" achieve superior performance among baselines. However,
"MoCo + PNR" and "BYOL + PNR" also show competitive or state-of-the-art performance, especially in "BYOL + PNR"
in Class-IL (5T). In the case of Data-IL, similar to the results obtained from previous downstream task experiments, we
observe that "MoCo + PNR" and "BYOL + PNR" outperform other algorithms by a considerable margin, except for "BYOL
+ PNR" in Data-IL (10T).

B.7. Experimental Results Using a Different Mini-Batch Size

Table 13. Experimental results (A5) of Class-IL (5T) with the ImageNet-100 dataset.

MoCo
+ FT

MoCo
+ CaSSLe

SimCLR
+ FT

SimCLR
+ CaSSLe

Barlow
+ FT

Barlow
+ CaSSLe

BYOL
+ FT

BYOL
+ CaSSLe

MoCo
+ PNR

BYOL
+PNR

55.80 61.70 53.70 62.40 59.00 65.00 59.20 61.60 67.40 63.34

To compare the sensitivity of CaSSLe and PNR to mini-batch size, we train a model with a mini-batch size of 256 (default is
128) and conduct linear evaluation. The experimental results in Table 13 show slightly lower results than those mentioned
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in the manuscript, confirming that increasing the mini-batch size made it challenging to achieve enhanced performance.
However, our PNR combination not only demonstrates similar performance across two different mini-batch sizes but also
achieves superior performance in both sizes compared to CaSSLe.

C. Experimental Details

Table 14. Details on training hyperparameters used for CSSL (CIFAR-100 / ImageNet-100 / DomainNet).

CIFAR-100 / ImageNet-100
/ DomainNet

MoCo
(+CaSSLe)

SimCLR
(+CaSSLe)

BarLow
(+CaSSLe)

BYOL
(+CaSSLe)

All methods
+ PNR

Epoch
(per task) 500 / 400 / 200

Batch size 256 / 128 / 128

Learning rate 0.4 0.4 0.3 / 0.4 / 0.4 1.0 / 0.6 / 0.6

0.6 (for MoCo)
0.6 (for SimCLR)

0.3 / 0.4 / 0.4 (for Barlow)
1.0 / 0.6 / 0.6 (for BYOL)

Optimizer SGD

Weight decay 1e-4 1e-4 1e-4 1e-5
1e-5 (for BYOL)

1e-4 (for the others)

MLP Layer (dim) 2048 2048 2048 4096 / 8192 / 8192
4096 / 8192 / 8192 (for BYOL)

2048 (for the others)

Prediction layer (dim) - - - 4096 / 8192 / 8192
4096 / 8192 / 8192 (for BYOL)

2048 (for the others)
Queue 65536 - - - 65536 (for MoCo)

Temperature (τ ) 0.2 0.2 - - 0.2 (for MoCo and SimCLR)

Table 14 presents the training details for each algorithm utilized in our Continual Self-supervised Learning (CSSL)
experiments. All experiments are conducted on an NVIDIA RTX A5000 with CUDA 11.2 and we follow the experimental
settings proposed in the CaSSLe’s code (Fini et al., 2022). We employ LARS (You et al., 2017) to train a model during
CSSL.

λ in Equation (5) Table 15 presents hyperparameter λ in Equation (5) used for experiments.

Table 15. Hyperparameter λ.

λ
CIFAR-100 ImageNet-100 DomainNet

Class-IL Class-IL Data-IL Domain-IL
5T 10T 5T 10T 5T 10T 6T

Barlow 1 1 1 1 0.1 0.1 1
BYOL 0.5 1 1 1 0.1 0.1 1

VICReg 23 23 23 23 5 5 8

Linear evaluation Table 16 presents detailed training hyperparameters employed for linear evaluation on each dataset
using encoders trained via CSSL. In the case of CaSSLe variations, we conduct the experiments while maintaining consistent
linear evaluation settings with those employed in CaSSLe.

Table 16. Experimental details of linear evaluation (CIFAR-100 / ImageNet-100 / DomainNet).

CIFAR-100 / ImageNet-100
/ DomainNet

MoCo
(+CaSSLe)

SimCLR
(+CaSSLe)

BarLow
(+CaSSLe)

BYOL
(+CaSSLe) PNR

Epoch
(per task) 100

Batch size 128 / 256 / 256
Learning rate 3.0 1.0 0.1 3.0 3.0

Scheduler Step LR (steps = [60, 80], gamma = 0.1)
Optimizer SGD

Weight decay 0
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Downstream task Table 17 outlines detailed training hyperparameters employed for linear evaluation on downstream tasks
using encoders trained under various CSSL scenarios with the ImageNet-100 dataset.

Table 17. Experimental details of linear evaluation on downstream tasks.

CIFAR-10 / CIFAR-100 / STL-10
/ Clipart

MoCo
(+CaSSLe)

SimCLR
(+CaSSLe)

BarLow
(+CaSSLe)

BYOL
(+CaSSLe) PNR

Epoch
(per task) 100

Batch size 256
Learning rate 3.0 1.0 0.1 3.0 3.0

Scheduler Step LR (steps = [60, 80], gamma = 0.1)
Optimizer SGD

Weight decay 0
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